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Abstract—Reconfigurable intelligent surfaces (RISs) can po-
tentially combat jamming attacks by diffusing jamming signals.
This paper jointly optimizes user selection, channel alloca-
tion, modulation-coding, and RIS configuration in a multiuser
OFDMA system under a jamming attack. This problem is non-
trivial and has never been addressed, because of its mixed-integer
programming nature and difficulties in acquiring channel state
information (CSI) involving the RIS and jammer. We propose a
new deep reinforcement learning (DRL)-based approach, which
learns only through changes in the received data rates of the users
to reject the jamming signals and maximize the sum rate of the
system. The key idea is that we decouple the discrete selection
of users, channels, and modulation-coding from the continuous
RIS configuration, hence facilitating the RIS configuration with
the latest twin delayed deep deterministic policy gradient (TD3)
model. Another important aspect is that we show a winner-
takes-all strategy is almost surely optimal for selecting the
users, channels, and modulation-coding, given a learned RIS
configuration. Simulations show that the new approach converges
fast to fulfill the benefit of the RIS, due to its substantially
small state and action spaces. Without the need of the CSI, the
approach is promising and offers practical value.

Index Terms—Reconfigurable intelligent surface, jamming,
channel allocation, discrete modulation-coding, twin delayed
DDPG (TD3).

I. Introduction

Jamming attacks are severe security threats to wireless
systems owing to the broadcast nature of radios [1]–[4]. Many
techniques have been adopted to defend against jamming
attacks, such as beamforming, frequency hopping, and power
control [5]–[7]. Reprogrammable metasurfaces, also known as
reconfigurable smart surfaces (RISs), are one of the emerging
technologies for wireless systems that have been proposed to
combat interference [8]–[10]. For example, RIS was consid-
ered to empower smart radio environments [9] and facilitate
wireless communications [10]. An RIS is typically composed
of densely placed, low-cost, passive meta-atoms, and can
reconfigure the radio propagation environments between a
transmitter-receiver pair, by fine-tuning the phase shifts of
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the passive meta-atoms to produce favorable scatterings and
reflections [9]–[12].

Fig. 1 depicts a generic downlink scenario of a multiuser
Orthogonal Frequency Division Multiple Access (OFDMA)
system under a jamming attack. An RIS is deployed to help
the users reject the jamming signals and enhance the desired
signals. It is crucial to holistically design the user selection,
channel allocation, modulation-coding, and RIS configuration
by comprehensively considering discrete modulation-coding
modes and potentially multiple data streams with diverse
quality-of-service (QoS) per user. It is also critical that the
design does not rely on the assumed availability of channel
knowledge, especially the channels involving the jammer,
as opposed to many existing studies [13]–[15]. The user
and modulation-coding selection, channel allocation, and RIS
configuration are expected to be optimized by exploration and
exploitation in the absence of channel knowledge.

The motivation of this paper is to design a practical ap-
proach to user scheduling, subchannel assignment, power al-
location, and RIS configuration for an emerging RIS-assisted,
downlink, multiuser OFDMA system, under prominent prac-
tical constraints arising from the difficulty in estimating the
channels to and from the RIS, and from the mixed integer
programming nature of the problem. Considering a generic
scenario, we assume that each user can have multiple data
streams with different quality requirements (e.g., the base and
enhancement layers of video traffic). We also assume that there
can be an intentional jamming device (or an unintentional
interference source) in the system. The problem is new and
challenging. To the best of our knowledge, the problem has
never been studied in the existing literature.

A. Related Work

Many existing studies on RIS-assisted, secure wireless sys-
tems have assumed that the base station (BS) possesses perfect
and instantaneous CSI of individual channels, including those
involving the RISs, and jammers or eavesdroppers [13]–
[15]. Typical solvers, such as alternating optimization (AO),
semidefinite relaxation (SDR), fixed-point iteration method,
and block-coordinate descent (BCD), have been applied to
obtain approximate solutions [13]–[16]. AO was used to devise
the beamformer of the BS and the phase shifts of the RIS, to
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Fig. 1: An illustration on an RIS-assisted, downlink multiuser
OFDMA system under a jamming attack.

optimize the secrecy rate of an RIS-assisted, secure MISO
system [13]. SDR was used to optimally configure the RIS
and allocate the power of the BS to enhance the secrecy
rate in the existence of an eavesdropper [14]. In [15], both
AO and SDR were adopted to improve the secrecy rate by
optimally assigning the transmit beamformer and configuring
the RIS. In [16], BCD was used to optimize the beamformer
and artificial noise (AN) covariance matrix of the BS and the
phase shifts of the RIS, thereby maximizing the sum rate of
AN-aided multiple-input multiple-output (MIMO) systems.

Considering imperfect CSI, the authors of [17]–[20] pro-
vided robust designs of the RIS and the BS’s beamform-
ers in the presence of jammers or eavesdroppers. In [17],
the imperfect CSI was exploited to optimize the transmit
beamformer and AN covariance matrix of the BS, and the
phase shifts of the RIS, under the constraint of the maximum
allowed information leakage. In [18], active and passive secure
beamforming techniques were developed under a deterministic
CSI error model. In [19], a moment-based random error model
was used to model CSI errors, followed by optimizing the
secure beamformer of the BS and the RIS configuration. The
authors of [20] maximized the sum rate by jointly designing
the BS’s transmit beamformer and configuring the RIS without
knowing the jammer’s transmit beamformer, when there is a
jammer and an eavesdropper. The bounded CSI error model
of a third-party node was assumed over each link. The error
bounds were known to the BS. These methods [17]–[20] all
needed the statistical CSI.

Despite deep reinforcement learning (DRL) has been in-
creasingly applied to wireless communication systems, e.g.,
spectrum sensing [21], mobile edge computing [22], and
resource allocation [23], only a few works have adopted DRL
for RIS-assisted secure communications, i.e., [8] and [24]. The
phase shifts of the RIS were also discretized to produce a dis-
crete action space in the few studies [8], [24]. Unfortunately,
none of these existing studies can apply to the problem at

hand, due to the complex and mixed integer programming
nature of the problem (with the continuous RIS configuration
and discrete selection of the user, data stream, subchannel,
and modulation-coding mode). In [22], a DRL-based mobile
offloading scheme was proposed for edge computing against
jamming. In the scheme, an actor network chooses continuous
offloading policies. A critic network updates the actor network
weights to improve the computational performance without
knowing the task generation model, edge computing model,
and jamming model. Although the continuous action spaces
were considered, the problem studied in [R6] did not consider
an RIS and is substantially different from this paper.

As found in [25], adaptive modulations of grouped sub-
carriers can improve OFDM performance in millimeter wave
(mmWave) frequencies. In [26], waveform and modulation-
coding were designed to lower the peak-to-average-power ratio
of terahertz transmissions. In [27], modulation-coding was
adapted to the received power of terahertz signals. In [28],
an adaptive modulation-coding mechanism was developed
for a tunable reflector-assisted mmWave system. The outage
probability and throughput of the mechanism were analyzed
using stochastic geometry. However, these studies [25]–[28]
were restricted to a single-user setting, and cannot apply to
the new multiuser scenario considered in this paper.

B. Contribution and Organization

In this paper, we jointly optimize the user selection, channel
allocation, modulation-coding, and RIS configuration for an
RIS-assisted downlink multiuser OFDMA system under a
jamming attack. A new DRL-based approach is developed,
which does not require the CSI knowledge of individual links
and learns only through the changes in the readily available
received data rates of the users to configure the RIS, reject the
jamming signals, support diverse data qualities, and maximize
the sum rate of the system. The key contributions of this paper
are listed, as follows.
• A new problem is considered to comprehensively opti-

mize the user and modulation-coding selection, channel
allocation, and RIS configuration in a downlink multiuser
OFDMA system under a jamming attack. The RIS is
configured to diffuse the jamming signals and direct the
desired signals to the intended recipients.

• We decouple the continuous RIS configuration from the
discrete user and modulation-coding selection and chan-
nel allocation. A new twin delayed deep deterministic
policy gradient (TD3) model is designed to adaptively
configure the RIS by learning only from the changes in
the received data rates of the users, hence eliminating the
need of CSI knowledge.

• A winner-takes-all strategy is designed to deliver the
almost surely optimal user and modulation-coding selec-
tion, and channel allocation, hence reducing the action
space and contributing to the fast and reliable convergence
of the TD3 model.

Extensive simulations confirm that the proposed TD3-based
framework significantly outperforms its non-learning alter-
natives in terms of sum rate. The gain of a meticulously
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TABLE I: Notation and Definition

Notation Definition
M Number of users
M Set of users
N Number of the reflecting elements of the RIS
N Set of the reflecting elements of the RIS
K Number of subchannels
K Set of subchannels
L Number of modulation-coding modes
L Set of modulation-coding modes
Q Number of data streams
Q Set of data streams
xk Transmit symbols in the k-th subchannel
hd

m,k Channel coefficient from BS to the m-th user in the k-th
subchannel

hru
m,k Channel vector from RIS to the m-th user in the k-th

subchannel
hbr

k Channel matrix from BS to RIS in the k-th subchannel
hbr

k (n) Channel coefficient from BS to the n-th
reflecting element of the RIS

hJr
k Channel matrix from jammer to RIS in the k-th

subchannel
hJr

k (n) Channel coefficient from jammer to the n-th reflecting
element of the RIS

Φ The RIS’s reflection matrix Φ , diag{φ1, · · · , φN }

φn Reflection coefficient of the n-th reflecting element
of the RIS

θn Phase shift of the n-th reflecting element of the RIS
hJd

m,k Channel coefficient from the jammer to the m-th user
in the k-th subchannel

hm,k Effective channel from the BS to the m-th user in
the k-th subchannel

hJ
m,k Effective channel from the jammer to the m-th user

in the k-th subchannel
nm,k CSCG noise with zero mean and variance σ2

η
(q)
m,k,l

(
|hm,k |

2
)

Indicator for the selection of the k-th subchannel and
the l-th modulation-coding mode to deliver the q-th
data stream of the m-th user

rl Transmit rate of the l-th modulation-coding mode
p(q)

m,k,l

(
|hm,k |

2
)

Minimum transmit power required for the BS to deliver
the q-th data stream of the m-th user in k-th subchannel
the using the l-th modulation-coding mode

Pmax Maximum transmit power of the BS
PJ Transmit power of the jammer
%m,k,l Bit error rate (BER) of the m-th user in the k-th

subchannel using the l-th modulation-coding mode
%0 BER requirement for all data streams of all users

configured RIS is demonstrated, as the system with 40, 60, or
80 reflecting elements at the RIS provides 16.50%, 32.91%,
or 51.86% higher sum rates than the system without the
RIS, respectively. Eliminating the need of CSI, the proposed
framework is of significant practical value.

The remainder of this paper is arranged as follows. Section
II sets forth the system model. Section III articulates with
the new TD3-based framework for joint user and modulation-
coding selection, channel allocation, and RIS configuration.
In Section IV, the new framework is numerically evaluated,
followed by conclusions in Section V. Notations used in the
rest of the paper are collated in Table I.

II. SystemModel

We study an RIS-assisted downlink multiuser OFDMA
system, where a single-antenna BS serves M single-antenna
users via K orthogonal subchannels, as illustrated in Fig. 1. A

malicious single-antenna jammer is located near the users and
sends jamming signals in an attempt to block the legitimate
receptions of the users. An RIS comprising a uniform rectangle
array (URA) of N = Ny × Nz reflecting elements is installed
on the facade of a building, which is controlled by the BS
to help reject/diffuse the jamming signals and enhance the
legitimate communications. Here, Ny and Nz are the numbers
of reflecting elements in each row and column of the RIS,
respectively. The phase shifts of the RIS’s reflecting elements
are individually adjustable with a smart controller. Denote
by M = {1, · · · ,M}, K = {1, · · · ,K}, and N = {1, · · · ,N}
the sets of users, subchannels, and RIS’s reflecting elements,
respectively.

We consider that the BS configures the RIS and sends pilot
signals at the beginning of every block. The users estimate
their effective channels, and feed back their achievable rates
to the BS. The BS selects users, and allocates subchannels
and modulation-coding modes for delivery of different data
streams to the users in the rest of the block, only based
on the users’ feedback of their achievable data rates. No
explicit CSI of the channels is needed. This consideration
is practically interesting, due to the difficulty and significant
overhead needed to estimate the individual channels involving
the RIS or the jammer [29]. In contrast, the received data rates
can be readily measured and reported by the users [30].

Let xk ,
[
x1,k, · · · , xM,k

]T
∈ CM×1 denote the transmit

symbols for the M users in the k-th subchannel, and xJ
k ,[

xJ
1 , · · · , x

J
K

]T
∈ CK×1 denote the jamming signals on the

K subchannels. The jamming signals follow the zero-mean
circularly symmetric complex Gaussian (CSCG) distribution
with variance PJ [2]. The received signal at the m-th user in
the k-th subchannel is

ym,k =

[(
hru

m,k

)H
Φhbr

k + hd
m,k

]
√

pm,k xm,k

+

[(
hru

m,k

)H
ΦhJr

k + hJd
m,k

] √
pJ

k xJ
k + nm,k,∀m, k,

(1)

where hd
m,k is the channel coefficient from BS to the m-th user

in the k-th subchannel; hru
m,k =

[
hru

m,k(1), · · · , hru
m,k(N)

]T
∈ CN×1

is the channel vector from RIS to the m-th user in the k-
th subchannel; hbr

k =
[
hbr

k (1), · · · , hbr
k (N)

]T
∈ CN×1 is the

channel matrix from BS to RIS in the k-th subchannel, and
hbr

k (n), n ∈ N is the channel coefficient from BS to the n-
th RIS’s reflecting element; pm,k is the BS’s transmit power
for the m-th user in the k-th subchannel; hJd

m,k is the channel
coefficient from the jammer to the m-th user in the k-th
subchannel; hJr

k =
[
hJr

k (1), · · · , hJr
k (N)

]T
∈ CN×1 is the channel

matrix from the jammer to RIS in the k-th subchannel, with
hJr

k (n), n ∈ N being the channel coefficient from the jammer
to the n-th RIS’s reflecting element; pJ

k is the transmit power
of the jammer in the k-th subchannel; nm,k ∈ CN

(
0, σ2

)
,∀m ∈

M, k ∈ K is the zero-mean CSCG noise with variance σ2; and
Φ , diag{φ1, · · · , φN} is the RIS’s reflection matrix. φn = e jθn

is the reflection coefficient of the n-th reflecting element of the
RIS with θn ∈ [0, 2π) being the phase shift of the reflecting
element, and |φn| ≤ 1. Being a transmitting device, the jammer
can be hardly aware of the user selection at each subchannel.
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It is reasonable for the jammer to transmit its full power across
the spectrum to block the users.

The effective channel coefficients from the BS or jammer
to the m-th user in the k-th subchannel are given by

hm,k =
(
hbr

k

)H
ΦHhru

m,k + hd
m,k, ∀m ∈ M, k ∈ K ; (2)

hJ
m,k =

(
hJr

k

)H
ΦHhru

m,k + hJd
m,k, ∀m ∈ M, k ∈ K . (3)

Suppose that the channels undergo block fading, i.e., the
channels are unchanged within a block and vary independently
between blocks [31]. The received signal-to-interference-plus-
noise ratio (SINR) at the m-th user in the k-th subchannel is

γm,k =
pm,k |hm,k |

2

pJ
k |h

J
m,k |

2 + σ2
. (4)

The BS can select the l-th modulation-coding mode from
a discrete set of modulation-coding modes L, and the cor-
responding transmit rate is rl, l ∈ L = {0, 1, · · · , L}. The
number of available modulation-coding modes is L = |L|,
where | · | stands for cardinality. Note that l = 0 indicates no
transmission, i.e., r0 = 0. By employing the l-th modulation-
coding mode, the BER at the m-th user in the k-th subchannel
is [32]

%m,k,l = β1 exp
(
β2γm,k

2rl − 1

)
, (5)

where β1 and β2 are constants depending on the modulation-
coding scheme.

We also consider Q data streams with different BER re-
quirements for each user. The index to the data streams is
q ∈ Q = {1, · · · ,Q}. For illustration convenience, we set Q = 2,
where q = 1 indicates high-quality (HQ) data streams and
q = 2 indicates low-quality (LQ) data streams. To meet the
BER requirements %

(q)
0 , q ∈ Q (or in other words, the QoS

requirements) of the q-th data stream, the minimum transmit
power required for the BS to deliver the q-th data stream of
the m-th user in the k-th subchannel using the l-th modulation-
coding mode is [33]

p(q)
m,k,l

(
|hm,k |

2, |hJ
m,k |

2
)

=

(2rl − 1) ln
(
β1

%
(q)
0

) (
pJ

k |h
J
m,k |

2 + σ2
)

β2
∣∣∣hm,k

∣∣∣2 . (6)

III. Proposed Channel Allocation, Modulation-coding
selection, and RIS Configuration

The BS assigns the subchannels for the users, select
the modulation-coding modes, and configures the RIS. Let
η

(q)
m,k,l(|hm,k |

2, |hJ
m,k |

2) = 1 indicate the selection of the k-
th subchannel and the l-th modulation-coding mode for
transmitting the q-th data stream of the m-th user, given
|hm,k |

2 and |hJ
m,k |

2; and η
(q)
m,k,l = 0 indicates otherwise.

Let η :=
{
η

(q)
m,k,l(|hm,k |

2, |hJ
m,k |

2), ∀m ∈ M, k ∈ K , l ∈ L, q ∈ Q
}

collect all indicators. The transmit rate for delivering the q-th
data stream of the m-th user in the k-th subchannel is

R(q)
m,k (η) =

L∑
l=0

η
(q)
m,k,l

(
|hm,k |

2, |hJ
m,k |

2
)

rl. (7)

The sum rate of the system is given by

Rtot (η) =

M∑
m=1

Rm (η) =

M∑
m=1

K∑
k=1

L∑
l=0

Q∑
q=1

η
(q)
m,k,l

(
|hm,k |

2, |hJ
m,k |

2
)

rl,

(8)
where Rm (η) =

∑K
k=1

∑L
l=0

∑Q
q=1 η

(q)
m,k,l

(
|hm,k |

2, |hJ
m,k |

2
)

rl is the
data rate received at the m-th user.

The total transmit power of the BS for the m-th user is

Pm (η) =

K∑
k=1

L∑
l=0

Q∑
q=1

η
(q)
m,k,l

(
|hm,k |

2, |hJ
m,k |

2
)

p(q)
m,k,l

(
|hm,k |

2, |hJ
m,k |

2
)
,∀m.

(9)
The total transmit power of the BS is

P (η) =

M∑
m=1

K∑
k=1

L∑
l=0

Q∑
q=1

η
(q)
m,k,l

(
|hm,k |

2, |hJ
m,k |

2
)

p(q)
m,k,l

(
|hm,k |

2, |hJ
m,k |

2
)
.

(10)
We jointly design the selection of channels, user and

modulation-coding modes, η, and the configuration of the
reflection matrix of the RIS, Φ ∈ CN×N , to maximize the sum
rate of the system while meeting the BER requirements of the
users, %(q)

0 , ∀q ∈ Q. The transmit power of the BS is upper
bounded by Pmax. The problem is cast as

P1 : max
{Φ,η}

Rtot (η) (11a)

s.t. P (η) ≤ Pmax, (11b)
θn ∈ [0, 2π),∀n ∈ N , (11c)

K∑
k=1


M∑

m=1

L∑
l=0

Q∑
q=1

η
(q)
m,k,l

(
|hm,k |

2, |hJ
m,k |

2
) ≤ K, (11d)

M∑
m=1

L∑
l=0

Q∑
q=1

η
(q)
m,k,l

(
|hm,k |

2, |hJ
m,k |

2
)
≤ 1, (11e)

η
(q)
m,k,l

(
|hm,k |

2, |hJ
m,k |

2
)
∈ {0, 1}, (11f)

R(1)
m (η) = χR(2)

m (η) . (11g)

Constraint (11c) specifies the range of the RIS’s phase shifts;
(11d) indicates the number of subchannels assigned to all
users is no larger than K; (11e) indicates that each subchannel
is assigned to no more than one user to prevent inter-user
interference. Once η(q)

m,k,l is determined, the transmit power for
the m-th user in the k-th subchannel using the l-th modulation-
coding mode, i.e., (6), is specified to meet the BER require-
ment. In (11g), χ is the ratio of the HQ and LQ data streams,
which needs to be maintained between the streams, e.g., for
streaming videos with layered coding [34].

Problem P1 is a non-convex combinatorial problem, and in-
tractable for conventional optimization techniques. We design
a new framework to solve the problem, which configures the
RIS by using DRL. Given a possible configuration of the RIS,
we rely on primal-dual subgradient descent (PSD) to optimize
the allocations of subchannels and modulation-coding modes
by using a winner-takes-all strategy. By iteratively configuring
the RIS and optimizing the allocations, the framework can
substantially reduce the state and action spaces of the DRL
and quickly converge to a superb solution.
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Fig. 2: An overview of the proposed TD3-based framework for jointly optimizing the user selection, channel allocation,
modulation-coding, and RIS configuration. The top of the figure optimizes the discrete user and modulation-coding selection
and channel allocation using primal-dual subgradient descent, given the RIS configuration. The bottom optimizes the RIS
configuration using TD3, given the outcome of the top.

A. Twin Delayed DDPG (TD3)-based RIS Configuration

Problem P1 can be decoupled into sequential decisions
of the RIS configuration, the channel allocation, and the
user and modulation-coding selection. Specifically, given an
RIS configuration, the received data rates of the users are
readily available. The channel allocation, user and modulation-
coding selection only depend on the received data rates. The
RIS configuration involves N constant-modulus variables, i.e.,
θn, ∀n ∈ N . The extensively adopted solver, SDR, requires
the CSI knowledge of all channels, including those involving
the RIS; and can only configure the RIS approximately and
suboptimally, due to the need of rank randomization [35].

The benefit of this decoupled learning and optimization
structure of the proposed algorithm is two-fold.

• On the one hand, the need for the instantaneous CSI to
and from the IRS is eliminated. The users only need to
estimate their effective end-to-end channels based on the
pilot signals of the BS, e.g., by using the minimum mean
square estimation (MMSE), as done in typical wireless
communication systems, e.g., 3GPP LTE. By this means,
we can circumvent the impasse of estimating the CSI to
and from the RIS.

• On the other hand, the primary subgradient descent-
based selections of the user, data stream, subchannel, and

modulation-coding mode, and power allocation evaluate
precisely the maximum reward that can be offered by a
given IRS configuration. Under the given RIS configura-
tion, the optimality of the selections is proved rigorously
by showing that the selections follow an almost surely
unique and optimal “winner-takes-all” strategy; see Sec-
tion III-B. Not only do the optimal selections reduce the
state and action spaces of the DRL (which is conducive
to the convergence and reliability of the DRL), but ensure
the quality of the solution produced by our approach.

DRL is an effective dynamic programming tool to solve
a sequential decision-making problem by learning optimal
solutions in a dynamic environment. In this paper, we employ
the DRL to configure the RIS. Let the BS serve as the agent.
The key elements of the DRL model are specified below.

State Space S: At the t-th learning step, the system state
st ∈ S is defined as

st = {Rm,∀m ∈ M} . (12)

Action Space A: The action space collects all possible
actions, i.e., A := {at,∀t = 1, · · · ,N}. At the t-th learning
step, action at includes the reflecting coefficients {θn}n∈N , i.e.,

at =
{
θ(t)

n ∈ [0, 2π),∀n ∈ N
}
. (13)
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Transition probability: Under action at, the transition prob-
ability from state s to state s′ is given by

Pat

(
s, s′

)
= Pr

(
st+1 = s′|st = s, at = a

)
. (14)

Policy: The mapping from the state space, S, to the action
space, A, is known as a policy, π : S → A, which is a
distribution π(a|s) = Pr (at = a|st = s) over state s ∈ S.

Reward: The reward function provides positive rewards at
each learning step, denoted by rt, for executing action at, and
is defined as

rt =
∑
m∈M

Rm (η) , (15)

where Rm =
∑

k∈K Rm,k is the total transmit rate for the m-
th user. With a discount coefficient γ ∈ (0, 1), the cumulative
discounted reward is given by

Gt =

∞∑
t=0

γtrt. (16)

Experience: The history experience is defined as et =

(st, at, rt, st+1), and memorized in an experience replay buffer,
denoted by R.

The agent perceives the current system state st, picks an
available action at, obtains a reward rt, and transits to a new
state st+1. A policy, at = π(st), projects the state st to a
feasible action. The agent selects the policy maximizing the
accumulated reward Gt. Given state st, action at, and reward
rt, an action-value function, i.e., Q-function, is exploited
to evaluate Gt, as Qπ(st, at) = Eπ[Gt |st, at]. It satisfies the
Bellman Expectation Equation:

Qπ (st, at) = Ert ,st+1∼E

[
rt + γEat+1∼π [Qπ (st+1, at+1)]

]
, (17)

where E denotes the environment that the agent interacts with.
It is difficult to apply RL directly to obtain the Q-value,
Q(st, at), owing to the continuous state and action spaces.

Being one of the latest DRL models, TD3 is designed for
continuous state and action spaces. To address the Q-value
overestimation issue of the deep deterministic policy gradi-
ent (DDPG) algorithm, TD3 introduces three improvements
over DDPG, i.e., clipped double-Q learning with two critics,
target policy smoothing, and delayed policy update [36].
• Clipped double-Q learning with two critics: TD3 has two

critics (i.e., to produce two Q-values), and admits the
smaller of the two Q-values to evaluate the target Q-
values in the Bellman error loss functions.

• Target policy smoothing: TD3 adds noises to the target
action and smooths the Q-function value of the actions
to make the policy less likely to exploit the errors in the
Q-function.

• “Delayed” policy updates: The actors (i.e., policies) are
updated less frequently than the critics. For example, it
was recommended in [36] that the actors are updated after
the critics are updated twice.

The TD3-based framework is made up of an actor network
and a critic network, where the actor network comprises an
actor and a target-actor, and the critic network comprises
two critics and two target-critics, as shown in Fig. 2. Six
deep neural network (DNN) approximators are used in the

TD3-based network. The actor with parameters θa, denoted
by µ (st; θa), approximates the policy function of the agent
and produces the actions. The two critics with parameters θ1
and θ2, denoted by Q1(st, at; θ1) and Q2(st, at; θ2), estimate
two action-value functions of the actions produced by the
actor, and output the smaller as the action-value function of
the actions [37]. The target-actor with parameter θ′a, denoted
by µ′

(
st; θ′a

)
, produces the target policy. The two target-

critics with parameters θ′1 and θ′2, denoted by Q′1(st, at; θ′1) and
Q′2(st, at; θ′2), generate two Q-values, of which the smaller is
taken as the target Q-value.

Based on the actor-critic setting, the TD3 network follows
the deterministic policy gradient (DPG) theorem [37] to update
the parameters, θa, θ1, θ2, θ′a, θ′1 and θ′2, and optimize the
actions. The use of the target network (comprising a target-
actor and two target-critics) prevents unstable learning arising
from using only an actor-critic network (with a single actor
and critic) [38].

The BS (i.e., the agent) takes the received data rates of
the users as the current state st, and passes it to the actor.
Following the DPG theorem [37], the actor produces the
current strategy by deterministically mapping a state to an
action. The actor approximates the policy function of the
agent and chooses an action at. A random exploration noise is
appended to the action to poise the exploration of new actions
and the exploitation of known actions. The output action is

at = clip
(
µ (st; θa) + ε, amin, amax

)
, (18)

where the noise ε is randomly sampled from a zero-mean
Gaussian distribution (GN) with variance σ2

e , i.e., ε ∼

N(0, σ2
e); clip(·) is a clipping function to limit the actions

within [amin, amax] with amax and amin being the upper and
lower bounds of the actions, respectively. As the result of
action at, the agent is rewarded with rt and transits to the
state st+1. The agent perceives the state st+1 and reserves the
transition (st, at, rt, st+1) in its experience replay buffer R.

With the input (st, at), the two critics evaluate the action-
value functions of the selected action at, i.e., Q1 (st, at; θ1)
and Q2 (st, at; θ2). By randomly drawing a sampled tran-
sition (si, ai, ri, si+1) from the experience replay buffer R,
the action-value functions produced by the two critics are
approximated by Q1 (si, ai; θ1) and Q2 (si, ai; θ2). The lesser
of these two approximate action-value functions is cho-
sen as the Q-value of the next state, i.e., Qµ(si, ai) =

min {Q1 (si, ai; θ1) ,Q2 (si, ai; θ2)}.
Given the probability distribution of the parameter θa, i.e.,

J(θa), the actor network is updated towards the direction in
which the estimation improves the strategy fastest. In other
words, θa is updated towards the direction specified by the
gradient of J(θa), which is given by [37]

∇θa J(θa) = Es∼ρµ
[
∇θa Qµ(st, µ(st; θa); θk)

]
(19a)

= Es∼ρµ
[
∇θaµ(st; θa)∇aQµ(st, µ(st; θa); θk)

]
, (19b)

where k = 1 or 2; (19b) is derived from the chain rule; ρµ is
a discounted state distribution of policy µ(st; θa) [?]; ∇θaµ(s)
is the gradient of the actor µ(s) with respect to (w.r.t.) the
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parameter θa; and ∇aQµ(st, a; θa) is the gradient of Qµ(st, a; θa)
w.r.t. action a.

By randomly sampling Nbatch historical transitions from the
experience replay buffer R, ∇θa J(θa) is approximated by

∇θa J(θa)≈
1

Nbatch

Nbatch∑
i=1

[
∇θaµ(si)∇aQµ(si, a; θc)|a=µ(si)

]
. (20)

The parameter of the actor, i.e., θa, is updated by using the
gradient descent method [39]

θa ← θa + ηa∇θa J(θa)θa

+
ηa

Nbatch

Nbatch∑
i=1

[
∇θaµ(si)∇aQµ(si, a; θc)|a=µ(si)

]
,

(21)

where ηa is the learning rate of the actor network.
One issue of deterministic policies is that they can cause

overfitting and shrink the peaks used to produce Q-value
estimates [37]. Specifically, when updating the critics in the
DDPG model, the target Q-value produced by the deterministic
policies are susceptible to the inaccuracies caused by the Q-
function estimation errors. Target policy smoothing, a regular-
ization strategy for Q-function value learning [40], is used to
reduce the inaccuracies.

Based on the randomly sampled Nbatch past transitions from
the experience replay buffer R, the target action after target
policy smoothing is given by

a′t = clip
(
µ′

(
st+1; θ′a

)
+ clip

(
ε′,−σ2

m, σ
2
m

)
, amin, amax

)
, (22)

where the noise ε′ is randomly sampled from a zero-mean GN
with variance σ2

a, i.e., ε′ ∼ N(0, σ2
a); and σ2

m is the maximum
exploration noise supported by the environment. The mean
square error (MSE)-based losses coming from the two critics
are evaluated as

Lk(θk) = Est∼ρµ,at∼µ(st ;θa)

[
(Qk (st, at; θk) − yt)2

]
, (23)

where k = 1 or 2; yt = rt + γmin{Q′1(st+1, a′t ; θ
′
1),

Q′2(st+1, a′t ; θ
′
2)} is the target Q-value produced by the two

target-critics based on the current transition (st, at, rt, st+1); and
θ′1 and θ′2 are decayed copies of θ1 and θ2, respectively. The
smaller Q-value produced by the two target-critics is taken as
the target Q-value.

With Nbatch randomly sampled transitions, the loss function,
Lk(θk), is approximated by

Lk(θk) ≈
1

Nbatch

Nbatch∑
i=1

[
(Qk (si, ai) − yi)2

]
, k = 1, 2, (24)

where yi = ri + γmin
(
Q′1(si+1, a′i ; θ

′
1),Q′2(si+1, a′i ; θ

′
2)
)

is the
approximate target Q-value produced by the target network
based on the Nbatch randomly sampled transitions. The smaller
approximate target Q-value produced by the two target-critics
is taken as the approximate target Q-value.

By differentiating Lk(θk) w.r.t. θk, we obtain the gradient as

∇θk Lk(θk)≈
1

Nbatch

Nbatch∑
i=1

[ (
Qµ (si, µ(si; θa); θk) − yi

)
∇θk Qµ(si, µ(si; θa); θk)

]
, k = 1, 2.

(25)

The parameters of the two critics, i.e., θ1 and θ2, are updated
by utilizing the stochastic gradient descent method [39].

According to the “delayed” policy updates, the target-
actor and the two target-critics evolving from the actor and
critics are updated every two iterations by running the Polyak
Averaging [36]:

θ′a ← ρτθa + (1 − ρτ)θ′a,
θ′k ← ρτθk + (1 − ρτ)θ′k, k = 1, 2,

(26)

where ρτ is the decaying rate of both the actor and critic
networks.

B. Optimal Channel Allocation and Rate Adaptation

Given the reflection matrix of the RIS, Φ, from the TD3
network, the effective channel gains of the BS and jammer
to the m-th user in the k-th subchannel, |hm,k |

2 and |hJ
m,k |

2, are
readily measurable. We can rewrite problem P1 as

P2 : max
η

Rtot (η) , s.t. (11b), (11d) − (11g). (27)

By defining λ as the Lagrange multiplier w.r.t (11b), and ν =

{νm,∀m} as the Lagrange multipliers w.r.t (11g), the Lagrange
function of (27) is

L (η, λ,ν)=Rtot (η)−λ (P (η) − Pmax)−
M∑

m=1

νm

(
R(1)

m (η) −χR(2)
m (η)

)
.

(28)
Further define

$
(q)
m,k,l

(
λ, νm, |hm,k |

2, |hJ
m,k |

2
)

=


− λp(q)

m,k,l

(
|hm,k |

2, |hJ
m,k |

2
)

+ (1 − νm) rl, if q = 1;

− λp(q)
m,k,l

(
|hm,k |

2, |hJ
m,k |

2
)

+ (1 + νmχ) rl, if q = 2.

(29)

Then, (28) is rewritten as

L (η, λ,ν) = λPmax+

K∑
k=1

{ M∑
m=1

L∑
l=0

Q∑
q=1

η
(q)
m,k,l

(
|hm,k |

2, |hJ
m,k |

2
)

×$
(q)
m,k,l

(
λ, νm, |hm,k |

2, |hJ
m,k |

2
)}
.

(30)

The Lagrange dual function is

D (λ) = max
η

L (η, λ,ν) . (31)

The dual problem of (27) is given by

min
λ,ν

D (λ,ν) . (32)

Given λ and ν, the primary variable η is obtained by solving

max
η

K∑
k=1

{ M∑
m=1

L∑
l=0

Q∑
q=1

η
(q)
m,k,l

(
|hm,k |

2, |hJ
m,k |

2
)

×$
(q)
m,k,l

(
λ, νm, |hm,k |

2, |hJ
m,k |

2
)}
, s.t. (11e), (11f).

(33)

The optimal channel allocation and modulation-coding selec-
tion take a “winner-takes-all” strategy [34]. As per the k-th
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subchannel, the m∗k-th user and the l∗k-th modulation-coding
mode are selected to deliver the q∗-th data stream:{

m∗k, l
∗
k, q
∗
k

}
= arg max

m,l,q
$

(q)
m,k,l

(
λ, νm, |hm,k |

2, |hJ
m,k |

2
)
, ∀k ∈ K .

(34)
A greedy strategy can be taken to optimize η:η

(q)∗
m,k,l

(
λ, νm, |hm,k |

2, |hJ
m,k |

2
)

= 1, if {m, l, q} =
{
m∗k, l

∗
k, q
∗
k

}
;

η
(q)∗
m,k,l

(
λ, νm, |hm,k |

2, |hJ
m,k |

2
)

= 0, otherwise.
(35)

With η∗ (λ,ν) obtained in (35), the sub-gradient descent
method is taken to update λ and ν by solving the dual
problem (32). λ and ν are updated by [41]

λ (τ + 1) =
[
λ(τ) + ε (P (η∗ (λ (τ) ,ν(τ))) − Pmax)

]+ , (36a)

νm (τ + 1) =
[
νm(τ) + ε

(
R(1)

m (η∗ (λ (τ) ,ν(τ)))

−χR(2)
m (η∗ (λ (τ) ,ν(τ)))

)]+
, ∀m, (36b)

where ε is the step size, τ is the index to the iterations, and
[x]+ = max (0, x). At initialization, λ and ν are non-negative,
i.e., λ(0) ≥ 0 and νm(0) ≥ 0,∀m, to ensure (36) converges.

It is prudent to analyze the optimality of the solution
obtained iteratively by (35) and (36), since problem (27) is
a non-convex mixed-integer program. We assert that when the
gains of the channels, |hm,k |

2 and |hJ
m,k |

2,∀m ∈ M, k ∈ K ,
have a continuous cumulative distribution function (CDF).
η

(q)∗
m,k,l

(
λ∗, ν∗m, |hm,k |

2, |hJ
m,k |

2
)
,∀m, k, is the almost surely optimal

solution to problem P2 (i.e., with probability 1), where λ∗ is
obtained in (36) with any initial λ(0) > 0 and νm(0) > 0. The
proof can be referred to [34]. For the completeness of this
paper, a sketch of the proof is provided below.

The proof starts by confirming the almost sure uniqueness
of the “winner-takes-all” strategy η∗(λ,ν) in all three possible
cases. (a) If maxm,l,q $

(q)
m,k,l

(
λ, νm, |hm,k |

2, |hJ
m,k |

2
)

= 0, all users
undergo a deep fade in the k-th subchannel. Even if user m
is selected for the subchannel, l∗k(λ, νm, |hm,k |

2, |hJ
m,k |

2) = 0, the
optimal decision of the BS is to not transmit in the subchannel;
see (35). (b) If maxm,l,q $

(q)
m,k,l

(
λ, νm, |hm,k |

2, |hJ
m,k |

2
)
> 0 and a

single “winner” wins the k-th subchannel, the optimal strategy
in (35) is unique. (c) If maxm,l,q $

(q)
m,k,l

(
λ, νm, |hm,k |

2, |hJ
m,k |

2
)
> 0

and multiple {m, l, q} triplets can win the k-th subchannel
with one triplet selected at random, the strategy is non-
unique. This is a Lebesgue measure zero event [42] under the
continuous CDF of the random channel gain. The non-unique
“winner” has the “measure zero” effect, i.e., the probability
of the non-unique “winner” is almost zero. Given its almost
sure uniqueness, the “winner-takes-all” strategy maximizes the
Lagrangian function (31), even if P2 is relaxed to a linear
program (LP), i.e., η∗(λ,ν) can take a continuous value within
[0, 1]. Since the LP has a zero-duality gap, η∗(λ,ν) is almost
surely optimal for P2.

C. Algorithm Description

Algorithm 1 summarizes the proposed algorithm, referred
to as PSD-TD3. The agent collects the received data rates
of the users at the start of every learning step (i.e., the t-
th step), and takes them as the state of the algorithm (i.e.,

Algorithm 1: Proposed PSD-TD3 to solve problem P1.
1 Initialization: Randomly initialize the actor µ and the two

critics Q1 and Q2 with parameters θa, θ1, and θ2, the
target-actor µ′ and two target-critics Q′1 and Q′2 with
parameters θ′a ← θa, θ′1 ← θ1, and θ′2 ← θ2, the experience
replay buffer R, and the channel allocation and
modulation-coding selection η0.

2 Measure the received data rates of all users and η0 as the
initial state s0.

3 for t = 1, · · · ,Ts do
4 Pick action at = clip

(
µ (st; θa) + ε, amin, amax

)
, and update

Φ.
5 Obtain the dual problem of P2 based on the updated Φ:

minλ,ν maxη L (η, λ,ν).
6 Initialize I = 0, the maximum iteration number Imax,

λ(0) ≥ 0, νm(0) ≥ 0,∀m, and η0.
7 while L (η, λ,ν) is yet to converge, and I < Imax do
8 Obtain η∗ by maximizing L (η, λ,ν) given λ using a

greedy strategy.
9 Initialize J = 0 and the maximum iteration number

Jmax:
10 while P (η∗) is yet to converge, and J < Jmax do
11 Update λ and νm,∀m according to (36).
12 J ← J + 1.

13 I ← I + 1.

14 Output the optimal channel allocation and
modulation-coding selection ηt = η∗.

15 Receive the reward rt, perceive a new state st+1, and
reserve transition (st, at, rt, st+1) in R.

16 Randomly sample Nbatch historical transitions
(si, ai, ri, si+1) from R.

17 Update the target action after target policy smoothing
based on the sampled transitions:
a′t = clip

(
µ′

(
st+1; θ′a

)
+ clip

(
ε′,−σ2

m, σ
2
m

)
, amin, amax

)
.

18 Update the target Q-value:
yi = ri + γmin

(
Q′1(si+1, a′i ; θ

′
1),Q′2(si+1, a′i ; θ

′
2)
)
.

19 Calculate the loss function based on (24), and update the
two critics by (25).

20 if mod (t, 2) = 0 then
21 Update the actor based on (21), and the target-actor

and the two target-critics by (26).

state st) to train the actor. A continuous action at is produced
by the actor to update the reflection matrix of the RIS using
TD3; see Section III-A. Given the reflection matrix, the algo-
rithm optimizes the channel and modulation-coding selection,
i.e., ηt, using PSD; see Section III-B. Based on the selection,
the agent evaluates the reward rt, transits to the state st+1,
and reserves transition (st, at, rt, st+1) in the experience replay
buffer R. The parameters of the six DNNs are updated with
randomly sampled past transitions in the experience replay
buffer R until the cumulative reward converges.

It is noted that our proposed framework can be readily
extended to a multi-antenna setting where both the BS and
users can have multiple antennas. In this case, space-time
block coding (STBC) and maximal ratio combining (MRC)
can be carried out at the BS and users, respectively. Given
an RIS configuration, each user can individually measure its
effective channel matrix from the BS, denoted by Hm,k =(
Hbr

k

)H
ΦHHru

m,k + Hd
m,k ∈ C

Nt×Nr , ∀m ∈ M, ∀k ∈ K ,
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and evaluate and report its effective channel gain of each
subchannel, i.e., γmrc

m,k =
pm,k(‖Hm,k‖

2/Nt NrRc)
pJ

k (‖hJ
m,k‖

2/NrRc)+σ2 [8], [24], [43], where
Rc is the information code rate of the STBC, and Nt and Nr

are the numbers of antennas at the BS and users, respectively.
Accordingly, the BS can optimize the selections of the user,
data stream (with a quality requirement), and modulation-
coding scheme, and the allocation of its transmit power for
each subchannel in the same way as it does under the single-
antenna setting.

D. Complexity and Convergence Analyses

The computational complexity of the proposed PSD-TD3
algorithm accounts for both the PSD and the TD3 model. As
of the PSD, the BS incurs a linear complexity of O(KMLQ)
to evaluate the net rewards $(q)

m,k,l

(
λ, νm, |hm,k |

2, |hJ
m,k |

2
)

for all
M users with Q data streams per user, K channels, and
L modulation-coding modes. Moreover, the greedy strategy,
i.e., (35), used to decide the 3-tuple

{
m∗k, l

∗
k, q
∗
k

}
per subchannel

k incurs a complexity of O(K log(MLQ)). As a result, all
required operations of a time step incurs a linear computational
complexity of O(KMLQ) [34].

As of the TD3 model, we separately evaluate the com-
plexities of the actor and critic networks. Suppose that the
actor network has La layers with Jm neurons in the m-
th layer (m ≤ La). The complexity of the m-th layer
is O(Jm−1Jm + JmJm+1) [44]. The complexity of the ac-
tor network is O

(∑La−1
m=2 (Jm−1Jm + JmJm+1)

)
. Suppose that the

critic network has Lc layers with Gn neurons in the n-
th layer (n ≤ Lc). The complexity of the n-th layer is
O(Gn−1Gn + GnGn+1) [44]. The complexity of the critic
network is O

(∑Lc−1
n=2 (Gn−1Gn + GnGn+1)

)
. As a result, the

overall computational complexity of the TD3 model is
O

(∑La−1
m=2 (Jm−1Jm + JmJm+1) +

∑Lc−1
n=2 (Gn−1Gn + GnGn+1)

)
[44].

We further analyze the convergence of the proposed PSD-
TD3 algorithm. Specifically, the algorithm satisfies the fol-
lowing conditions: (i) the network parameters θ and θ′ (of
which the subscripts are suppressed for brevity) are upper
bounded since they are sequentially compact following the
Arzela-Ascoli theorem [45]; (ii) the state and action spaces
are compact as the sampled states and actions are bounded by
the maximum transmit power of the BS and the phase shifts
of the RIS; (iii) the reward function, i.e., (15), is continuous;
and (iv) the training networks are feedforward FCNNs with
twice continuously differentiable activation functions, such as
Rectified Linear Units (ReLUs) and sigmoid. According to
[46, Lemma 2], the proposed algorithm can asymptotically
converge if we adopt a sequence of square summable learning
rates, i.e.,

∑
t ηa(t) = ∞ and

∑
t ηa(t)2 < ∞. Here, t is the time

step, and ηa(t) is a time-varying learning rate of the actor
network.

IV. Simulation Results
In the considered system, the BS is placed at (D0, 0,Hb),

the jammer is placed at (xJ , yJ , 0), and the first element of the
RIS has the coordinates (0, δ, δ + Hr), as depicted in Fig. 1.
We set D0 = 2 m, Hb = 10 m, Hr = 10 m, xJ = 50 m,
and yJ = 150 m. The RIS is a URA with element spacing

of δ. We assume d0 = δ = λ
2 . We use (ι, κ) to index the RIS

elements. ι ∈ {1, · · · ,Ny} and κ ∈ {1, · · · ,Nz}. The coordinates
of the (ι, κ)-th reflecting element are (0, ι × δ, κ × δ + Hr). The
users are uniformly scattered within a square area centered at
(100, 100, 0) m with the side length of 100 m. The sides of
the area are parallel to the x- and y-axes. The location of the
m-th user is (xm, ym, 0), ∀m ∈ M. By default, M = 4.

We consider Rayleigh fading for the BS-user (BS-UE) and
the jammer-UE links, and Rician fading for the BS-RIS,
jammer-UE and RIS-UE links. The channel gains of the BS-
UE (or jammer-UE), BS-RIS (or jammer-RIS), and RIS-UE
links are given by

hd
m,k =

√
εo

(
dd

m

)−αd
h̃d,∀m, k, (37)

hbr
ι,κ =

√
εo

(
dbr
ι,κ

)−αbr

√ K1

1+K1
hbr

los+

√
1

1+K1
hbr

nlos

 ,∀ι, κ,
(38)

hru
ι,κ,m =

√
εo

(
dru
ι,κ,m

)−αru

√ K2

1+K2
hru

los+

√
1

1+K2
hru

nlos

 ,∀ι, κ,m,
(39)

hJd
m,k =

√
εo

(
dJd

m

)−αJd
h̃Jd,∀m, k, (40)

hJr
ι,κ =

√
εo

(
dJr
ι,κ

)−αJr

√ K3

1+K3
hJr

los+

√
1

1+K3
hJr

nlos

 ,∀ι, κ,
(41)

where εo is the path loss at the reference distance d0 = 1 m
with αd, αbr, αru, αJd, and αJr being the path loss exponents
of the BS-RIS, BS-UE, RIS-UE, jammer-UE, and jammer-RIS

links, respectively; dbr
ι,κ =

√
(Hr + κδ − Hb)2 + ι2δ2 + D2

0 is the
distance from the BS to the (ι, κ)-th reflecting element of the

RIS, and dd
m =

√
(D0 − xm)2 + y2

m + H2
b is the distance from the

BS to the m-th user, and dru
ι,κ,m =

√
x2

m + (Hr + κδ)2 + (ym − ιδ)2

is the distance from the (ι, κ)-th reflecting element of the RIS

to the m-th user, dJr
ι,κ =

√
(Hr + κδ)2 + (ιδ − yJ)2 + x2

J is the
distance from the jammer to the (ι, κ)-th reflecting element of

the RIS, dJd
m =

√
(xJ − xm)2 + (yJ − ym)2 is the distance from

the jammer to the m-th user.
In (38), (39), and (41), K1, K2 and K3 are the Rician factors

of the BS-RIS, RIS-UE, and jammer-RIS links. hbr
los = e− j 2πδ

λ φbr
ι,κ ,

hru
los = e− j 2πδ

λ φru
ι,κ,m , and hJr

los = e− j 2πδ
λ φJr

ι,κ are the deterministic
Line-of-Sight (LoS) components of the BS-RIS, RIS-UE, and
jammer-RIS links, respectively, where φbr

ι,κ = arccos
(
ιδ

dbr
ι,κ

)
is the

angle-of-arrival (AoA) of the signal from the BS to the (ι, κ)-th
reflecting element of the RIS, φru = arccos

(
ym−ιδ
dru
ι,κ,m

)
is the angle-

of-departure (AoD) of the signal from the (ι, κ)-th reflecting
element of the RIS to the m-th user, and φJr

ι,κ = arccos
(

yJ−ιδ

dJr
ι,κ

)
is the AoA of the signal from the jammer to the (ι, κ)-th
reflecting element of the RIS. h̃d, hbr

nlos, hru
nlos, h̃Jd, and hJr

nlos
are random scattering components modeled by zero-mean and
unit-variance CSCG variables. The other parameters of the
considered system are provided in Table II.

The TD3-based network is implemented by a two-layer
feedforward neural network with 128 and 64 hidden nodes
in the two layers. Rectified Linear Units (ReLUs) are used
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TABLE II: The parameters of the considered system

Parameters Values
Maximum transmit power of the BS, Pmax 5 – 35 dBm
Transmit power of the jammer, PJ 10 dBm
Number of subchannels, K 16, 32
Number of users, M 4
Number of modulation levels, L 4
Set of modulation-coding rate {0,2,4,6} bits/symbol
Path loss at d0 = 1 m, εo -30 dB
Path loss exponents, αbr , αd , αru 2.5, 3.0, 2.2
Rician factors, K1, K2, K3 1, 3, 1
Noise power density, σ2 -169 dBm/Hz
Bandwidth, Bw 100 MHz
BER requirements, {%(1)

0 , %(2)
0 } {10−6, 10−2}

Coefficients of modulation and coding, β1, β2 0.2, -1.6 [32]

TABLE III: The hyperparameters of the TD3-based algorithm

Parameters Values
Discounting factor for future reward, γ 0.99
Learning rate for actor and critic networks, ηa, ηc 1 × 10−3

Decaying rate for actor and critic networks, ρτ 5 × 10−3

Size of experience replay buffer 1 × 105

Number of episodes, Tep 400
Total number of steps in each episode, Ts 200
Mini-batch size, Nbatch 16
Policy delay update frequency 2
Maximum value of the Gaussian noise, σ2

m 0.5
Variance of the exploration noise, σ2

e 0.2
Variance of the policy noise, σ2

a 0.2

as the activation functions between the layers of the actor
and critic networks. The output layers of the actor use the
sigmoid(·) to bound the output actions within [0, 2π) for the
RIS configuration. The state and action are taken as the input
to the first layer of the critic networks. The learning rates of
both the actor and critic networks are 10−3. The exploration
noise used to train the TD3 actor, and the policy noise used to
smooth the target-actor are both generated from the zero-mean
GN with variance 0.2. The maximum value of the exploration
noise is 0.5. The update frequency of the actor networks is 2.
The TD3-based network is trained on a server with an Nvidia
Tesla P100 SXM2 16GB GPU. The network hyperparameters
are summarized in Table III.

As discussed earlier, no existing algorithm is directly com-
parable to the proposed PSD-TD3 algorithm. We come up
with a DDPG-based alternative to the PSD-TD3 algorithm,
referred to as PSD-DDPG, where the DDPG is employed to
configure the RIS. We also develop a DQN-TD3 algorithm,
where the selections of the user, subchannel, and modulation-
coding mode are done using a DQN, and the TD3 is used
to configure the RIS. Moreover, we consider the case where
the RIS is randomly configured, while the selections of the
user, data stream, subchannel, and modulation-coding mode
are optimized, as described in Section III-B. These three
benchmarks are used to evaluate the proposed PSD-TDS
algorithm.

We train the proposed algorithm only for one value of the
maximum BS transmit power Pmax, i.e., Pmax = 30 dBm,
and test the resulting model under other Pmax values to show
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Fig. 3: The per-episode and average rewards of the proposed
PSD-TD3 algorithm and its DDPG-based alternative under
N = 40, 60, and 80 (the top three subfigures), and the rewards
and the BS transmit power of the DQN-TD3 algorithm under
N = 40 (the bottom two subfigures).

the generalizability of the algorithm. Likewise, we train the
algorithm only for one value of the transmit power of the
jammer PJ , and test it under other PJ values. In the top three
subfigures of Fig. 3, we plot both the per-episode reward
and the average reward of the proposed PSD-TD3 under
different N. We also plot the per-episode reward and the
average reward of the alternative PSD-DDPG algorithm. The
average reward over the i-th training episode is r̄ = 1

Ts

∑Ts
j=t ri

t,
where ri

t is the step reward for the episode; see (15). The
top three subfigures of Fig. 3 show that the rewards of the
two algorithms generally improve with the learning steps, and
grow with N. Moreover, the DDPG-based alternative approach
also demonstrates its viability, despite DDPG is known to be
susceptible to overfitting (compared to TD3). The conclusion
drawn is that the small action space of the new framework,
resulting from the decoupling of the discrete and continuous
actions, allows even the DDPG model to sufficiently exploit
the action space and converge fast. In the bottom two sub-
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Fig. 4: Sum rate vs. the number of RIS’s reflecting elements.

figures of Fig. 3, we see that the rewards of the DQN-TD3
algorithm do not converge to a feasible solution even after
3,500 training episodes since the total transmit power at the
BS cannot satisfy the maximum power constraints. In contrast,
PSD-DDPG and PSD-TD3 converge within a few episodes.
The convergent solutions of PSD-DDPG and PSD-TD3 are
inherently feasible, since the transmit power is pre-evaluated
before an selection of the user, data stream, subchannel, and
modulation-coding mode.

Next, we examine the proposed PSD-TD3 algorithm and
its alternatives under different parameters of the considered
system. Each testing episode has 200 steps. During a testing
process, no exploration noise is added. Fig. 4 plots the sum
rate of the M users against the number of reflecting elements
at the RIS, N, under K = 16 and 32 subchannels. We also
plot the case with the RIS randomly configured and the case
without the RIS for comparison. We see that both PSD-
TD3 and PSD-DDPG are effective and can benefit from the
increase of N. The usefulness of the RIS and the importance of
meticulous RIS configuration are demonstrated by comparing
the proposed PSD-TD3 to the cases without the RIS and with
the RIS randomly configured. Particularly, the case with the
RIS randomly configured can only marginally outperform the
case without the RIS, as will also be shown in Fig. 9.

Fig. 5 plots the sum rate with the increasing maximum
transmit power of the BS, Pmax, under different N and K.
We observe that the proposed PSD-TD3 attains the higher
sum rate than the case without the RIS. The sum rate grows
with Pmax under all the considered algorithms and parameter
settings. The usefulness of the RIS is also validated, since
the sum rate grows with N. We also plot the sum rate
with the growing transmit power of the jammer, PJ , under
K = 16 in Fig. 6. We see that the sum rate declines as PJ

grows. When PJ ≥ 35 dBm, the sum rate approaches zero
under the proposed PSD-TD3, while it approaches zero when
PJ ≥ 25 dBm in the case without the RIS. In other words,
the RIS strengthens the anti-jamming capability significantly
by augmenting the radio propagation environment.

To quantify the impact of unequal allocation of the jamming
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Fig. 5: Sum rate vs. Pmax, where the jamming power is
10 dBm.

� �� �� �� �� 	� 	�
�!����#���%�!����#��������!������

�

��

��

	�


�

��
�$

�
�!�

#�
���

�#"
�"
&�

��
��
����	��N=40��K=16
����	��N=60��K=16
����	��N=80��K=16
%�#��$#������K=16
����	��$�� $�����N=40��K=16
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power on the sum-rate of the users, we project the jamming
power of each subchannel using the Beta distribution, i.e.,
f (x, α j, β j) = xα j−1(1 − x)β j−1/B(α j, β j), where B(α j, β j) is
the Beta function with α j = β j being the shape parameters
related to the variance of generated data. The larger α j and β j

are, the most consistent the jamming power is across different
subchannels. When α j = β j = 5.0, the jamming powers are
equal across the subchannels. Fig. 7 plots the sum rate against
the shaping parameters α j (or β j) under different settings of the
average jamming power PJ . We see that the sum rate declines
with the increase of α j (and β j), since the difference of the
jamming power among the subchannels decreases; see Fig. 8.
The reason is that the unbalanced jamming powers allow
the BS to avoid severely jammed subchannels and efficiently
utilize those less jammed.

Fig. 9 plots the sum rate with the increasing number of users
M, where N = 40, 60, and 80. We also plot the case where



12

��� ��
 ��� ��
 ��� ��
 	�� 	�
 
��
αj (βj)

�

��

��

��

	�


�

��
�

��
��

���
���

��
��

��
��

PJ=10����
PJ=15����

PJ=20����
PJ=25����
PJ=30����

Fig. 7: Sum rate vs. the shaping parameter α j (or β j). The
average jamming power PJ ranges from 10 dBm to 30 dBm.
The jamming powers are equal across the subchannels when
α j = β j = 5.0.

���� ����
�

�

�

�

	

��

��

��

��

��
��

��
��

��
�
�

��
�

αj=1

���� ����

αj=2

���� ����
����������������

αj=3

���� ����

αj=4

���� ����

αj=4.5

���� ����

αj=5
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the RIS is randomly configured and the case without the RIS
for comparison. It is observed that the sum rate grows with M
in all three cases, and the proposed PSD-TD3 outperforms the
other two cases. The gain of the meticulously configured RIS
is confirmed by showing the gain of the proposed PSD-TD3
over the case with the RIS randomly configured.

We proceed to assess the influence of the network deploy-
ment on the sum rate of the proposed PSD-TD3, by separately
varying the positions of the BS, the RIS, and the jammer, as
shown in Fig. 10. We first move the BS along the x-axis;
see Fig. 10(a). Then, we move the RIS along the y-axis; see
Fig. 10(b). We also move the jammer along the directions
parallel to the x- and y-axes; see Figs. 10(c) and 10(d). The
results of these four cases are provided in Figs. 11 and 12.

Fig. 11(a) reveals that the sum rate of the proposed PSD-
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Fig. 9: Sum rate vs. M, where each value is the average of
200 independent tests.
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Fig. 10: The bird view of the simulated system, where we
assess the influence of the network deployment by moving the
BS and RIS along the x- and y-axes in Figs. 10(a) and 10(b),
respectively, and moving the jammer in the directions of the
x- and y-axes in Figs. 10(c) and 10(d).

TD3 first declines quickly, then rises to its peak, and finally
drops, with the increasing horizontal distance from the BS
to the RIS. This is because less signals are reflected from
the RIS, and consequently the sum rate drops rapidly as the
distance starts to increase. By further moving the BS along
the x-axis, the BS gets increasingly close to the users. The
powers that the users receive directly from the BS increase,
hence improving the sum rate. When the BS is moved away
from the users, the received powers at the users decrease and
so does the sum rate. We also see that when the BS is in
close proximity to the RIS (e.g., D0 ≤ 5 m), the larger number
of reflecting elements at the RIS induces a higher sum rate.
Nonetheless, the gain pertaining to the RIS declines when the
BS is moved farther from the RIS. Fig. 11(b) shows that the
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Fig. 11: Sum rate vs. the horizontal and vertical distances
between the BS and RIS, where we move the BS and RIS
along the x- and y-axes, respectively; see Figs. 10(a) and 10(b).

sum rate declines when the RIS is moved farther from the
BS along the y-axis (and the RIS remains far from the users).
This is because the contribution of the RIS to the sum rate is
increasingly negligible when the RIS is moved farther from
the BS, and finally overshadowed by the contribution of the
direct paths from the BS to users.

Figs. 12(a) and 12(b) show that the sum rate of the proposed
PSD-TD3 first declines and then grows with the increasing
vertical distances from the jammer to the RIS and the BS,
respectively. As the jammer is moved along the directions
parallel to the x- and y-axes, it gets closer to the users. The
received SINR at the users degrades, and hence first decreases
the sum rate. By further moving the jammer away from the
users, the jamming signal strength reduces and the sum rate
increases. We also see that the RIS-assisted system has a more
powerful anti-jamming capability than the system without the
RIS. Moreover, the anti-jamming capability becomes stronger,
as the number of reflecting elements increases at the RIS.

Finally, we assess the influence of the ratio of the high-
and LQ data streams, χ, on the proposed PSD-TD3 under the
jammer power PJ = 10 and 20 dBm, as shown in Fig. 13.
We notice that the proposed PSD-TD3 achieves greater HQ
data rates, LQ data rates, and sum rates than the case without
the RIS. With the growth of χ, the HQ data rates first grow
and then decline, while the LQ data rates decrease under the
proposed PSD-TD3. This is because more HQ data streams
need to be delivered under a larger value of χ. To satisfy the
BER requirement (i.e., 10−6 here) of these HQ data streams,
more transmit powers and channels are needed, resulting in
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Fig. 12: Sum rate vs. the vertical distance from Jammer to RIS,
where we move the jammer away from the BS and RIS in the
directions of the x- and y-axes; see Figs. 10(c) and 10(d).

the smaller LQ data rates and sum rates. On the other hand, it
is increasingly difficult to satisfy the BER requirement when
χ > 2, owing to the unbalanced HQ and LQ data streams, and
hence decreasing the HQ data rates, especially in the presence
of strong jamming signals, as seen in Fig. 13(b).

V. Conclusion

This paper proposed the new PSD-TD3 algorithm to jointly
optimize user selection, channel allocation, modulation-coding
adaptation, and RIS configuration for an RIS-assisted down-
link multiuser OFDMA system under a jamming attack. A
TD3 model was designed to learn the RIS configuration. The
PSD was employed to optimize the user selection, channel
allocation and modulation-coding adaptation. Both were based
on the readily measurable received data rates of the users.
Consequently, the algorithm learns to maximize the sum rate
of the system through changes in the received data rates
of the users, and eliminates the need of CSI. As validated
by extensive simulations, the proposed anti-jamming PSD-
TD3 framework significantly outperforms its non-learning
alternatives in terms of sum rate. The new framework with
40, 60, or 80 reflecting elements at the RIS provides 16.50%,
32.91%, or 51.86% higher sum rates than the system without
the RIS.
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