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Abstract

Reconfigurable Intelligent Surfaces (RISs) are envisioned to play a key role in future wireless

communications, enabling programmable radio propagation environments. They are usually considered

as almost passive planar structures that operate as adjustable reflectors, giving rise to a multitude

of implementation challenges, including the inherent difficulty in estimating the underlying wireless

channels. In this paper, we focus on the recently conceived concept of Hybrid Reconfigurable Intelligent

Surfaces (HRISs), which do not solely reflect the impinging waveform in a controllable fashion, but

are also capable of sensing and processing an adjustable portion of it. We first present implementation

details for this metasurface architecture and propose a convenient mathematical model for characterizing

its dual operation. As an indicative application of HRISs in wireless communications, we formulate the

individual channel estimation problem for the uplink of a multi-user HRIS-empowered communication

system. Considering first a noise-free setting, we theoretically quantify the advantage of HRISs in notably

reducing the amount of pilots needed for channel estimation, as compared to the case of purely reflective

RISs. We then present closed-form expressions for the Mean-Squared Error (MSE) performance in

estimating the individual channels at the HRISs and the base station for the noisy model. Based on

these derivations, we propose an automatic differentiation-based first-order optimization approach to

efficiently determine the HRIS phase and power splitting configurations for minimizing the weighted
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sum-MSE performance. Our numerical evaluations demonstrate that HRISs do not only enable the

estimation of the individual channels in HRIS-empowered communication systems, but also improve

the ability to recover the cascaded channel, as compared to existing methods using passive and reflective

RISs.

Index Terms

Reconfigurable intelligent surfaces, channel estimation, simultaneous reflection and sensing, smart

radio environments, mean-squared error, computational graphs.

I. INTRODUCTION

Reconfigurable Intelligent Surfaces (RISs) are an emerging technology for the future 6-

th Generation (6G) of wireless communications, enabling dynamically programmable signal

propagation over the wireless medium [2]–[5]. RISs are planar structures comprised typically

of multiple metamaterial elements, whose ElectroMagnetic (EM) properties can be externally

controlled in a nearly passive manner, allowing them to realize various reflection and scattering

profiles [6]. By properly adjusting the reflection properties of the metamaterial elements, RISs

can constructively strengthen/destructively weaken the desired/undesired signals at the target

receiver(s). This ability of RISs has been exploited in various promising communication systems,

such as multi-user Multiple-Input Multiple-Outputs (MIMOs) communications [7], [8], simulta-

neous wireless information and power transfer systems [9], [10], and physical-layer security [11],

for improving the respective performance. Achieving those performance gains with RISs often

relies on accurate Channel State Information (CSI). However, their passive nature implies that

they can only act as adjustable reflectors, and thus, neither receive nor transmit their own data.

This renders channel estimation a significant, but challenging task for RIS-based systems [12].

In RIS-aided uplink communications, a signal transmitted from each User Terminal (UT) to the

Base Station (BS) undergoes at least two channels, namely, the UTs-RIS and RIS-BS channels.

With RISs being passive without any signal processing capability, the common approach to

acquire CSI is to estimate only the entangled combined effect of the latter channels, i.e., the

cascaded channel [13]–[15] at the BS. This can be achieved by having the UTs send known

pilot symbols, which are reflected by the RIS such that the channel outputs at the BS are used to

estimate the overall channel. This approach has, however, two main drawbacks. First, since the

number of reflective elements of RISs is usually very large, the cascaded channel is comprised

of many unknown parameters that need to be estimated, which requires large pilot periods, and
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thus, significantly reduces the spectrum utilization efficiency. For example, for a system with K

UTs, N RIS meta-atom elements, and M BS antennas, the cascaded channel consists of KNM

coefficients. To alleviate this drawback, several methods have been proposed to reduce the pilots,

which impose a model on the overall channel having less coefficients, via, e.g., grouping the RIS

elements [16], exploiting the presence of a common channel [17], and imposing a sparsity prior

[18]. The second drawback of passive RISs is that one can only estimate the cascaded channel,

instead of the individual ones, which limits the plasticity for the transmission scheme design and

restricts the network management flexibility [19]. As discussed in [20], the individual UTs-RIS

and RIS-BS channels are needed for some precoding designs. In addition, there exist certain

scenarios where the RIS-BS channel may vary less rapidly than the UTs-RIS combined one. For

those cases, only the UTs-RIS channel needs to estimated frequently, thus, it is desirable to be

capable of recovering the UTs-RIS and RIS-BS channels individually [12].

To overcome the aforementioned challenges with purely reflective RIS, it was recently pro-

posed to equip RISs with minimal receive Radio-Frequency (RF) chains and antenna elements

[21]–[24]. In such architectures, some of the RIS elements are replaced with active receive

antennas, which are connected via dedicated RF chains to a digital processor, and thus, have some

signal processing capabilities such as reception and decoding. While such architectures enable

the estimation of the individual UTs-RIS and RIS-BS channels, they involve placing additional

receivers along the RIS, possibly reducing its number of reflective elements. In addition, they

are incapable of estimating the exact channel, since the signals observed at the RIS reflective

elements are not measured, but only those acquired at the receive antenna elements.

In parallel to the application of metasurfaces as passive reflective RISs, active metasurfaces

have recently emerged as an appealing technology for realizing low-cost and low-power large-

scale MIMO antennas [25]. Dynamic Metasurface Antennas (DMAs) pack large numbers of

tunably radiative metamaterials on top of waveguides, resulting in MIMO transceivers with

advanced analog processing capabilities [26]–[30]. While the implementation of DMAs differs

from passive RISs, the similarity in the structure of the metamaterial elements between them

indicates the feasibility of designing hybrid reflecting and sensing elements. This motivates

studying the benefits from such a hybrid metasurface architecture, as an efficient means of

facilitating RIS-empowered wireless communications, localization, and sensing.

In our previous overview article [31], we proposed the Hybrid Reconfigurable Intelligent

Surface (HRIS) architecture, which is capable of simultaneously reflecting and receiving the
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incoming signal in an element-by-element controllable manner. HRISs differ from both conven-

tional passive RISs, which are usually metasurfaces operating in almost energy neutral tunable

reflection, as well as from active DMAs that operate similar to conventional transceiver antennas.

In HRISs, each metamaterial element enables simultaneous adjustable reflection and reception

of the impinging signals. This controllable hybrid operation of HRISs yields an architecture

which generalizes RISs with interleaved reception and reflection meta-atoms, as in [21]–[24].

More specifically, in [31], we overviewed the opportunities and challenges of the HRIS concept,

highlighting a hardware design for its implementation and presenting a full-wave-simulation-

based proof-of-concept. However, no technical analysis relevant to the exploitation of the signal

processing capability at the HRIS side, and consequently of the availability of a portion of

the received impinging signal, was provided. In this work, we fill this gap by considering

HRIS-assisted multi-user MIMO communication systems and investigating the individual channel

estimation problem. We show that the reception signal processing capability of HRISs allows

the system to simultaneously estimate the individual channels, i.e., the UTs-HRIS channel at the

HRIS side and the HRIS-BS at the BS, via reusing the same transmitted pilot symbols. We first

theoretically quantify the advantages of the HRIS in terms of pilot reduction for the case without

thermal noise. Then, considering the presence of this noise, we derive closed-form expressions

for the Mean-Squared Errors (MSEs) of the estimation of the individual channels at the HRIS and

BS, respectively. Based on these derivations, we provide a gradient-based optimization approach

to efficiently configure the HRIS for minimizing the weighted sum-MSE, where the gradients

of the complicated sum-MSE performance metric with respect to the HRIS tunable parameters

are computed using Automatic Differentiation (AD).

The main contributions of this paper are summarized as follows:

• Hybrid Reflecting and Sensing RIS Architecture: We focus on the recently conceived

concept of HRISs, which enables metasurfaces to reflect the impinging signal in an element-

by-element controllable manner, while simultaneously sensing a portion of it. We specifically

discuss the feasibility of hybrid meta-atom elements, present their high-level description,

and provide a mathematical model for HRIS-empowered wireless systems in a manner that

is amenable to system design.

• Estimation of the Individual Channels in HRIS-Aided Systems: We present an initial study

on the potential gains of HRISs in multi-user MIMO communication systems, by considering

the individual channels estimation problem. We first characterize the number of pilots needed
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to estimate the channels for the case without noise, and analytically demonstrate the gains

of HRISs compared to pure reflective RISs. We then consider typical noisy settings and

derive the MSE for the estimation of the UTs-HRIS channel at the HRIS and the HRIS-BS

channel at the BS.

• AD-based Gradient Optimization for HRIS Configuration: Since the MSE depends on the

configuration of the HRIS, we formulate a weighted sum-MSE minimization problem. The

resulting problem is very challenging due to the complicated form of the objective and

the large number of optimization variables. To deal with this, we propose a gradient-based

solution to efficiently solve the problem. Inspired by the recent work [32], the gradients

of the complicated sum-MSE objective function with respect to the HRIS parameters are

computed analytically with AD. The effectiveness of the proposed algorithm is verified

numerically.

• Numerical Evaluation: Our simulation results showcase the inherent trade-off of HRISs

concerning their ability to estimate the individual channels. Furthermore, it is demonstrated

that, even when one aims to solely estimate the cascaded channel, HRISs outperforms

conventional (nearly) passive and reflective RISs [17] when the same pilot length is used.

The remainder of this paper is organized as follows. Section II presents the proposed model

for generic HRIS operation as well as the proposed HRISs-assisted channel estimation approach.

The individual channel estimation problem is investigated in Section III, which also includes

the proposed gradient-based optimization for the HRISs phase and power splitting parameters.

Numerical evaluations are presented in Section IV, and Section V provides concluding remarks.

Throughout the paper, we use boldface lower-case and upper-case letters for vectors and

matrices, respectively, while calligraphic letters are used for sets. The vectorization operator,

transpose, conjugation, Hermitian transpose, trace, and expectation are represented by vec(·),

(·)T , (·)†, (·)H , Tr (·), and E{·}, respectively. The notation blkdiag {A1,A2, . . . ,An} denotes

a block diagonal matrix with diagonal blocks given by A1,A2, . . . ,An, and [A]i,j denotes the

(i, j)-th element of A. Finally, C is the set of complex numbers.

II. HRISS AND SYSTEM MODELING

We first present a high-level description of the proposed hybrid metamaterial elements, fol-

lowed by the considered system model for HRIS-empowered wireless communications. We then
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detail a simple, yet convenient, model for the HRIS operation and present the proposed approach

for the estimation of the individual channels.

A. Hybrid Metasurfaces

A rich body of literature has examined the fabrication of solely reflective RISs using meta-

materials. A variety of implementations have been recently presented in [6], [33], ranging from

RISs that change the wave propagation inside a multi-scattering environment for improving the

received signal, to those which realize anomalous reflection, such that the reflected beam does

not follow Snell’s law and is directed towards desired directions. More recently, RISs which

simultaneously refract and relfect their impinging signals were proposed to offer 360◦ coverage

[34]–[36]. In all those efforts, the RIS is not designed to sense the impinging signal.

Metasurfaces can be designed to operate in a hybrid reflecting and sensing manner. Such

hybrid operation requires that each metasurface element is capable of simultaneously reflecting

a portion of the impinging signal and receiving another portion of it in a controllable manner. As

illustrated in Fig. 1, a simple mechanism for implementing such an operation is to couple each

element to a waveguide. The signals coupled to the waveguides are then measured by receive

RF chains and used to infer the necessary information about the channel. A detailed description

of the practical implementation of such hybrid metamaterials can be found in [37], where it

was experimentally demonstrated that such surface configurations of hybrid metamaterials can

be used to reflect in a reconfigurable manner, while using the sensed portion of the signal to

locally recover its angle-of-arrival. In this paper, we are interested in examining the potential

benefits of the HRIS paradigm in wireless communications. To this end, we present in the sequel

a simple model capturing the simultaneous reflecting and sensing operation of HRISs, which is

later on deployed to study HRIS-empowered wireless communications.

B. HRIS Operation Modeling

To model the dual reflection-reception operation of HRISs, we consider a hybrid metasurface

comprised of N meta-atom elements, which are connected to a digital controller via Nr reception

RF chains. Let rl(n) denote the radiation observed by the l-th HRIS element (l = 1, 2, . . . , N)

at the n-th time instance. A portion of this signal, dictated by the parameter ρl (n) ∈ [0, 1], is



7

Fig. 1. Illustration of a hybrid meta-atom which is capable of simultaneously reflecting a portion of its impinging wave in a

reconfigurable manner, while feeding another portion of it to a receiving RF chain for baseband processing.

reflected with a controllable phase shift ψl (n) ∈ [0, 2π), and thus the reflected signal from the

l-th element at the n-th time instant can be mathematically expressed as:

yRF
l (n) = ρl (n) e

ψl(n)rl(n). (1)

The remainder of the observed signal is locally processed via analog combining and digital

processing. The signal forwarded to the r-th RF chain via combining, with r ∈ {1, 2, . . . , Nr},

from the l-th element at the n-th time instant is consequently given by

yRC
r,l (n) = (1− ρl (n))e

φr,l(n)rl(n), (2)

where φr,l (n) ∈ [0, 2π) represents the adjustable phase that models the joint effect of the response

of the l-th meta-atom and the subsequent analog phase shifting. The proposed HRIS operation

model is illustrated in Fig. 2.

The operation of conventional passive and reflective RISs can be treated as a special case

of the HRIS architecture, by setting all ρl (n) in (1) equal to 1. Compared with existing relay

techniques, HRISs bring forth two major advantages. First, HRISs allow full-duplex operation

(i.e., simultaneous reflection and reception) without inducing any self interference, which is

unavoidable in full-duplex relaying systems. Second, HRISs require low power consumption

since they do not need power amplifiers utilized by active transmit arrays; a typical receive RF

consists of a low noise amplifier, a mixer which downconverts the signal from RF to baseband,

and an analog-to-digital converter [38].
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Fig. 2. A simple model for the proposed HRIS operation. The parameter ρl models the portion of the impinging signal at the

l-th meta-atom of the HRIS that gets tunably reflected, while ψl and φr,l model the meta-atom’s controllable phase shift and

the joint effect of its response together with the analog phase shift before the r-th receive RF chain, respectively.

The resulting signal model at the HRIS can be expressed in vector form, as follows. By stacking

the received signals rl(n), l = 1, 2, . . . , N and the reflected signals yRF
l (n), l = 1, 2, . . . , N at

the N × 1 complex-valued vectors r(n) and yRF(n), respectively, it follows from (1) that:

yRF(n) = Ψ (ρ (n) ,ψ (n)) r(n), (3)

with Ψ (ρ (n) ,ψ (n)) , diag
([
ρ1 (n) e

ψ1(n), ρ2 (n) e
ψ2(n), . . . , ρN (n) eψN (n)

])
. Similarly, by

letting yRC(n) ∈ CNr×1 be the reception output vector at the HRIS, the following expression is

deduced:

yRC(n) = Φ (ρ (n) ,φ (n)) r(n), (4)

where the Nr × N matrix Φ (ρ (n) ,φ (n)) represents the analog combining carried out at the

HRIS receiver. When the l-th meta-atom element is connected to the r-th RF chain, then

[Φ (ρ (n) ,φ (n))]r,l = (1 − ρl (n))e
φr,l(n), while when there is no such connection (e.g., for

partially-connected analog combiners) it holds that [Φ (ρ (n) ,φ (n))]r,l = 0.

The reconfigurability of HRISs implies that the parameters ρ (n) as well as the phase shifts

ψ (n) and φ (n) are externally controllable. It is noted that when an element is connected to

multiple receive RF chains, then additional dedicated analog circuitry (e.g., conventional networks

of phase shifters) is required to allow the signal to be forwarded with a different phase shift to

each RF chain, at the possible cost of additional power consumption. Nonetheless, when each

element feeds a single RF chain, then the model in Fig. 2 can be realized without such circuitry
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Fig. 3. The considered HRIS-empowered multi-user MIMO communication system operating in the uplink direction.

by placing the elements on top of separated waveguides (see, e.g., [25]).

C. HRIS-Assisted Channel Sounding

In order to investigate the capabilities of HRISs in facilitating multi-user wireless commu-

nications, we henceforth study the problem of channel estimation in RIS-empowered systems,

being one of the main challenges associated with conventional almost passive and reflective

RISs [19], [33]. In particular, we consider an uplink multi-user MIMO system, where a BS

equipped with M antenna elements serves K single antenna UTs with the assistance of a HRIS,

as illustrated in Fig. 3. We assume that there is no direct link between the BS and any of K

UTs, and thus communication is done only via the HRIS. Let H ∈ CM×N denote the channel

gain matrix between the BS and HRIS, and gk ∈ C
N be the channel gian vector between

the k-th UT (k = 1, 2, . . . , K) and HRIS. We consider independent and identically distributed

(i.i.d.) Rayleigh fading for all channels with H and each gk having i.i.d. zero-mean Gaussian

entries with variances β and γk, respectively, denoting the path losses. In addition, for notation

simplicity, we define the matrix G , [g1, · · · , gK ].

We consider a simple pilot-based channel training protocol, where the channel estimation time

τ is divided into B sub-frames, and each sub-frame consists of T times slots such that τ = BT ,

as depicted in Fig. 4. The reconfigurable parameters of the HRIS remain constant during each

sub-frame of T time slots and vary from one sub-frame to another. Orthogonal pilot sequences
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Fig. 4. The frame structure for channel estimation using the proposed HRIS.

{sk}
K
k=1 are sent repeatedly over the B sub-frames, where sk , [sk (1) , sk (2) , . . . , sk (T )] ∈

C1×T is the pilot sequence of the k-th UT satisfying for for 1 ≤ k1, k2 ≤ K: sk1s
H
k2

= T , if

k1 = k2; and sk1s
H
k2

= 0, if k1 6= k2. In Fig. 4, s(t) , [s1 (t) , s2 (t) , . . . , sK (t)]T collects the pilot

signals of the K UTs at each t-th time slot for each sub-frame, and Ω (b) , [ρ(b),φ(b),ψ(b)]

includes all the optimization variables of the HRIS at each b-th sub-frame. Consequently, the

signal received at the HRIS at each t-th time slot for each b-th sub-frame is given by:

yRC (b, t) = Φ (ρ(b),φ(b))Gs(t) + zRC (b, t) , (5)

where Φ (ρ(b),φ(b)) represents the reception matrix of the HRIS during the b-th sub-frame and

zRC (b, t) ∈ C
Nr is a zero-mean Additive White Gaussian Noise (AWGN) with entries having

the variance σ2
RC. Similar to the derivation of (5), the signal received at the BS at each t-th time

slot for each b-th sub-frame can be expressed as:

yBS (b, t) =HΨ (ρ(b),ψ(b)) Gs(t) + zBS (b, t) , (6)

where zBS (b, t) ∈ CM is a zero-mean AWGN having i.i.d. elements each with variance σ2
BS.

Let yRC (b) , [yRC (b, 1) ,yRC (b, 2) , . . . ,yRC (b, T )] ∈ CNr×T be the matrix collecting the

received signals at the HRIS over T time slots for each b-th block, i.e.:

yRC (b) = Φ (ρ(b),φ(b))GS + zRC (b) , (7)

with zRC (b) , [zRC (b, 1) , zRC (b, 2) , . . . , zRC (b, T )] ∈ CNr×T and S , [s(1), s(2), . . . , s(T )],

where it holds that SSH = T IK . We, then, define yRC as the Nr B × T matrix generated

by stacking the rows of the B matrices yRC (1) ,yRC (2) , . . . ,yRC (B). From (7), yRC can be
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written as a linear function of the UTs-HRIS channel G as

yRC = ARC ({ρ(b),φ(b)})GS + zRC, (8)

where zRC ∈ CNr B×T results from the row stacking of the matrices zRC(1), zRC(2), . . . , zRC(B),

while the matrix ARC ∈ CNr B×N is defined as:

ARC ({ρ(b),φ(b)}) ,
[

Φ (ρ(1),φ(1))T , · · · ,Φ (ρ(B),φ(B))T
]T

. (9)

Similarly, by letting yBS (b) , [yBS (b, 1) ,yBS (b, 2) , . . . ,yBS (b, T )] ∈ CM×T be the matrix

including the received signals at BS during the T time slots for each b-th sub-frame, we have:

yBS (b) =HΨ (ρ(b),ψ(b))GS + zBS (b) , (10)

where zBS (b) , [zBS (b, 1) , zBS (b, 2) , . . . , zBS (b, T )] ∈ C
M×T .

As in conventional RIS-empowered communication systems, e.g., [4], [39], we assume that

the BS maintains a high-throughput direct link with the HRIS. For passive RISs, this link is used

for controlling the RIS reflection pattern. In HRISs, which have reception, thus measurement

collection, capabilities, this link is also used for conveying valuable information from the HRIS to

the BS. Therefore, inspired by the recent discussions for autonomous RISs with basic computing

and storage capabilities [40], [41], we focus on channel estimation carried out at both the HRIS

side as well as the BS. Our goal is to characterize the achievable MSE in recovering the UTs-

HRIS channel G from (8), along with the MSE in estimating H at the BS from (10) and from

the estimate of G, denoted Ĝ, provided by the HRIS. The pilot matrix S in (8) and (10) is

assumed to be known at both the HRIS and BS. It ia also noted that different HRIS configurations

{ρ(b),φ(b),ψ(b)} result in different pilot signal strengths in (8) and (10). Therefore, we also

aim at configuring the HRIS controllable parameters in order to facilitate channel estimation

based on the characterized MSE.

III. ESTIMATION OF THE INDIVIDUAL CHANNELS

In this section, we quantify the HRIS potential in facilitating estimation of all individual

channels in the uplink of HRIS-empowered multi-user MIMO communication systems. In the

considered model, the individual UTs-HRIS channel is estimated at the HRIS side based on (8),

while the individual HRIS-BS channel is estimated at the BS from (10) using the estimation
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Ĝ, which is provided by the HRIS. In this section, we first study the number of pilots needed

to estimate the channels for a noise-free setting in Subsection III-A, where G and H can be

identified with no errors. Then, we express the achievable channel estimation MSE for noisy

reception in Subsection III-B, which we then use to optimize the HRIS in Subsection III-C. A

discussion on the proposed channel estimation approach is provided in Subsection III-D.

A. Channel Estimation for Noise-Free Channels

We begin by considering communications carried out in the case of without noise, where the

noise terms in (5) and (6) are set to be zero, i.e., σ2
RC = σ2

BS = 0. In such scenarios, one should

be able to fully recover both H and G from the observed signals yRC(n) and yBS(n). The

number of pilots required to achieve accurate recovery is stated in the following proposition.

Proposition 1. In the case of without noise, H and G can be accurately recovered when the

number of pilots τ satisfies the inequality:

τ ≥ N ·max
{
1, KN−1

r

}
. (11)

Proof: The proof is provided in Appendix A.

Proposition 1 demonstrates the intuitive benefit of HRISs in facilitating individual channel

estimation with reduced number of pilots, as compared to existing techniques for estimating the

cascaded UTs-RIS-BS channels (e.g., [17]). For instance, for a multi-user MIMO system with

M = 16 BS antennas, Nr = 8 HRIS RF chains, K = 8 UTs, and N = 64 HRIS elements, the

adoption of an HRIS allows recovering H and G separately using τ = 64 pilots. By contrast,

the method proposed in [17] requires transmitting over 90 pilots to identify the cascaded channel

coefficients [H ]m,l[G]l,k for l, k and m = 1, 2, . . . ,M . This reduction in pilot signals is directly

translated into improved spectral efficiency, as less pilots are to be transmitted in each coherence

duration.

B. Channel Estimation for Noisy Channels

The characterization of the number of required pilots in Proposition 1 provides an initial

understanding of the HRIS’s capability in providing efficient channel estimation. However, as

Proposition 1 considers an effectively noise-free setup, it is invariant of the fact that HRISs

split the power of their received signal r(n) between the reflected and received components.
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In the presence of noise, this division of the signal power may result in Signal-to-Noise Ratio

(SNR) degradation. Therefore, we next study channel estimation using HRISs in the presence

of noise, quantifying the achievable MSE in estimating the individual UTs-HRIS and HRIS-BS

channels for a fixed HRIS configuration {ρ(b),φ(b),ψ(b)}. For notation brevity, in the following,

we define the set of HRIS parameters affecting its reception as Φ , {ρ(b),φ(b)}, the HRIS

parameters affecting the reception at the BS as Ψ(b) , Ψ(ρ(b),ψ(b)), and the overall HRIS

parameters as Ω , {ρ(b),φ(b),ψ(b)}. We also make the assumption that the noise powers at

the HRIS and BS are of the same level, i.e., σ2
BS = σ2

RC = σ2.

We begin by characterizing the achievable MSE performance in recovering G at the HRIS

using its locally collected measurements for a given HRIS parameterization, denoted by EG (Φ).

Theorem 1. The UTs-HRIS channel G can be recovered with the following MSE performance:

EG (Φ) = Tr

{(

R−1
G + T

Γ

K
ARC (Φ)H ARC (Φ)

)−1
}

where RG ,

(
∑K

k=1 γk

)

IN ; Γ , Pt

σ2
represents the transmit SNR with Pt denoting each UT’s

power used for transmitted the pilot symbols.

Proof: The proof is given in Appendix B.

Theorem 1 allows to compute the achievable MSE in estimating G at the HRIS side for a

given configuration of its reception phase profile, determined by Φ, i.e., by {ρ(b)} and {φ(b)}.

Lemma 1. Let Ĝ and G̃ = G−Ĝ denote the estimation of G and its corresponding estimation

error, respectively. From Appendix B, the distributions of Ĝ and G̃ are respectively given by

Ĝ ∼ CN (0,Σ (Φ)) , G̃ ∼ CN (0,R
G̃
(Φ)) ,

where R
G̃
(Φ) and Σ (Φ) are defined as R

G̃
(Φ) ,

(

R−1
G + TΓK−1ARC (Φ)H ARC (Φ)

)−1

and Σ , RGARC (Φ)H
(

ARC (Φ) RGARC (Φ)H +K (TΓ)−1 INrB

)−1

ARC (Φ)RH
G .

Lemma 1 provides the statistical results for the estimation of G with respect to the reconfig-

urable parameters Φ; more specifically, to {ρ(b)} and {φ(b)}. This estimation can be used from

the BS to estimate the channel matrix H . In particular, letting the HRIS convey the estimation

of G to the BS (via their control link) allows achieving the MSE in recovering H , as described
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by means of the following theorem. Recall that the BS observes the reflected portion of the

signal at the output of the HRIS-BS channel.

Theorem 2. The HRIS-BS channel H can be recovered with the following MSE performance:

EH (Ω) = Tr








1

β
IMN +

(

K
B∑

j=1

B∑

i=1

Tr
([
D(Ω)−T

]

i,j

)

Ψ(i)Σ (Φ)Ψ(j)H

)T

⊗ IM





−1

 ,

where D(Ω) is a BK × BK matrix which can be partitioned into B × B blocks with each

block being a K ×K submatrix. The i-th row and j-th column block of D(Ω) is defined as:

[D (Ω)]i,j =







β
K
Tr
(
Ψ(j)HΨ(i)R

G̃
(Φ)
)
IK + (TΓ)−1IK , if i = j

β
K
Tr
(
Ψ(j)HΨ(i)R

G̃
(Φ)
)
IK , if i 6= j

.

Proof: The proof is provided in Appendix C.

Theorems 1 and 2 allow us to evaluate the achievable MSE for the recovery of the individual

channels G and H . The fact that these MSEs are given as functions of the HRIS parameters

Ω enables us to numerically optimize the HRIS configuration for the estimation of the indi-

vidual channels. In Section IV, our numerical evaluation of the MSE performance reveals the

fundamental trade-off between the ability to recover G and H , which is dictated mostly by

the parameter ρ determining the portion of the impinging signal being reflected; the remaining

portion is sensed and used for channel estimation at the HRIS side.

C. HRIS Configuration Optimization

The formulation of the channel estimation MSE given previously for a fixed HRIS configu-

ration motivates the optimization of its parameters. We henceforth seek to optimize the HRIS

parameters Ω = {ρ (b) ,ψ (b) ,φ (b)} so as to minimize the weighted-sum MSE. Mathematically,

the optimization problem under investigation is formulated as follows:

min
{ρ(b),ψ(b),φ(b)}

EH ({ρ (b) ,ψ (b) ,φ (b)}) + EG ({ρ(b),φ(b)})

s.t. [ρ(b)]p ∈ [0, 1], [ψ(b)]p ∈ [0, 2π], [φ(b)]q ∈ [0, 2π],

b = 1, 2, . . . , B, p = 1, 2, . . . , N, q = 1, 2, . . . , N ×Nr.

(12)

Problem (12) is non-convex and challenging to solve, even when using numerical approaches

based on Bayesian optimization, as previously proposed for RIS configuration in complex settings
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[42]. This is because the dimension of the optimization variables is extremely high when the

number of antennas at the BS and the number of meta-atom elements at the HRIS are large. We

thus propose to tackle the HRIS reconfiguration problem in (12) via a gradient-based optimization

approach.

The gradients of the sum-MSE objective function with respect to the HRIS parameters can be

computed analytically with AD [43], which is extensively used for machine learning applications.

To compute the gradients of a differentiable function automatically, AD expresses the function

as a computational graph and applies the backpropagation algorithm to retrieve the gradients. To

justify the use of AD, we recall that the sum-MSE objective function is composed of basic

differentiable operations, such as the matrix trace operation. Moreover, the composition of

differentiable functions results in a differentiable function, and thus the sum-MSE objective

function is differentiable, allowing us to apply AD.

For notation brevity, in the following, we define f (x) as the objective function of (12) with

x , [ρ (1) , . . . ,ρ (B) ,ψ (1) , . . . ,ψ (B) ,φ (1) , . . . ,φ (B)] including the elements of the set Ω

of the HRIS parameters in a vector form. To deal with the inequality constraints on the HRIS

free variables, we add a barrier regularization term to the objective function of (12), resulting

in the following optimization problem:

min
x∈C

L(x) , f(x) + λBC(x). (13)

where λ ∈ R is a regularization hyperparameter, C denotes the feasible set of x, given by equation

C ,
{
x ∈ RBN(2+Nr) : 0 ≤ xi ≤ 1, ∀i ∈ [1, BN ] and 0 ≤ xi ≤ 2π, ∀i ∈ [BN + 1, BN (2 +Nr)]

}
,

and BC(x) represents the barrier function, which adds a high penalty to the points approaching

the feasible region’s boundaries. Formally, a barrier function BC(x) is any function that satisfies:

i) BC(x) ≥ 0 ∀x ∈ C; and ii) BC(x) → ∞ ∀x → ∂C, where ∂C denotes the boundaries of the

feasible region. In the problem formulation in (13), we adopt the barrier function:

BC(x) =
BN∑

i=1

(
1

xi
+

1

1− xi

)

+

BN(2+Nr)∑

i=BN+1

(
1

xi
+

1

2π − xi

)

, (14)

which is differentiable, returns non-negative values in the feasible set, and is not bounded as the

variables approach the feasible set’s boundaries. To solve the resulting minimization problem,

we apply a gradient-based iterative approach, where at each iteration we compute the derivative

with an AD tool (we used PyTorch’s autograd engine [44]) and update the parameters with a
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Algorithm 1 HRIS Configuration for Weighted-Sum MSE Minimization

Initialize: x(0), step-size η, and t← 0.

1: while stopping criteria is not satisfied do

2: Update the objective value L(x) in (13).

3: Compute the gradients using the AD-based backpropagation algorithm ∇xL(x(t)).
4: Update the parameters vector via x(t+1) ← x(t) − η∇xL(x(t)).
5: Update t← t+ 1.

6: end while

Output: {ρ (b) ,ψ (b) ,φ (b)} ← x(t).

first-order optimizer (e.g., gradient descent and its variants, such as Adam [45]). The solution

using a conventional gradient descent algorithm with AD is summarized in Algorithm 1.

D. Discussion

The fact that HRISs require less pilots naturally follows from their ability to provide additional

Nr reception ports, while simultaneously acting as a dynamically configurable reflector. It is noted

that our results in the previous subsections are obtained assuming that the UTs-HRIS channel G

is estimated at the HRIS, and its estimate is then forwarded to the BS. Furthermore, exploiting

the HRIS as an additional non-co-located receive port can also facilitate data transmission once

the channels are estimated. Though, in this case, one would also have to account for possible

rate limitations on the HRIS-BS link. We leave the study of these additional usages of HRISs

for future research.

The study of HRISs, combined with the numerical evaluations in Section IV that follows,

only reveal a portion of the potential of HRISs in facilitating wireless communication over

programmable environments. To further understand the contribution of HRISs, one should also

study their impact on data transmission, as well as consider the presence of an additional direct

channel between the UTs and the BS. Furthermore, the simplified model used in this work is

based on the hybrid metamaterial model presented in [31]. To this end, additional experimental

studies of this model are required to formulate a more accurate physically-compliant model for

the behavior of HRISs; see [46] and references therein for recent modeling research. These

extensions are also left for future work.

Our proposed hybrid RIS structure is different from another emerging hybrid RIS concept,

called simultaneously transmitting and reflecting (STAR)-RIS [34]–[36]. In STAR-RIS, each

antenna element splits its incident signal power into two parts, i.e., one part of the signal is

reflected in the same space as the incident signal, and the other part of the signal is transmitted to
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the opposite space of the incident signal. Hence, STAR-RIS is capable of simultaneous reflection

and refraction (passing the signal through the surface to its other side), without having any

receiving or decoding capability.

IV. NUMERICAL RESULTS

In this section, we numerically evaluate the performance of the proposed channel estimation

approach for the uplink of HRIS-empowered multi-user MIMO communication systems. Specif-

ically, we present simulation parameters in Section IV-A and then provide our numerical results

in Section IV-B.

A. Simulation Setup

In our simulations, the pathlosses of the individual channels H and gk are modeled as β =

λ0

(
dH
d0

)−αh

and γk = λ0

(
dk
d0

)−αg

, respectively, where λ0 = −20 dB denotes a constant pathloss

at the reference distance d0 = 1 m, while dH and dk are the distances from the HRIS to the BS

and kth UT, respectively. The pathloss exponents were set as αh = 2.2 and αg = 2.1. The above

wireless channel parameters were also adopted in [17]. We consider a 2D Cartesian coordinate

system in which the BS and the HRIS are respectively located at points (0, 0) and (0, 50 m),

while the K users were randomly generated in an area centered at (30 m, 50 m) with a radius of

10 m. In addition, we have set the numbers of antennas at the BS and the number of meta-atom

elements at the HRIS as M = 16 and N = 64, respectively, and the number of UTs as K = 8,

unless otherwise stated.

B. Simulation Results

We first demonstrate the convergence behavior of our proposed AD-based Algorithm 1 for

solving the considered channel estimation problem. Specifically, Fig. 5 depicts the convergence

of the achievable weighted sum-MSE for different random initialization of the optimization

variables, when the number of receive RF chains at the HRIS is set to Nr = 8, the transmit

SNR Γ = 100 dB, and the pilot length is τ = 104. It can be observed that for each randomly

generated initialization, the proposed algorithm converges to a fixed value within 100 iterations,

and typically with much fewer iterations, verifying its relatively fast convergence. Therefore,

we have set the maximum number of iterations to be 100 for Algorithm 1 in the following

simulation experiments.
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Fig. 5. Convergence behavior of the weighted-sum MSE for the proposed channel estimation algorithm with different random

initialization using Nr = 8 receive RF chains at the HRIS, transmit SNR of Γ = 100 dB, and τ = 104 pilots symbols.
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Fig. 6. Normalized MSE performance of the proposed channel estimation algorithm in recovering the combined UTs-HRIS

channel G at the HRIS and the HRIS-BS channel H at the BS using τ = 104 pilots symbols.

In Fig. 6, we show the trade-off between the normalized MSE performances when estimating

the UTs-HRIS channel G at the HRIS and the HRIS-BS channel H at the BS for different values

of the power splitting parameter ρ; we have assumed that all the elements of the HRIS have the

same power splitting parameter ρ. In the figure, we have set the transmit SNR to Γ = 100 dB

and the pilot length τ = 104. In addition, “Optimized Phase” denotes that the phase variables

of the HRIS have been optimized using Algorithm 1, and “Random Phase” indicates that the



19

HRIS phase variables were generated randomly. It can be observed from Fig. 6(a) that the

normalized MSE of estimating the individual channel G increases significantly as ρ increases.

This happens because as ρ increases, each meta-atoms element of the HRIS splits less power of

the impinging signal for channel estimation. It is also shown in Fig. 6(b) that as ρ increases, the

normalized MSE of estimating the individual channel H decreases gradually. This improvement

ceases when ρ approaches 1, implying that the HRIS behaves as a purely passive RIS and the

individual channels cannot be disentangled. This clearly demonstrates the fundamental trade-off

between the accuracy in estimating each of the individual channels, which is dictated by the

way that the HRIS splits the power of the impinging signal. In addition, it is evident from the

figure that the channel estimation performance of the “Optimized Phase” case is slightly better

than that of the “Random Phase,” especially when the power splitting parameter ρ approaches

its maximum value. This performance enhancement will become more significant when also

optimizing the power splitting parameter ρ, as will be demonstrated in the sequel.

We now compare the channel estimation performance, considering our proposed HRIS-based

approach (labeled as “Proposed HRIS”), the existing passive reflective RIS-based approach

of [17] (labeled as “Reflective RIS”), and two baseline schemes (labeled as “Proposed HRIS

with Partial Connection” and “Proposed HRIS with Random Parameters”). The former baseline

scheme adopts a partially-connected analog combiner at the HRIS receiver, i.e., each antenna

element just connects to only one receive RF chain, like the DMA structure defined in [26],

and the corresponding power splitting parameters and phase configurations are optimized using

Algorithm 1. With the latter baseline scheme, the power splitting parameters and phase profiles

are randomly generated within the feasible set. In addition, since the channel estimation approach

proposed in [17] can only estimate the cascaded channel, we also calculated the resulting

cascaded channel estimation for the proposed approach, using our estimated individual BS-HRIS

channel Ĥ and the UTs-HRIS channel Ĝ = [ĝ1, ĝ2, . . . , ĝK ]. Specifically, the normalized MSE

performance of the estimated cascaded channel with our HRIS-based approach was calculated

as follows:

ec ,

E

{
∑K

k=1

∥
∥
∥Ĥdiag (ĝk)−Hdiag (gk)

∥
∥
∥

2

F

}

E

{
∑K

k=1 ‖Hdiag (gk)‖
2
F

} . (15)

In Fig. 7, we demonstrate the normalized MSE of the cascaded channel estimation as a
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Fig. 7. Normalized MSE performance of the cascaded channel estimation versus the transmit SNR Γ for τ = 104 pilots symbols

for each of the K = 8 UTs. Various versions of the proposed HRIS with Nr = 8 receive RF chains and a reflective RIS have

been considered.
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the K = 8 UTs, considering the transmit SNR Γ = 100 dB. All schemes compared in Fig. (7) have been considered.
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function of the transmit SNR value Γ for the considered estimation methods, using Nr = 8

receive RF chains for our HRIS architecture. The method “Reflective RIS” in [17] was found

to require at least 92 pilot symbols, and thus, we set the pilot length to τ = 104. As shown in

the figure, the HRISs sensing capability is translated into improved cascaded channel estimation

accuracy, as compared to the state of the art. For example, the proposed HRISs (even with

the random configuration case “Proposed HRIS with Random Parameters”) can achieve a much

lower normalized MSE than that of the “Relective RIS.” In addition, it can be observed that the

performance of the case “Proposed HRIS with Partial Connection” is comparable with that of

the “Proposed HRIS,” which indicates the effectiveness of our proposed HRIS even when using

the lower power consumption and hardware complexity partially-connected analog combiner.

We also plot the normalized MSE of the cascaded channel against the pilot sequence length τ

in Fig. 8, considering the transmit SNR value Γ = 100 dB and Nr = 8 received RF chains at the

HRIS. Evidently, the proposed HRIS-based approaches can significantly reduce the error of the

cascaded channel estimation, as compared to the passive reflection RIS. Moreover, we see that

for the proposed HRIS, the normalized MSE decreases rapidly at first and then tends to slow

down as the pilot length increases. As before, our proposed HRIS with a partially-connected

analog combiner is capable of achieving comparable channel estimation accuracy with that of

HRIS with a fully-connected analog combiner.

Finally, in Fig. 9, we investigate the effect of the number Nr of receive RF chains on the

cascaded channel estimation accuracy, considering the same transmit SNR with Fig. 8 and

different pilot sequence lengths τ . It is illustrated that, as Nr increases, the normalized cascaded

channel MSE decreases initially and then converges to a constant value. This happens because

the observed pilot signals increase proportionately to the number of receive RF chains, thereby

increasing the accuracy of channel estimation. However, once the observed pilot signals exceed a

threshold, increasing their number further will not reduce the channel estimation error. Moreover,

it is evident from the figure that the proposed HRIS-based approach achieves higher channel

estimation accuracy than the one based on the conventional passive RIS, even when only few

receive RF chains are used. For example, in the case of τ = 104, the proposed HRIS requires only

Nr = 5 receive RF chains to achieve significantly improved channel estimation performance.

Additionally, we see that the required Nr value decreases as the pilot length increases.
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Fig. 9. Normalized MSE performance of the cascaded channel estimation versus the number of the receive RF chains Nr at

the HRIS, considering the transmit SNR Γ = 100 dB and τ = {104, 144} pilot symbols’ length at each of the K = 8 UTs.

The proposed HRIS and a reflective RIS are compared.

V. CONCLUSION

In this paper, we studied wireless communications aided by HRISs, which are metasurfaces

capable of simultaneously reflecting and sensing impinging signals in a dynamically controllable

manner. We presented a simple model for the operation of HRIS-empowered multi-user MIMO

communications systems, and investigated their potential to facilitate channel estimation, as an

indicative application. We showed that for the case without noise, HRISs enable to significantly

save pilot overhead compared to that required by purely reflective RISs. We also quantified

the achievable estimation error performance for the case with noise. In particular, we derived

the individual MSE for estimating individual channels at the HRISs and BS, and proposed a

gradient-based approach to configure the HRISs for minimizing the weighted sum-MSE. Our

simulation results showcased the impactful role HRISs in RIS-empowered communications in

estimating the individual channels as well as the cascaded channel over existing methods relying

on nearly passive and reflective RISs.
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APPENDIX A

PROOF OF PROPOSITION 1

By discarding the noise term in (8), the received pilot signal at the HRIS is given by

yRC = ARC ({ρ(b),φ(b)})GS. (A.1)

By using the identity vec(ABC) =
(
CT ⊗A

)
vec(B), we can rewrite (A.1) as follows:

vec (yRC) =
(
ST ⊗ARC ({ρ(b),φ(b)})

)
vec(G). (A.2)

In the latter expression, we define A1 , ST ⊗ ARC ({ρ(b),φ(b)}). If A1 is a full-column-

rank matrix, then vec (G) can be recovered from (A.2) as vec (G) = A
†
1vec (yRC), where

A
†
1 =

(
AH

1 A1

)−1
AH

1 is the pseudoinverse of A1. Once we obtain the perfect estimate of

vec (G), then the channel matrix G can be recovered accordingly. The dimension of A1 is Nrτ

by NK, and recall that τ = BT . Thus, in order to guarantee that A1 has a full column rank,

the pilot length τ should satisfy the following inequality:

τ ≥
NK

Nr
. (A.3)

On the other hand, by discarding the noise term in (10), the received pilot signal at the BS

during T time slots for each b-th sub-frame can be expressed as

yBS (b) =HΨ (ρ(b),ψ(b))GS, (A.4)

or equivalently,

vec (yBS (b)) =
(

(Ψ (ρ(b),ψ(b))GS)T ⊗ IM
)

vec(H). (A.5)

In the sequel, we make use of the notation ȳBS for the Mτ × 1 vector generated by stacking

the vectors vec (yBS (1)) , vec (yBS (2)) , . . . , vec (yBS (B)). It follows from (A.5) that we can

express yBS as ȳBS = A2vec (H), where A2 ∈ CM τ×M N is given by

A2 = [Ψ (ρ(1),ψ(1))GS, · · · ,Ψ (ρ(B),ψ(B))GS]T ⊗ IM , (A.6)

Similarly to A1 before, we can perfectly recover vec(H) if A2 is a full-column-rank matrix,

i.e., it holds: vec(H) = A†
2ȳBS, where A

†
2 =

(
AH

2 A2

)−1
AH

2 . In order to guarantee that A2 has
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a full column rank, the pilot length τ should satisfy the following inequality:

τ ≥ N. (A.7)

By putting (A.3) and (A.7) together, we conclude that the number of pilots τ should satisfy

the inequality:

τ ≥ N max

{

1,
K

Nr

}

, (A.8)

which completes the proof of Proposition 1.

APPENDIX B

PROOF OF THEOREM 1

For notation brevity, we define Φ , {ρ(b),φ(b)} during the proof of Theorem 1. To estimate

the channels between the HRIS and the UTs, we project yRC defined in (8) on SH , yielding

ỹRC =
1

T
yRCS

H = ARC (Φ)G+ z̃RC, (B.1)

where z̃RC , 1
T
zRCS

H , whose distribution is given by CN (0, K(TΓ)−1INrB). According to

(B.1), the linear estimation that minimizes the mean-square-error (MSE) of the estimation of G

has the following form [47]:

Ĝ =M 0ỹRC, (B.2)

where M 0 is the linear estimator, which can be obtained by solving the following problem:

M o , argmin
M

E

{∥
∥
∥G− Ĝ

∥
∥
∥

2

F

}

= argmin
M

E
{
‖G−MỹRC‖

2
F

}
. (B.3)

The error of this estimator can be given by computed as follows:

EG (Φ) =E
{
‖G−MỹRC‖

2
F

}

=Tr (RG)− Tr
(

RGARC (Φ)H MH
)

− Tr (MARC (Φ) RG)

+ Tr
(

M
(

ARC (Φ) RGARC (Φ)H +K (TΓ)−1 INrB

)

MH
)

,

(B.4)

where RG = E
[
GGH

]
=
(
∑K

k=1 γk

)

IN denotes the covariance matrix of G. Since the second-

order channel statistics vary slowly with time in general, here we assume thatRG can be perfectly
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estimated at the HRIS. The optimal M o can be found from ∂EG (Φ) /∂M = 0 and is given by

M o = RGARC (Φ)H
(

ARC (Φ) RGARC (Φ)H +K (TΓ)−1 INrB

)−1

. (B.5)

Substituting (B.5) into (B.4) and using (A+BCD)−1 = A−1−A−1B
(
DA−1B +C−1

)−1
DA−1,

the MMSE estimation error of G can be derived as

EG (Φ) = Tr

{(

R−1
G + TΓK−1ARC (Φ)H ARC (Φ)

)−1
}

. (B.6)

The linear MMSE estimator of G can be expressed as

Ĝ = RGARC (Φ)H
(

ARC (Φ) RGARC (Φ)H +K (TΓ)−1 INrB

)−1

ỹRC, (B.7)

and it is easy to verify that the mean of Ĝ is zero, i.e., E
{

Ĝ
}

= 0. Its covariance matrix is

given by

Σ (Φ) = E

{

Ĝ Ĝ
H
}

= E

{

M o

(

ARC (Φ) GGH ARC (Φ)H + Zr

)

MH
o

}

=M o

(

E

{

ARC (Φ) GGH ARC (Φ)H
}

+K (TΓ)−1 INrB

)

MH
o

=M o

(

ARC (Φ) RGARC (Φ)H +K (TΓ)−1 INrB

)

MH
o

= RGARC (Φ)H
(

ARC (Φ) RGARC (Φ)H +K (TΓ)−1 INrB

)−1

ARC (Φ)RH
G .

(B.8)

We finally let G̃ = G − Ĝ denote the channel estimation error, which has zero mean and the

covariance matrix

R
G̃
(Φ) = E

{

G̃ G̃
H
}

=

(

R−1
G + T

Γ

K
ARC (Φ)H ARC (Φ)

)−1

. (B.9)

The latter expression concludes the proof.

APPENDIX C

PROOF OF THEOREM 2

For notation brevity, we define Φ , {ρ(b),φ(b)}, Ω , {ρ(b),φ(b),ψ(b)}, and Ψ(b) ,

Ψ(ρ(b),ψ(b)), during the proof of Theorem 2. By projecting yBS (b) defined in (10) on SH and
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scaling the resulting term by 1/T , we get the expression:

ỹBS (b) =
1

T
yBS[l]S

H =HΨ (b)G+ z̃BS (b) , (C.1)

where z̃BS (b) , 1
T
zBS (b)S

H . By applying the identity vec(ABC) =
(
CT ⊗A

)
vec(B), we

rewrite ỹBS[l] in (C.1) in the following vector form:

vec (ỹBS (b))

=
(

GTΨ (b)T ⊗ IM
)

vec (H) + vec (z̃BS (b))

=
(

(Ĝ+ G̃)TΨ (b)T ⊗ IM
)

vec (H) + vec (z̃BS (b))

=
(

Ĝ
T
Ψ (b)T ⊗ IM

)

vec (H) +
(

G̃
T
Ψ (b)T ⊗ IM

)

vec (H) + vec (z̃BS (b))

(C.2)

where G̃ = G− Ĝ denotes the channel estimation error of G.

Let the notation yBS represent the MKB × 1 vector generated by stacking the following

vectors: vec (ỹBS (1)) , vec (ỹBS (2)) , . . . , vec (ỹBS (b)). We can express yBS from (C.2) as

yBS = ABSh+∆ABSh+ zBS
︸ ︷︷ ︸

z

, (C.3)

where zBS results from stacking vec (z̃BS (1)) , vec (z̃BS (2)) , . . . , vec (z̃BS (B)) and h = vec (H),

as well as ABS ∈ CMKB×M N and ∆ABS ∈ CM KB×M N are respectively given by

ABS ,

[

Ψ(1)Ĝ, · · · ,Ψ(B)Ĝ
]T

⊗ IM , (C.4)

∆ABS ,

[

Ψ(1)G̃, · · · ,Ψ(B)G̃
]T

⊗ IM (C.5)

We next define z , ∆ABSh+zBS as the effective noise vector at the BS, which includes the

colored interference forwarded from the HRIS and the local AWGN vector zBS. We present the

following Proposition, which provides the second-order statistics of z.

Proposition C.1. The covariance matrix of z is given by Rz (Ω) = E
{
zzH

}
= D (Ω) ⊗ IM ,

where D (Ω) is a BK × BK matrix, which can be partitioned into B × B blocks with each

block being a K ×K submatrix. The i-th row and j-th column block of D (Ω) is defined as

[D (Ω)]i,j ,







β
K
Tr
(
Ψ(j)HΨ(i)R

G̃
(Φ)
)
IK + (TΓ)−1IK , if i = j

β
K
Tr
(
Ψ(j)HΨ(i)R

G̃
(Φ)
)
IK , if i 6= j

. (C.6)
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Proof: We start with the definition of the covariance matrix of z:

Rz (Ω) = E
{
zzH

}
= EG̃,h

{
∆ABShh

H∆AH
BS

}
+ Ezb

{
zbz

H
b

}
. (C.7)

Since vec (z̃BS (b)) =
1
T

(
S† ⊗ IM

)
vec (zBS (b)), we can first calculate EzBS

{
zBSz

H
BS

}
first as:

EzBS

{
zBSz

H
BS

}
=

1

T 2
EzBS














(
S† ⊗ IM

)
vec (zBS (1))

...
(
S† ⊗ IM

)
vec (zBS (B))















(
S† ⊗ IM

)
vec (zBS (1))

...
(
S† ⊗ IM

)
vec (zBS (B))








H





= (TΓ)−1IBK ⊗ IM

(C.8)

On the other hand, the following expression can be deduced:

EG̃,h

{
∆ABShh

H∆AH
BS

}

(a)
= βEG̃

{
∆ABS∆A

H
BS

}

= βEG̃














G̃
H
ΨH(1)Ψ(1) G̃ · · · G̃

H
ΨH(1)Ψ(B) G̃

...
. . .

...

G̃
H
ΨH(B)Ψ(1) G̃ · · · G̃

H
ΨH(B)Ψ(B) G̃








T

⊗ IM







(b)
=

β

K








Tr
(
ΨH(1)Ψ(1)R

G̃
(Φ)
)
IK · · · Tr

(
ΨH(1)Ψ(B)R

G̃
(Φ)
)
IK

...
. . .

...

Tr
(
ΨH(B)Ψ(1)R

G̃
(Φ)
)
IK · · · Tr

(
ΨH(B)Ψ(B)R

G̃
(Φ)
)
IK








T

⊗ IM ,

(C.9)

where (a) holds due to the fact that Eh

{
hhH

}
= βIMN and (b) results from the following

derivation:

EG̃

{

G̃
H
Ψ(i)HΨ(j)G̃

}
(c)
=EU

{

UHR
G̃
(Φ)1/2Ψ(i)HΨ(j)R

G̃
(Φ)1/2U

}

=
1

K
Tr
(

R
G̃
(Φ)1/2 Ψ(i)HΨ(j)R

G̃
(Φ)1/2

)

IK

=
1

K
Tr
(
Ψ(i)HΨ(j)R

G̃
(Φ)
)
IK .

(C.10)

In the latter expression, (c) is due to the fact that G̃ = R
G̃
(Φ)1/2U with U ∈ CN×K denoting

a matrix satisfying U ∼ CN (0, IN). By substituting (C.8) and (C.9) into (C.7) yields:

Rz (Ω) = D (Ω)⊗ IM , (C.11)
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where D (Ω) is the BK × BK matrix in (C.6), which can be partitioned into B × B blocks

with each block being a K ×K submatrix.

For notation brevity, in the following we make use of the simplified notations Rz and D to

represent Rz (Ω) and D (Ω), respectively. We also utilize the LMMSE estimator to estimate h

from yBS as ĥ = TyBS, where T is the optimal solution that minimizes the following channel

estimation error:

Eh = E

{∥
∥
∥h− ĥ

∥
∥
∥

2
}

= E
{
‖h− TyBS‖

2} . (C.12)

It is well-known [48] that the the optimal T can be obtained as

T = E
[
hyHBS

] (
E
[
yBSy

H
BS

])−1
= RhA

H
BS

(
ABSRhA

H
BS +Rz

)−1
, (C.13)

where Rh = E
{
hhH

}
= βIMN . By substituting (C.13) into (C.12), we get the expression:

Eh = Eh,Ĝ

{∥
∥
∥h−RhA

H
BS

(
ABSRhA

H
BS +Rz

)−1
yBS

∥
∥
∥

2
}

= EĜ

{

Tr
(

Rh −RhA
H
BS

(
ABSRhA

H
BS +Rz

)−1
ABSRh

)}

= EĜ

{

Tr
((
R−1
h +AH

BSR
−1
z ABS

)−1
)}

= EĜ

{

Tr

((

R−1
h +

[

Ψ(1)Ĝ, · · · ,Ψ(B)Ĝ
]†

D−1
[

Ψ(1)Ĝ, · · · ,Ψ(B)Ĝ
]T

⊗ IM

)−1
)}

= EĜ






Tr







R−1
h +

(
B∑

j=1

B∑

i=1

Ψ(i)Ĝ
[
D−T

]

i,j
Ĝ
H
Ψ(j)H

)T

⊗ IM





−1








. (C.14)

Moreover, the following expression holds:

EĜ

{

Ĝ
[
D−T

]

i,j
Ĝ
H
}

= EN

{

Σ (Φ)1/2N
[
D−T

]

i,j
NHΣ (Φ)1/2

}

= K Tr
([
D−T

]

i,j

)

Σ (Φ) , (C.15)

where N ∈ CN×K denotes a random matrix distributed as N ∼ CN (0, IN ). In order to

efficiently design the reflection and reception weights of the proposed HRIS, we next approximate

the MSE defined in (C.14) with a deterministic MSE, using a standard bounding technique. In
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particular, we lower-bound the MSE as follows:

Eh = EĜ






Tr







R−1
h +

(
B∑

j=1

B∑

i=1

Ψ(i)Ĝ
[
D−T

]

i,j
Ĝ
H
Ψ(j)H

)T

⊗ IM





−1









(a)

≥ Tr







R−1
h +

(
B∑

j=1

B∑

i=1

Ψ(i)EĜ

{

Ĝ
[
D−T

]

i,j
Ĝ
H
}

Ψ(j)H

)T

⊗ IM





−1



(b)
= Tr







R−1
h +

(

K

B∑

j=1

B∑

i=1

Tr
([
D−T

]

i,j

)

Ψ(i)Σ (Φ)Ψ(j)H

)T

⊗ IM





−1

 ,

where (a) holds from the Jensen’s inequality and the fact that Tr (X−1) is a convex function

with respect to X. In addition, (b) comes from (C.15).

Putting all above together, we obtain the following lower bound of the channel estimation

error at the BS:

EH (Ω) = Tr







R−1
h +

(

K
B∑

j=1

B∑

i=1

Tr
([
D−T

]

i,j

)

Ψ(i)Σ (Φ)Ψ(j)H

)T

⊗ IM





−1

 ,

which concludes the proof.
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