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Abstract—This paper proposes two novel schemes of wide-
band compressive spectrum sensing (CSS) via block orthogo-
nal matching pursuit (BOMP) algorithm, for achieving high
sensing accuracy in real time. These schemes aim to reliably
recover the spectrum by adaptively adjusting the number of
required measurements without inducing unnecessary sampling
redundancy. To this end, the minimum number of required
measurements for successful recovery is first derived in terms of
its probabilistic lower bound. Then, a CSS scheme is proposed
by tightening the derived lower bound, where the key is the
design of a nonlinear exponential indicator through a general-
purpose sampling-controlled algorithm (SCA). In particular, a
sampling-controlled BOMP (SC-BOMP) is developed through
a holistic integration of the existing BOMP and the proposed
SCA. For fast implementation, a modified version of SC-BOMP
is further developed by exploring the block orthogonality in the
form of sub-coherence of measurement matrices, which allows
more compressive sampling in terms of smaller lower bound of
the number of measurements. Such a fast SC-BOMP scheme
achieves a desired tradeoff between the complexity and the
performance. Simulations demonstrate that the two SC-BOMP
schemes outperform the other benchmark algorithms.

Index Terms—Block orthogonal matching pursuit, block spar-
sity, cognitive radios, compressive sensing, spectrum sensing.

I. INTRODUCTION

IN cognitive radio network (CRN) [1]–[4], spectrum re-
sources become more and more scarce, leading to the

emergence of spectrum sensing [5], [6] in dynamically provid-
ing the spectrum occupancy for secondary users (SUs). The
spectrum holes can thus be used by SUs without causing any
interference to primary users (PUs). It is known that wider
spectrum can enable CRN to obtain more opportunities of
access [7], [8], inspiring the interests of many scholars in
wideband spectrum sensing.

The main challenge of wideband spectrum sensing is the
high sampling rate, which results in huge resource consump-
tion. Fortunately, the compressive sensing (CS) technology
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with sub-Nyquist-rate sampling has been used to address
this challenge, which is called compressive spectrum sens-
ing (CSS) [9]–[14]. Among various CSS algorithms, block
orthogonal matching pursuit (BOMP) is a typical one that
effectively recovers the spectrum with block sparsity in an
iterative manner [15]. There are two major advantages high-
lighting the wide use of BOMP in practical applications:
firstly, BOMP achieves much better recovery performance
than some conventional CSS algorithms, such as orthogonal
matching pursuit (OMP) and orthogonal least squares (OLS),
in reconstructing underlying signals with block structure; sec-
ondly, as a greedy algorithm, BOMP has lower computational
complexity than convex optimization algorithms or some other
greedy algorithms, e.g., block OLS.

A. Related Works
However, the existing BOMP still causes nontrivial com-

plexity as the problem size goes large in wideband scenarios.
It is thus necessary to further speed up spectrum sensing [16]–
[19] for fast implementation of wideband sensing which leaves
more computation resources and time duration for the follow-
up data transmission on the detected spectrum opportunities.

Recent studies [20]–[22] propose adaptive and efficient
spectrum sensing schemes, but they ignore block structure
of the sparse spectrum [15]. It has been proved that the use
of block sparsity results in faster and more accurate sparse
recovery [23]–[25]. Moreover, BOMP enjoys the merits of
fast and accurate sensing performance [23], [25], which are
the merits that CSS calls for. However, to the best of our
knowledge, it is still lack on both the theoretical analysis and
practical algorithm design for BOMP in CSS. Therefore, to fill
the aforementioned gap, this work is motivated to investigate
the fundamental limits and algorithmic designs on the BOMP-
based CSS methods.

Note that the CSS using BOMP can be accelerated by
appropriately reducing the number of measurements, since
the computational complexity of BOMP algorithm is mainly
determined by the number of measurements [25]–[29]. In [27],
the authors derive the bound on the necessary number of
measurements for the greedy algorithm, which indicates that if
M ≥ 4kd ln(2N/ω1), the probability of exact sparse recovery
using the greedy algorithm is no lower than a given threshold
in the noiseless case, where ω1 is a constant. The recent study
[29] improves the bound in [27] to M ≥ 2kd ln(N/ω2) for
the greedy algorithm, where ω2 is also a constant.
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Although the theoretical lower bound for the number of
measurements is continuously improved, a gap still exists
between the empirical necessary number of measurements
and the theoretical results. That is, the empirical number for
reliable recovery is much smaller than the theoretical bounds
[29]. When humans have to use the theoretical bounds as the
guideline to determine the number of measurements, such gap
usually leads to a wastage on the excessive measurements
collected in practical CSS. This is because these theoretical
bounds are too loose for CSS application. Therefore, a key
task is to shrink this gap.

Moreover, the noise effect is usually ignored in existing
works [27], [29] for simplicity of analysis. Considering the fact
that noise always exists in practical scenarios, it is necessary
to develop a tight lower bound of the number of measurements
by taking consideration of the noise effect for CSS.

B. Our Contributions

To reduce the computational cost of BOMP in CSS scenar-
ios without sacrificing its recovery accuracy, this paper pro-
poses two novel schemes called general sampling-controlled
BOMP (SC-BOMP) and fast SC-BOMP respectively. In these
schemes, two sampling-controlled algorithms (SCAs) are de-
veloped to dynamically adjust the number of measurements
to an appropriate level, where tighter lower bounds on the
number of minimum measurements in the noisy scenarios are
derived which in turn shed lights on the design of efficient
iterative algorithms. The proposed SCAs promote the practical
usage of the theoretical analyses on the necessary number of
measurements, and the combinations of the SCAs and BOMP,
i.e., the SC-BOMP schemes, perform well in the actual CSS
application. The contributions of this paper are summarized as
follows.

1) This work derives the lower bounds of the necessary
number of measurements of BOMP, which ensure the
probability of reliable recovery exceeding a given con-
stant in both noiseless and noisy cases. By using the
`2,∞-norm formulated coherence in a block manner,
our developed results are tighter than those in [27] and
[29] based on our extended support selection condition.
Furthermore, to the best of our knowledge, this is
the first work developed to reveal the effect of noise
power on the necessary number of measurements for
the BOMP algorithm.

2) Two sampling-controlled algorithms (SCAs), i.e., the
general SCA and the fast SCA, are proposed based on
the derived bounds. Specifically, in the general SCA,
the bounds on the necessary number of measurements
are further reduced to a tight level by using the widely
adopted exponential function indicator. The tightness
means that BOMP may not perform 100% spectrum
detection even if the number of measurements decreases
slightly, and the gap between the theoretical bound and
the empirical result has been greatly reduced. In the fast
SCA, this gap is further reduced by utilizing the block
orthogonality of the measurement matrix. Note that the
block orthogonality means that the sub-coherence of

the measurement matrix is equal to 0, leading to the
improvements of the bounds on the necessary number
of measurements. The fast SCA can still enable BOMP
to realize 100% sensing, but it requires higher signal-to-
noise ratio (SNR) than that of the general SCA.

3) Two CSS schemes, i.e., the general SC-BOMP and the
fast SC-BOMP, are proposed to realize reliable and real-
time sensing. It can be inferred that the general SC-
BOMP is a combination of the general SCA and BOMP,
while the fast SC-BOMP is based on the fast SCA. They
effectively utilize the theoretical bounds on the number
of measurements for practical CSS applications, and
achieve the desired sensing performance at affordable
computing resources and running time. That is, in low
SNR environments, the schemes perform reliable CSS,
while in high SNR environments, the schemes obtain
100% probabilities of detection without the waste of
computing resources.

4) The numerical simulations verify our theoretical results
that our derived bound on the necessary number of
the measurements is lower than the existing ones. The
CSS simulations indicate that our proposed SC-BOMP
schemes achieve high sensing accuracy by adaptively
selecting the number of required measurements, re-
sulting in reliable performance and effective saving of
computing resources. Meanwhile, the fast SC-BOMP
scheme utilizing block orthogonality of the measurement
matrix performs faster spectrum sensing than the general
SC-BOMP scheme at the cost of only a slight accuracy
loss.

The rest of this paper is organized as follows. Section II in-
troduces notations, system model, some definitions and useful
theoretical warm-ups, which facilitates the subsequent study
of the lower bound for necessary number of measurements in
Section III. In Section IV, the two versions of SC-BOMP
schemes are proposed. Simulation results are presented in
Section V, followed by conclusions in Section VI.

II. PRELIMINARIES

A. Notations

Denote vectors by boldface lowercase letters, e.g., r, and
matrices by boldface uppercase letters, e.g., D. The i-th
element of r is denoted as ri and rt represents r in the t-
th iteration. The element in the i-th row and j-th column of
matrix D is denoted as Dij , and Di is the i-th column of
D. DT represents the transpose of matrix D. Letting k be
the block sparsity, Ω ∈ Rk denotes the set containing the
indices of nonzero blocks of a sparse signal. The sub matrix
DΩ ∈ RM×kd consists of matrix blocks corresponding to Ω
and the same as the sub vector xΩ, where M is the number
of measurements. If Ω is replaced by another set S, then the
same is true as before. Ω̄ is the complementary set of Ω and
Ω\S = {i|i ∈ Ω, i /∈ S}. If the objective in | · | is a numerical
value, | · | means the absolute value of its target and if the
objective is a finite set, |·| denotes its cardinality. ||· ||0, ||· ||1,
|| · ||2 and || · ||∞ represent the `0, `1, `2 and `∞ norms of
their targets respectively. || · ||2,0, || · ||2,1 and || · ||2,∞ are the
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Fig. 1. System model of the proposed CSS schemes.

`2,0, `2,1 and `2,∞ mixed norms of their targets. The spectral
norm of D is represented by ||D||2 =

√
λmax(DTD), where

λmax(DTD) is the largest eigenvalue of DTD. For the index
set St in the t-th iteration, if DSt has full column rank, then
PSt = DSt(D

T
StDSt)

−1DT
St denotes the projection onto the

span of DSt . P⊥St = I − PSt is the projection complement
of the span of DSt , where I is the identity matrix. E(·) and
P(·) denote the expectation and probability of their targets
respectively. E(·) represents a random event. d·e denotes the
ceiling operation.

B. System Model

As shown in Fig. 1, a wideband spectrum signal that SUs
receive from PUs is s ∈ RN , which is sparse based on
a certain basis Ψ ∈ RN×N [9], i.e., s = Ψx ∈ RN
with ||s||0 � N . Meanwhile, s can be undersampled by a
compression matrix Φ ∈ RM×N with M � N . Due to the
additive noise in practical CSS scenario, the system model is
formulated by [7]

y = Φs + n = ΦΨx + n = Dx + n, (1)

where y ∈ RM is the measurement vector, D = ΦΨ ∈
RM×N is the effective measurement matrix and n ∈ RM
represents the additive noise satisfying ||n||2 ≤ ε. It is proved
that the restricted isometry and mutual incoherence properties
of a given Gaussian matrix are satisfactory for reliable sparse
recovery [30]. As a result, Gaussian measurement matrix is
widely used in CSS [7], [10].

Different from conventional CSS [7], [9], [31] that the
number of measurements M is fixed, this work can set a suf-
ficient but not superfluous number according to the theoretical
results, and thus save the transmission burden and recovery
cost. Accordingly, the overall CSS system enjoys the reduced
cost of computing resources and real-time implementation
advantages.

Further, the spectrum in CRN usually appears with block
sparsity [15]. The block sparse spectrum x is defined as

x = [x1 · · ·xd︸ ︷︷ ︸
xT [1]

xd+1 · · ·x2d︸ ︷︷ ︸
xT [2]

· · ·xN−d+1 · · ·xN︸ ︷︷ ︸
xT [Nb]

]T , (2)

where d is block length, N = Nbd and x[i] ∈ Rd (i ∈
{1, 2, · · · , Nb}) is the i-th block of x. Denoting

||x||2,0 =

Nb∑
i=1

I(||x[i]||2 > 0) (3)

with the binary indicator function I(·). Then, if x is k block
sparse, ||x||2,0 ≤ k. Accordingly, the measurement matrix is
rewritten as a concatenation of Nb column blocks, i.e.,

D = [D1 · · ·Dd︸ ︷︷ ︸
D[1]

Dd+1 · · ·D2d︸ ︷︷ ︸
D[2]

· · ·DN−d+1 · · ·DN︸ ︷︷ ︸
D[Nb]

], (4)

where D[i] ∈ RM×d is the i-th block of D (i ∈
{1, 2, · · · , Nb}). Assume that the measurement matrix D is
an M × N matrix with M = Ld and N = Rd, where d
represents the block length, i.e., the number of measurements
and the number of atoms are integral multiples of the block
length d. In this paper, the BOMP algorithm [23] given in
Algorithm 1 is utilized to recover the sparse spectrum x from
the measurement vector y. Finally, based on the reconstructed
x, SUs can identify the idle spectrum.

Algorithm 1 Block orthogonal matching pursuit
Input: D,y, block sparsity level k and block length d
Output: Ŝ ⊆ Ω and x̂ ∈ RN

1: Initialization : t = 0, r0 = y, S0 = ∅, x0 = 0
2: while t < k or not converged do
3: Set it+1 = arg max

j∈{1,··· ,Nb}\Ωt

||DT [j]rt||2

4: Augment St+1 = St ∪ {it+1}
5: Estimate xt+1[j] = arg min ‖y−

∑
j∈St+1

D[j]xt+1[j]‖2

6: Update rt+1 = y −Dxt+1

7: t = t+ 1
8: end while
9: return Ŝ = St and x̂ = xt

C. Useful Definitions, Lemmas and Corollaries

In order to facilitate the following analysis, some definitions,
lemmas and corollaries are given first.

Definition 1. The metric that measures the disparity of a
general signal x is given by ||xS||22,1 ≤ ||xS||22|S|, ∀S ⊆ Ω
[25], [32].

Definition 2. The matrix coherence D is defined as µ =
maxi,j 6=i |DT

i Dj | [23]. The sub-coherence of D is defined
as ν = max

l
max
i,j 6=i
|DT

i Dj |,Di,Dj ∈ D[l].

Definition 3. For the system model (1), SNR is defined as
E(||Dx||22)

E(||n||22)
[33]–[35].

Lemma 1. Suppose µ < 1
c−1 , then 1 − (c − 1)µ ≤ λmin ≤

λmax ≤ 1 + (c − 1)µ, where c represents the number of the
columns of DS, µ is the matrix coherence of D, λmin and
λmax denote the minimum and maximum eigenvalue of DT

SDS

respectively [36].

Lemma 2. Let C be a positive convex set, containing the
origin. Suppose h(x) ≥ 0 (x ≥ 0) be a function such that: (1)
{x|h(x) ≥ u} = Bu is convex for every u (0 < u <∞), and
(2)
∫
C
h(x)dx <∞. Then, for 0 ≤ β ≤ 1,

∫
C
h(x+βy)dx ≥∫

C
h(x+ y)dx.

Proof. See Appendix A.
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Fig. 2. The motivation and the flow chart of this work.

The following corollary is derived based on Lemma 2.

Corollary 1. Let x be a random vector with probability den-
sity function h(x) (x ≥ 0) such that: (1) {x|h(x) ≥ u} = Bu

is convex for every u (0 ≤ u < ∞). If C is a convex set,
containing the origin, P{x + βy ∈ C} ≥ P{x + y ∈ C} for
0 ≤ β ≤ 1.

Based on Corollary 1, the following lemma holds.

Lemma 3. Let x = (x1,x2, · · · ,xc) be a vector of ran-
dom variables having the c-dimensional Gamma distribution
with arbitrary variances and arbitrary correlations. Then,
for any positive numbers θ1, θ2, · · · , θc, P(x1 ≤ θ1,x2 ≤
θ2, · · · ,xc ≤ θc) ≥ P(x1 ≤ θ1) · P(x2 ≤ θ2, · · · ,xc ≤ θc).

The proof is omitted since it is similar to that of Theorem 1
in [37].

III. LOWER BOUND OF NECESSARY NUMBER OF
MEASUREMENTS

Fig. 2 highlights the main flow from the theoretical results in
Sec. III to the proposed spectrum sensing schemes in Sec. IV,
which also demonstrates the motivation of this work that the
derived theoretical results are the bases of the spectrum sensing
schemes.

A. Main Theoretical Results

In this subsection, referring to the system model (1), a
lemma is given, which ensures that the existing BOMP algo-
rithm exactly chooses the next support index if the previous
selected indices are correct. Then, a lower bound on the
probability that BOMP exactly reconstructs any k block sparse
signal x satisfying Definition 1 in k iterations is provided.
Finally, based on these theoretical analyses, the necessary
number of measurements to guarantee that BOMP exactly
recovers any k block sparse signal with high probability is
developed.

1) Exact Support Selection Condition:

Lemma 4. Suppose that the system model is (1) and ||n||2 ≤
ε. Let λ′min be the smallest singular value of DΩ. For 0 ≤
t ≤ |Ω| − 1, assume that St ⊆ Ω, |St| = t and Definition 1
holds with S = Ω\St. Then, with ν < 1

d−1 , St+1 ⊆ Ω and
|St+1| = t+ 1 if the following inequality holds:

||DT
Ω̄gt||2,∞ <

λ′min√
k − t

−
2ε
√

1 + (d− 1)ν

λ′min

√
(k − t) min

i∈Ω
||x[i]||2

,

(5)
where

gt =
P⊥StDΩ\StxΩ\St

||P⊥StDΩ\StxΩ\St ||2
. (6)

Proof. See Appendix B.

Remark 1. When µ < 1
kd−1 , (5) is established if the following

inequality holds:

min
i∈Ω
||x[i]||2

ε
>

2
√

1 + (d− 1)ν

1− (kd− 1)µ
. (7)

Furthermore, a mutual subspace coherence µs as an ex-
tension of µ for matrix with block structure is defined in
[38], which measures the coherence between different matrix
blocks. By using µs, an extended condition is given as follows:

When (d− 1)ν + (k − 1)dµs < 1, (5) is established if

min
i∈Ω
||x[i]||2

ε
>

2
√

1 + (d− 1)ν

1− (d− 1)ν − (k − 1)dµs
. (8)

Since µs ≤ µ and ν ≤ µ, it is obtained that 1 − (d − 1)ν −
(k−1)dµs ≥ 1−(kd−1)µ. Thus the condition in (8) is easier
to hold than that in (7).

Proof. Based on Lemma 1, λ′min ≥ 1− (kd− 1)µ. Then, let
the right-side of (5) greater than zero, (7) holds. By using
µs and the similar proofs in [36], it is obtained that λ′min ≥
1 − (d − 1)ν − (k − 1)dµs. Finally, (8) holds by using the
aforementioned proofs.

Remark 2. By (5) and Remark 1, Lemma 4 is easier to hold
with two potential conditions: (1) the ratio of signal energy
and noise is high; (3) the metrics of matrix coherence µ and
sub-coherence ν are small. Based on these two assumptions,
one can see intuitively that (5) and (7) are easier to hold, and
hence the performance of support selection becomes better.

By setting ε = 0, Lemma 4 is extended to the following
corollary.

Corollary 2. Suppose the system model is y = Dx. Let λ′min

be the smallest singular value of DΩ. For 0 ≤ t ≤ |Ω| − 1,
assume that St ⊆ Ω, |St| = t and Definition 1 holds with
S = Ω\St. Then, St+1 ⊆ Ω and |St+1| = t+1 if the following
inequality holds:

||DT
Ω̄gt||2,∞ <

λ′min√
k − t

, (9)

where gt is defined in (6).
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2) Probability of Exact Recovery:

Theorem 1. Suppose that the system model is (1) and ||n||2 ≤
ε. Let the entries of the measurement matrix D ∈ RM×N
be i.i.d. N (0, 1

M ), x be k block sparse signal that satisfies
Definition 1 and d be the block length. Denote the interval:

I =

(
0, 1−

√
kd

M
−
√
d(c0 + 1)k

4M

−

√√√√d(c0 + 1)k

4M
+

2ε
√

1 + (d− 1)ν

min
i∈Ω
||x[i]||2

]
,

(10)

the following inequality holds:

P(E) ≥
k∏
t=1

(
1−

(Mη2(t,λ̃)
d )

d
2

√
πd(Mη2(t,λ̃)

d − 1)
e
d
2 (1−Mη

2(t,λ̃)
d )

)R−k
× sup
ζ∈I

(
1− e−

ζ2M
2

)
, (11)

where E represents the event that BOMP reliably recovers the
k block sparse signal in k iterations,

η(t, λ̃) =
λ̃√
t
−

2ε
√

1 + (d− 1)ν

λ̃
√
tmin
i∈Ω
||x[i]||2

, (12)

λ̃ = 1−
√
kd

M
− ζ, (13)

and c0 is the positive value satisfying the inequality

(c0 + 1)
d
2

√
πdc0

e−
d
2 c0 < 1. (14)

Proof. See Appendix C.

Remark 3. An appropriate c0 in (14) equals 1
2 . The reason

is given as follows. For clarity, let the left-side of (14) be

g(x, d) = (x+1)
d
2√

πdx
e−

d
2x. Then, g( 1

2 , 1) < 1. Since ∂g(x,d)
∂d < 0,

g( 1
2 , d) < 1 holds for all available d. Furthermore, when x >

0, ∂g(x,d)
∂x < 0. This means g(x ≥ 1

2 , d) < 1. In a word, the
choice of the value of c0 is not fixed but limited to (14).

By exploiting Corollary 2 and setting ε = 0 in Theorem 1,
the following corollary holds.

Corollary 3. Suppose that the system model is y = Dx. Let
the entries of the measurement matrix D ∈ RM×N be i.i.d.
Gaussian distribution, i.e., N (0, 1

M ), x be k block sparse
signal that satisfies Definition 1 and d is a positive integer
representing the block length. Denote the interval:

I =

(
0, 1−

√
kd

M
−
√
d(c0 + 1)k

M

]
, (15)

the following inequality holds:

P(E) ≥
k∏
t=1

(
1−

(Mη2(t,λ̃)
d )

d
2

√
πd(Mη2(t,λ̃)

d − 1)
e
d
2 (1−Mη

2(t,λ̃)
d )

)R−k
× sup
ζ∈I

(
1− e−

ζ2M
2

)
,

(16)
where E represents the event that BOMP reliably recovers the
k block sparse signal in k iterations,

η(t, λ̃) =
λ̃√
t
, λ̃ = 1−

√
kd

M
− ζ, (17)

and c0 is the positive value satisfying (14).

3) Necessary number of measurements:

Theorem 2. Suppose that the system model is defined in (1)
and the atoms of D ∈ RM×N are i.i.d. N (0, 1

M ). For k block
sparse signal x (d > 2) satisfying Definition 1 and ω ∈ (0, 1),
let

ξ = max

{
1,
R− k
ln(N)

× 42dke−
d
2

}
(18)

and

M ≥max

{(√
2

kd
+

√
1

ln(Nω )
+

√
α2

kd ln(Nω )

−

√
α2 + α2

1α3 − α2α3

kd ln(Nω )

)2

kd ln
(N
ω

)
,(√

2

kd
+

√
1

ln(Nω )
+

β1β2 + 1
2β3

(min
i∈Ω
||x[i]||2 − β1)

√
kd ln(Nω )

+

√
(β1β2 + 1

2β3)2 + (min
i∈Ω
||x[i]||2 − β1)β1β2

2

(min
i∈Ω
||x[i]||2 − β1)

√
kd ln(Nω )

)2

× kd ln
(N
ω

)}
,

(19)
where

α1 =

√
2 ln

(N
ω

)
+
√
kd+

√
d(c0 + 1)k

4
,

α2 =
d(c0 + 1)k

4
, α3 =

2ε
√

1 + (d− 1)ν

min
i∈Ω
||x[i]||2

,

β1 = 2ε
√

1 + (d− 1)ν, β2 =
√
k +

√
2 ln

(N
ω

)
,

β3 =

√
d×

(
3d
2

+1

√
ξ ln(N)

ω
+ 1

)
× k ×min

i∈Ω
||x[i]||2.

(20)

Then,
P(E) ≥ 1− ω

N
− ω√

πd
, (21)

where E represents the event that BOMP reliably recovers the
k block sparse signal in k iterations.

Proof. See Appendix D.
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The following corollary presents the noiseless version of
Theorem 2.

Corollary 4. Suppose that the system model is y = Dx and
the atoms of D ∈ RM×N are i.i.d. N (0, 1

M ). For k block
sparse signal x (d > 2) satisfying Definition 1 and ω ∈ (0, 1),

let ξ = max

{
1, R−kln(N) × 42dke−

d
2

}
and

M ≥

(√
2

kd
+

√
1

ln(Nω )
+

√√√√ (
3d
2

+1

√
ξ ln(N)
ω + 1)

ln(Nω )

)2

× kd ln
(N
ω

)
.

(22)

Then,
P(E) ≥ 1− ω

N
− ω√

πd
, (23)

where E represents the event that BOMP reliably recovers the
k block sparse signal in k iterations.

In Theorem 1, a more reliable support selection condition
than that given in [29] is first developed by effectively utilizing
the block structure of the measurement matrix. Specially, the
support selection for one block in BOMP is more effectively
formulated via the `2,∞ norm, which essentially indicates the
coherence between an arbitrary matrix block and a random
vector. Based on this `2,∞ form, the probability, which rep-
resents that the coherence is less than a given threshold, is
higher than the result in [29]. The latter one ignores the block
structure in the measurement matrix. With the derived higher
probability for choosing one block, the overall probability for
selecting k correct support blocks is thus improved.

Based on Theorem 1, Theorem 2 provides a tighter bound
of the necessary number of measurements than that in [29]
for the same probability. In the derivation of Theorem 2, an
inequality relation of additive exponential function is devel-
oped by further considering the influence of block length,
which finally presents an operational lower bound for the
aforementioned support selection probability. This improved
lower bound in turn guarantees the tightness of the necessary
number of measurements.

Due to the improvement of Theorem 1 and Theorem 2, our
derived condition for the necessary number of measurements
is thus better than the existing one. The following Remark 4
is presented to clearly show the superiority.

Remark 4. There exists a general form of the necessary
number of measurements in previous literature [25], [28], [29],
that is,

M ≥ Akd ln
(N
B

+ C
)

+ F, (24)

where A, B, C and F are constants or functions. The most
recent result is given in [29] (Corollary 5) by asymptotic
analysis:

M ≥ Akd ln
(N
B

)
, (25)

where A = 2 and B ∈ [0.01, 0.1] is an empirical constant
presented in the simulation part of the paper.

By using the same asymptotic condition in [29], i.e.,

k,N →∞, (22) becomes

lim
k,N→∞

(√
2

kd
+

√
1

ln(Nω )
+

√√√√ (
3d
2

+1

√
ξ ln(N)
ω + 1)

ln(Nω )

)2

< A = 2.
(26)

This result indicates that the condition in (22) is tighter
than that in [29], leading to a smaller necessary number of
measurements in signal recovery. While our result indicates
the same order on kd and N as that in [29], it provides a
tighter condition, which leads to a smaller necessary number
of measurements in spectrum sensing. This tighter condition
in terms of the bound on the necessary number of measure-
ments not only sheds light on the characterization of BOMP’s
recoverability, as a fundamental question in the analysis of
the BOMP algorithm, but also plays as a foundation for the
subsequent algorithm development.

To better explain the physical meaning of Theorem 2, a new
bound of M is provided in the following Corollary 5.

Corollary 5. Suppose that the system model is defined in (1)
and the atoms of D ∈ RM×N are i.i.d. N (0, 1

M ). For k block
sparse signal x (d > 2) satisfying Definition 1 and ω ∈ (0, 1),

let ξ = max

{
1, R−kln(N) × 42dke−

d
2

}
and

M ≥

(√
2

kd
+

√
1

ln(Nω )
+

2 min
i∈Ω
||x[i]||2β2 + β3

(min
i∈Ω
||x[i]||2 − β1)

√
kd ln(Nω )

)2

× kd ln
(N
ω

)
,

(27)
where β1, β2 and β3 are defined in Theorem 2. Then,

P(E) ≥ 1− ω

N
− ω√

πd
, (28)

where E represents the event that BOMP reliably recovers the
k block sparse signal in k iterations.

Proof. As proved in Remark 3, c0 can be set as 1
2 . Then, the

first term in (19) satisfies:(√
2

kd
+

√
1

ln(Nω )
+

√
α2

kd ln(Nω )
−

√
α2 + α2

1α3 − α2α3

kd ln(Nω )

)2

× kd ln
(N
ω

)
≤
(√

2

kd
+

√
1

ln(Nω )

)2

kd ln
(N
ω

)
.

(29)
Meanwhile, by letting min

i∈Ω
||x[i]||2 > β1, the last item in

parentheses of the second item in (19) satisfies:√
(β1β2 + 1

2β3)2 + (min
i∈Ω
||x[i]||2 − β1)β1β2

2

(min
i∈Ω
||x[i]||2 − β1)

√
kd ln(Nω )

≤
min
i∈Ω
||x[i]||2β2 + 1

2β3

(min
i∈Ω
||x[i]||2 − β1)

√
kd ln(Nω )

.

(30)
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Integrating the above derivations, and using the similar proce-
dures in the proof of Theorem 2, the proof of Corollary 5 is
completed.

The lower bound in Corollary 5 is more intuitive than that
in Theorem 2. Based on (7), there are two observations: 1)
the lower bound of M decreases if min

i∈Ω
||x[i]||2 increases; 2)

the lower bound of M becomes smaller if the noise constraint
ε is reduced. That is, the increase of useful signal power or
the decrease of noise power makes it easier to recover the
spectrum signal.

Corollary 6. Suppose that the system model is (1) and ||n||2 ≤
ε. Let the entries of the measurement matrix D ∈ RM×N be
i.i.d. Gaussian distribution, i.e., N (0, 1

M ), x be k block sparse
signal that satisfies Definition 1 and d be the block length.

For ϑ ∈ (0, 1√
πd

], let

ω =
ϑN
√
πd√

πd+N
, (31)

and M satisfy (19). Then,

P(E) ≥ 1− ϑ, (32)

where E represents the event that BOMP reliably recovers the
k block sparse signal in k iterations.

Proof. Since ϑ ≤ 1√
πd

< 1
N + 1√

πd
, then ω < 1, which

satisfies the assumption of that in Theorem 2, i.e., ω ∈ (0, 1).
Meanwhile,

ω

N
+

ω√
πd

= ϑ. (33)

Finally, (32) holds and the corollary is concluded.

Corollary 6 also applies to Corollary 4 which provides the
necessary number of measurements under noiseless case.

The theoretical analyses extend the basic idea of analyz-
ing the support selection conditions in [27], [29]. However,
different from [27], [29], the developed results in this paper
consider the block structure and utilize the block MIP to bound
the mixed matrix norm. They provide considerable improve-
ment and further reduce the computing resources required for
reliable recovery. Another contribution is that this paper is
the first to consider the noise impact on the bounds of the
necessary number of measurements. The results for the noisy
scenarios offer effective guideline for the implementation of
practical CSS.

IV. SAMPLING-CONTROLLED BLOCK ORTHOGONAL
MATCHING PURSUIT

In this section, the sampling-controlled algorithm (SCA) is
first provided based on the theoretical results in Section III-A.
SCA is a preprocessing procedure on the given sparse signals,
which determines the decent number of measurements, given
the block sparsity, block length and signal energy. In practical
spectrum sensing applications, SCA allows to dynamically
guide the measurement matrix based on the calculated number
of measurements, resulting in an efficient spectrum sensing
scheme. Further, the integration of SCA and BOMP leads us to

design a novel sampling-controlled block orthogonal matching
pursuit (SC-BOMP) as well as its fast implementation version.

A. The Proposed SC-BOMP Schemes

1) The General SC-BOMP: The general SCA is given in
Algorithm 2 by exploiting Theorem 2 and Corollary 4. In
step 1, the algorithm obtains a lower bound of the number
of measurements Mmin by (22) in Corollary 4, which is the
minimum number of measurements but not applicable to the
noisy case. To explain why this Mmin is necessary for the
general SCA, two points are clarified: (a) the lower bound
of M in (22) is independent to the sub-coherence ν of the
measurement matrix; (b) by calculation, the lower bound of
M in (19) decreases with the decrease of ν.

Generally speaking, the sub-coherence ν of the measure-
ment matrix whose entries are of static distribution changes
qualitatively but not quantitatively with the variation of M ,
that is, ν increases with the decrease of M , vice versa.
Therefore, in step 3, Mmin produces the largest sub coherence
ν, which can be seen as the worst ν, causing the largest Mmax

with respect to sub coherence ν in (19). The bound of Mopt

is given as follows:

Mmin < Mopt ≤Mmax. (34)

The first inequality in (34) is because Mopt can not be Mmin

due to the existence of noise in practical applications. In SCA,
to be conservative, choose Mopt ≈ Mmax. Since the decent
number of measurements should be small but not the largest,
there exists gap between Mmax and Mopt. Fortunately, this
gap is negligible as long as the minimal energy of the signal
block is sufficient large or the energy of the noise is small.

In steps 4 and 5 of the SCA, there exists an exponential map-
ping indicator e(·), which is widely used in many applications
[39]–[42], such as face recognition and hyperspectral image
classification. In step 4, this indicator can map ε to lower level
values for the compensation of theoretical scaling in Theorem
2 and Corollary 4, which is the common shortcoming of the
necessary number of measurements [29]. In step 5, the first
term of the indicator, i.e., e−ε210

SNR
10 , is the similar scaling

mapping to that of in step 4. The second term in the indicator
in step 5, i.e., e−ε2ε3 , guarantees that the trimmed Mopt−trim
cannot be infinitely close to 0.

The holistic general SC-BOMP scheme is shown in Fig. 3
(A).

2) The Fast SC-BOMP: In some situations, the speed of
detection is more crucial than its accuracy, under which a fast
implementation of SC-BOMP is preferred.

Apply block orthogonality, i.e., ν = 0, to the measurement
matrix. Under this condition, (5) and (7) are more easier
to hold, leading to better performance of support selection.
Accordingly, the necessary number of measurements becomes
lower when the recovery probability is the same as before,
resulting in faster sensing speed. The following corollary is
presented based on the block orthogonality.

Corollary 7. Suppose that the system model is defined in (1)
and the atoms of D ∈ RM×N satisfy N (0, 1

M ). For k block



IEEE TRANSACTIONS ON COMMUNICATIONS 8

PUs' signals The fast SCA with
Orthogonalization operation 

BOMP 
Occupancy
judgment

Compression

Digital sampling
The measurement matrix  


with orthogonal blocks 

Measurement vector  Recovered spectrum 

B. The fast CSS scenario
PUs

SUs SUs

PUs' signals The general SCA

BOMPOccupancy
judgment

Compression

Digital sampling The measurement matrix 

 

A. The general CSS scenario

Measurement vectorRecovered spectrum

Fig. 3. The flow chart of the proposed spectrum sensing schemes.

Algorithm 2 General SCA
Input: Sparse signal x, block sparsity level k, block length

d, c0, ε1, ε2, ε3, SNR and the distribution of each atom
in the measurement matrix D

Output: The measurement matrix D
1: Calculate Mmin by using the lower bound in (22)
2: Set Mmin = dMmine
3: Calculate νmax by using Definition 2 with the help of
Mmin

4: Calculate Mopt by using Theorem 2 with νmax and ε =

ε1e
−10

SNR
10

5: Calculate Mopt−trim = (e−ε210
SNR
10 + e−ε2ε3)×Mopt

6: Set Mopt−trim = dMopt−trime
7: Generate the measurement matrix D with Mopt and the

corresponding distribution
8: return D

sparse signal x (d > 2) satisfying Definition 1 and ω ∈ (0, 1),

let ξ = max

{
1, R−kln(N) × 42dke−

d
2

}
and M bounded by (19)

with

α1 =

√
2 ln

(N
ω

)
+
√
kd+

√
d(c0 + 1)k

4
,

α2 =
d(c0 + 1)k

4
, α3 =

2ε

min
i∈Ω
||x[i]||2

,

β1 = 2ε, β2 =
√
k +

√
2 ln

(N
ω

)
,

β3 =

√
d×

(
3d
2

+1

√
ξ ln(N)

ω
+ 1

)
× k ×min

i∈Ω
||x[i]||2.

(35)

Then,
P(E) ≥ 1− ω

N
− ω√

πd
, (36)

where E represents the event that BOMP reliably recovers the
k block sparse signal in k iterations.

By using Corollaries 4 and 7, the fast SCA is given in
Algorithm 3. Finally, combining the fast SCA and BOMP
algorithm, the fast SC-BOMP scheme is given in Fig. 3 (B).
It can be seen that the complexity of BOMP using fast SCA,
i.e., O(MoN + Mo(kd)2 + Mokd), is lower than that of the

one using general SCA at the cost of only a slight accuracy
loss, where Mo laconically represents the decent number of
measurements, i.e., Mopt−trim, obtained from the fast SCA.

In a nutshell, the proposal of SC-BOMP schemes relies
on the following promotions of the theoretical results: 1) this
work first derives the necessary number of measurements that
is reduced than the existing one, which thus reduces the gap
between the empirical bound and the theoretical results; 2)
then, the aforementioned gap is further improved based on
the exponential mapping indicator, and the general SC-BOMP
is proposed based on these theoretical results; 3) finally, based
on the block orthogonality, a tighter bound than the previous
two is derived, which is the theoretical foundation of the fast
SC-BOMP. Compared with the existing results, our results
provide an effective guidance for practical designs. They
formulate the real-time SC-BOMP schemes whose numbers
of measurements are just sufficiently enough for reliable CSS
without the waste of computing resources.

Algorithm 3 Fast SCA
Input: Sparse signal x, block sparsity level k, block length

d, c0, ε1, ε2, ε3, SNR and the distribution of each atom
in the measurement matrix D

Output: The measurement matrix D

1: Calculate Mopt by using Corollary 7 with ε = ε1e
−10

SNR
10

2: Calculate Mopt−trim = (e−ε210
SNR
10 + e−ε2ε3)×Mopt

3: Set Mopt−trim = dMopt−trime
4: Generate the measurement matrix D with Mopt−trim and

the corresponding distribution
5: return D

V. SIMULATION RESULTS

In this section, our theoretical results are first compared with
the existing bounds. Then, the proposed SC-BOMP schemes
are applied to CSS.

A. Comparison of theoretical results

Since the classical bounds of necessary number of measure-
ments are given under noiseless case, this work compares them
with our derived noiseless bound. Specifically, the simulation
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Fig. 4. Lower bounds on the necessary number of measurements M for recovering k block sparse signals in dimension N = 1024 with (a) d = 4; (b)
d = 8.

results of Corollary 4 based on Corollary 6 called “New
bound” in this paper are given, paralleled with the well known
result of Corollary 7 in [27] called “Existing bound 1”, i.e.,
M ≥ 4kd ln( 2N

ω1
), and the most recent result of Corollary 5

in [29] called “Existing bound 2”, i.e., M ≥ 2kd ln( Nω2
). The

calculations of ω1 and ω2 are given in Eqn. 53 [29] and Eqn.
16 [29], respectively. Set ϑ = 0.1 : −0.01 : 0.01 to guarantee
that P(E) in (32) is not smaller than 1−ϑ. The ω in (22) is set
the same as (31), i.e., ω = ϑN

√
πd√

πd+N
. The block sparse signal

is binary. Specially, the signal to be recovered has one entries
on the randomly chosen support set Ω, where the positions
of nonzero blocks of the k block sparse signal are selected at
random among all R locations and the non support elements
are set to be zero.

The results are given in Fig. 4 by varying different block
length d. It is observed that the different “New bounds”
are smaller than the “Existing bounds” which indicates that
Corollary 4 is better than Corollary 7 in [27] and Corollary 5
in [29] on describing the necessary number of measurements
that guarantees the probability of exact recovery P(E) is not
smaller than a given probability. When the block length d
increases with the fixed total sparsity kd, i.e., the “New bound
(k = 4)” in Fig. 4 (a) and the “New bound (k = 2)” in Fig. 4
(b), the necessary number of measurements for the probability
of exact recovery not being smaller than a given probability
becomes better, which indicates that the gap between the
empirical and theoretical number of measurements is reduced.
In addition, by comparing Figs. 4 (a) and (b), it can be
inferred that when the total sparsity is fixed, the larger block
length makes the performance of the BOMP better, because
the larger block length makes the lower bound of the number
of measurements required by the BOMP smaller.

B. SC-BOMP Schemes for CSS

This subsection applies our proposed general and fast SC-
BOMP schemes to CSS application.

Consider a wideband CRN with the spectrum length N =
1024. The distribution of the entry of the spectrum x is given
as follows [16]:

xi

{
∼ N (1, 0.01), i ∈ Ω,

= 0, i /∈ Ω.
(37)

The measurement matrix is Gaussian matrix with each entry
satisfying i.i.d. N (0, 1

M ), where M is designed by SCAs. The
parameters ε and c0 are set as 0.1 and 0.5 respectively. 10, 000
block sparse spectrum is generated first. Then, the general
SCA and the fast SCA are used to design the measurement ma-
trix for the SC-BOMP schemes. For the conventional BOMP
scheme, the determined matrix with fixed compression rate
is used. The following two metrics are employed to evaluate
different schemes.

The probability of exact detection Pd is exploited as the
metric to measure the recovery performance. Given the true
state x ∈ {0, 1}N of the target wideband spectrum, Pd is
defined as follows:

Pd =
xT (x == x̂)

xT (x == x̂) + xT (x 6= x̂)
, (38)

where x̂ is the estimated spectrum, x == x̂ and x 6= x̂
represent the logical operations of “and” and “exclusive or”,
respectively.

The running time is used to measure their efficiency. The
SCA is an offline operation, thus its running time is not
considered in the simulation. Our default testing environment
is Matlab R2016a on a desktop computer with 2.90GHz Intel
Core i7-10700 CPU.

The simulation results are given in Fig. 5. It is observed that
the sensing performance of our proposed SC-BOMP schemes
is slightly better that that of the scheme using BOMP with the
1/2 compression rate, called BOMP (1/2) this paper and so on.
Meanwhile, the running time of our SC-BOMP schemes are
worse than that of BOMP (1/2) when the SNR is less than 0
dB. However, as the SNR increases, our proposed SC-BOMP
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Fig. 5. Results of CSS with N = 1024. (a) and (b) are with k = 4 and d = 4; (c) and (d) are with k = 4 and d = 8; (e) and (f) are with k = 8 and d = 4.
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schemes dynamically reduce the number of measurements,
resulting in the effective complexity reduction.

It can be inferred from Fig. 5 (a) that BOMP (1/15) cannot
exactly recovers the spectrum when SNR is lower than 20 dB.
Then, in Fig. 5 (b), the running time of the SC-BOMP schemes
are between those of BOMP (1/10) and BOMP (1/15) when
SNR is large enough for exact recovery. These results indicate
that the number of measurements of the SC-BOMP schemes
have reduced to appreciably small values. That is, the sensing
performance of the SC-BOMP schemes cannot be exact if the
numbers of measurements become smaller, while the numbers
of measurements are excessive if they become larger.

In Figs. 5 (c) and 5 (d), the block length is doubled to 8.
The probabilities of detection of BOMP (1/2) get worse than
those in Fig. 5 (a). However, the probabilities of detection of
our proposed SC-BOMP schemes become better, leading to
larger performance gain compared with BOMP (1/2). In Fig.
5 (d), the running time of all the schemes are worse than those
in Fig. 5 (b). It can be seen that our SC-BOMP schemes still
exhibit strong ability in reducing sensing complexity.

In Figs. 5 (e) and 5 (f), the block sparsity is doubled to
8. Our proposed SC-BOMP schemes maintain the reliable
performance. Except SC-BOMP schemes, the performance of
other algorithms decrease abominably. These results reveal the
strong stability of the SC-BOMP schemes while facing various
spectrum.

Furthermore, it can be seen that the performance of the fast
SC-BOMP scheme is worse than that of the general SC-BOMP
scheme, while the running time of the fast one is shorter
than the general one in low SNR condition. These results
indicate that the fast SC-BOMP scheme is more suitable for
the scenarios requiring rapid spectrum sensing.

In Fig. 6, the proposed SC-BOMP schemes are further
compared with subspace matching pursuit (SMP) [38] and
block orthogonal least squares (BOLS) [28] algorithms. The
compression rate of BOMP, SMP and BOLS is fixed to 1/2.
Different from that in Fig. 5, the length of each non-zero block
of the spectrum varies randomly within a given range. Unless
otherwise specified, other simulation settings are the same as
those in Fig. 5.

It can be observed from Fig. 6, our proposed general and
fast SC-BOMP schemes obtain better CSS performance than
the other benchmark algorithms, while reducing the running
time dynamically with the increase of SNR. Specially, in Fig.
6 (a), the block length is selected within the range [2, 8]. In
low SNR environments, the general SC-BOMP performs the
best followed by the fast SC-BOMP. This indicates that the
proposed SC-BOMP schemes are more robust to noise effects
than the other algorithms, while the performance of the latter
ones is close to each other. In high SNR environments, the
CSS performance of BOMP, SMP, BOLS and the SC-BOMP
schemes is all equal to 1. Moreover, the running time of both
SC-BOMP schemes is shorter than the other algorithms, and
the fast SC-BOMP runs faster than the general one. This
reveals our proposed SC-BOMP schemes are more suitable
for real-time spectrum sensing applications.

In Figs. 6 (c) and (d), the block length is selected within
the range [2, 16]. With the increase of the block length range,

in low SNR environments, the performance of BOMP, SMP
and BOLS decreases slightly due to the increase of the overall
sparsity, while our proposed SC-BOMP schemes still maintain
the best performance than that of the other algorithms. This
is because our proposed SC-BOMP schemes can calculate
the number of measurements required for reliable recovery
in real time, which guarantees the performance reliability at
the expense of extra running time. Similar to Figs. 6 (a) and
(b), the same trend can be obtained in Figs. 6 (c) and (d).

Based on the simulation results, the advantages of SC-
BOMP schemes are summarized as follows: 1) As the SNR
increases, SC-BOMP schemes’ running time is dynamically
shortened because of the reduced number of measurements;
2) the numbers of measurements in high SNR environments
are just sufficiently enough for 100% detection probabilities to
reduce the waste of computing resources. 3) in low SNR en-
vironments, SC-BOMP schemes can maintain their reliability
by appropriately increasing the number of measurements.

VI. CONCLUSION

This paper proposes two CSS shemes, i.e., the general SC-
BOMP and the fast SC-BOMP, to achieve reliable and real-
time sensing. First, the necessary number of measurements
for reliable recovery is derived by developing the block MIP-
based norm bounds of the matrix and noise. Second, two
SCAs are proposed to adjust the computational complexity
of BOMP based on the necessary number of measurements’
bounds. Third, by using the two SCAs, this paper proposes
two SC-BOMP schemes to moderate the wastage of sampling
resources. Finally, simulation results verify that our theoretical
analyses improve the existing ones in the literature, and the
proposed schemes are more robust to noise effects than the
benchmark schemes while adaptively reducing their complex-
ity.

APPENDIX A
PROOF OF LEMMA 2

Proof of Lemma 2. Note that
∫
C
h(x + βy)dx ≥

∫
C
h(x +

y)dx is equivalent to
∫
C+βy

h(x)dx ≥
∫
C+y

h(x)dx, where
C + βy represents a translated convex set moved by βy. The
lemma can be proved that for every u, V {(C + βy)∩Bu} ≥
V {(C + y) ∩ Bu}, where V {·} represents the volume of its
target. Then, by using the similar procedures in [43], the proof
is completed.

APPENDIX B
PROOF OF LEMMA 4

Due to the atom selection procedure of BOMP algorithm,
it is necessary to show that St+1 ∈ Ω\St, i.e.,

||DT
Ω\Str

t||2,∞ > ||DT
Ω̄rt||2,∞. (39)

From [32], the residual signal satisfies: rt = y −DSt x̂
t =

P⊥StDΩ\StxΩ\St + P⊥Stn, where x̂t is the estimated sparse
signal in the t-th iteration. Then,

||DT
Ω\Str

t||2,∞
=||DT

Ω\St(P
⊥
StDΩ\StxΩ\St + P⊥Stn)||2,∞

≥||DT
Ω\StP

⊥
StDΩ\StxΩ\St ||2,∞ − ||DT

Ω\StP
⊥
Stn||2,∞

(40)
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Fig. 6. Results of CSS with k = 4, N = 1024. The maximum block length of (a) and (b) is 8; the maximum block length of (c) and (d) is 16.

and

||DT
Ω̄rt||2,∞

=||DT
Ω̄(P⊥StDΩ\StxΩ\St + P⊥Stn)||2,∞

≤||DT
Ω̄P⊥StDΩ\StxΩ\St ||2,∞ + ||DT

Ω̄P⊥Stn||2,∞.
(41)

Combining (39), (40) and (41), the following inequality
holds:

||DT
Ω\StP

⊥
StDΩ\StxΩ\St ||2,∞ − ||DT

Ω\StP
⊥
Stn||2,∞

− ||DT
Ω̄P⊥Stn||2,∞ > ||DT

Ω̄P⊥StDΩ\StxΩ\St ||2,∞.
(42)

The first term in the left-side of (42) can be upper bounded
by the analysis in [25], i.e.,

||DT
Ω\StP

⊥
StDΩ\StxΩ\St ||2,∞ ≥

||P⊥StDΩ\StxΩ\St ||22√
|Ω\St|||xΩ\St ||2

.

(43)
Let λ′ denote the smallest singular value of P⊥StDΩ\St . Based

on Lemma 5 in [36], it is obtained that

||P⊥StDΩ\StxΩ\St ||2 ≥ λ′||xΩ\St ||2 ≥ λ′min||xΩ\St ||2.
(44)

Thus,
||DT

Ω\StP
⊥
StDΩ\StxΩ\St ||2,∞

≥
||P⊥StDΩ\StxΩ\St ||2λ′min√

|Ω\St|

=
||P⊥StDΩ\StxΩ\St ||2λ′min√

k − t
.

(45)

Now, it comes to the second term in (42). It is known that
when ν < 1

d−1 , there exists i ∈ Ω\St such that

||DT
Ω\StP

⊥
Stn||2,∞ =||DT [i]P⊥Stn||2 ≤ ||DT [i]P⊥St ||2||n||2

(a)

≤
√

1 + (d− 1)ν × ε, (46)

where (a) follows from Lemma 1. The upper bound of
||DT

Ω̄
P⊥Stn||2,∞ in (42) is omitted which is the same as that
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in (46). Then, by using (45) and (46), the following inequality
holds:

||DT
Ω\StP

⊥
StDΩ\StxΩ\St ||2,∞ − ||DT

Ω\StP
⊥
Stn||2,∞

−||DT
Ω̄P⊥Stn||2,∞ − ||DT

Ω̄P⊥StDΩ\StxΩ\St ||2,∞

≥||P⊥StDΩ\StxΩ\St ||2 ×
(

λ′min√
k − t

−
2ε
√

1 + (d− 1)ν + ||DT
Ω̄

P⊥StDΩ\StxΩ\St ||2,∞
||P⊥StDΩ\StxΩ\St ||2

)
. (47)

The following analyses derive the lower bound of the
term ||P⊥StDΩ\StxΩ\St ||2 in (47). Since ||xΩ\St ||2 ≥√
k − tmini∈Ω\St ||x[i]||2 ≥

√
k − tmini∈Ω ||x[i]||2,

||P⊥StDΩ\StxΩ\St ||2 ≥ λ′min||xΩ\St ||2
≥ λ′min

√
k − tmin

i∈Ω
||x[i]||2.

(48)

Then, let (47) be larger than zero and combine it with (48),

||DT
Ω̄gt||2,∞ <

λ′min√
k − t

−
2ε
√

1 + (d− 1)ν

λ′min

√
(k − t) min

i∈Ω
||x[i]||2

.

(49)
The lemma then follows. �

APPENDIX C
LEMMA 5 AND PROOF OF THEOREM 1

In order to facilitate the following proof of Theorem 1,
the subsequent Lemma 5 is first introduced. Lemma 5 is
derived based on Lemma 3, which shows a lower bound on
the probability of the left-side of (5) being less than a given
constant δ. Without loss of generality, set DT

Ω̄
as D in Lemma

5.

Lemma 5. Let D ∈ RM×N = RLd×Rd be a random
matrix with the atoms following i.i.d. N (0, 1

M ) and c is a
positive integer. Suppose that gi ∈ RM is independent with
D, satisfying ||gi||2 ≤ 1 (1 ≤ i ≤ c). Then, for δi ≥ d(1+γ)

M
(γ > 0), the following inequality holds:

P

( c⋂
i=1

(||DTgi||2,∞ ≤
√
δi)

)

≥
c∏
i=1

(
1−

(Mδi
d )

d
2

√
πd(Mδi

d − 1)
e
d
2 (1−Mδid )

)R
.

(50)

Proof. See Appendix E.

Proof of Theorem 1. To prove the theorem, it is necessary to
show that St ⊆ Ω and |St| = k (0 ≤ t ≤ k − 1). Therefore,
by Lemma 4 and induction, it is equivalent to show that (5)
holds for 0 ≤ t ≤ k − 1. For simplicity, denote the event
E(t, λ′min) = {||DT

Ω̄
gt||2,∞ < η(k−t, λ′min)}, 0 ≤ t ≤ k−1,

where η(P,Q) = Q√
P −

2ε
√

1+(d−1)ν

Q
√
Pmin
i∈Ω
||x[i]||2

. For any

0 < ζ < 1−
√
kd

M
−
√
d(c0 + 1)k

4M

−

√√√√d(c0 + 1)k

4M
+

2ε
√

1 + (d− 1)ν

min
i∈Ω
||x[i]||2

,

(51)

based on (13),

λ̃ = 1−
√
kd

M
− ζ >

√
d(c0 + 1)k

4M

+

√√√√d(c0 + 1)k

4M
+

2ε
√

1 + (d− 1)ν

min
i∈Ω
||x[i]||2

.

(52)

Then, due to (12) and (52),

η(t, λ̃) =
λ̃√
t
−

2ε
√

1 + (d− 1)ν

λ̃
√
tmin
i∈Ω
||x[i]||2

>

√
d(c0 + 1)

M
. (53)

Therefore,
Mη2(t, λ̃)

d
− 1 > c0. (54)

For clarity, denote function g(x, d) as g(x, d) =
(x+1)

d
2√

πdx
e−

d
2x, where x > 0 and d is positive integer. After

some basic calculations, it is obtained that

{
∂g(x,d)
∂x < 0,

∂g(x,d)
∂d < 0.

This indicates that the maximum value of the function g(x, d)
is taken at the minimum available values of the arguments.
Let x(t, λ̃) = Mη2(t,λ̃)

d − 1 and due to (14) and (54),
g(x(t, λ̃), d) < 1, 1 ≤ t ≤ k. Based on Lemma 4,
Lemma 5 and the fact that P

(⋂k−1
t=0 (||DT

Ω̄
gt||2,∞ < η(t))

)
=

P
(⋂k−1

t=0 (||DT
Ω̄

gt||2,∞ ≤ η(t))
)

,

P(E) ≥ P

(
k−1⋂
t=0

E(k − t, λ′min)

)

≥P

(
k−1⋂
t=0

E(k − t, λ′min), λ′min ≥ λ̃

)

=P

(
k−1⋂
t=0

E(k − t, λ′min)|λ′min ≥ λ̃

)
× P

(
λ′min ≥ λ̃

)
=P

(
k−1⋂
t=0

(
||DT

Ω̄gt||2,∞ < η(k − t, λ̃)
))
× P(λ′min ≥ λ̃)

≥
k−1∏
t=0

(
1−

(Mη2(k−t,λ̃)
d )

d
2

√
πd(Mη2(k−t,λ̃)

d − 1)
e
d
2 (1−Mη

2(k−t,λ̃)
d )

)R−k
×
(

1− e−
ζ2M

2

)
=

k−1∏
t=0

(
1−

(Mη2(t,λ̃)
d )

d
2

√
πd(Mη2(t,λ̃)

d − 1)
e
d
2 (1−Mη

2(t,λ̃)
d )

)R−k
×
(

1− e−
ζ2M

2

)
. (55)

Finally, the proof of Theorem 1 is completed.
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APPENDIX D
LEMMA 6 AND PROOF OF THEOREM 2

Lemma 6. Let h(x) = (x+1)
d
2

x e−
d
2x (d > 2). Suppose that

2 ≤ x1 ≤ x2 ≤ · · · ≤ xc for an integer c, then
∑c
i=1 h(xi) ≤

(xc+1)
d
2
∑c
i=1 e

− d
2
xi

xc
.

Proof. See Appendix E.

Then, the following analyses exploit Theorem 1 and
Lemma 6 to prove Theorem 2.

Proof of Theorem 2. Let

ζ0 =

√
2 ln(N/ω)

M
, λ̃0 = 1−

√
kd

M
− ζ0, (56)

P(Eζ0) =
(

1− e−
ζ20M

2

)
×

k∏
t=1

(
1−

(Mη2(t,λ̃0)
d )

d
2

√
πd(Mη2(t,λ̃0)

d − 1)
e
d
2 (1−Mη

2(t,λ̃0)
d )

)R−k
.

(57)
The following proofs first prove that

ζ0 <1−
√
kd

M
−
√
d(c0 + 1)k

4M

−

√√√√d(c0 + 1)k

4M
+

2ε
√

1 + (d− 1)ν

min
i∈Ω
||x[i]||2

,

(58)

and then demonstrate that P(Eζ0) ≥ 1− ω
N −

ω√
πd

.
First, based on (56) and (58),

ζ0 +

√
kd

M
+

√
d(c0 + 1)k

4M

+

√√√√d(c0 + 1)k

4M
+

2ε
√

1 + (d− 1)ν

min
i∈Ω
||x[i]||2

≤ 1√
M

(√
2 ln

(N
ω

)
+
√
kd+

√
d(c0 + 1)k

4

+

√√√√d(c0 + 1)k

4
+

2εM
√

1 + (d− 1)ν

min
i∈Ω
||x[i]||2

)

=
1√
M

(
α1 +

√
α2 + α3M

)
,

(59)

Observe that if

M ≥
(√

2

kd
+

√
1

ln(Nω )
+

√
α2

kd ln(Nω )

−

√
α2 + α2

1α3 − α2α3

kd ln(Nω )

)2

kd ln
(N
ω

)
,

(60)

(59) is less than or equal to 1 and thus (58) holds.
Secondly, it is known from [29] that

k∏
t=1

(1− atρ) ≥ 1−
( k∑
t=1

at

)
ρ, at ≥ 0, ρ ≥ 0. (61)

In order to simplify the derivation process, denote
Mη2(t,λ̃0)

d − 1 = q(t) (1 ≤ t ≤ k). Due to the bound of

(54), q(t) satisfies the domain definition of Lemma 6 with
respect to x. Hence, based on Theorem 1, Lemma 6 and (61),
the following inequality holds:

P(Eζ0) ≥1− e−
ζ20M

2 − R− k√
πd

k∑
t=1

(q(t) + 1)
d
2

q(t)
e−

d
2 q(t)

≥1− e−
ζ20M

2 − R− k√
πd
× (q(k) + 1)

d
2

q(k)

k∑
t=1

e−
d
2 q(t).

(62)
Then, it is necessary to obtain the upper bound of the last

two terms of (62). Note that e−
ζ20M

2 = e− ln(Nω ) = ω
N . Now

it remains to derive the upper bound of the last term. Since
∂q(t)
∂t < 0, based on (18), when ξ > 1,

ξ =
R− k
ln(N)

× 42dke−
d
2

(a)

≥ R− k
ln(N)

(q(k) + 1)2dke−
d
2 q(k)

(b)

≥ R− k
ln(N)

(q(k) + 1)2d
k∑
t=1

e−
d
2 q(t), (63)

where (a) holds because the maximum value of the function
(q(k)+1)de−

d
2 q(k) is obtained at q(k) = 3 and (b) is because

q(t) (1 ≤ t ≤ k) is a monotonically decreasing function.
Therefore, if

q(k) ≥
3d
2

+1

√
ξ ln(N)

ω
, (64)

the following inequality holds:

R− k√
πd
× (q(k) + 1)

d
2

q(k)

k∑
t=1

e−
d
2 q(t)

≤R− k√
πd
× (q(k) + 1)2d

q(k)
3d
2 +1

k∑
t=1

e−
d
2 q(t)

≤ (R− k)ω√
πdξ ln(N)

× (q(k) + 1)2d
k∑
t=1

e−
d
2 q(t) ≤ ω√

πd
.

(65)

The last inequality follows from (18) and (63). Therefore, the
prove of the upper bound of the last term in (62) changes
into the prove of (64). By some calculations, the following
inequality is obtained:

(min
i∈Ω
||x[i]||2 − β1)u2 + (−2β1β2 − β3)u− β1β

2
2 ≥ 0,

(66)
where u =

√
M −

√
kd−

√
2 ln(Nω ). The positive solution of

(66) with respect to M is consistent with the second term in
(19). Based on the above analyses, the proof is completed.

APPENDIX E
PROOF OF LEMMA 5 AND LEMMA 6

Proof of Lemma 5. Since gi (1 ≤ i ≤ c) is independent of D,
denote DT

j gi ∼ N (0, σ2) (j ∈ Ω̄), where σ2 =
||gi||22
M ≤ 1

M .

It is known that X =
||DT gi||22,∞

σ2 obeys chi-square distribu-
tion with degree of freedom d, i.e., χ2

d, which satisfies the
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assumptions of Lemma 3. Then,

P

( c⋂
i=1

(||DTgi||2,∞ ≤
√
δi)

)
=P(0 ≤ ||DTg1||2,∞ ≤

√
δ1, · · · , 0 ≤ ||DTgc||2,∞ ≤

√
δc)

=P(0 ≤ ||DT [1]g1||22 ≤ δ1, · · · , 0 ≤ ||DT [R]g1||22 ≤ δ1, · · · ,
0 ≤ ||DT [1]gc||22 ≤ δc, · · · , 0 ≤ ||DT [R]gc||22 ≤ δc)
≥P(0 ≤ ||DT [1]g1||22 ≤ δ1)× · · · × P(0 ≤ ||DT [R]g1||22 ≤ δ1)

× · · · × P(0 ≤ ||DT [1]gc||22 ≤ δc)
× · · · × P(0 ≤ ||DT [R]gc||22 ≤ δc)

=

c∏
i=1

R∏
j=1

P

(
0 ≤ ||D

T [j]gi||22
σ2

≤ δi
σ2

)
. (67)

It remains to derive the lower bound of the probability
P(0 ≤ ||D

T [j]gi||22
σ2 ≤ δi

σ2 ), for 1 ≤ i ≤ c, 1 ≤ j ≤ R. Based
on Lemma 4 in [44],

P

(
0 ≤ ||D

T [j]gi||22
σ2

≤ δi
σ2

)
= 1− P

(
||DT [j]gi||22

σ2
>

δi
σ2

)
≥ 1−

( δi
σ2d )

d
2

√
πd( δi

σ2d − 1)
e
d
2 (1− δi

σ2d
), (68)

where δi > (1 + γ)dσ2 (γ > 0) due to the restrictions on the
use of Lemma 4 in [44]. Since σ2 ≤ 1

M , then δi >
(1+γ)d
M .

For ||gi||2 = 1, σ2 = 1
M . Then (68) changes into:

P

(
0 ≤ ||D

T [j]gi||22
σ2

≤ δi
σ2

)
≥1−

(Mδi
d )

d
2

√
πd(Mδi

d − 1)
e
d
2 (1−Mδid ).

(69)

Now, it comes to the case that ||gi||2 < 1. By normalizing
gi,

P

(
0 ≤ ||D

T [j]gi||22
σ2

≤ δi
σ2

)
=P

(
0 ≤ ||D

T [j]gi||22
σ̃2||gi||22

≤ δi
σ̃2||gi||22

)
≥P

(
0 ≤ ||D

T [j]gi||22
σ̃2||gi||22

≤ δi
σ̃2

)
≥1−

(Mδi
d )

d
2

√
πd(Mδi

d − 1)
e
d
2 (1−Mδid ),

(70)

where σ̃2 is the variance of the variable ||DT [j]gi||22
||gi||22

. This
completes the proof of Lemma 5.

Proof of Lemma 6. Let h̄(x) = (x+1)
d
2

x . Since the derivative
of h̄(x) with respect to x (x ≥ 2) satisfies: h̄′(x) =
d
2 (x+1)

d
2
−1x−(x+1)

d
2

x2 ≥ 0 (d > 2),
c∑
i=1

h(xi) =

c∑
i=1

(e−
d
2xi h̄(xi)) ≤

c∑
i=1

(e−
d
2xi h̄(xc))

=
(xc + 1)

d
2

∑c
i=1 e

− d2xi

xc
.

(71)

The proof is thus completed.
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