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Abstract

For mission-critical massive machine-type communications (mMTC) applications, the messages are

required to be delivered in real-time. However, due to the weak security protection capabilities of the low-

cost and low-complexity machine-type devices, active jamming attack in the uplink access is a serious threat.

Uplink access jamming (UAJ) can increase the number of dropped/retransmitted packets and restrict or prevent

the normal device access. To tackle this vital and challenging problem, we propose a novel UAJ detection

method based on the joint space-time sparsity (JSTS). Our key insight is that the JSTS-based feature will be

significantly impacted if UAJ happens, since only a small fraction of the devices are active and the traffic

pattern for each device is sporadic in the normal state. Unlike the existing detection methods under batch

mode (i.e., all sample observations are collected before making a decision), the JSTS-based detection is

performed in a sequential manner by processing the received signals one by one, which can detect UAJ as

quickly as possible. Moreover, the proposed JSTS-based method does not rely on the prior knowledge of the

attackers, since it only cares the abrupt change in the JSTS-based feature on each frame. Numerical results

evaluate and confirm the effectiveness of our method.

Index Terms

Physical layer security, mission-critical mMTC, access jamming detection, joint space-time sparsity.

I. INTRODUCTION

Mission-critical massive machine-type communications (mMTC) applications are emerging as an

important service in the fifth generation (5G) for delay-sensitive traffics and have been drawing

increasing attention recently [2], [3]. This kind of applications have stringent access latency and

reliability requirements to facilitate mission-critical services. For instance, in smart manufacturing

lines, the control system needs to monitor the condition of the manufacturing lines and makes real-

time decisions, e.g., the latency is within several milliseconds [4]. To accommodate the challenging
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requirements of such applications, the grant-free random access scheme is proposed for 5G new radio

in the third Generation Partnership Project Release 17 [5]. In grant-free scheme, each active device

directly transmits its unique preamble sequence to the base station (BS), which simplifies the access

procedure by directly delivering data without scheduling [6].

However, for mission-critical mMTC applications with grant-free scheme, active jamming attacks

are a big challenge [7], especially in the uplink access. In this paper, we consider the uplink access

jamming (referred to as UAJ) in the mission-critical mMTC, where a small number of attackers aim to

affect the performance of such applications with low latency requirement by jamming. UAJ not only

severely affects the availability of this kind of applications but also is hard to detect. On one hand,

UAJ can lead to additional access collisions and activity patterns under this kind of applications with

the feature of sporadic traffic in massive access, and increase the number of dropped/retransmitted

packets rapidly by only a small number of attackers, which incur longer packet transmission delay.

On the other hand, due to the weak security protection capabilities of low-cost low-power machine-

type devices (MTDs), UAJ attackers can easily obtain the preamble sequences by eavesdropping

and masquerade as the legitimate MTDs, and even some legitimate MTDs can be hijacked by UAJ

attackers. Under the cover of the legitimate identities, a small number of activated UAJ attackers are

difficult to detect.

Therefore, a timely and reliable detection of UAJ is a critical issue to be addressed for mission-

critical mMTC applications in order to ensure countermeasures can be timely taken, such as adaptive

array beamforming [8], interference cancellation techniques [9], and interference alignment tech-

niques [10].

A. Related Literatures

Most existing jamming detection can be performed by a statistic feature (SF) recoginition and

classification approach, and different detection methods use different statistics for decision making.

These statistic features can be classified into the following two categories: 1) statistical features of

upper layer [11]-[14]; 2) statistical features of physical layer [15]-[19].

1) Statistical features of upper layer [11]-[14]: In [11], the effective channel utilization is calculated

and used as a statistic to detect jamming attacks. This statistic is essentially the sum of channel access
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activities and signal strengths. In a dynamic radio channel allocation model, this strategy has been

proved to be effective. In [12]-[13], the authors proposed to exploit the packet delivery ratio to

detect the attacks, and activity patterns were further utilized to identify malicious attacker. In [14],

the authors proposed to extract the statistical feature of the network throughput from the upper layer

for detecting the attacks. As a result, a jamming attack is detected when the percentage exceeds a

certain threshold.

2) Statistical features of physical layer [15]-[19]: In [15], the authors proposed an energy detector

based method. This method is based on the fact that when jamming attacks occur, the received

energy differs significantly from a predesigned threshold. By extracting the subspace dimension

of the signal covariance matrix, a method based on subspace dimension was proposed in [16] to

detect a structured signal from unknown jamming attacks. To identify jamming or unauthorised

wireless access, in [17], the authors proposed a channel state information based approach. With a

quaternary hypotheses test, the detection framework focuses on distinguishing between legitimate

and illegitimate transmissions. In a generalised multivariate analysis of variance signal model with

structured interference, the maximum invariant statistic was used to create appropriate detectors with

a constant false alarm rate [18]. In [19], the authors used the second-order statistics of the received

signals to generate five sub-optimal fusion rules for detecting attacks.

Although many methods have been proposed for jamming detection [11]–[19], very few methods

were designed considering the jamming attacks for mission-critical mMTC applications, and existing

methods are not suitable for UAJ detection. This is mainly because of the following reasons:

1) Most existing statistic features are not robust to discriminate between UAJ and other causes of

fluctuations induced by the legitimate communication itself, such as the energy characteristic [15],

subspace dimension [16], and channel state information [17]. The maximum invariant statistics [18]

and the second-order statistics [19] need to apply a complex multi-antenna mechanism, which is not

affordable for low-cost MTDs. In addition, statistical features of upper layer [11]-[14] will cause an

intolerable delay.

2) Existing detection methods are mostly implemented in a batch manner, namely, all sample

observations are collected before making a decision. However, our goal is to detect whether the



4

newly arriving samples in current frame is anomalous due to UAJ. The detection is not only one

time and end, namely, not all sample observations for the whole transmission process are collected

before making a decision. The false alarms of the batch detection are prone to be raised for the frame

based detection with a small number of time slots, which is not suitable for the considered detection

task of this paper.

3) Most of the related works rely on the prior knowledge of the attacker to select a decision

threshold for distinguishing the jamming attack from the normal state, which is unrealistic. Because

the adversary will not cooperate with the legitimate system, it is not easy to obtain these statistics.

B. Motivations and Contributions

In order to design a timely and reliable method for UAJ detection, in this paper, we propose to

exploit the joint space-time sparsity (JSTS) based feature. Our JSTS detection method is motivated

by the fact that the original joint space-time sparsity will be destroyed if UAJ exists. Specifically,

in the typical mMTC scenarios, the common features of the received uplink access signals are the

space sparsity and the time sparsity. The space sparsity refers to the fact that only a small subset

of devices are active in order to save energy most of the time in mMTC scenarios, and the time

sparsity is usually caused by the fact that the traffic pattern for each device is sporadic. These two

intrinsic characteristics of mMTC are the key points in the realization of joint active device and data

detection. As soon as UAJ occurs, the original joint space-time sparsity will be destroyed. This is

because that UAJ attackers will send numerous access jamming signals in a short period of time in

order to disrupt the device activity and data detection, which can cause the increase of the number of

access devices and lead to the destruction of sporadic device activity. In other words, the JSTS-based

feature can well characterize the transmission pattern of mMTC, leading to better attack detection

performance.

In the proposed JSTS-based method, we first extract the joint space-time sparsity by solving a

joint space-time sparsity constrained maximum likelihood factor analysis problem. When UAJ exists,

the BS can detect the attack through checking the abrupt change of the JSTS-based feature between

two adjacent frames, referred to as sequential change frame detection. The main contributions of the

proposed JSTS-based detection method lie in the following three aspects:
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Fig. 1: System model.

1) To extract the joint space-time sparsity, we solve a challenging joint space-time sparsity con-

strained factor analysis problem. Factor analysis is a popular multivariate dimensionality reduction

method for determining the structure of correlations between a set of observed random variables.

Specifically, we first present a reformulation of this challenging problem to an equivalent optimization

problem without explicit space sparsity constraint, and then develop an effective approach based on

difference of convex optimization to extract the JSTS-based feature.

2) Different from existing detection methods under batch manner, we perform the JSTS-based

detection in a sequential manner, which takes one observation at a time without having to re-explore

all previously available observations [20]. Under sequential detection, if no change of the JSTS-based

feature is detected, then the detector moves to the next frame instant, which can detect the attack as

quickly as possible.

3) Since the proposed JSTS-based method only cares the abrupt change in the JSTS-based feature

on each frame, we do not need to know the accurate prior information of the attacker. Based on

the joint space-time sparsity constrained factor analysis, the proposed JSTS-based method can be

efficiently carried out by a solvable difference of convex functions, and can detect UAJ in a real-

time manner by using sequential change frame detection.

Organization: In Section II, we present the system model with UAJ attackers. In Section III,

we first describe the problem of UAJ detection, and then introduce the basic detection principle
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of the proposed JSTS-based method. We present the complete detection framework for the JSTS-

based method and give the corresponding computation complexity analysis in Section IV. Finally,

we evaluate the performance of the JSTS-based method by some numerical results in Section V, and

conclude the work in Section VI.

Notations: IIIM denotes a M × M identity matrix. Diagonal matrix is denoted by diag(·). The

column-ordered vectorization of matrix X is x = vec(X). || · ||0 denotes the l0 norm. Γ/Ω represents

the set composed of elements in Γ but not in set Ω. The number of elements in the set Γ is

calculated by |Γ|. ℜ(·) and ℑ(·) denote real and imaginary parts of a complex number. CN×M and

RN×M denote the spaces of all N × M matrices with complex-valued and real-valued elements,

respectively. CN(µµµ,ΣΣΣ) and N(µµµ,ΣΣΣ) denote the distributions of complex and real Gaussian random

vectors, respectively, with mean µµµ and covariance matrix ΣΣΣ.

II. SYSTEM MODEL

A. System Model

We consider the uplink of a mission-critical mMTC communication scenario, where Q MTDs

activated from K potential devices simultaneously transmit uplink access signals to the BS in the

presence of J attackers, who aim to disturb the uplink access procedure by jamming, i.e., UAJ. For

simplicity, we assume that the BS and the MTDs as well as the attackers have a single antenna.

Note that our method can also be applied to the cases when the BS and the MTDs are equipped

with multiple antennas [21]. This is because the feature extraction of the joint space-time sparsity

can be divided into several parallel sub-problems at each receive antenna. As illustrated in Fig. 1,

the typical uplink transmission in mMTC communications have two distinctive characteristics: 1)

Space sparsity: only a few MTDs are active, although the number of potential devices may be very

large; 2) Time sparsity: the transmitted symbols of the MTDs are typically sporadic in successive

time slots within a frame.

In the normal case with grant-free random access scheme, each active MTD can directly transmit

its access requests without being scheduled, and is preassigned with a unique indicator sequence as

the identification of the uplink access signal to realize joint device activity and data detection. We

consider a consecutive time slots dynamic model, the superscript {·}(l,t) denotes the tth time slot
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(t = 1, 2, · · · , Ts) in the lth frame (l = 1, 2, · · · , L). We use d
(l,t)
k to denote the transmitted symbol

of the kth MTD, which are randomly generated from the Quadrature Phase Shift Keying (QPSK)

symbol set [22]. We denote a
(l,t)
k as the activity indicator which is set to 1 or 0 if the kth MTD

is active or inactive. Due to the time sparsity of device activity, most MTDs are idle and do not

transmit any symbols, which indicates that a(l,t) =
[
a
(l,t)
1 , a

(l,t)
2 , . . . , a

(l,t)
K

]T
is a sparse vector and

∥∥a(l,t)
∥∥
0
≪ K [23], [24].

To characterize the time-variation of the active device indicator a(l,t), we consider a probabilistic

model to characterize the time-variation of the active MTD indicator, where MTDs are supposed to

form independent Markov chains by a couple of transition probabilities p(01) , {a(l,t)k = 0|a(l,t−1)
k = 1}.

Under this condition, the Markov chain of each MTD is under a steady state with Pr{a(l,t)k = 1} = µk

that indicates the activation probability of each MTD and can be specified by the transition probability

p(01) and the active device ratio µk. Moreover, we consider the transition probabilities are independent

with k, denoted by p(01) = ρ(1− µ), where ρ denotes a scale factor that controls the specific value

of transition probability and µ denotes the active device ratio. This model has shown its efficiency

in the similar application [25]. Denote the spreading sequences allocated to the MTDs as {sk}
K

k=1,

the transmitted symbol d
(l,t)
k is modulated by a device-specific spreading sequence sk = [s1,k, s2,k,

. . . , sN,k]
T of length N . The spreading sequence of each MTD is designed as a Gaussian vector whose

components are realized from independent and identical distributed (i.i.d.) Gaussian sources N(0, 1).

Note that the proposed method can also be applied to the cases where the spreading sequences

are generated using Hadamard matrices [26], since the joint space-time sparsity based feature, the

detection method and the conclusion for the considered problem in this paper are not affected. We use

the parameter η(l) to indicate the correlation between the active device set in the adjacent time slots,

e.g., η(l) ,
∣∣Γ(l,t−1) ∩ Γ

(l,t)
∣∣ /

∣∣Γ(l,t)
∣∣, where Γ

(l,t) ,

{
k : d

(l,t)
k 6= 0, 1 ≤ k ≤ K, ∀k

}
, and

∣∣Γ(l,t)
∣∣ is

the cardinality of active device set in the tth time slot. A larger η(l) means a stronger temporal

correlation. Then, the received uplink access signals from all active MTDs at the BS, denoted by

y(l,t), is given by

y(l,t) =

K∑

k=1

a
(l,t)
k

√
Pkβkskh

(l,t)
k d

(l,t)
k +w
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= Sd(l,t) +w, (1)

where Pk is the transmit power of the kth MTD, and βk is the distance-based path losses from the

kth MTD to the BS. h
(l,t)
k ∼ CN(0, 1) indicates the corresponding fading channel between the BS

and the kth MTD. We assume that all the channel coefficients are i.i.d. over different time slots. w is

the additive white Gaussian noise (AWGN) vector with each element being distributed as CN(0, σ2
w).

We further define S , [s1; · · · ; sK ] and d(l,t) , [a
(l,t)
1

√
P1β1h

(l,t)
1 d

(l,t)
1 , . . . , a

(l,t)
K

√
PKβKh

(l,t)
K d

(l,t)
K ]T .

In mission-critical mMTC scenarios with grant-free random access scheme, the most important

features of the received uplink access signals y(l,t) is the joint space-time sparsity. On one hand, in

order to save energy, only a small portion of potential devices are active in most cases, referred to

as the space sparsity, i.e., a(l,t) is a sparse vector. On the other hand, the transmitted signals d(l,t)

is sparse since d(l,t) is typically sporadic in successive time slots within a frame [26], [27], referred

to as the time sparsity. Note that the device activity is a critical issue for mission-critical mMTC

applications with grant-free random access scheme [27]. Since the BS does not have the information

of device activity, in the absence of scheduling, the multi-device detection is needed before the data

detection in order to distinguish active MTDs from other inactive MTDs.

By exploiting the joint space-time sparsity, compressive sensing (CS) technology [28] is therefore

promising to realize joint active device and data detection corresponding to a sparse signal recovery

problem, e.g., the approximate message passing algorithm [6] based on the CS, especially the temporal

correlation can be utilized to improve compressive detection performance for reconstruct these sparse

signals.

B. Attack Model

Due to the weak security protection capabilities of low-cost low-power MTDs, mission-critical

mMTC application with the grant-free random access mechanism is very vulnerable to UAJ. Note

that in the grant-free mMTC, since the spreading sequence is also used for MTD identification, it

is usually fixed for each MTD and cannot be randomized for each transmission. UAJ attackers can

easily trick the BS under the cover of their legitimate identities by eavesdropping the legitimate

MTDs’ spreading sequences [7]. For instance, since the spreading sequence resource pool and the
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time-frequency plane for grant-free based uplink access are publicly known, the attackers could

easily obtain these information. Furthermore, some UAJ attackers may even hijack legitimate MTDs,

which means that they can establish legitimate connections with the BS and acquire the information

of uplink transmission resources. Hence, in this paper, we mainly consider that the attackers know the

spread matrix, which can be treated as the worst case. If the detection performance of the proposed

method mets the needs in service even for the worst case, it means that the proposed method has

application value in practice.

We define Ω as the set of a spreading sequence resource pool. MTDs and the attackers can

randomly select the spreading sequences from Ω. Then, we use ΩQ ⊆ Ω and ΩJ ⊆ Ω to denote

the set of spreading sequences selected by the active MTDs (sq ∈ ΩQ, q ∈
{
k
∣∣∣a(l,t)k = 1

}
) and

the attackers (sA,j ∈ ΩJ ) during the uplink access, respectively, where sA,j denotes the spreading

sequences selected by the jth attacker. Given ΩJ , ΩJ1 ∪ΩJ2 , a part of UAJ attackers who select

the spreading sequences from ΩJ1 mainly influence the data detection when ΩJ1 is a subset of ΩQ,

and another part of UAJ attackers who select the spreading sequences from ΩJ2 predominantly affect

the device activity detection when ΩQ ∩ΩJ2 = 0. In the presence of UAJ, the received signal ỹ(l,t)

at the BS can be modeled as

ỹ(l,t) = Sd(l,t) +

J∑

j=1

√
PA,jβA,jsA,jg

(l,t)
j u

(l,t)
j +w

= S(d(l,t) + u(l,t)) +w, (2)

where PA,j is the transmit power of the jth attacker, and βA,j is the distance-based path losses from

the jth attacker to the BS. g
(l,t)
j indicates the corresponding fading channel between the BS and the

jth attacker, which is distributed as CN(0, 1). u
(l,t)
j denotes the transmitted symbol of the jth attacker,

which is generated from i.i.d. Gaussian random variables with zero mean and unit variance. Define

the spreading sequences selected by the jth attacker as sA,j ,
K∑
k=1

θj,ksk, and θj,k is the adjustment

allocation coefficient allocated for attacking the access of the kth MTD. When θj,k = 0, the kth

MTD is not affected by the jth attacker, and vice versa.

Because MTDs occur sporadically, it is difficult for the attacker to obtain the accurate priori

information of the underlying MTD activity characteristics. Thus, in this paper, the allocation co-
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Fig. 2: Frame structure of uplink access signals and the effect of UAJ.

efficient θj,k is realized from i.i.d. uniform distribution U(0, 1). Note that optimizing the allocation

coefficient θj,k to minimize the detection probability from the perspective of the attacker is beyond

the scope of this paper. We also have studied a similar problem in [29]. This interesting issue

requires further investigation in our future research. We further define P̄A,j ,
√
PA,jβA,j , and

u(l,t) ,

[
J∑

j=1

P̄A,jθj,1g
(l,t)
j u

(l,t)
j , . . . ,

J∑
j=1

P̄A,jθj,Kg
(l,t)
j u

(l,t)
j

]T

which will affect the correctness of device

activity and data detection. In the following sections, our proposed JSTS-based method and the

corresponding performance analysis are closely interrelated to this attack model.

Remark: We would like to point out that in this paper, we do not consider the case where the

attackers send the spreading sequences sA,j in an intermittent manner. This is mainly because such

kind of attack strategy suffers from two major weaknesses. On one hand, it is hard for the attackers

to obtain the accurate priori information of the underlying MTD activity characteristics since MTDs

occur sporadically. Thus, it can be extremely difficult to perform an efficient attack if the attackers

send spreading sequences in an intermittent manner. On the other hand, if the attack carried out

blindly regardless of the MTDs’ activity, the attack effect is limited and quite time consuming due to

the extremely low collision probability between the legitimate MTDs and the attackers. Furthermore,

if the number of the attackers increases in order to improve the attack performance, our method can
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also handle this case since the space sparsity has changed dramatically.

III. UAJ DETECTION VIA JSTS-BASED METHOD

In this section, we first construct the detection problem of UAJ and introduce detection principle of

the proposed JSTS-based method. Then, details are given for the joint space-time sparsity constrained

factor analysis problem for the JSTS-based feature extraction.

A. Problem Statement

For the uplink access in mission-critical mMTC application with some UAJ attackers, the problem

of UAJ detection becomes how to distinguish the superimposed signal y(l,t) in (1) from ỹ(l,t) in (2).

Denote o(l,t) as the observation signals received by the BS, we have that

o(l,t) =





y(l,t) = Sd(l,t) +w, no UAJ,

ỹ(l,t) = S(d(l,t) + u(l,t)) +w, UAJ.
(3)

Factor analysis is a classical multivariate dimensionality reduction technique, and is an extension

of principal component analysis. Factor analysis is a popular method for determining the structure of

correlations between a set of observed random variables [30], [31]. Considering the factor analysis

adopted in the proposed JSTS-based method is implemented in the real-valued system, the complex

detection model in (3) is expanded as a real one o
(l,t)
r ∈ R2N , which can be represented as

o(l,t)
r =




y(l,t)
r = Srd

(l,t)
r +wr, no UAJ,

ỹ(l,t)
r = Srd̃

(l,t)
r +wr, UAJ,

(4)

where o
(l,t)
r =

[
ℜ(o(l,t))
ℑ(o(l,t))

]
, Sr =

[
ℜ(S) −ℑ(S)
ℑ(S) ℜ(S)

]
, d

(l,t)
r =

[
ℜ(d(l,t))
ℑ(d(l,t))

]
, d̃

(l,t)
r =

[
ℜ(d̃(l,t))

ℑ(d̃(l,t))

]
, d̃(l,t) =

d(l,t) + u(l,t), wr =

[
ℜ(w)
ℑ(w)

]
. To effectively design UAJ detection method, we first collect the ob-

servation signals received by the BS in consecutive Ts time slots in the lth frame, and transfer this

observation into an equivalent vector as o
(l)
r = vec(

[
o
(l,1)
r ,o

(l,2)
r , · · · ,o(l,Ts)

r

]T
). Then we extract the

joint space-time sparsity for UAJ detection, as illustrated in Fig. 2.

Factor analysis [30], [31] usually models the traffic monitoring data of a time slot as a vector and

use a traffic matrix to record the traffic monitoring data of a period. As normal traffic data generally

exhibit strong spatio-temporal correlations, factor analysis usually separates the observed traffic data
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into two parts, a low-rank normal data matrix and a sparse outlier data caused by the noise or wireless

channel. Accordingly, in this paper, o
(l)
r can be decomposed as two parts o

(l)
r = v(l) + ι(l). The first

part v(l) is a vector from a low-rank subspace V (l), and the second part ι(l) is a sparse error with

support size τ (l). Here the number of nonzero items in ι(l) is represented by τ (l) =
φ∑

i=1

δD(ι
(l)
i 6= 0),

where δD(·) is the Dirichlet function and φ = 2NTs. The underlying subspace V (l) might or might

not change with time t. When V (l) does not change over time, we say the data are generated from a

stable subspace. Otherwise, the data are generated from a changing subspace. Hence, factor analysis

can be used to anomaly detection by tracking the abruptly changing subspaces caused by abnormal

data. This motivates us to exploit the joint space-time sparsity through the sparsity constrained factor

analysis to detect access jamming in mission-critical mMTC. Based on the above analysis, in the

next subsection, we introduce detection principle of our proposed JSTS-based method.

B. Detection Principle

Our JSTS-based detection method relies on the following facts: 1) Absence of UAJ: when no UAJ

is present, according to the received uplink access signals o(l,t) = y(l,t) in (1), Cov(o
(l)
r ) , Σ

(l) has

the joint space-time sparsity since a(l,t) is a sparse vector and
∥∥a(l,t)

∥∥
0
≪ K, and the transmitted

signals d(l,t) is typically sporadic in successive time slots within a frame. Base on the joint space-

time sparsity, the joint active device and data detection can be processed effectively; 2) Presence of

UAJ: in the presence of UAJ, refer to the superimposed signals o(l,t) = ỹ(l,t) in (2), we notice that

the joint space-time sparsity will be destroyed. This is due to the fact that the UAJ attackers aim to

interfere the results of device activity and data detection by jamming, which will inevitably result in

the destruction of the joint space-time sparsity.

Thus, the detection principle of the proposed JSTS-based method can be summarized as follows.

If UAJ does not exist, the current joint space-time sparsity in the lth frame o
(l)
r and the recorded

characteristic in (l − 1)th frame o
(l−1)
r should be similar. Conversely, when UAJ launches, the joint

space-time sparsity will be destroyed. Thus, the abrupt change of the joint space-time sparsity between

the newly arriving samples in the current lth frame and the monitoring samples in the previous (l−1)th

frame can be used to detect whether UAJ happens in the current lth frame.
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C. Joint Space-time Sparsity Constrained Factor Analysis

In order to extract the JSTS-based feature, it is necessary to go into the following details of joint

space-time sparsity constrained factor analysis before describing the complete JSTS-based framework,

including problem construction and problem reformulation.

Problem construction: The JSTS-based feature extraction leads to a challenging joint space-time

sparsity constrained factor analysis problem. The maximum likelihood principle, which aims to

maximise the Gaussian likelihood, is commonly used in factor analysis estimation. For more details

about factor analysis, please refer to [30], [31] and references therein. The maximum likelihood (ML)

based approach [32] is one of the most widely used factor analysis estimate methods. The purpose

of the ML-based method is to minimize the negative log-likelihood with regard to signal covariance

matrix Σ
(l). The expectation maximization (EM) [33] is another popular method for factor analysis. To

ensure a fair comparison, the joint space-time sparsity constraint is also considered in the ML-based

and the EM-based methods. Specifically, we reformulate the joint space-time sparsity constrained

ML-based factor analysis task as a nonlinear nonsmooth semidefinite optimization problem, which

can be solved by using the nuclear norm relaxations of the joint space-time sparsity constraint [32]. In

addition, the joint space-time sparsity constrained EM-based factor analysis problem can be tackled

by a spatial branch and bound method for minimizing the squared Frobenius norm as in [33].

Note that this paper is aimed at timely detection of UAJ, and our goal is to detect whether the

newly arriving samples
{
o(l,t)

}Ts

t=1
in the current lth frame is anomalous due to UAJ. According to

the typical mMTC scenario in the 5G new radio specification [5], the number of the consecutive time

slots Ts in each frame is limited. However, the ML-based and EM-based methods are all based on the

empirical covariance matrix via the maximum likelihood principle and are far from satisfactory for

the frame based detection with a small number of time slots in this paper. Note that in addition to a

slow convergence speed, the ML-based and EM-based methods seem to get stuck in suboptimal local

solutions [32], [33]. In view of these issues, we need to propose a new computational framework

for solving the following joint space-time sparsity constrained factor analysis problem to achieve the
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timely detection goal in this paper (we drop the superscript of index l for conciseness)

(P1) : min D(Σ) , − log det(Σ−1) + tr(Σ−1R),

s.t. Σ = P +Ξ, rank(Ξ) ≤ r,

P = diag(p1, . . . , pφ) � ǫI,

where R is the sample covariance matrix of or, Ξ , V V T , r is the space sparsity constraint, ǫ

is the time sparsity indicator and I is the identity matrix. P and Ξ are the optimization variables.

Except for the additional space-time sparsity constraints, the objective function in problem (P1) is

not a concave function D(Σ) and equality constraint of Σ is nonconvex, thus, problem (P1) is a non-

convex optimization problem and difficult to solve. In the following, we introduce how to reformulate

problem (P1) to a solvable difference of convex functions.

Problem reformulation: We first present a reformulation of problem (P1) to an equivalent optimiza-

tion problem (P2) in which there is no explicit space sparsity constraint by the following proposition,

and then effective optimization approaches based on difference of convex optimization [34], [35],

can be used to solve the problem (P2).

Proposition 1: Define R′ , P − 1
2RP − 1

2 , and let λ′1 ≥ λ′2 ≥ · · · ≥ λ′φ denote the eigenvalues of

R′, then problem (P1) is equivalent to the following problem (P2) and the optimization variables

are P and R′

(P2) : min {log det(P ) + tr(R′) + er(λ
′
i)} ,

s.t. P = diag(p1, . . . , pφ) � ǫI,

where er(λ
′
i) ,

∑r
i=1(log(max{1, λ′i})−max{1, λ′i}+ 1).

Proof: For a fixed P , we first minimize problem (P1) with regard to V . Based on a straightforward

application of the S. W. formula [36], we have that

Σ
−1 =P −1 − P −1V WP,V , (5)

where WP,V , (I + V TP −1V )−1V TP −1. By substituting V ′ , P − 1
2V , we have tr(Σ−1R) =

tr(R′)− tr((V ′)TR′V ′(I + (V ′)TV ′)−1). It is worth noting that − log det(Σ−1) = log det(P ) +
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log det(I +(V ′)TV ′). By combining tr(Σ−1R) and − log det(Σ−1), problem (P1) can be rewritten

as

min log det(P ) + fr(R
′,V ′),

s.t. P = diag(p1, . . . , pφ) � ǫI,

where fr(R
′,V ′) , log det(I + (V ′)TV ′) + tr(R′) − tr((V ′)TR′V ′(I + (V ′)TV ′)−1). We use

h(P ,V ) , log det(V V T+P )+tr((V V T+P )−1R) to denote objective in problem (P1). The partial

derivative of h(P ,V ) with respect to V can be obtained by
∂h(P ,V )

∂V
= 2Σ−1(Σ−R)Σ−1V . Note

that ∂h(P ,V )/∂V = 0 if and only if V = R(P + V V T )−1V . By using algebraic manipulations

with help of (5), this condition can be reformulated as R′V ′ = V ′(I + (V )′TV ′).

Because we chose pairwise orthogonal or zero vectors for the columns of V ′, I + (V ′)TV ′

is a diagonal matrix with every diagonal element bigger than or equal to one. As a result, R′V ′

is a collection of eigenvector equations for the matrix R′. Let ζi, i ∈ [r] be the columns of V ′,

and define g(V ′) ,
∑r

i=1(log(1 + ζi
Tζi) − ζi

TR′ζi
1+ζi

T ζi
). By combining R′V ′, because ζi are pairwise

orthogonal or zero vectors, we have that R′ζi = κiζi and κi = 1 + ζi
Tζi, i ∈ [r]. Note that either

κi = 1 with ζi = 0 or κi > 1 and κi equals some eigenvalue of R′ with eigenvector ζi, therefore

g(V ′) =
∑r

i=1(log(κi) − κi + 1). Note that log(κ) − κ + 1 is strictly decreasing for all κ ≥ 1. As

can be seen, g(V ′) is minimized for κi = max{1, λ′i} for i ∈ [r], and λ′1 ≥ · · · ≥ λ′r are the top r

eigenvalues of R′.

The best option for ζi is given by ζi = 0 when κi = 1. When κi > 1, ζi is an eigenvector of R′ with

eigenvalue λ′i and we have that ζi
Tζi = max{1, λ′i}−1. Finally, we note that minP�ǫI,V h(P ,V ) =

minP�ǫI {minV h(P ,V )}. In fact, the method of minimizing the objective function with respect

to V with P held fixed, is based on the classical work of the maximum likelihood factor analysis

[30]. More specifically, since ∂h(V ,P )/∂P = diag(Σ−1(Σ −R)Σ−1), the expression for the ith

entry of ∂h(V ,P )/∂P is given by (Σ(i,i) −R(i,i))/p
2
i . We consider two cases, depending upon

whether an optimal solution p̂i satisfies: p̂i > ǫ or p̂i = ǫ. If p̂i > ǫ, then ∂h(V ,P )/∂pi = 0, hence

Σ(i,i) = R(i,i) implies that R(i,i) ≥ p̂i > ǫ. Otherwise, if p̂i = ǫ, then ∂h(V ,P )/∂pi ≤ 0, this leads

to R(i,i) ≥ p̂i = ǫ. Let P̂ be a solution of problem (P2), Appendix A demonstrates that any solution
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of problem (P2) is bounded. We get formulation problem (P2) by substituting the value of V that

minimizes the inner minimization problem above into the objective function h(P ,V ), which proves

Proposition 1. �

However, problem (P2) is still non-convex due to the non-convex objective function, and thus still

difficult to solve. Then, to this end, by introducing a new variable Γ , P−1 = diag(γ1, . . . , γφ),

the following Proposition 2 shows that the objective function in problem (P2) can be expressed as a

difference of two simple convex functions.

Proposition 2: Define γ , (γ1, . . . , γφ) as the new optimization variable, and λ̄′i, i ∈ [r] are the

top r eigenvalues of R̄
′
, Γ

1
2RΓ

1
2 , problem (P2) can be reformulated as the following optimization

problem

(P3) : min f(γ) , f1(γ)− f2(γ)

=

φ∑

i=1

(− log γi + ςiγi) + er(λ̄
′
i),

s.t. 0 ≺ Γ = diag(γ1, . . . , γφ) �
1

ǫ
I.

where ςi = max
{
0, 1− 1

λ′

i

}
if 1 ≤ i ≤ r, otherwise ςi = 0. ςi is widely used to computer the

subgradients of the spectral functions [37] and particularly presented in the following Section IV-A.

So far, problem (P3) is an instance of the well-known framework used for optimization of difference

of convex problems [34] and can be effectively solved the convex concave procedure [35].

Proof: Please refer to Appendix B. �

Now, we can adopt a sequential linearization approach in which we linearize the function f2(γ) at

each iteration, keeping f1(γ) unchanged, and solve the convex problem that results, also known as

optimization of difference of convex problems [34] or convex concave procedure [35]. At last, based

on the above analysis, we can start to introduce the complete detection framework of our JSTS-based

method in the following Section.

IV. COMPLETE DETECTION FRAMEWORK OF JSTS-BASED METHOD

In this section, we present the complete detection framework of our JSTS-based method, including

Stage 1: JSTS-based feature extraction and Stage 2: sequential change frame detection. Then, we
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also give the corresponding computation complexity analysis. We emphasize that we use the joint

space-time sparsity to implement more robust UAJ detection and adopt a real-time sequential manner

without assuming any attacker’s information.

A. JSTS-based Feature Extraction

We use γ(m) to denote the value of γ at the mth iteration, and linearize f2(γ) at γ(m) with f1(γ)

unchanged to obtain a convex approximation of f(γ), denoted by f(γ) ≈ f1(γ) − (f2(γ
(m)) +

〈∇m,γ − γ(m)〉) , F (γ;γ(m)), where ∇m is a subgradient of f2(γ) at γ(m) and 〈·, ·〉 is the

usual trace inner product. Next, we compute the subgradient of f2(γ) to ensure a satisfying ap-

proximation. Note that the gradient and subgradient of f1(γ) are the same since f1(γ) is dif-

ferentiable. The main difficulty lies in the fact that f2(γ) is not differentiable, we first establish

that H̃r(or) , −Hr(or) = −
φ∑

i=1

wig(or,i) = −
φ∑

i=1

wi(log(max{1, or,i}) − max{1, or,i} + 1) and

then according to the differentiability of spectral functions as [37], the subgradient of H̃r(or)

can be derived as ∂H̃r(or) = −
∑φ

i=1wi∇g(or,i), where ∇g(or,i) is the gradient of g(or,i) and

wi is a minimizer of g(or,i). Note that the function or,i 7→ log(max{1, or,i}) − max{1, or,i} + 1

is decreasing on or,i ≥ 0. Hence the sum
∑φ

i=1wi(log(max{1, or,i}) − max{1, or,i} + 1) will be

minimized for a choice: wi = 1 whenever or,i is one of the top r elements among or,1, . . . , or,φ;

and wi = 0 for all other choices of i ∈ [φ]. Let Γ
1
2RΓ

1
2 = UAdiag(λ

′
1, ..., λ

′
p)U

T
A be the eigen

decomposition of Γ
1
2RΓ

1
2 , according to the properties of subgradients of spectral functions [37],

∂f2(γ) can be written as ∂f2(γ) = diag(Γ− 1
2UADAU

T
AΓ

1
2R), where DA = diag(ς1, ..., ςφ) with

ςi = max
{
0, 1− 1

λ′

i

}
if 1 ≤ i ≤ r, otherwise ςi = 0. By using the above subgradient ∇g(or,i),

γ(m+1) can be calculated as

γ(m+1) = arg min
1
ǫ
≥γi>0,i∈[φ]

φ∑

i=1

(− log γi + ςiγi −∇m,iγi), (6)

where ∇m,i is the ith coordinate of ∇mg(or,i), and given by ∇mg(or,i) = min{0, 1
or,i

− 1}, and

∇mg(or,i) = 0 for all m 6= i. Then, the ith entry of γ(m+1) can be derived as

γ
(m+1)
i = min

{
1

ςi −∇m,i

,
1

ǫ

}
for i ∈ [φ]. (7)
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The updates will keep going till the stopping criterion ‖γ(m+1)−γ(m)‖2 < ε‖γ(m)‖2 is met, where

ε > 0 is small positive number determining the accuracy of the JSTS-based feature extraction.

B. Sequential Change Frame Detection

After extraction of the JSTS-based feature, we can perform sequential change frame detection in

a real-time manner to quickly detect UAJ.

1) Sequential process: At each time when a new sample observation is obtained, the detector makes

a decision based on all the sample observations collected at hand. Combined with UAJ detection

in this work, if it indicates that no change in the joint space-time sparsity has occurred, then the

detector moves to the next frame instant, collecting new samples and making a new decision. We

can see that with sequential process, our detection method works in a real-time manner and does not

rely on the prior knowledge of the attackers.

2) Change frame detection: We use
{
o(l−1,t)

}Ts

t=1
and

{
o(l,t)

}Ts

t=1
to denote the history monitoring

samples in the (l − 1)th frame and the newly arriving samples in the lth frame, respectively. The

support size of τ (l), i.e., the JSTS-based feature, can be calculated by τ (l) =
φ∑

ζ=1

δD([γ[l]]ζ 6= 0), and

τ (l−1) of the history monitoring samples in the (l−1)th frame can be obtained in the same way. In this

paper, in order to detect if the newly arriving samples
{
o(l,t)

}Ts

t=1
in lth frame is anomalous due to the

access jamming, we proposed to check if the joint space-time sparsity has experienced a big change.

To capture the change of the joint space-time sparsity based feature between the monitoring samples

and the newly arriving samples, we define a metric c , 1−
∣∣∣ τ (l)−τ (l−1)

τ (l−1)

∣∣∣. A smaller c corresponds to

larger changes of the joint space-time sparsity. Accordingly, if the newly arriving samples
{
o(l,t)

}Ts

t=1

result in a large change of the joint space-time sparsity based feature and thus c is lower than the pre-

defined detection threshold δ, we will claim that the access jamming exists. Based on the probability

theory and statistics, we use the cumulative distribution function to help to set up δ.

To sum up, combining Stage 1 (the JSTS-based feature extraction) and Stage 2 (the sequential

change frame detection), UAJ detection can be efficiently carried out as outlined in Algorithm 1.

Algorithm 1 shows the complete framework of our JSTS-based method. The JSTS-based feature

extraction is shown in Stage 1. The calculation of subgradients ∇m and convex approximation of

f(γ[l]) are the core of this stage. Then, if the newly arriving samples result in a large change of the



19

Algorithm 1 JSTS-based method for UAJ detection

1: Input: Newly arriving signals in the lth frame
{
o(l,t)

}Ts

t=1
; History signals in (l − 1)th frame{

o(l−1,t)
}Ts

t=1
; Stopping criterion ε; Detection threshold δ.

2: Stage 1: JSTS-based feature extraction.

3: Compute the JSTS-based feature on newly arriving signals in the lth frame to get τ (l).
4: for t = 1 to Ts do

5: o(l,t) is expanded as a real one o
(l,t)
r .

6: end for

7: Build the equivalent measure vector o
(l)
r ;

8: Initialize m = 1
9: Repeat:

10: Compute ∇m according to ∇g(or,i);
11: Update γ

(m+1)
[l] according to (6) and (7);

12: Until:

∥∥∥γ(m+1)
[l] − γ

(m)
[l]

∥∥∥
2
< ε

∥∥∥γ(m)
[l]

∥∥∥
2
.

13: Compute the support size of τ (l) according to τ (l) =
φ∑

ζ=1

δD([γ[l]]ζ 6= 0);

14: Compute the JSTS-based feature on history signals in (l − 1)th frame to get τ (l−1).

15: Compute the support size of τ (l−1);

16: Return: The list of the JSTS-based feature [τ (l−1), τ (l)].
17: Stage 2: Sequential change frame detection.

18: Compute c , 1−
∣∣∣ τ (l)−τ (l−1)

τ (l−1)

∣∣∣.
19: if c > δ then

20: o
(l)
r is normal;

21: Save τ (l) for the next detection;

22: else

23: o
(l)
r is under UAJ;

24: Update τ (l) = τ (l−1) for the next detection;

25: end if

26: Return: Detection result.

JSTS-based feature and thus c is lower than the pre-defined detection threshold δ, we will claim that

UAJ exists, and only update the support size of sparsity utilized for the next detection, as shown in

Stage 2.

C. Computational Complexity Analysis

In this part, we will present the complexity analysis of the proposed JSTS-based detection method

and discuss the computational scalability to large problems. Depending on the relative sizes of the

number of time slots Ts and the data dimension N , we present the complexity analysis for the



20

following three cases:

Case I (Ts > N): The main computational cost of the JSTS-based detection method is the

computation of a subgradient of f2(γ) which needs a low-rank eigen decomposition of R′. When N

is small relative to Ts, it is simple to form and work with matrix R′. We can creat R from or offline

and compute R′ from R, which respectively cost O(T 2
sN) and O(N2). As for the direct low-rank

eigen-decomposition of R′ costs O(N3) and can not apply to large-scale problems.

Case II (Ts ≪ N): In several delay-sensitive applications, Ts is usually less than N in order to

achieve a timely detection. In such circumstances, Γ
1
2RΓ

1
2 = ( 1√

Ts
orΓ

1
2 )T ( 1√

Ts
orΓ

1
2 ) can be gained

by a singular value decomposition (SVD) of 1√
Ts
orΓ

1
2 , which costs O(T 2

sN). Thus, it will cost

O(T 2
sN) to compute a rank r eigen decomposition of R′, which is linear in N if Ts ≪ N .

Case III (both Ts and N are large): When both Ts and N are large, the above direct SVD method

will become computationally expensive. For large-scale low-rank SVD decompositions, we need to

rely on some approximate techniques. By using the approximate rank r eigen decompositions in

[38], the computational complexity can be quickly reduced to O(N2r) for r ≪ N ≈ Ts.

As for the conventional batch detection, the energy characteristic (EC) based method [15] needs

to calculate the norm of the received signal, the computing complexity of which is O(T 2
sN

2). In

addition, the second-order statistics (SOS) based method [19] needs to calculate the inverse of a

2TsN-dimensional matrix, the computing complexity of which is O(T 3
sN

3). By contrast, our method

is more suitable for UAJ detection in practice.

V. NUMERICAL RESULTS

In this section, some numerical examples are performed to investigate the performance of the

proposed JSTS-based method for UAJ detection, and provided to verify our theoretical results. We

consider K = 2000 potential devices that attempt to access a mission-critical mMTC network.

The MTDs and UAJ attackers are randomly distributed in a circular region with the BS located

at the center. The distances from the MTDs and UAJ attackers to the BS, i.e., Dk, k = 1, · · · , K

and DA,j, j = 1, · · · , J , are randomly distributed in the region [40m, 800m] and [60m, (Dmax)m],

respectively. The large-scale fading from the MTDs and UAJ attackers to the BS are set to be

βk = LoD
−α
k and βA,j = LoD

−α
A,j , where α = 4 is the path loss exponent and Lo = −45dB denotes
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the shadowing effect. We assume that all MTDs have the same transmit power, i.e., Pk = P = 20dBm,

and the jamming power is also set to be the same for all UAJ attackers, i.e., PA,j = PUAJ . We consider

a 20 MHz channel with noise floor of −101 dBm. The length of spreading sequence is N = 50. In

each frame, the ensemble of sparse signals d
(l,t)
k are randomly generated from the QPSK symbol set

for the consecutive Ts = 7 time slots in each frame. We set the common part in any two adjacent time

slots for each frame satisfies η(l) = 0.3, ∀l. Unless specified, we set µ = 0.05, ρ = 0.4, ε = 10−3,

J = 8, Dmax = 800 and PUAJ = 20dBm. As a note, to compare the detection accuracy of different

methods, with other parameters fixed, we vary the access probability ρ, the number of UAJ attackers

J , the maximum distance of UAJ attackers Dmax, and the transmit power of UAJ attackers PUAJ . In

addition, the EC-based method [15], the SOS-based method [19], the ML-based factor analysis [32]

and the EM-based factor analysis [33] are considered for comparison.
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Fig. 5: The quality of the solution of the proposed JSTS-based method

According to the proposed JSTS-based method, if the joint space-time sparsity changed abruptly,

i.e., the specific value c , 1−
∣∣∣ τ (l)−τ (l−1)

τ (l−1)

∣∣∣, as defined in Section IV-B, is lower than the pre-defined

detection threshold δ, we will determine that UAJ occurs. We set the detection threshold δ based on

the probability theory and statistics. Specifically, we use the cumulative distribution function (CDF)

to help to set up δ. Fig. 3 shows the CDF result of detection threshold δ by using the history signal

in previous frame. In order to obtain the standard of change frame detection, we assume UAJ does

not exist during the training phase of detection threshold acquisition. As nearly all the δ is larger

than 0.95, thus we set δ = 0.95 under the above settings. In Fig. 4, we evaluate the impact on the

JSTS-based feature by different number of consecutive time slots activated by the attackers. We use

the metric c to capture the change of the JSTS-based feature between the monitoring samples in the

previous frame and the newly arriving samples in the current frame, and Nc to denote the number of

consecutive time slots activated by the attackers. As can be observed, for three cases with different

slot configuration, a sudden change in the JSTS-based feature can be found, even if each attacker

sends the spreading sequences in a small number of consecutive time slots which has relatively small

proportion in the whole slot configuration. For example, there exists an obvious abrupt change in

the JSTS-based feature when Nc = 3 (Nc = 4) for Ts = 7 (Ts = 14 or 21). Therefore, the proposed

UAJ detection is sensitive and reliable, which has broad application prospect in practice.

In Fig. 5, we investigate the quality of the solution of the JSTS-based feature extracted by the

proposed method for 3 random channel realizations. Specifically, we plot the error of the JSTS-
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Fig. 7: The comparison of false alarm probability of different methods.

based feature between the estimation result from the proposed method with the actual value from

the synthetic data. As can be observed, the proposed method achieves almost the same estimation

result as the actual value for different active device ratio µ. Fig. 6 illustrates the convergence of the

value of detection feature versus iteration steps through the proposed JSTS-based method and the two

factor analysis methods. We can observe that the JSTS-based method can guarantee convergence and

requires significantly less iterations than the ML-based method and the EM-based method. Although

the proposed method takes a certain number of iterations to reach convergence, the running speed

of the whole process is fast due to low computational complexity.

To demonstrate the performance of the proposed JSTS-based method, we make a comparison

of different methods in terms of false alarm probability PF in Fig. 7 and the receiver operating

characteristic (ROC) curves in Fig. 8. Firstly, Fig. 7 depicts the comparison result of PF of different
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Fig. 8: The comparison of ROC of different methods.

methods for different active device ratio µ. Because the active device ratio µ is closely related to

the space sparsity in mMTC, we first make a comparison of different methods with varying active

device ratio µ. It can be seen from Fig. 7 that PF can be controlled well in the proposed method

compared to other methods. In addition, PF increases as µ becomes larger for all methods. This

is because higher µ makes more devices connected to the BS, which leads the detection features

under the space sparsity constraints to cause the erroneous judgement easily. Secondly, for the sake

of fairness, we make a performance comparison of different methods with a series of values at fixed

PF . To accomplish this, we evaluate the detection performance of different methods by the receiver

operating characteristic (ROC) curves in Fig. 8. As we can see, the proposed JSTS-based method

shows a better detection performance than other methods for a given false alarm probability PF . For

example, detection probability PD of our JSTS-based method reaches above 0.95 when PF = 0.05. In

contrast, the detection accuracy of the competing methods are still far behind the proposed method,

which indicates they are not suitable for UAJ detection.

In Fig. 9, we compare the detection performances of different methods under different access

probability ρ. We set J = 8, Dmax = 800, and PUAJ = 20dBm. As can be observed, the detection

accuracy increases with increasing ρ. This is due to the fact that the damage on the time sparsity

caused by UAJ increased with increasing collision probability, which further leads to an obvious

change of the JSTS-based feature. Moreover, there is always a significant performance difference

between the proposed method and other methods. Although the same JSTS-based feature are used
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Fig. 9: Detection accuracy comparisons with respect to the access probability ρ.
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Fig. 10: Detection accuracy comparisons with respect to the number of UAJ attackers.

to detect UAJ in the ML-based method and the EM-based method, they are prone to get stuck

in suboptimal local solution of the feature extraction and thus their detection performance are not

very satisfactory. In Fig. 10, we illustrate the detection performances of different methods versus

the number of UAJ attackers J , where we set ρ = 0.4, Dmax = 800, and PUAJ = 20dBm. Fig. 10

reveals that the detection accuracy increases with increasing J for all the methods, and the proposed

JSTS-based method always performs better in detection accuracy than other methods under the same

number of UAJ attackers.

We observe the effect of the maximum distance between the BS and the attackers Dmax in Fig.

11. We set ρ = 0.4, J = 8, and PUAJ = 20dBm. For all methods, we observe the detection

probability decreases with the increasing of Dmax. Compared with these competing methods, even if

the Dmax becomes larger, the detection performance of our JSTS-based method has a small decline
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Fig. 11: Detection accuracy comparisons with respect to the maximum distance of UAJ attackers.
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Fig. 12: Detection accuracy comparisons with respect to the transmit power of UAJ attackers.

and appears to be robust enough to widely distributed attackers. In Fig. 12, we plot the detection

probability versus the transmit power of UAJ attackers PUAJ , where we set ρ = 0.4, J = 8, and

Dmax = 800. As we can see, with the increase of PUAJ , UAJ attackers will be easily distinguished

by the BS with the help of the JSTS-based method. This is because the JSTS-based method utilizes

difference of convex optimization for obtaining feasible solutions to the problem of the time sparsity

extraction, and a higher attacking power will produce a larger deviation the time sparsity estimation

procedure. In addition, we note that within a vast range value of PUAJ , the JSTS-based method

always outperforms these competing methods.

VI. CONCLUSION

In this paper, we have investigated the design of a detection method for the uplink access jamming

(i.e., UAJ) in the mission-critical mMTC. In order to obtain a timely and reliable detection result,
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we have extracted a new feature based on the joint space-time sparsity, i.e., the JSTS-based feature,

which can reflect the intrinsic properties of mMTC and is very sensitive to UAJ. On this basis,

we have performed the JSTS-based detection in a sequential manner, the detector made a decision

through the abrupt change in the JSTS-based feature without knowing the accurate prior information

of the attackers. Numerical results have shown the excellent detection performance of our proposed

method.

APPENDIX

A. The proof of the bounds on an optimal solution of (P2).

First of all, by setting ∂h(P ,V )/∂V to zero, and applying the S. W. formula on (P +V V T )−1

[36], we have that V = RP−1V (I + V TP−1V )−1. In addition, substituting (5) into RΣ
−1, we

have

RΣ
−1 =RP−1 − (Σ− P )P−1

=RP−1 −ΣP−1 + I. (8)

Moreover, Σ−1(Σ−R)Σ−1 can be calculated by

Σ
−1(Σ−R)Σ−1 =Σ

−1 −Σ
−1(RΣ

−1)

=− (P−1R−P−1
Σ + I)P−1 + P−1

=P−1(Σ−R)P−1. (9)

Because ∂h(V ,P )/∂p = diag(Σ−1(Σ − R)Σ−1), combing (9), the ith entry of ∂h(V ,P )/∂p

can be written as (Σ(i,i) −R(i,i))/p
2
i . We consider two cases, depending upon whether an optimal

solution p̂i satisfies: p̂i > ǫ or p̂i = ǫ. If p̂i > ǫ, then ∂h(V ,P )/∂pi = 0, hence Σ(i,i) = R(i,i) implies

that R(i,i) ≥ p̂i > ǫ. Otherwise, if p̂i = ǫ, then ∂h(V ,P )/∂pi ≤ 0, this leads to R(i,i) ≥ p̂i = ǫ. This

completes the proof.
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B. The proof of Proposition 2

To prove H̃r(or) , −Hr(or) = −
φ∑

i=1

wig(or,i) is concave on or, where Hr(or) is a linear

functional, Hr(or) can first be written as

φ∑

i=1

wi(log(max{1, or,i})−max{1, or,i}+ 1). (10)

Because the scalar function (log(max{1, or,i})−max{1, or,i} + 1) is decreasing on or,i, thus the

sum
φ∑

i=1

wi(log(max{1, or,i})−max{1, or,i} + 1) will be minimized for a choice: wi = 1 whenever

or,i is one of the top r elements among or,1 · · · or,φ; wi = 0 for all other choices of or,i. As a result,

representation is justified. (log(max{1, or,i})−max{1, or,i}+1) is concave for any or,i. So, for every

fixed wi ≥ 0, the function
φ∑

i=1

wi(log(max{1, or,i})−max{1, or,i}+1) is concave on or,i. The linearity

of the map γ to Γ
1
2RΓ

1
2 indicates that f(γ) is concave on γ. Let Γ

1
2RΓ

1
2 = UAdiag(λ

′
1, ..., λ

′
p)U

T
A be

the eigen decomposition of Γ
1
2RΓ

1
2 , according to the properties of subgradients of spectral functions

[37], ∂f2(γ) can be written as ∂f2(γ) = diag(Γ− 1
2UADAU

T
AΓ

1
2R), where, DA = diag(ς1, ..., ςφ)

with ςi = max
{
0, 1− 1

λ′

i

}
if 1 ≤ i ≤ r, otherwise ςi = 0. By using the above subgradient ∇g(or,i),

the value of γ at the mth iteration, denoted by γ(m), can be obtianed.

From convexity of f2(γ), we have that

f2(γ
(m+1)) ≥f2(γ(m))

+
〈
∂f2(γ

(m)),γ(m+1) − γ(m)
〉
, (11)

where 〈·, ·〉 is the usual trace inner product. γ(m) is the value of γ at the mth iteration and ∂f2(γ
(m))

denotes the subgradient of γ(m). Since f1(γ) is differentiable, we have that

f1(γ
(m)) ≥f1(γ(m+1)) +

〈
γ(m) − γ(m+1),∇f1(γ(m+1))

〉

+
ψ

2
‖γ(m+1) − γ(m)‖2, (12)

where ∇f1(γ(m+1)) is the derivative of f1(γ
(m)) and ψ denotes a coefficient of strong convexity for
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f1(γ
(m)). Combining (11) and (12), we further have that

f1(γ
(m+1))− f2(γ

(m+1)) ≤f1(γ(m))− f2(γ
(m))

− ψ

2
‖γ(m+1) − γ(m)‖2. (13)

Combining with the above characteristics, problem (P3) converges to a stationary point of the

original non-convex problem, which proves Proposition 2.
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