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Abstract—In this paper, we propose a quantum algorithm
that supports a real-valued higher-order unconstrained binary
optimization (HUBO) problem. This algorithm is based on the
Grover adaptive search that originally supported HUBO with
integer coefficients. Next, as an application example, we formulate
multiple-input multiple-output maximum likelihood detection as
a HUBO problem with real-valued coefficients, where we use the
Gray-coded bit-to-symbol mapping specified in the 5G standard.
The proposed approach allows us to construct an efficient
quantum circuit for the detection problem and to analyze specific
numbers of required qubits and quantum gates, whereas other
conventional studies have assumed that such a circuit is feasible as
a quantum oracle. To further accelerate the quantum algorithm,
we also derive a probability distribution of the objective function
value and determine a unique threshold to sample better states.
Assuming a future fault-tolerant quantum computing, our pro-
posed algorithm has the potential for significantly reducing query
complexity in the classical domain and providing a quadratic
speedup in the quantum domain.

Index Terms—Grover adaptive search (GAS), quadratic un-
constrained binary optimization (QUBO), higher-order uncon-
strained binary optimization (HUBO), multiple-input multiple-
output (MIMO), maximum-likelihood detection (MLD).

I. INTRODUCTION

MARCONI invented a practical long-range wireless sys-

tem in 1895. Since then, driven by its intense demand,

wireless communication has continued to become more so-

phisticated as if there were no limits. The limit of com-

munication throughput is known as the Shannon capacity,

which is constrained by the bandwidth, the signal-to-noise

ratio (SNR), and the numbers of transmit and receive antennas

for multiple-input multiple-output (MIMO) scenarios. Clearly,

there are physical limits on bandwidth, SNR, and the number

of antennas. The forward error correction techniques such as

the low-density parity-check code (LDPC) and polar code

can achieve near-capacity performance efficiently, but under

a certain energy constraint, their performance is constrained

by semiconductor miniaturization limits. Marconi mentioned

that it is dangerous to put limits on wireless. However, wireless

communication will reach its physical limits in the near future.
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After the eventual end of Moore’s law, from a long-term

perspective, we must rely on a different computing paradigm,

and quantum computing in particular is considered to be

promising. Since it is impossible to simulate a quantum com-

puter in an efficient manner on a classical computer, quantum

computers offer an essential speed advantage over classical

computers [1]. Specifically, Shor’s algorithm [2] factors an n-

bit integer with the complexity O(n2 logn log log n), while

the best classical algorithm requires exp(Θ(n1/3 log2/3 n))
operations [1],1 which is an exponential speedup. Grover’s

algorithm [4] finds a specific element from a database of un-

sorted N elements with the query complexity O(
√
N), while

the classic exhaustive search requires O(N) evaluations, which

is a quadratic speedup. Note that both long-term algorithms

assume the realization of fault-tolerant quantum computing

(FTQC), which is not yet realized with current technology.

Grover’s algorithm has been extended to support binary

optimization problems. The pioneering algorithm, Grover

adaptive search (GAS) [5], requires a complex quantum circuit

to evaluate an objective function. For example, an m-qubit

register requires 2m− 1 Toffoli gates to perform quantum ad-

dition [6], which is still expensive. To solve this issue, Gilliam

et al. used a concept of quantum dictionary and allowed for

the efficient representation of an arbitrary polynomial function,

including quadratic and higher-order terms [7, 8]. This efficient

representation improved the feasibility of GAS, and in [8], a

quadratic unconstrained binary optimization (QUBO) problem

with integer coefficients was solved on a real-world quantum

computer with 32 qubits. Unlike the quantum annealing (QA)

[9], the GAS proposed by Gilliam et al. is innovative in that

it supports a higher-order unconstrained binary optimization

(HUBO) problem with integer coefficients, which cannot be

solved efficiently with state-of-the-art mathematical program-

ming solvers on a classical computer such as CPLEX2.

In designing wireless systems, the trade-off between per-

formance and complexity is, in general, a source of concern

for engineers and researchers. For example, low-complexity

MIMO detectors and polar decoders inevitably involve the

penalty of lower performance, and complexity is sacrificed to

achieve optimal performance. In this situation, the potential for

quantum speedup has inspired those who dream of striking the

1O(·) denotes the big-O notation, while Θ(·) denotes the big-Θ notation
[3].

2https://www.ibm.com/analytics/cplex-optimizer
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fundamental trade-off and achieving the optimal performance

with reduced complexity. A pioneering attempt in wireless

communications was provided in [10] by Botsinis et al. who

demonstrated the potential of quantum algorithms to reduce

the complexity involved in maximum likelihood detection

(MLD). Specifically, they used the Grover-type algorithms,

such as Boyer–Brassard–Høyer–Tapp (BBHT) [11] and Dürr–

Høyer (DH) search algorithms [12], for performing MLD of

data symbols on a quantum computer [13]. Subsequently, a

number of important studies have shown promising results

[13–20]. However, in those studies, it was assumed that

an ideal quantum circuit to evaluate the objective function

is feasible as a quantum oracle, which will be detailed in

Section II. For more information on quantum-assisted wireless

communications, a comprehensive survey can be found in

[21, 22].

Against this background, we propose a quantum algorithm

that supports a HUBO problem with real-valued coefficients.

Then, as a first step toward breaking the trade-off between

performance and complexity, we formulate the MIMO MLD

as a real-valued HUBO problem and verify the potential of

quadratic speedup. The major contributions of this paper are

organized as follows.

1) While the conventional GAS [8] supports HUBO with

integer coefficients, we modify the quantum algorithm to

handle real-valued coefficients. This allows us to solve a

HUBO problem even if the objective function contains

real-valued coefficients, which is achieved at the cost of

one more query in the classical domain (CD).3

2) As an application example, we formulate the objec-

tive function of MIMO MLD as a real-valued HUBO

problem. This formulation is not a straightforward task

because the objective function contains complex-valued

random variables and a Frobenius norm calculation. This

new formulation allows us to analyze specific numbers

of qubits and quantum gates required in the constructed

quantum circuits, which has been overlooked in conven-

tional studies.

3) We clarify the probability distribution of the objective

function value and determine the threshold used inside

GAS more efficiently. Then, we demonstrate that the

proposed threshold further accelerates the convergence

of GAS to the optimal solution.

It is important to note that quantum circuits are sensitive

to noise [23], and industrial applications require decades

of effort and challenge. The noise induces quantum errors,

and quantum error-correcting codes must be used to perform

reliable arithmetic on a quantum computer. For example, if we

use the surface code with code distance 27, which is one of

the quantum error-correcting codes, a logical qubit requires

1568 physical qubits to correct errors [24]. This indicates

that even a simple quantum circuit with fewer qubits, e.g.,

as in Fig. 1, may require many more physical qubits. Since

this limitation is beyond the scope of our contributions, we

assume the realization of future FTQC as in the conventional

3The definition of query complexity in CD is detailed in Section III-D,
which is the same as the conventional study [13].

TABLE I
LIST OF IMPORTANT MATHEMATICAL SYMBOLS

B Binary numbers
R Real numbers
C Complex numbers
Z Integers
Nt ∈ Z Number of transmit antennas
Nr ∈ Z Number of receive antennas
Lc ∈ Z Modulation order (constellation size)

σ2
∈ R Noise variance

γ ∈ R Signal-to-noise ratio
E(·) ∈ Z Objective function
n ∈ Z Number of binary variables = transmission rate
m ∈ Z Number of qubits required to encode E(·)
i ∈ Z Index of GAS iterations
y, yi ∈ Z Threshold that is adaptively updated by GAS
L,Li ∈ Z Number of Grover operators
P ∈ R Probability that controls the proposed threshold
b,bi ∈ Bn Binary variables, or data bits

s ∈ CNt×1 Data symbols, each symbol is denoted by st
r ∈ CNr×1 Received symbols, each symbol is denoted by ru
Hc ∈ CNr×Nt Channel coefficients, hut

v ∈ CNr×1 Additive white Gaussian noise, vu

studies [2, 4, 5, 7, 8, 10–22, 25]. In fact, IBM’s roadmap

for quantum computers is to achieve 4000 qubits by 2025

[26]. In the subsequent years, they expect 10000 to 100000

qubits, enabling quantum error corrections. Additionally, it

was proved in [27] that quantum advantages are unlikely for

optimization on a noisy intermediate-scale quantum device.

Therefore, we focus on long-term algorithms assuming FTQC

in this paper.

The remainder of this paper is organized as follows.

Section II is a review of important related works, while

in Section III, we introduce the conventional GAS and its

modification to support real-valued coefficients. In Section IV,

a method to solve MIMO MLD on a quantum computer is

proposed, and algebraic and numerical evaluations are given

in Section V. Finally, in Section VI, we conclude this paper.

Italicized symbols represent scalar values, and bold symbols

represent vectors and matrices. Table I summarizes a list of

important mathematical symbols used in this paper.

II. RELATED WORKS

Quantum computation has the potential to break through the

fundamental trade-off between performance and complexity.

Hence, it has been applied to multi-user detection [10, 13–

15, 17, 28, 29], multiple symbol differential detection [16],

channel coding [30, 31], wireless routing [18, 19], indoor

localization [20], intelligent reflecting surfaces [32], and code-

word optimization problem [25]. In this section, we introduce

important related works targeting detection problems in wire-

less communications.

A. Multi-User Detection Using DH Algorithm [13]

Botsinis et al. proposed a novel method of applying the DH

algorithm to multi-user detection [13], which is a detection

problem for multi-user scenarios. The original DH algorithm

[12] is terminated if the sum of the number of Grover iterations

becomes greater than or equal to 22.5
√
N , where N denotes

the search space size. By contrast, Botsinis et al. modified the
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algorithm to terminate early for an arbitrary number of queries

smaller than 22.5
√
N . Additionally, the modified algorithm

calculates the output of a low-complexity detector, such as

the zero-forcing (ZF) or minimum mean square error (MMSE)

detector, and exploits the output as an initial value to sample

better states. Both contributions are innovative in that they

accelerate the quantum algorithm more for a specific problem

in wireless communications.

The objective function presented in [13] involves a Frobe-

nius norm of complex-valued variables. However, the quantum

circuit that evaluates the norm is idealized as an oracle, and no

specific construction method is considered. Unlike in [13], we

consider specific quantum circuits and analyze their hardware

and query complexities, which is the missing piece in the

literature.

B. MIMO MLD Using QA [28]

Kim et al. formulated MIMO MLD as a QUBO problem and

solved it using QA, the D-Wave 2000Q quantum annealer [28].

Specifically, binary phase-shift keying (BPSK) and quadrature

phase-shift keying (QPSK) symbols are represented as first-

order functions with respect to information bits, while gray-

coded 16 quadrature amplitude modulation (QAM) symbols

are represented as second-order functions. Since the objective

function of MLD contains the squared norm, it may result

in a higher-order function such as fourth, eighth, or higher,

which is not supported by QA. To solve this problem, Kim

et al. used first-order functions that represent higher-order

modulation, such as 16-QAM or 64-QAM, without the Gray

coding. Then, the objective function contains first- and second-

order terms only. To achieve performance equivalent to that

of the Gray-coded case, the projection between before and

after Gray coding is used on a classical computer. That is,

encoding at the transmitter and decoding at the receiver require

additional steps.

Unlike in the above study [28] targeting QA, we directly

handle the Gray-coded data symbols specified in the 5G

standard owing to the proposed real-valued GAS that supports

higher-order terms. Our approach is capable of supporting

any signal modulation, such as star-QAM and constellation

shaping schemes, as long as data symbols can be represented

as a function of information bits.

C. MIMO MLD Using DH Algorithm [29]

Mondal et al. proposed a method to solve MIMO MLD

using the DH algorithm [29]. Specifically, to improve the

success probability of the algorithm, the uniform selection

of the number of Grover operators, L, was modified to a

random value from the Gamma distribution, leading to a better

selection of L. Here, the Gamma distribution depends on a

scale parameter, and the scale parameter depends on the exact

number of solutions to be marked. Since the exact number of

solutions varies dynamically depending on the threshold, the

quantum counting algorithm [33] is crucial, as stated in [29].

Additionally, the concept of reducing the search space was

verified.

As in [13], a specific construction method for a quantum

circuit is not considered in [29]. Herein, we determine a

threshold in accordance with the distribution of objective

function values, which is known in advance.

III. GROVER ADAPTIVE SEARCH (GAS)

GAS [8] supports binary optimization problems with integer

coefficients, including QUBO and HUBO problems. It requires

n qubits for n binary variables b ∈ Bn and m qubits for

encoding the objective function value E(b) ∈ Z, resulting

in a circuit equipped with n + m qubits. Here, E(b) is an

arbitrary polynomial function, such as E(b) = 1+b0−2b1b2.

The classic exhaustive search requires O(2n) queries, while

GAS requires O(
√
2n) queries, which potentially provides a

quadratic speedup. GAS obtains a global minimum solution

by amplifying the states in which the objective function value

E(b) is smaller than the current threshold yi ∈ Z. Here, yi
is a temporal minimum and i is an iteration count in CD. We

measure the quantum states and update the threshold, which

is repeated until a termination condition is satisfied.

Before executing GAS, it is not a straightforward task to

determine an appropriate number of qubits m. The objec-

tive function value is expressed by the two’s complement

representation. This is because positive or negative can be

identified simply by focusing on the beginning of m qubits,

and this representation simplifies the quantum circuit to the

identification of the states of interest that should be amplified.

Let the objective function value or its coefficient be an integer

k. Then, m must satisfy [8]

−2m−1 ≤ k < 2m−1. (1)

As the threshold yi is updated in each iteration of GAS, the

calculated value may become E(b) − yi, which results in a

smaller minimum value or a larger maximum value. Thus, it

is necessary to set a sufficient m that might handle Emax,

Emin, and Emax − Emin without overflow, where Emax and

Emin are the maximum and minimum of E(b), respectively.

For example, when we have Emax = 8 and Emin = −6,

the maximum of E(b) − yi may become Emax − Emin =
8− (−6) = 14, and m = 5 is sufficient to represent the values

of E(b)− yi.

A. Conventional GAS for Integer QUBO [8]

We review a specific construction method for the quantum

circuit used in GAS. First, a state preparation operator Ayi
is

constructed, in which an n-qubit input register is transformed

into the equal superposition of all states and an m-qubit

input register is used to represent the corresponding value

E(b) − yi. Taking the binary variable b as a binary number

and converting it to a decimal number b, the state should be

[8]

Ayi
|0〉n |0〉m =

1√
2n

2n−1∑

b=0

|b〉n |E(b)− yi〉m . (2)

This operator Ayi
can be composed of the Hadamard gates H,

controlled unitary operators UG(θ), and the inverse quantum
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Fig. 1. Quantum circuit corresponding to E(b) = 1 + b0 − 2b1b2.
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(c) L = 2.

Fig. 2. Output probabilities of the circuit shown in Fig. 1

Fourier transform (IQFT). Let k be a constant term in the

objective function. The noncontrolled unitary operator UG(θ)
is defined such that [8]

UG(θ)H
⊗m |0〉m =

1√
2m

2m−1∑

l=0

ejlθ |l〉m , (3)

where we have θ = 2πk/2m. That is, it is constructed by

UG(θ) = R(2m−1θ)⊗R(2m−2θ)⊗ · · · ⊗R(20θ) (4)

and the phase gate

R(θ) =

[
1 0
0 ejθ

]

. (5)

Here, phase advance represents integer addition and phase

delay represents subtraction. Following (3), IQFT yields only

one state that represents the original integer value of k.

The interaction between a binary variable and a coefficient

can be represented by a controlled qubit. Similarly, the interac-

tion between binary variables can be represented by controlled

qubits on a register |b〉n. As exemplified in Fig. 1, the constant

term +1 corresponds to UG (π/4), the term +1b0 corresponds

to controlled UG (π/4), and the term −2b1b2 corresponds to

controlled UG (−2π/4). Likewise, higher-order terms, such

as third or fourth order, can be represented by increasing the

number of controlled qubits.

In the classic Grover search [4], an oracle operator O

identifies the states of interest and inverts the phases of

these states. Only the inverted states are amplified by the

Grover operator. The operator Ayi
above calculates the values

Algorithm 1 Conventional GAS designed for integer coeffi-

cients [8].

Input: E : Bn → Z, λ = 8/7
Output: b

1: Uniformly sample b0 ∈ Bn and set y0 = E(b0).
2: Set k = 1 and i = 0.

3: repeat

4: Randomly select the rotation count Li from the set

{0, 1, ..., ⌈k − 1⌉}.

5: Evaluate GLiAyi
|0〉n+m, and obtain b and y.

{Grover search}
6: if y < yi then

7: bi+1 = b, yi+1 = y, and k = 1. {Improvement

found}
8: else

9: bi+1 = bi, yi+1 = yi, and k = min {λk,
√
2n}.

{No Improvement}
10: end if

11: i = i+ 1.

12: until a termination condition is met.

E(b) − yi for all 2n states in parallel. Here, states that are

better than the current threshold yi, i.e., states that satisfy

E(b) − yi < 0, should be marked to find the minimum

solution. Since the calculated values are represented by the

two’s complement, we can identify the negative states by

focusing only on the beginning of the m qubits, and O can

be constructed by applying the Z-gate only to that qubit.

Let the Grover diffusion operator be D of [4]

Di,j =







0 (i 6= j)

1 (i = j = 0)

−1 (i = j 6= 0)

. (6)

The Grover operator is finally constructed by G =
Ayi

DAH
yi
O, and we evaluate GLAyi

|0〉n+m, which will

maximize the amplitudes of the states of interest. The ideal

L that successfully maximizes the amplitude is given by [34]

Lopt =

⌊

π

4

√

N

Ns

⌋

, (7)

where N denotes the search space size, 2n, and Ns denotes

the number of solutions. Let b be the bit sequence and y be

the objective function value obtained by the evaluation.

From (7), the query complexity of GAS can be derived as

O(
√
2n) [8] in the quantum domain (QD), which is the total

number of Grover operators. Since Ns, the number of states

better than the current threshold, is unknown in advance, L is

typically drawn from a uniform distribution ranging from 0 to

a specific value that increases by a factor of λ = 8/7 at each

iteration. GAS is terminated if the sum of the Grover operators

is greater than 22.5
√
2n, which is the same as the conventional

DH algorithm. In the Qiskit implementation, the number of

times no improvement is observed is also considered as one

of the termination conditions. Overall, GAS is summarized in

Algorithm 1.
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As a specific example, Fig. 1 shows a quantum circuit of

GAS that tries to minimize the objective function E(b) =
1 + b0 − 2b1b2, where the threshold of yi = 0 and Ayi=0 are

considered for simplicity. The upper n = 3 qubits correspond

to variables |b0〉, |b1〉, and |b2〉, and the lower m = 3 qubits

|z〉3 encode the calculated value. The Hadamard gate at the

beginning of Ayi=0 initializes the qubits and creates an equal

superposition of all the possible states, 000000 to 111111.

The black circle in Fig. 1 indicates a control qubit. The

unitary operator UG(θ) is applied if all the associated control

qubits are 1. Here, the control qubit is in a superposition

state, and it creates a quantum entanglement state, which

plays a key role in GAS. IQFT is applied at the last part

of Ayi=0. After that, the Grover operator G is applied L
times, and we measure the quantum state. Fig. 2 shows the

probability that each state is measured, where the number of

Grover operators was varied from L = 0 to 2. The comma-

separated text in this figure shows n and m qubits, and the

latter is converted to a decimal number. As shown in Fig. 2,

when L = 0, 23 = 8 different states were observed with

equal probability, and the corresponding values of the objective

function were correctly calculated, demonstrating the potential

of quantum computation. When L = 1 and 2, only the state

of interest b = [0 1 1], which yields E(b) = −1 < 0,

was successfully amplified by the Grover operator. In this

manner, GAS amplifies the states that are better than the

current threshold and finds a binary solution that minimizes

the objective function.

B. Handling of Real-Valued Coefficients [8]

A polynomial may contain real-valued coefficients. To deal

with real-valued coefficients, Gilliam et al. proposed the

following two methods [8].

1) Integer Approximation: Multiplying the objective func-

tion by a positive constant does not affect the minimization

process. A real-valued coefficient can be approximated by

multiplying a large number and rounding down to an integer.

Specifically, real coefficients are approximated as fractions

with a common denominator, the denominator is multiplied

to the objective function, and the numerators become approx-

imated integer coefficients. As can be inferred from (1), the

drawback is that the number of required qubits m increases

as the value range of the objective function expands. If m is

kept small, this approximation becomes less accurate.

2) Direct Encoding: In this method, an integer k in θ =
2πk/2m of (3) is replaced with a real-valued coefficient a ∈
R. Then, the output probability indicates multiple integers,

which is known as the Fejér distribution. Specifically, the state

UFejér(θ) |0〉m after applying IQFT to UG(θ)H
⊗m |0〉m is

given by [8]4

UFejér(θ) |0〉m =

2m−1∑

l=0

〈g(θ),g (2πl/2m)〉 |l〉 , (8)

4This definition differs from [8], but is essentially identical.

Algorithm 2 Proposed GAS designed for real-valued coeffi-

cients.

Input: E : Bn → R, λ = 8/7
Output: b

1: Uniformly sample b0 ∈ Bn and set y0 = E(b0). {This

step will be improved in Section IV-C}
2: Set k = 1 and i = 0.

3: repeat

4: Randomly select the rotation count Li from the set

{0, 1, ..., ⌈k − 1⌉}.

5: Evaluate GLiAyi
|0〉n+m, and obtain b.

6: Evaluate y = E(b) in CD. {This is the additional

step}
7: if y < yi then

8: bi+1 = b, yi+1 = y, and k = 1.

9: else

10: bi+1 = bi, yi+1 = yi, and k = min {λk,
√
2n}.

11: end if

12: i = i+ 1.

13: until a termination condition is met.

where we have θ = 2πa/2m and g(θ) =
[1, ejθ, · · · , ej(2m−1)θ]/

√
2m. The number of qubits m

must satisfy [8]

−2m−1 ≤ a < 2m−1. (9)

In this distribution, the probabilities of two integers close to

a given real number a are greater than the other probabilities.

For example, if m = 3 qubits and a = −2.5, from (8), −2
and −3 are observed with equal probability. If a = −2.3, −2
is observed more frequently than −3.

C. Proposed GAS for Real-Valued HUBO

As previously reviewed in Section III-B, in their innovative

study [8], Gilliam et al. proposed two methods for handling

real-valued coefficients, but did not specifically investigate

how GAS behaves in the case of direct encoding. In such

a case, in our evaluation, GAS samples a wrong value of

the objective function, which obeys the Fejér distribution. For

example, if the objective function value is −2.5, we may

observe an integer value less than or equal to −3. A value

lower than the actual value is updated as the minimum and set

as a new threshold yi. Then, no states satisfy E(b)− yi < 0,

and one of all states is randomly sampled. As a result, GAS

will not be able to obtain an optimal solution.

A possible solution here is that we ignore y evaluated in

QD. Instead, we use b returned by GAS and calculate a

correct objective function value y = E(b) in CD. Since the

quantum circuit using the direct encoding amplifies the states

of interest with high probability, with this simple modification,

GAS obtains an optimal solution correctly. Overall, the above

procedure is summarized in Algorithm 2.

We have two major drawbacks. First, Algorithm 2 increases

query complexity in CD, although the asymptotic order re-

mains the same. Second, the probability amplification may

not be sufficient, which is illustrated in Fig. 4.
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Fig. 3. Quantum circuit corresponding to E(b) = 1 + b0 − 1.8b1b2b3.
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Fig. 4. Output probabilities of the circuit shown in Fig. 3, where only the
top 16 states are shown.

As a specific example, Fig. 3 shows a quantum circuit

corresponding to the objective function E(b) = 1 + b0 −
1.8b1b2b3, where we set n = 4 and m = 3. Since we

used the direct encoding method, −1.8b1b2b3 was represented

as UG(−1.8π/4), and it was associated with three qubits

|b1〉, |b2〉, and |b3〉. Additionally, Fig. 4 shows the output

probabilities of Fig. 3, where only the top 16 states are shown

for the sake of readability. As given in (8), the direct encoding

method may not result in a unique integer. For example, the

states (0111,−1) and (0111,−2) had positive probabilities

in Fig. 3. The state of interest here is b = [0 1 1 1] and

E(b) = 1 − 1.8 = −0.8 < 0. That is, before amplitude

amplification, at L = 0, integers close to the real value are

observed, and after amplification, at L > 0, the negative

states are observed with high probabilities. As shown in

Fig. 4(d), the states (0111,−1) and (0111,−2) were amplified

as the number of Grover operators L increased, while the

wrong state (0111,−2) was observed with a lower probability

than (0111,−1). Another wrong state (1111,−1) was also

observed with a low probability. This is the reason why the

correction of the objective function value is required for real-

valued GAS, as summarized in Algorithm 2.

D. Evaluation Metrics

In the literature, a quantum circuit has been evaluated by the

numbers of qubits and gates and its depth, while a quantum

algorithm has been evaluated by query complexity.
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Fig. 5. System model for MIMO with Nt transmit and Nr receiver antennas.

1) Numbers of Qubits and Gates and Depth: The size of the

quantum circuit determines its feasibility. As the numbers of

qubits and gates in a quantum circuit increase, more advanced

quantum computation becomes possible. At the same time,

however, it becomes more susceptible to noise and more

difficult to implement in hardware. In our evaluations, the

number of required qubits is represented as n + m, and the

number of quantum gates is derived as a function with respect

to n and m.

2) Query Complexity [13]: To investigate query complex-

ity, we count how many times the objective function is queried.

Specifically, the query complexity in the classical domain (CD)

is the number of times the objective function is evaluated,

i.e., i in Algorithm 1. By contrast, the query complexity in

the quantum domain (QD) is the number of times the Grover

operator G is applied, i.e., L0+L1+ · · ·+Li in Algorithm 1.

The definitions of query complexities in CD and QD are the

same as those used in [13].

IV. QUANTUM SPEEDUP FOR MIMO MLD

Conventional studies on quantum-assisted wireless commu-

nications have not considered a specific construction method of

the quantum circuit. In many cases, the circuit to calculate an

objective function has been idealized as a black-box quantum

oracle. In this section, we formulate the MIMO MLD as a

new real-valued HUBO problem, which can be represented

by a quantum circuit, as described in Section III. We also

analyze the probability distribution of the objective value for

enabling further speedup.

A. System Model

We consider a MIMO communication scenario with Nt

transmit antennas and Nr receive antennas, as illustrated in

Fig. 5. The input n-bit sequence b = [b0 b1 · · · bn−1] ∈ Bn is

mapped to a symbol vector s = [s0 s1 · · · sNt−1] ∈ CNt×1,

where st for 0 ≤ t ≤ Nt − 1 denotes a Gray-coded data

symbol specified in 5G NR [35]. We represent this bit-to-

symbol mapper as s = M(b) = M(b0, · · · , bn−1), which will

be defined in detail in Section IV-B. The baseband received

symbols r ∈ CNr×1 is given by

r =
1√
Nt

Hcs+ σv, (10)
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where Hc ∈ CNr×Nt denotes the channel matrix, and v ∈
C

Nr×1 denotes the additive white Gaussian noise. Here, we

assume the narrowband Rayleigh flat fading. That is, each

element of Hc, hut, and each element of v, vu, follow the

standard complex Gaussian distribution CN (0, 1) for 0 ≤
u ≤ Nr − 1 and 0 ≤ t ≤ Nt − 1. The SNR is defined

as γ = 1/σ2 because the symbol vector has the power

constraint E
[
‖s/√Nt‖2F

]
= E

[
∑Nt−1

t=0 |st|2/Nt

]

= 1. The

constellation size, or modulation order, is denoted by Lc, and

the transmission rate is calculated by

n = Nt log2(Lc) [bit/symbol]. (11)

Corresponding to (10), the ideal MLD is performed as

b̂0, · · · , b̂n−1 = arg min
b0,··· ,bn−1

E(b0, · · · , bn−1), (12)

where we have the objective function

E(b0, · · · , bn−1) =

∥
∥
∥
∥
r− 1√

Nt

HcM(b0, · · · , bn−1)

∥
∥
∥
∥

2

F

.

(13)

From (12), the exhaustive search using a classical computer

requires the computational time complexity of O(2n), which is

equivalent to the query complexity in CD. Both complexities

increase exponentially with the transmission rate n.

To mitigate the exponential complexity, a number of low-

complexity detectors have been proposed in the literature. The

classic ZF detector uses the pseudo-inverse matrix of

WZF =

{

(HH
c Hc)

−1HH
c (Nt ≤ Nr)

HH
c (HcH

H
c )

−1 (Nt > Nr)
(14)

and enables independent detection of data symbols as

b̂0, · · · , b̂n−1 = M−1(WZFr), (15)

where M−1 (·) denotes the hard-decision symbol-to-bit

demapper. Similarly, the MMSE detector uses

WMMSE =

{

(HH
c Hc + σ2I)−1HH

c (Nt ≤ Nr)

HH
c (HcH

H
c + σ2I)−1 (Nt > Nr)

(16)

and obtains

b̂0, · · · , b̂n−1 = M−1(WMMSEr). (17)

An MMSE-based interference cancelation method has been

adopted in typical wireless standards such as 5G NR. The

performance of a ZF or MMSE detector is worse than that of

MLD. In general, low-complexity detectors improve complex-

ity at the sacrifice of performance.

The above system model and detectors are typical and

common in the field of wireless communications. Since we

consider a general MIMO system, the simulation results given

in this paper are the same as those for a multicarrier scenario

without inter-subcarrier interference or an uplink multi-user

scenario in which Nt single-antenna user terminals transmit

their symbols and these symbols are received simultaneously

at a base station equipped with Nr antennas.
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11
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16-QAM

0000 0010

0001 0011

0101 0111

0100 0110

1010 1000

1011 1001

1111 1101

1110 1100

Fig. 6. Constellation for Gray-coded data symbols specified in the 5G NR
standard [35]

B. Proposed Method to Transform MLD into HUBO

As described in Section III, the proposed GAS is capable

of solving a real-valued HUBO problem. We transform the

objective function of MIMO MLD (13) into a HUBO problem.

Specifically, we use the relationship between transmission

bits and data symbols, which is specified in the 5G NR

standard [35]. The input n-bit sequence is denoted by b =
[b0 b1 · · · bn−1] ∈ Bn and the symbol vector is denoted

by s = [s0 s1 · · · sNt−1] ∈ CNt . Then, BPSK symbols

s = M2(b) are generated by [35]

st =
1√
2
[(1 − 2bt) + j(1− 2bt)] (18)

and QPSK symbols s = M4(b) are generated by [35]

st =
1√
2
[(1− 2b2t) + j(1 − 2b2t+1)]. (19)

Furthermore, 16-QAM symbols s = M16(b) are generated by

[35]

st =
1√
10

(1− 2b4t+0)[2− (1 − 2b4t+2)]

+
j√
10

(1− 2b4t+1)[2− (1 − 2b4t+3)] (20)

and 64-QAM symbols s = M64(b) are generated by [35]

st =
1√
42

(1− 2b6t+0)[4 − (1− 2b6t+2)[2− (1− 2b6t+4)]]

+
j√
42

(1− 2b6t+1)[4 − (1− 2b6t+3)[2− (1− 2b6t+5)]].

(21)

A similar relationship for 256-QAM is defined in [35] and its

extension for higher modulation orders can be defined easily.

Overall, Fig. 6 shows the Gray-coded data symbols defined by

(18), (19), and (20).

Our proposed objective function is obtained by substituting

M(·) in (13) with (18), (19), (20), or (21), which contains n
number of binary variables b0, · · · , bn−1. In the cases of BPSK

and QPSK, our objective function results in a quadratic form

since both symbols are represented by a linear relationship

and the MLD (12) contains the square of the Frobenius norm.

In the case of 16-QAM, the objective function results in a

quartic form since the symbols are represented by a quadratic

relationship. Similarly, the objective function results in a sextic

form in the 64-QAM case.
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The use of data symbols specified in 5G NR is not straight-

forward since the objective function inevitably contains higher-

order terms if the modulation order is 16 or higher. Thus, in

this form, the conventional QA requires a transformation from

HUBO to QUBO, and this transformation involves an increase

in binary variables, making the problem more difficult. Our

proposed approach is only possible with the aid of the real-

valued support of GAS. Because of GAS, the query complexity

is expected to be reduced from O(2n) to O(
√
2n).

The structure of the proposed objective function depends

only on the number of transmit antennas, Nt, the number

of receive antennas, Nr, and the modulation order, Lc. The

coefficients in the objective function change depending on

the channel matrix Hc. The calculation cost of coefficients

determines the complexity of classical processing required

before executing GAS, which relates to the latency of the

algorithm. If we approximate the computational complexity as

the number of real-valued multiplications, the largest burden is

the product of channel coefficients, such as h00h
∗
01. The total

number of multiplications is calculated as 4NrNt(Nt−1)/2 =
O(NrN

2
t ), which is sufficiently small with respect to the

detection complexity.
Example (QPSK): As a specific example, we consider the

QPSK case (19) with Nt = Nr = 2. The objective function

of (13) can be transformed into

E(b0, b1, b2, b3)

=2

1∑

u=0

1∑

t=0

(Re(hutr
∗
u)b2t − Im(hutr

∗
u)b2t+1)

+2a1(b0b2 + b1b3) + 2a2(b0b3 − b1b2)

−(a1 + a2)(b0 + b3)− (a1 − a2)(b1 + b2), (22)

where we have a1 = Re(h00h
∗
01) + Re(h10h

∗
11) and a2 =

Im(h00h
∗
01)+Im(h10h

∗
11). This function (22) is in a quadratic

form.
Example (16-QAM): Additionally, Fig. 7 exemplifies a

specific quantum circuit for the 16-QAM case with Nt =
Nr = 2, where we have n = 8 qubits for binary variables,

m = 5 qubits for real-valued encoding, random channel

coefficients

Hc = [[0.748510757437062− 0.014877263039446401j,

1.3215983896521515+ 0.06298233870206783j],

[0.6371630706424066− 0.14262155021296025j,

−0.3888005272494009− 0.15170387681055802j]],
(23)

and the original information bits of 00110101. As shown

in Fig. 7, the objective function results in a quartic form:

E(b) = 1.22b0b2b4b6+0.61b0b2b4+ · · · using (13) and (20).

As an example, the coefficient of b0b2b4b6 is calculated as
1
2 · 4√

10
· 4√

10
(h00h

∗
01 + h∗

00h01 + h10h
∗
11 + h∗

10h11) = 1.22,

which is rounded down to the second decimal place for simple

illustration.

C. Proposed Threshold for Further Speedup

GAS obtains a global minimum solution by updating the

threshold value yi and amplifying the probability amplitudes

corresponding to values smaller than the threshold. The query

complexity can be reduced by setting the initial threshold

in a manner different from that in classic random sampling,

although the asymptotic performance may not change. In this

section, we derive the probability distribution of the objective

function value and use it to determine a strict threshold, which

enables further speedup.

If the information bits in (13) are estimated correctly, the

minimum value of (13) is the Frobenius norm of additive noise

v ∈ CNr×1 as follows:

Emin = σ2
︸︷︷︸

known

Nr−1∑

u=0

|vu|2

︸ ︷︷ ︸

unknown

. (24)

That is, Emin depends on the noise variance σ2, which is

typically known at the receiver, and instantaneous noise vu,

which is unknown in any case. Since the noise is assumed to

follow the complex Gaussian distribution, the magnitude of the

norm follows the Rayleigh distribution, and its square follows

the exponential distribution. As a result, Emin in (24) follows

the Erlang distribution, whose probability density function is

f(y) =
γNryNr−1e−γy

(Nr − 1)!
, (25)

where we have SNR γ = 1/σ2. The corresponding cumulative

distribution function (CDF) is given by

F (y) = Pr[Y ≤ y] = 1− e−γy
Nr−1∑

u=0

(γy)u

u!
. (26)

As an example, if we consider the case with Nr = 2, the

CDF is calculated as

F (y) = Pr[Y ≤ y] = 1− e−γy(1 + γy) (27)

from (26). Fig. 8 exemplifies CDF (27) when SNR is varied

as γ = 5 to 20 dB. Additionally, the CDF of the simulated

objective function values with Nt = 2 and QPSK is also

plotted. As shown in Fig. 8, if the SNR is sufficient, such as

above 10 dB, the theoretical and simulated values are identical.

Thus, it is possible to know in advance that the minimum

value to be calculated is below a certain threshold, which can

be determined with a very high degree of certainty. Given an

SNR γ, theoretical values of (26) can be used to determine a

strict threshold.

From (26), the probability that the threshold y is below the

minimum value is

Pr[Y > y] = e−γy(1 + γy). (28)

Let ỹ be the threshold to be determined and P be a small

constant probability, such as P = 10−3 and 10−4. Replacing

y and Pr[Y > y] in (28) with ỹ and P yields

P = e−γỹ(1 + γỹ). (29)

Dividing both sides by −e gives

−P

e
= −(1 + γỹ)e−(1+γỹ). (30)
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Fig. 7. Quantum circuit corresponding to objective function of 16-QAM detection.
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Fig. 8. Cumulative distribution of the minimum of objective function values
(27).

Then, using the Lambert W function, we obtain

W−1

(

−P

e

)

= −(1 + γỹ) = −
(

1 +
ỹ

σ2

)

, (31)

where W−1(·) denotes the lower branch of the Lambert W
function, i.e., W−1(·) ≤ −1 and W−1(−1/e) = −1. Finally,

the threshold to be determined is

ỹ = σ2
︸︷︷︸

known

ν
︸︷︷︸

known

, (32)

which is similar to (24), and

ν = −1−W−1

(

−P

e

)

. (33)

Here, ν is a positive constant and is calculated once before

running our proposed algorithm. For example, we have ν =
9.23 if P = 10−3 and ν = 11.8 if P = 10−4.

For further speedup, we opt to use the output of the MMSE

detector (16). In [13], Botsinis et al. proposed the MMSE-

based threshold of

ȳ = E(b̄0), (34)

where we have a rough estimate b̄0 = M−1(WMMSEr). Our

proposed threshold ỹ, which is simpler than ȳ, can be used

together with ȳ. Specifically, we calculate both ỹ and ȳ at

the beginning of Algorithm 2, set the initial threshold as the

smaller of the two, and initialize the first solution with b̄0. Let

b0 be a random n-bit sequence. The initial threshold used for

the proposed Algorithm 2 can be summarized as follows:

y0 =







E(b0) (Original GAS [8])

ȳ (MMSE-based threshold [13])

ỹ (Proposed threshold)

min(ȳ, ỹ) (Proposed combination)

. (35)

One problem with the proposed threshold ỹ and the combi-

nation min(ȳ, ỹ) is that they may become smaller than the

actual minimum. In this case, since there are no states of

interest, GAS will be in a state where the solution bi in

Algorithm 2 is not updated. The probability of this undesirable

event occurring is P , i.e.,

Pr[ỹ < Emin] = Pr[min(ȳ, ỹ) < Emin] = P, (36)

because we have the relationship Pr[ȳ < Emin] = 0. Then, it

can be expected that the proposed threshold ỹ may degrade

the bit error ratio (BER) significantly if P is inappropriate.

Specifically, the BER of the proposed threshold ỹ is approxi-

mated by

P · 0.5 + (1− P ) · BERMLD, (37)

where BERMLD is the BER of MLD. In the proposed combi-

nation method, we initialize the first solution with the MMSE

output b̄0. Since the initial threshold min(ȳ, ỹ) becomes

smaller than the actual minimum with probability P , the BER

of the proposed combination method is approximated by

P · BERMMSE + (1 − P ) · BERMLD, (38)

where BERMMSE is the BER of the MMSE detector. Both (37)

and (38) indicate that the design of P exerts no significant

effect as long as it is smaller than BERMLD, which can

be calculated exactly in a closed form in advance. For our

performance analysis, the effect of P is shown in Fig. 13.

V. PERFORMANCE ANALYSIS

In this section, we analyze the number of quantum gates

required by GAS, which is represented as a function of

the numbers of qubits n and m. Then, we investigate the

performance of the proposed formulation in terms of BER

and evaluate the proposed algorithm in terms of the rate
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of convergence. Here, both integer approximation and direct

encoding are considered. Finally, we evaluate the effects of

the proposed threshold.

A. Algebraic Analysis of the Number of Quantum Gates

A quantum circuit for GAS is composed of H, X, Z,

phase, controlled-phase gates, and the IQFT. In particular,

the state preparation operator Ayi
is the most complex part

corresponding to the objective function and is dynamically

configured in accordance with the threshold yi. In the quantum

circuit Ayi
, the number of controlled-phase gates depends on

the number of terms in the objective function. We therefore

derive the number of terms in the objective function that

correspond to each order in an algebraic manner. Ignoring the

power scaling factor, the objective function of MIMO MLD

(13) is transformed into

Nr−1∑

u=0

|ru − hu0s0 − hu1s1 − · · · − hu(Nt−1)sNt−1|2

=

Nr−1∑

u=0

(ru − hu0s0 − hu1s1 − · · · − hu(Nt−1)sNt−1)

· (ru − hu0s0 − hu1s1 − · · · − hu(Nt−1)sNt−1)
∗
. (39)

Here, we focus on three types of terms: first-order terms such

as −r∗0h00s0 and −r0h
∗
00s

∗
0, squares of the same symbol such

as |h00|2|s0|2 and |h01|2|s1|2, and products of two symbols

such as h00h
∗
10s0s

∗
1 and h∗

00h10s
∗
0s1.

For example, in the relatively simple QPSK case, squares of

the same symbol result in constant terms because of (19). First-

order terms directly result in first-order terms with respect

to binary variables. Products between two symbols result in

products of binary variables. If Nt = 2 and Nr = 2, four

second-order terms appear: b0b2, b1b3, b0b3, and b1b2. The

number of corresponding terms is equal to the combination

of two choices from Nt antennas, e.g.,
(
Nt

2

)

=
Nt(Nt − 1)

2
=

n(n− 2)

8
, (40)

where we have the relationship n = Nt · log2(Lc) = 2Nt.

In total, the number of second-order terms is calculated as

4 · n(n− 2)/8 = n(n− 2)/2.

Extending the QPSK case, we counted the number of terms

in the objective function for each modulation order and derived

the number of quantum gates required by GAS. Table II

summarizes the derived results, where the quantum gates

were categorized by type. As given in Table II, the number

of controlled-phase gates mainly depends on the number of

binary variables n. Here, 1-CR represents the controlled-phase

gate, and 2-CR, 3-CR, · · · represent multi-controlled-phase

gates. Since we have the relationship n = Nt · log2(Lc), the

quantum circuit becomes increasingly complex depending on

the square of the number of antennas Nt and the modulation

order Lc.

We analyze the number of quantum gates in the entire circuit

GLiAyi
|0〉n+m, where we have G = Ayi

DAH
yi
O. In each

iteration, the Grover operator is applied Li times, where Li

is a uniform random number. O is composed of a single Z

1x approx.

3x approx.

20x approx.

10x approx.

Fig. 9. BER for the QPSK case with Nt = Nr = 2.

gate and D is the Grover diffusion operator, each of which is

repeated Li times. The other part contains (2Li + 1)(n+m)
H gates, (2Li+1)m phase gates, (2Li+1)c controlled-phase

gates, and (2Li+1) IQFT, where c is the number of controlled-

phase gates given in Table II. In summary, Nt and Lc affect

the number of gates by the power of two, while m and Li

affect it in direct proportion.

Real quantum computers rely on decomposed elementary

gates: single unitary gates and controlled NOT gates [36].

Specifically, a phase gate with c control qubits is decomposed

into O(c) elementary gates. Thus, according to Table II,

the number of elementary gates required for controlled-phase

gates is O(cn2m) in total. Additionally, IQFT requires O(m2)
elementary gates [1]. Here, the only parameters that can be

designed are n and m. With the aid of our efficient HUBO

formulation, the number of qubits n cannot be further reduced,

since the search space size of MIMO ML detection is 2n.

Later, we investigate whether our real-valued GAS can reduce

m.

B. Effects of Integer Approximation

First, Fig. 9 shows BER of the classic MLD and the

proposed formulations that consider the integer approximation

with different accuracies. Specifically, the real values were

multiplied by 1, 3, 10 or 20, and approximated by rounding

them to the nearest integers. As references, the BER curves of

ZF, MMSE, and the real-valued formulation were also plotted.

To analyze the effects of approximation accuracy, BER values

were calculated using the state-of-the-art optimization solver,

IBM CPLEX, instead of quantum simulations. As shown in

Fig. 9, BER performance varied significantly depending on

the accuracy of the conventional integer approximation. High

approximation accuracy leads to large integers, resulting in an

increase in the number of qubits m. In contrast, the proposed

real-valued formulation achieved the same performance as the

classic MLD. This observation indicates that the proposed real-

valued GAS algorithm must be invoked to solve the MIMO

MLD problem on a quantum computer.

Next, Fig. 10 shows the average objective function values

when increasing the number of iterations, where iterations in
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TABLE II
NUMBER OF QUANTUM GATES REQUIRED FOR Ayi (n-BIT TRANSMISSION WITH m-BIT ACCURACY)

Gate BPSK QPSK 16-QAM 64-QAM

H n+m = O(n+m) n+m = O(n+m) n+m = O(n+m) n+m = O(n+m)
R m = O(m) m = O(m) m = O(m) m = O(m)
1-CR nm = O(nm) nm = O(nm) nm = O(nm) nm = O(nm)
2-CR n(n− 1)m/2 = O(n2m) n(n− 2)m/2 = O(n2m) n(n− 3)m/2 = O(n2m) n(n− 4)m/2 = O(n2m)
3-CR 0 0 n(n− 4)m/2 = O(n2m) n(n− 6)m + nm/3 = O(n2m)
4-CR 0 0 n(n− 4)m/8 = O(n2m) 5n(n− 6)m/6 = O(n2m)
5-CR 0 0 0 n(n− 6)m/3 = O(n2m)
6-CR 0 0 0 n(n− 6)m/18 = O(n2m)
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(a) QPSK (3x approximation, n = 4, m = 6 qubits).
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(b) 16-QAM (14x approximation, n = 8, m = 8 qubits).

Fig. 10. Average objective function values with the integer approximation
and Nt = Nr = 2.

both CD and QD were considered. We assumed a sufficiently

high SNR and the fixed 2 × 2 channel matrix given in (23).5

We used the original GAS with a random initial threshold

and terminated the simulation if the objective function value

remained the same more than 20 times in CD. In Fig. 10(a),

real values were multiplied by 3 and rounded down to integers,

and in Fig. 10(b), real values were multiplied by 14 and

were approximated. The number of qubits m required for

encoding the value E(b)− yi was set to an integer sufficient

not to overflow, i.e., m = 6 in Fig. 10(a) and m = 8 in

5Note that we observed the same trend for different channel coefficients
and SNRs.

Fig. 10(b). Note again that the integer approximation requires

more qubits to encode the value. Because quantum simulations

with n+m = 16 qubits are time-consuming, we fixed the input

bits to 00110101 in Fig. 10(b), while the bits were generated

randomly in Fig. 10(a). For a clear illustration, we added a

constant value to the objective function so that Emin = 0.

It was observed in Fig. 10(a) that the query complexities of

GAS in CD and QD were almost the same as in the exhaustive

search of MLD. By contrast, in Fig. 10(b), GAS exhibited

better query complexities in both CD and QD than did MLD.

That is, the quantum advantage improved as the problem size

increased.

C. Effects of Direct Encoding

Similar to Fig. 10, Fig. 11 shows the average objective

function values when increasing the number of iterations in

CD and QD, where we used direct encoding. The simulation

parameters were the same as those used in Fig. 10 except for

the real-valued expression and the number of required qubits

m. Specifically, the number of qubits m = 6 in Fig. 10(a)

was reduced to m = 5 in Fig. 11(a). Similarly, the number of

qubits was reduced from m = 8 to m = 5 in Fig. 11(b).

As shown in Fig. 11, the same trend as in Fig. 10 was

observed. The important aspect here is that almost the same

query complexities were achieved despite the reduction in the

number of required qubits m. Hence, our proposed real-valued

GAS is capable of reducing the size of quantum circuits while

maintaining a good performance.

Depending on the channel coefficients and noise, the integer

approximation requires a different number of qubits. Since

both follow the standard Gaussian distribution, the probability

of 0 is the highest, and to deal with smaller values, a larger

factor must be multiplied to the objective function, resulting in

a larger m. By contrast, direct encoding is capable of keeping

m constant. The only disadvantage is that the probability

amplification of GL may become insufficient, which was also

demonstrated in Fig. 4.

To investigate the disadvantage of the proposed real-valued

GAS and insufficient amplification, in Fig. 12, we generated

random channel coefficients and investigated the probability

density distribution of the number of queries required to reach

the optimal solution, where the parameters were the same

as those used in Fig. 10(a) except that m was minimized

depending on the random channel coefficients. It was observed

in Fig. 12 that query complexities in CD and QD increased

compared with the ideal case. Here, the same trend was ob-

served for different SNRs. Albeit at this expense, the proposed
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(a) QPSK (n = 4, m = 5 qubits).
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(b) 16-QAM (n = 8, m = 5 qubits).

Fig. 11. Average objective function values with direct encoding and Nt =
Nr = 2.
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Fig. 12. Number of queries required to reach the optimal solution.

algorithm could reach the optimal solution in any case. Note

that the integer approximation with the same m as in direct

encoding could not be plotted in Fig. 12 because it was unable

to reach the solution in most cases.
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Fig. 13. BER transition with respect to the number of iterations, where we
used random channel coefficients, QPSK, Nt = 2, Nr = 2, and SNR = 20
dB.

D. Effects of Initial Threshold for Further Speedup

Finally, in Fig. 13, we show the results of evaluating the

proposed initial threshold for GAS described in Section IV-C.

Here, we averaged BER with random channel coefficients

and noise, considered SNR of 20 dB, and assumed idealized

quantum circuits to examine the impact of the initial thresh-

old only. Other parameters were the same as those used in

Fig. 11(a). Fig. 13(a) shows the number of queries in CD,

while Fig. 13(b) shows these in QD. Note that the vertical axis

is BER rather than the objective function value. Specifically,

at the left end of Fig. 13, BER of 0.5 corresponds to the bit

errors between the input bits b and the random bits b0, and

BER of 6.8×10−3 corresponds to the errors between b and the

MMSE output b̄0. As shown in Fig. 13, in both CD and QD,

the proposed threshold, ỹ, converged to the optimal solution

much faster than the classic random threshold. The slopes

in the random and proposed thresholds differed significantly.

This is because the random threshold ranged from the best to

the worst cases, resulting in slow convergence in some cases.

To be more specific, in Fig. 13, the variance of the random

threshold E(b0) was 14.30 at the first iteration. By contrast,

the proposed threshold ỹ is determined by constant factors, P
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and SNR, and its variance is always zero. Thus, it significantly

improved convergence on average.

It was also found in Fig. 13 that the proposed threshold

achieved the best performance for P = 10−4 and exhibited

lower performance for P = 10−3. As described in Sec-

tion IV-C, P equals the probability that GAS is in a state where

the solution is not updated. That is, an event of BER = 0.5
occurred with probability P = 10−3, and it resulted in the

error floor of BER around 10−3. This result indicates that the

parameter P has no significant impact if it is smaller than

BER. Since the exact BER at a given SNR can be calculated

in a closed form in advance, an appropriate P can also be

determined in advance accordingly.

Additionally, in Fig. 13, the proposed threshold combined

with the MMSE output achieved a faster convergence com-

pared with the conventional MMSE only case. This im-

provement was greater for CD than for QD. That is, the

proposed threshold is particularly useful for improving the

query complexity in CD. This is because it aims to set a

strict threshold even in the case of erroneous MMSE output.

Errors in MMSE estimation lead to higher objective function

values and may increase the number of solutions, which can

be avoided by adopting the proposed combination. To be more

specific, at the first iteration, the variance of the MMSE-based

threshold ȳ was 1.58 · 10−2, while that of the proposed com-

bination min(ȳ, ỹ) was much smaller, 3.76 ·10−5, resulting in

the faster convergence. The performance advantage increased

upon increasing SNR, which can be verified from the results

shown in Fig. 8. As confirmed in Fig. 8, the gap between

simulated and theoretical values decreased upon increasing

SNR.

In Fig. 13, the conventional GAS using the random thresh-

old exhibited slower convergence than the classic MLD. It

can be inferred that this slower convergence was caused by

the smaller search space. Since the quadratic speedup is an

improvement from O(2n) to O(
√
2n), the larger search space

leads to the larger reduction. In Fig. 14, we considered the case

of 16-QAM, where other parameters were same as those used

in Fig. 13. The classic MLD required 162 = 256 iterations

to reach the optimal solution in the worst case. As shown

in Fig. 14, the conventional MMSE-based threshold exhibited

an increase in BER after the first few iterations. This issue

is caused because improvements in objective function values

may not correspond to improvements in BER in some cases.

By contrast, the proposed combination successfully avoided

the issue and reached the optimal solution with reduced

query complexity. This advantage is expected to increase as

the search space size grows, and the proposed approach is

especially beneficial for a large-scale MIMO system.

VI. CONCLUSIONS AND FUTURE WORKS

In this paper, we proposed a GAS-based quantum algorithm

that supports real-valued HUBO. Then, as an application ex-

ample, we formulated the MIMO MLD as a HUBO problem.

The complexity of MLD exponentially increases with the

transmission rate, and low-complexity detectors sacrifice the

achievable performance. Unlike in conventional studies, we
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Fig. 14. BER transition with respect to the number of iterations, where we
used random channel coefficients, 16-QAM, Nt = 2, Nr = 2, SNR = 20
dB, and P = 10−3.

constructed specific quantum circuits instead of assuming an

idealized quantum oracle. This enabled us to analyze the

number of qubits and quantum gates in an algebraic manner.

To further accelerate the algorithm, we derived the probability

distribution of the objective function value and conceived a

unique threshold to sample better states. Assuming FTQC,

simulations demonstrated the potential for reducing query

complexity in CD and providing a quadratic speedup in QD.

Since this paper focused on a specific construction method

for quantum circuits and their algebraic analysis, we consid-

ered only the hard-decision MLD, instead of error-correcting

codes and soft-decision decoding for classical bits, which are

common in wireless standards. The error correction capability

improves with increasing code distance and length. For exam-

ple, the maximum code length of 5G NR is 1024 for polar code

and 8448 for LDPC. However, with the current computing

resources, it is a challenging task to represent such a large-

scale system as a specific quantum circuit. The proposed real-

valued GAS can be applied to soft-decision decoding, which

will be addressed in our future work.
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