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Abstract—Accurate channel model and channel estimation are
essential to empower extremely large-scale MIMO (XL-MIMO)
in 6G networks with ultra-high spectral efficiency. With the
sharp increase in the antenna array aperture of the XL-MIMO
scenario, the electromagnetic propagation field will change from
far-field to near-field. Unfortunately, due to the near-field effect,
most of the existing XL-MIMO channel models fail to describe
mixed line-of-sight (LoS) and non-line-of-sight (NLoS) path com-
ponents simultaneously. In this paper, a mixed LoS/NLoS near-
field XL-MIMO channel model is proposed to match the practical
near-field XL-MIMO scenario, where the LoS path component
is modeled by the geometric free space propagation assumption
while NLoS path components are modeled by the near-field array
response vectors. Then, to define the range of near-field for XL-
MIMO, the MIMO Rayleigh distance (MIMO-RD) and MIMO
advanced RD (MIMO-ARD) is derived. Next, a two stage channel
estimation algorithm is proposed, where the LoS path component
and NLoS path components are estimated separately. Moreover,
the Cramér-Rao lower bound (CRLB) of the proposed algorithm
is derived in this paper. Numerical simulation results demonstrate
that, the proposed two stage scheme is able to outperform the
existing methods in both the theoretical channel model and the
QuaDRiGa channel emulation platform.

Index Terms—6G, extremely large-scale MIMO, channel esti-
mation, near-field.

I. INTRODUCTION

Due to the emergence of new applications such as digital

twin, holographic imaging, and extended reality, the spectral

efficiency of 6G is expected to grow tenfold [1]–[3]. To

achieve higher spectral efficiency, the extremely large-scale

multiple-input multiple-output (XL-MIMO) is regarded as one

of the most important technologies for 6G [4], [5]. Compared

with the massive MIMO technology for 5G, the sharp increase

of antenna aperture in XL-MIMO for 6G induces the fun-

damental change of the electromagnetic field property. The

electromagnetic field can be divided into the far-field region

and the near-field region. The boundary between these two

regions is the Rayleigh distance (RD) Z = 2D2/λ [6], which

is defined in a multiple-input single-output (MISO) scenario.
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The RD is proportional to the square of the array aperture D
and the inverse of wavelength 1

λ . Since the antenna number

in massive MIMO systems for 5G is not large enough (e.g.,

64 antennas in [7]), the near-field range of up to a few tens of

meters is negligible. For example, with the carrier frequency

at 28 GHz, the RD for an array with array aperture D as 0.1

m is only 1.9 m [8]. Thus, users are likely located in the

far-field region, where the far-field channel can be modeled

with planar wavefronts assumption. On the contrary, as the

antenna number dramatically increases in XL-MIMO systems

(e.g., 1024 antennas in [9]), the near-field range will expand by

orders of magnitude, which can be up to several hundreds of

meters. For instance, with the array aperture as 1 m at 28 GHz,

the RD is 187 m, which nearly covers a region of a cellular

cell. In this case, the XL-MIMO channel should be modeled

under near-field assumption with spherical wavefronts.

In XL-MIMO communications, the transmitter equipped

with an extremely large-scale antenna array (ELAA) serves

multiple users by exploiting the high spatial multiplexing

gain. Except for antenna array, reconfigurable intelligent sur-

face (RIS) is one of the main implementation methods of

XL-MIMO [3], which is an energy efficient alternative of

ELAA. In order to obtain spatial multiplexing gain, XL-

MIMO should generate a directional beam with high array

gain by beamforming. Before realizing beamforming, the

channel state information (CSI) should be acquired in advance

by channel estimation [10], [11]. Since the electromagnetic

field properties change from far-field to near-field in the XL-

MIMO, the existing far-field channel model mismatches the

practical near-field XL-MIMO channel feature. In this case,

the existing far-field channel estimation methods suffer from

serious performance loss in the near-field XL-MIMO channel

model. Thus, it is important to delicately model the XL-MIMO

channel and design a near-field channel estimation scheme by

means of analyzing the propagation property in the near-field

XL-MIMO scenario [12].

A. Prior Contributions

The existing near-field channel estimation methods for

ELAA based communication systems can be divided into

two categories, i.e., MISO channel estimation [13], [14] and

MIMO channel estimation. For the near-field MISO scenario,

the receiver with a single antenna is in the near-field region of

the transmitter with ELAA. Considering the near-field effects,

the XL-MISO channel should be modeled under the condition

http://arxiv.org/abs/2205.03615v2
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Fig. 1. The XL-MIMO communication system with ELAA at the transmitter,
where the receiver is a multi-antenna user or a vehicle equipped with an
ELAA.

of the spherical wave assumption instead of the planar wave

assumption as far-field to ensure accuracy in the near-field

range [14], [15]. For example, [13] considers the scenario

where the transmitter employs an ELAA serving multiple

single-antenna receivers. In this scenario, the receivers are

located in the transmitter’s near-field region. Thus, the near-

field MISO channel between the transmitter and receiver is

modeled based on a near-field array response vectors accu-

rately, which relates not only to the angle but also to the

distance due to the spherical wave assumption. To estimate the

near-field channel, the whole two-dimensional distance-angle

plane is uniformly partitioned into multiple grids, and then the

corresponding near-field transform matrix can be constructed

by multiple near-field array response vectors associated with

different grids. By means of the constructed transform matrix,

the near-field channel shows sparsity in the transform domain,

which can be estimated by compressive sensing (CS)-based

methods with low pilot overhead. The authors of [14] also

consider the same scenario as that in [13], interestingly, it

is proved that the distance should be non-uniformly divided

to reduce the correlation among the near-field array response

vectors of the transform matrix in [14]. Based on the improved

transform matrix, a new sparse representation in polar-domain

is proposed in [14] for XL-MIMO. By utilizing this polar-

domain sparsity, a CS-based algorithm has been proposed to

increase the estimation accuracy.

The second category is based on the near-field XL-MIMO

scenario, where the transmitter employs an ELAA that serves

receivers with multiple antennas or even an ELAA as shown

in Fig. 1. For instance, an ELAA is installed on the top

of a train [16], [17], and the transmitter also deploys an

ELAA. Additionally, ELAA can also be integrated into large

infrastructures as revisers, such as the roof of airports and

the walls of stadiums. Additionally, XL-MIMO-based wire-

less backhaul for the ultra-dense network (UDN) is also a

promising use case in the future 6G [18]. Specifically, in UDN,

macrocell base stations (BSs) and many ultra-dense small-

cell BSs equipped with ELAAs cooperate to provide a high

data rate for users [19]. A premise to deploy UDN is the

reliable and large bandwidth backhaul connecting ultra-dense

small-cell BSs and macrocell BSs. In this case, the signal

propagation between these two kinds BSs should be modeled

under near-field assumption instead of far-field assumption.

Therefore, the backhaul connecting in UDN is also a prospec-

tive application for near-field XL-MIMO communications.

There are two typical kinds of methods for modeling near-

field XL-MIMO channel, i.e., utilizing approximation by the

far-field channel model [20] and the product of the near-field

array response vectors similar to far-field MIMO model [21]–

[23]. For the first kind, in [20], the ELAA at transmitter and

receiver are separated into subarrays with a small aperture.

The small aperture of the subarray leads to a small near-field

region. Thus, the subchannels between these subarrays can

be regarded as far-field channels due to the small apertures.

In this case, the whole channel between the transmitter and

receiver can be approximated by these far-field subchannels.

However, the accuracy of this method highly relies on the

number of subarrays and the distance between the transmitter

and receiver. As for the second kind of method based on the

near-field array response vectors, the authors of [21] draw

on the experience of the far-field MIMO channel model and

construct the near-field MIMO channel as the product of the

transmitter and receiver near-field array response vectors. By

utilizing the sparsity in polar-domain, the CS-based method

can be applied to the channel estimation problem under this

channel model.

However, the existing near-field XL-MIMO channel model

can only accurately describe the non-line-of-sight (NLoS) path

component of the near-field MIMO while leading to an inac-

curate description of the line-of-sight (LoS) path component.

The reasons are explained as below. 1) For the NLoS path

component, the signal radiates from the transmitter to the

scatterers and then to the receiver. Since the scatterers can

be regarded as single-antenna transceivers, the signal actually

propagates through two MISO channels. Therefore, the NLoS

path component can be presented as the product of transmitter

and receiver array response vectors. This modeling method

can apply to both far-field and near-field NLoS components.

2) As for the LoS path component, in the far-field scenario,

the LoS path component is modeled in the same way as the

NLoS path component. This is because the transmitter with a

small-aperture antenna array can be viewed as a point from the

receiver and vice versa, where the transmitting and receiving

processes are equivalent to two MISO propagation processes.

Thus, in the far-field scenario, the LoS path component can

also be represented by the product of transmitter and receiver

array response vectors. However, in a near-field XL-MIMO

system, due to the large aperture of ELAA, the receiver

cannot be viewed as a point from the transmitter and vice

versa, and the transmitting and receiving processes cannot

be approximated by the previous theoretical model of two

MISO propagation processes. In this case, there exists a

huge gap, which is defined as the accuracy loss, between the

propagation distance of the practical LoS path component and

that of the theoretical model based on two MISO processes.

Intuitively, the accuracy loss will increase as the array aperture
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increases, especially when the transmitter and receiver employ

the ELAAs simultaneously.

In this case, the existing near-field XL-MIMO channel

model based on near-field array response vectors mismatches

the XL-MIMO scenario in practice. Therefore, the existing

near-field channel estimation schemes cannot estimate the XL-

MIMO channel accurately. Unfortunately, to the best of our

knowledge, there is no study of this problem for XL-MIMO

in the current literature.

B. Our Contributions

In order to solve this problem, an accurate mixed LoS/NLoS

near-field XL-MIMO channel model is first proposed. Then,

a two stage XL-MIMO channel estimation scheme is pro-

posed for the mixed LoS/NLoS near-field XL-MIMO channel

model1. Our specific contributions are listed below.

1) In order to accurately describe the near-field XL-MIMO

channel, a mixed LoS/NLoS near-field XL-MIMO chan-

nel model is proposed. Specifically, the LoS path com-

ponents and NLoS path components are modeled sepa-

rately. The NLoS path components are modeled based on

the near-field array response vectors, which is similar to

the far-field array response vectors based on the far-field

channel model. By contrast, the LoS path component

is modeled based on the precise geometric free space

assumption.

2) Based on the proposed mixed LoS/NLoS near-field XL-

MIMO channel model, we derive the MIMO Rayleigh

distance (MIMO-RD) and MIMO advanced Rayleigh

distance (MIMO-ARD) to provide the near-field region

for the XL-MIMO scenario. In specific, similar to the

derivation of MISO-RD, by considering the condition

that the maximum phase discrepancy between the pro-

posed channel model and the far-field array response

vectors based XL-MIMO channel model in the free

space cannot exceed π/8, we first define the MIMO-

RD, which is proportional to the square of the sum of the

antenna array apertures of the transmitter and receiver.

Then, by considering the condition that the maximum

phase discrepancy between the proposed channel model

and the existing near-field channel model in the free

space is no more than π/8, the MIMO-ARD is cal-

culated, which is proportional to the product of the

transmitter and receiver array apertures. The derived

MIMO-RD and MIMO-ARD show the bound of the

proposed channel model between the far-field array

response vectors based channel model and near-field

array response vectors based channel model, separately.

3) We propose a two stage channel estimation algorithm

for the proposed channel model to estimate the XL-

MIMO channel accurately. In our proposed two stage

channel estimation algorithm, the LoS and NLoS path

components are estimated separately. The LoS path com-

ponent estimation is first realized by searching collection

with coarse on-grid parameters, and then refined by

1Simulation codes are provided to reproduce the results in this paper:
http://oa.ee.tsinghua.edu.cn/dailinglong/publications/publications.html.

iteration optimization, while the NLoS path components

are estimated by orthogonal matching pursuit (OMP)-

based estimation with their polar-domain sparsity. More-

over, the Cramér-Rao lower bound (CRLB) and the

complexity of the proposed channel estimation algorithm

are derived in this paper. Finally, we provide numerical

simulation results to illustrate the effectiveness of our

scheme in both the proposed channel model and the

QuaDRiGa channel emulation platform.

C. Organization and Notation

Organization: The rest of the paper is organized as follows.

In Section II, we first introduce the signal model, and then

review existing near-field XL-MISO and XL-MIMO channel

models. In Section III, we propose the mixed LoS/NLoS

near-field XL-MIMO channel model. Then, the MIMO-RD

and MIMO-ARD are derived to determine the range of the

XL-MIMO near-field region in Section IV. In Section V, we

propose the corresponding channel estimation scheme based

on the proposed channel model, and analyze CRLB and its

complexity. Simulation results is provided in Section VI, and

finally, conclusions are provided in Section VII.

Notation: Lower-case and upper-case boldface letters a

and A denote a vector and a matrix, respectively; ||A||F
denotes the Frobenius norm; aH and AH denote the con-

jugate transpose of vector a and matrix A, respectively. The

circularly symmetric complex Gaussian distribution is denotes

by CN
(
µ, σ2

)
, with µ as mean set and σ2 as variance,

and U(−a, a) denotes the uniform distribution on (−a, a). ⊗
denotes the Kronecker product. I denotes the identity matrix.

floor denotes round down operation.

II. SYSTEM MODEL

In this section, the signal model of the near-field XL-MIMO

system used in this paper will be introduced first. Then, we

will review the existing near-field XL-MISO and XL-MIMO

channel models.

A. Signal Model

In this work, we consider that the transmitter and receiver

are equipped with N1-element and N2-element antenna arrays,

respectively. Since the antenna arrays are usually implemented

in a digital-analog hybrid manner with a few RF (radio

frequency) chains, we assume that RF chain numbers of the

transmitter and receiver are NRF
t and NRF

r . Let H ∈ CN2×N1

denotes the channel from transmitter to receiver. The corre-

sponding signal model can be presented as

ym = WHQsm + nm, (1)

where ym ∈ CNRF
r ×1, W ∈ CNRF

r ×N2 , Q ∈ CN1×NRF
t and

sm ∈ CNRF
t ×1 denote the received pilots signal, combining

matrix, the hybrid precoding matrix, and transmitted signal

in m-th times slots, and nm ∼ CN
(
0, σ2INRF

r

)
denotes the

NRF
r × 1 received noise with σ2 representing the noise power

after combining in the m-th times slots.

Denote pm = Qsm ∈ CN1×1, where the i-th element of the

pm is the signal transmitted by the i-th antenna at transmitter

http://oa.ee.tsinghua.edu.cn/dailinglong/publications/publications.html
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in m-th time slots. By collecting the received pilots in M time

slots, we have

Y = WHP+N, (2)

where Y = [y1,y2, . . . ,yM ], and P = [p1,p2, . . . ,pM ] and

N = [n1,n2, . . . ,nM ]. Y ∈ CNRF
r ×M , W ∈ CNRF

r ×N2 and

P ∈ CN1×M denote the received pilots signal, combining

matrix and the transmitted pilots signal in M times slots in a

coherence interval, and N ∼ CN
(
0, σ2INRF

r
⊗ IM

)
denotes

the N2 ×M received noise with σ2 representing the noise

power in M times slots. In channel estimation problem, we

need to estimate H with given P, W and Y. The number of

transmitter N1 is usually large in the XL-MIMO system. Thus,

to reduce the pilot overhead in a practical communication

system, the channel estimation scheme with low overhead

should be utilized (M < N1). Since the channel model is

significant for designing a channel estimation scheme, we will

review the current XL-MIMO channel models next.

B. Existing Near-Field XL-MISO Channel Model

Most of the existing near-field channel estimation works

consider that only the transmitter employs the ELAA, while

the receivers are usually equipped with a single antenna,

i.e., near-field XL-MISO scenario. The near-field XL-MISO

channel between the receiver and the transmitter hn-f can be

represented as

hn-f =

√
N1

L

L∑

l=1

αlb (θl, rl) . (3)

The near-field array response vector b (θl, rl) in (3) is derived

on the base of spherical wave assumption instead of planar

wave assumption, which can presented as [14]

b(θl, rl) =
1√
N1

[e−j 2π
λ

(r
(1)
l

−rl), · · · , e−j 2π
λ

(r
(N1)

l
−rl)]H ,

(4)

where rl denotes the distance of the l-th scatterer from

the center of the transmitter antenna array, r
(n1)
l =√

r2l + δ2n1
d2 − 2rlδn1d sin θl represents the distance of the

l-th scatterer from the n1-th transmitter antenna, δn1 =
2n1−N1−1

2 with n1 = 1, 2, · · · , N1, θl ∈ (−π/2, π/2) are

the practical physical angles, d is the antenna spacing of half

wavelength to avoid coupling between the antennas. It is worth

pointing out that a compact array with below half a wavelength

spacing can occur in XL-MIMO, which will cause coupling

between the antennas. In this case, the coupling effect should

be measured first and then modeled as a coupling coefficient

matrix with tunable loads [24] in the channel model.

By utilizing the Taylor expansion
√
(1 + x) ≈ 1 + 1

2x −
1
8x

2 +O(x2), the distance difference r
(n1)
l − rl in (4) can be

approximated by:

r
(n1)
l − rl ≈= −δn1dsin θl + δ2n1

d2
cos2 θl
2rl

. (5)

To exploit the sparsity of near-field channel, [14] proposed

a new transform matrix D to change the channel hn-f in (3)

into polar-domain, which can be presented as

D = [b(θ1, r
1
1), · · · ,b(θ1, rS1

1 ), · · · ,
b(θN1 , r

1
N1

), · · · ,b(θN1 , r
SN1

N1
)],

(6)

where each column of polar-domain transform matrix D is

a near-field array response vector sampled on the grid (θn1 ,

r
sn1
n1 ), with sn1 = 1, 2, · · · , Sn1 , Sn1 denotes the number

of sampled distances at θn1 . Therefore, the number of to-

tal sampled grids of the whole propagation environment is

S =
N1∑

n1=1

Sn1 . With help of D, hn-f in (3) can be presented

as

hn-f = DhP
n-f , (7)

where hP
n-f is the channel represented in polar-domain of size

S × 1. This near-field hP
n-f in (7) shows certain sparsity in

the polar-domain. The authors in [14] proposed the associ-

ated polar-domain based CS algorithm to solve the near-field

channel estimation problem.

C. Existing Near-Field XL-MIMO Channel Models

The existing near-field XL-MIMO channel model refers to

the far-field MIMO channel model. Specifically, the far-field

channel model is based on the production of the far-field array

response vectors. The near-field array response vectors are

utilized to replace the far-field array response vectors to model

near-field XL-MIMO channel [21], which is presented as

Hn-f =

L∑

l=1

glb(θ
l
r, d

l
r)b

H(θlt, d
l
t), (8)

where L denotes the number of path components, gl represents

the complex gain. b(θlt, d
l
t) and b(θlr, d

l
r) denote the near-field

array response vectors at transmitter and receiver on the base

of spherical wave assumption, which is denoted by

b(θlt, d
l
t) =

1√
N1

[e−j 2π
λ

(dl
t(1)−dl

t), · · · , e−j 2π
λ

(dl
t(N1)−dl

t)]H ,

b(θlr, d
l
r) =

1√
N2

[e−j 2π
λ

(dl
r(1)−dl

r), · · · , e−j 2π
λ

(dl
r(N2)−dl

r)]H ,

(9)

where θlt (θlr) represent the angle for the l-th path at

transmitter (receiver), and dlt (dlr) represent the distance

of the l-th scatterer from the center of the antenna ar-

ray of transmitter (receiver) for the l-th path, dlt(n1) =√
dlt

2
+ δ2n1

d2 − 2dltδn1dsin θ
l
t represents the distance of the

l-th scatterer from the n1-th element on transmitter antenna

array, and δn1 = 2n1−N1−1
2 with n = 1, 2, · · · , N1, and

dlr(n2) =
√
dlr

2
+ δ2n2

d2 − 2dlrδn2dsin θ
l
r represents the dis-

tance of the l-th scatterer from the n2-th transmitter antenna

array, and δn2 = 2n2−N2−1
2 with n = 1, 2, · · · , N2.
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The polar-domain transform matrix mentioned in (6) can be

presented as

Dt = [b(θ1, d
1
1), · · · ,b(θ1, dS1

1 ), · · · ,
b(θN1 , d

1
N1

), · · · ,b(θN1 , r
SN1

N1
)],

Dr = [b(θ1, r
1
1), · · · ,b(θ1, dS1

1 ), · · · ,
b(θN2 , r

1
N2

), · · · ,b(θN2 , r
SN2

N2
)],

(10)

where each column of the matrix Dt (Dr) is a near-field

array response vector sampled at angle θn1(θn2) and dis-

tance d
sn1
n1 (d

sn2
n2 ), with sn = 1, 2, · · · , Sn1(Sn2). Sn1(Sn2)

denotes the number of sampled distances at the sampled angle

θn1(θn2). Therefore, we can calculate the total number of all

sampled grids, i.e., the number of Dt (Dr) columns, which

can be presented as S1 =
N∑

n1=1
Sn1(S2 =

N∑
n2=1

Sn2).

On the base of this polar-domain transform matrix Dt and

Dr, the channel Hn-f can be represented by

Hn-f = DrH
P
n-fD

H
t , (11)

where HP
n-f is the S2 × S1 polar-domain XL-MIMO channel,

which also shows sparsity in the polar-domain.

In the existing near-field XL-MIMO channel model above,

the LoS path component is modeled as the same method

for NLoS path components, where the MIMO channel in

(8) can be modeled based on two MISO channels. This

method is not suitable for the LoS path component in a near-

field XL-MIMO scenario. Therefore, the existing near-field

channel model will mismatch the LoS path component of the

near-field XL-MIMO. Thus, the existing near-field channel

estimation algorithms cannot be utilized to address the XL-

MIMO channel estimation problem accurately. In order to

design the channel estimation algorithm for the XL-MIMO,

we should first provide an accurate description of the LoS

path component, which will be described in Section III.

III. THE PROPOSED MIXED LOS/NLOS NEAR-FIELD

XL-MIMO CHANNEL MODEL

In this section, we will first utilize the free space propaga-

tion assumption to accurately model the LoS path component

for each transmitter-receiver antenna pair. Then, the mixed

LoS/NLoS near-field XL-MIMO channel model is provided

to capture the different features of LoS and NLoS path

components, which are modeled separately.

A. LoS Path Component

For the near-field XL-MIMO LoS path component, each

transmitter-receiver antenna pair will experience different

propagation paths as shown in Fig. 2. Thus, in this case, the

channel model built with the near-field array response vectors

mismatches the practical feature of XL-MIMO near-field LoS

path component. As a result, instead of utilizing near-field

array response vectors like NLoS path components, we model

the LoS path component under the geometric free space prop-

agation assumption [25] for each transmitter-receiver antenna

pair. Specifically, H(n2, n1) denotes the LoS path component

q

r

Transmitter

Receiver

j

LoS path 

component

NLoS path 

component

Fig. 2. The proposed mixed LoS/NLoS near-field channel model for XL-
MIMO.

of channel between the transmitter’s n1-th antenna and the

receiver’s n2-th antenna, which can be represented as

H(n2, n1) =
1

rn2,n1

e−j 2π
λ

rn2,n1 , (12)

where rn2,n1 denotes the distance of the n1-th antenna at

receiver from the n2-th antenna at transmitter. It is worth to

point out that the free space path loss of each transmitter-

receiver antenna pair has been normalized as 1
rn2,n1

in this

paper. The rn2,n1 can be represented as

rn2,n1 =
√
(r cos θ − d2 sinφ)2 + (r sin θ + d2 cosφ− d1)2

=
√
r2+d21+d22+2(rd2 sin(ϕ+θ)−rd1 sin θ−d1d2 cosϕ)

(13)

where the r is the distance of the 1-st antenna at receiver

from the 1-st antenna at transmitter, ϕ denotes relative angle

between receiver and transmitter, and θ denotes the angle

of departure (AoD) of the signal. Moreover, d1 and d2 are

denoted as d1 = n1d and d2 = n2d, where d is antenna

spacing. Thus, by utilizing geometry relation in free space,

the channel can be presented as

HLoS = HLoS(r, θ, ϕ) =

[
1

rn2,n1

e−j2πrn2,n1/λ

]

N2×N1

,

(14)

Unlike the NLoS path components, the LoS path component

cannot be decoupled by near-field array response vectors.

Thus, the LoS path component cannot be presented by polar-

domain channel with transform matrices.

B. Proposed Mixed LoS/NLoS Near-Field XL-MIMO Channel

In order to capture both LoS and NLoS path components

features, we propose a mixed LoS/NLoS near-field XL-MIMO

channel model based on (11) and (14). The proposed XL-

MIMO channel model can be presented:
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H = HLoS +HNLoS

= HLoS(r, θ, ϕ) +Dr

(
L∑

l=1

glb
(
θlr, d

l
r

)
bH
(
θlt, d

l
t

)
)
DH

t .

(15)

It is worth noting that the LoS path component will degen-

erate into the same representation as NLoS path components

as the distance of the transmitter from the receiver increases

to a certain extent. Furthermore, if the distance continues

to increase, the proposed mixed LoS/NLoS near-field XL-

MIMO channel model will degenerate into a far-field MIMO

channel model. To prove this statement, in the next Section

IV, we will derive the boundary between the proposed mixed

LoS/NLoS near-field XL-MIMO channel model and far-field

MIMO channel model and define the Rayleigh distance for

the XL-MIMO scenario. Then, the boundary between the

proposed mixed LoS/NLoS near-field XL-MIMO and the

existing near-field XL-MIMO is provided and the advanced

Rayleigh distance for the XL-MIMO scenario is defined.

IV. THE DEFINITIONS OF RAYLEIGH DISTANCE FOR

NEAR-FIELD XL-MIMO

In this section, we will first define the MIMO Rayleigh

distance (MIMO-RD) to determine the boundary between

the proposed mixed LoS/NLoS near-field XL-MIMO channel

model and the far-field MIMO channel model. Then, MIMO

advanced Rayleigh distance (MIMO-ARD) is derived to de-

termine the boundary between the proposed mixed LoS/NLoS

near-field XL-MIMO and the existing near-field XL-MIMO

channel model.

As described in [6], the RD for a MISO scenario, i.e.,

MISO-RD, is defined as Z = 2D2/λ, where D is the aperture

of the antenna array and λ is the wavelength. MISO-RD is

calculated by the condition that the largest phase discrepancy

between the far-field planar wavefront and the near-field spher-

ical wavefront in the free space is no more than π/8. However,

the current MISO-RD is identified based on the scenario where

only the transmitter employs the ELAA while the receiver

is equipped with a single antenna. In this case, the MISO-

RD is only related to the aperture of the transmitter ELAA.

Thus, MISO-RD is not suitable for the XL-MIMO scenario.

In this paper, by considering the XL-MIMO scenario, MIMO

Rayleigh distance (MIMO-RD) is defined by the condition

that the largest phase discrepancy between the far-field planar

wavefronts and the near-field spherical wavefronts is no more

than π/8. Similar to MISO-RD, the proposed MIMO-RD

describes the boundary between the far-field and near-field

regions for the XL-MIMO scenario. However, MIMO-RD is

unable to capture the feature of the largest phase discrepancy

between the proposed channel model and the existing near-

field array response vectors based channel model. Thus, we

further define the MIMO-ARD by the condition that the largest

phase discrepancy between the proposed mixed LoS/NLoS

near-field XL-MIMO and the existing near-field MIMO sce-

nario in the free space is no more than π/8. The MIMO-RD

and MIMO-RD are derived as below.

Fig. 3. The near-field MIMO scenario: transmitter and receiver are both
equipped with ELAAs with antenna array elements (orange squares) in the
x-y coordinate system

As shown in Fig. 3, we consider the scenario where the

transmitter and receiver are both equipped with antenna arrays

of aperture D1 and D2, respectively. These two antenna

arrays are set in parallel since the largest phase discrepancy

occurs when the wave impinges perpendicularly [26]. The

center of transmitter antenna arrays is regarded as the x − y
coordinate origin. The coordinate of the n1-th antenna of

the transmitter antenna array, the center of receiver antenna

array, the n2-th antenna of the receiver antenna array are

(0, d1), (x2, y2), and (x2, y2+d2), respectively, where −D1

2 ≤
d1 ≤ D1

2 and −D2

2 ≤ d2 ≤ D2

2 . The polar coordinate of

the center of UE’s antenna array can be written as (r, θ) =(√
x2
2 + y22 , arctan(

y2

x2
)
)

, where r, θ are the distance and

angle between the center of transmitter’s antenna array and

the center of receiver’s antenna array, respectively.

To derive the close form of MIMO-RD and MIMO-ARD,

we only consider the phase change caused by LoS path

component of the channel. As mentioned in (12), H(n2, n1) =
1

rn2,n1
e−j2πrn2,n1/λ represents the LoS path component of

channel between the transmitter’s n1-th antenna and the re-

ceiver’s n2-th antenna. rn2,n1 is the distance of the transmit-

ter’s n1-th antenna from the receiver’s n2-th antenna. Here,

the true phase is φ = 2π
λ rn2,n1 , where rn2,n1 is presented as

rn2,n1 =
√
x2
2 + (y2 + d2 − d1)2

= r

√
1 +

(d2 − d1)2

r2
+

2(d2 − d1) sin θ

r
,

(16)

where θ is the practical physical angle of departure.

Specifically, by utilizing the second-order Taylor expansion√
1 + x ≈ 1 + 1

2x− 1
8x

2 +O(x2), we have

rn2,n1 = r(1 +
(d2 − d1)

2

2r2
+

(d2 − d1) sin θ

r

− 1

8
(
2(d2 − d1) sin θ

r
)2 +O(

1

r2
))

≈ r + (d2 − d1) sin θ +
(d2 − d1)

2 cos2 θ

2r
.

(17)
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Fig. 4. Three categories of XL-MIMO divided by the distance of the transmitter from the receiver.

A. MIMO Rayleigh Distance (MIMO-RD)

Based on the far-field assumption, rn2,n1 can be approx-

imated by its first-order Taylor expansion. Since
√
1 + x ≈

1 + 1
2x, we have

rfar
n2,n1

≈ r(1 +
(d2 − d1) sin θ

r
) = r + (d2 − d1) sin θ

(18)

Thus, the far-field phase becomes φfar = 2π
λ rfar

n2,n1
. Accord-

ingly, the phase discrepancy between the far-field planar and

near-field spherical wavefronts can be presented as

∆ =
∣∣φn2,n1 − φfar

n2,n1

∣∣ = 2π

λ

∣∣rn2,n1 − rfar
n2,n1

∣∣ (19)

Notice that rfar
n2,n1

in (18) is the first-order Taylor expansion of

rn2,n1 , so
∣∣rn2,n1 − rfar

n2,n1

∣∣ in (24) is mainly determined by

the second-order Taylor expansion term of rn2,n1 . Therefore,

the phase discrepancy between planar wavefronts and spherical

wavefronts is

∆ ≈ π(d2 − d1)
2 cos2 θ

λr
. (20)

Since θ ∈ [−π
2 ,

π
2 ], −D1

2 ≤ d1 ≤ D1

2 , and −D2

2 ≤
d2 ≤ D2

2 , it can be easily observed that when θ = 0,

d1 =
D1

2
(−D1

2
) and d2 = −D2

2
(
D2

2
), phase discrepancy

achieves maximum, where

max
π(d2 − d1)

2 cos2 θ

λr
=

π(D1 +D2)
2

4rλ
. (21)

Eventually, since the largest phase discrepancy is larger than

π/8 in the near-field region, the distance r should satisfy
π(D1+D2)

2

4rλ > π
8 , where

r ≤ 2(D1 +D2)
2

λ
. (22)

Thus, the MIMO-RD systems can be defined as
2(D1+D2)

2

λ .

B. MIMO Advanced Rayleigh Distance (MIMO-ARD)

In the existing near-field XL-MIMO channel model, the LoS

and NLoS path components are both modeled based on the

product of two near-field response vectors. In this case, the

phase of the signal from the n1-th antenna of the transmitter

to the n2-th antenna of the receiver can be acquired by the

sum of the phase of the n1-th phase of the array response

vector at the transmitter and the n2-th phase of array response

vector at the receiver. As delivered in (5), the phase of the

near-field array response vector can be approximated by its

second-order Taylor expansion. We utilize this approximation

to calculate the sum of the phase of the n1-th phase of the

transmitter array response vector and the n2-th receiver phase

of the array response vector. Thus, the phase of the signal

from the n1-th antenna of the transmitter to the n2-th antenna

of the receiver can be represented as

φnear
n2,n1

≈ = −d1 sin θ +
cos2 θd1

2

2r
+ d2 sin θ +

cos2 θd2
2

2r
.

(23)

Accordingly,based on (17) and (23), the phase discrepancy

between the existing near-field channel model and true near-

field channel model can be presented as

∆ =
∣∣φn2,n1 − φnear

n2,n1

∣∣ ≈ 2π

λ

∣∣∣∣
cos2 θd1d2

r

∣∣∣∣ (24)

Since θ ∈ [−π
2 ,

π
2 ], −D1

2 ≤ d1 ≤ D1

2 , and −D2

2 ≤
d2 ≤ D2

2 , it can be easily observed that when θ = 0,

d1 =
D1

2
(−D1

2
) and d2 =

D2

2
(−D2

2
), phase discrepancy

achieves maximum, where

max
2πcos2 θd1d2

λr
=

πD1D2

2rλ
. (25)

Eventually, since the largest phase discrepancy is larger than

π/8 in the near-field region, the distance r should satisfy
πD1D2

2rλ > π
8 , where

r <
4D1D2

λ
. (26)

Thus, the MIMO-ARD can be defined as 4D1D2

λ .

From the derivation above, the XL-MIMO can be divided

into three categories as shown in Fig. 4, where the LoS path

component of the XL-MIMO channel has different features

due to the different distances of the transmitter from the

receiver. Specifically, when the distance is bigger than the

MIMO-RD, the phase discrepancy between the existing near-

field scenario and the far-field scenario can be ignored. In

this case, the LoS path component can be modeled by the

product of far-field array response vectors at the transmitter

and receiver. Additionally, when the distance of the transmitter

from the receiver is bigger than the MIMO-ARD and smaller
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than the MIMO-RD, the phase discrepancy between the LoS

path components of the proposed mixed LoS/NLoS near-field

channel and the existing near-field channel can be ignored.

In this case, the LoS path component can be modeled by

the multiplication of near-field response vectors at transmitter

and receiver. Furthermore, when the distance of the transmitter

from the receiver is smaller than the MIMO-ARD, the phase

discrepancy between the LoS path components of the proposed

mixed LoS/NLoS near-field channel and the existing near-field

channel cannot be ignored.

In this paper, we mainly focus on the scenario where the

distance of the transmitter from the receiver is smaller than the

MIMO-ARD. In the following Section V, the specific channel

estimation scheme will be described.

V. PROPOSED TWO STAGE CHANNEL ESTIMATION

ALGORITHM

In this section, based on the proposed mixed LoS/NLoS

near-field XL-MIMO channel model, we propose the two stage

near-field XL-MIMO channel estimation algorithm, where a

parameter estimation algorithm is utilized for the LoS path

component estimation and an OMP-based algorithm is utilized

for the NLoS path components estimation. At last, we analyze

the CRLB and the computational complexity of the proposed

two stage channel estimation algorithm.

A. Stage 1: LoS Path Component Estimation

Since the energy of the LoS path component is usually

dominant, we will first conduct the LoS path component

estimation. From (14), we can observe that the LoS path

component of near-field MIMO channel is determined by three

parameters, i.e., the distance of the 1-st antenna at receiver

from the 1-st antenna at transmitter r, relative angle between

receiver and transmitter ϕ, and the AoD θ. Therefore, the

LoS path component estimation of (2) can be recognized as a

parameter estimation problem, which can be presented as

min
r,θ,ϕ

G(r, θ, ϕ)
∆
=‖Y −WHLoS(r, θ, ϕ)P‖2F . (27)

Algorithm 1 shows the specific procedure to solve the problem

(27).

First, in Steps1-4 we obtain on-grid coarse parameters esti-

mates by searching the collection Ξ, which can be presented

as

Ξ = {(r, θ, ϕ) |r = rmin, rmin +∆r, · · · , rmax;

θ = θmin, θmin +∆θ, · · · , θmax;

ϕ = ϕmin, ϕmin +∆ϕ, · · · , ϕmax},
(28)

where rmin, rmax, θmin, θmax, ϕmin, and ϕmax represent the

lower and upper boundaries of the distance of the 1-st antenna

at receiver antenna array from the 1-st antenna at transmitter

antenna array r, relative angle between receiver and transmitter

ϕ, and the AoD of the signal θ, respectively. ∆r, ∆θ, and ∆ϕ
are the step sizes of r, θ, and ϕ.

After searching the collection Ξ, we can get rint, θint, ϕint

as the initial on-grid estimated parameters. Then, to obtain

the accurate estimated parameters, we refine three parameters

Algorithm 1 LoS path component estimation

Inputs: Received signal Y, pilot P, Rmax, Rmin, θmax, θmin,

ϕmax, ϕmin, rs, θs, ϕs, I , ǫ.
Initialization: ∆r1 = rmax−rmin

rs
, ∆θ1 = θmax−θmin

θs
, ∆ϕ1 =

ϕmax−ϕmin

ϕs
, calculate Ξ based on (28)

// Estimate coarse on-grid parameters

1. for (r, θ, ϕ) ∈ Ξ do

2. calculate H∗
LoS based on (14)

3. rint, θint, ϕint = argmin
r,θ,ϕ

‖Y −HLoSP‖22
4. end for

// Refine off-grid parameters

5. for i ∈ I do

6. update r̂(i+1) based on (31)

7. update θ̂(i+1) based on (32)

8. update θ̂(i+1) based on (33)

9. if
∣∣∣ r̂

(i+1)−r̂(i)

r̂(i+1)

∣∣∣ ≤ ǫ and

∣∣∣ θ̂
(i+1)−θ̂(i)

θ̂(i+1)

∣∣∣ ≤ ǫ and

∣∣∣ θ̂
(i+1)−r̂(i)

θ̂(i+1)

∣∣∣
≤ ǫ then

10. (ropt, θopt, ϕopt) = (r̂(i+1), θ̂(i+1), ϕ̂(i+1))
11. jump to Step 15

12. end if

13.end for

14.(ropt, θopt, ϕopt) = (r̂(I), θ̂(I), ϕ̂(I))
15.calculate ĤLoS based on (14) by (ropt, θopt, ϕopt)
Output: Estimated LoS path component ĤLoS.

rint, θint, ϕint by iterative optimization method. Specifically,

we define the objective function G(r, θ, ϕ) as

min
r,θ,ϕ

G(r, θ, ϕ)
∆
=‖Y −WHLoS(r, θ, ϕ)P‖2F ,

=

M∑

m=1

(ym −WHpm)
H
(ym −WHpm)

=

M∑

m=1

pH
mHHWHWHpm+

M∑

m=1

yH
mym

−
M∑

m=1

(
pH
mHHWHym+

(
pH
mHHWHym

)H)
.

(29)

Since the ym is fixed received signal, the (29) above is equal

to the problem as

min
r,θ,ϕ

G(r, θ, ϕ) =

M∑

m=1

pH
mHHWHWHpm

−
M∑

m=1

(
pH
mHHWHym +

(
pH
mHHWHym

)H)
(30)

The objective function G(r, θ, ϕ) can be optimized with

an iterative gradient descent approach methods. In the i-
th iteration, we need to calculate new estimated the three

parameters, i.e., r̂(i+1), θ̂(i+1), and ϕ̂(i+1), which can be

updated as

r̂(i+1) = r̂(i) − ηr · ∇rG
(i)
opt

(
r̂(i), θ̂(i), ϕ̂(i)

)
, (31)

θ̂(i+1) = θ̂(i) − ηθ · ∇θG
(i)
opt

(
r̂(i), θ̂(i), ϕ̂(i)

)
, (32)

ϕ̂(i+1) = ϕ̂(i) − ηϕ · ∇ϕG
(i)
opt

(
r̂(i), θ̂(i), ϕ̂(i)

)
, (33)
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where the gradients can be calculated according to Appendix

A. ηr, ηθ , ηϕ denote the lengths of step for the distance

and angles to guarantee the G
(i)
opt

(
r̂(i+1), θ̂(i+1), ϕ̂(i+1)

)
≤

G
(i)
opt

(
r̂(i), θ̂(i), ϕ̂(i)

)
. As the number of iterations increases,

the parameters estimates becomes more accurate. Since only

one variable in each iteration is optimized while the other vari-

ables remain unchanged, the gradient descent method utilized

in this paper can be regarded as block coordinate descent.

The iteration process will suspend until the biggest iteration

number achieves or the normalized difference between the

latest estimated parameters
(
r̂(i+1), θ̂(i+1), ϕ̂(i+1)

)
and the

last estimated parameters
(
r̂(i), θ̂(i), ϕ̂(i)

)
are smaller than ǫ.

Based on the
(
r̂(I), θ̂(I), ϕ̂(I)

)
, we can obtain the estimated

ĤLoS by (14). Then, we can eliminate the influence of ĤLoS

on the received pilots Y and then estimate the ĤNLoS, which

is shown as follows.

Algorithm 2 NLoS path components estimation

Inputs: YNLoS, P, W, Dr, Dt, L.

Initialization: Ω1 = ∅, Ω2 = ∅, Ω = ∅, A = 0S1S2×1, R =
YNLoS, At = DH

t P, Ar = WDr,

1. for l = 1, 2, · · · , L do

2. n∗ = argmax‖vec(Ar
HRAt

H)‖22
3. n1 = floor((n∗−1)/N2)+1, n2 = mod (n∗−1, N2)+1
4. Ω = Ω

⋃
n∗, Ω1 = Ω

⋃
n1, Ω2 = Ω

⋃
n2

5. A =
[
A At (Ω1, :)

H ⊗Ar (:,Ω2)
]

6. ĥA(Ω) = (AHA)−1AHvec(YNLoS)
7. reshape ĥA into ĤA of size S2 × S1

8. R = YNLoS −ArĤAAt

9. end for

10. ĤNLoS = DrĤAD
H
t

Output: Estimated NLoS path components ĤNLoS.

B. Stage 2: NLoS Path Components Estimation

As we already acquire ĤLoS, the received pilots without the

effect of ĤLoS can be presented as

YNLoS = Y −WĤLoSP. (34)

On the base of the polar-domain representation (11), the

YNLoS can be presented as

YNLoS = WHNLoSP+N = WDrH
P
NLoSD

H
t P+N. (35)

As mentioned above, HP
NLoS is sparse in polar-domain,

thus the NLoS path components estimation is reformulated as

a sparse recovery problem. In this sparse recovery problem,

the NLoS path components sensing matrix at transmitter and

receiver sides can be denoted as At = DH
t P and Ar = WDr.

The low-complexity matrix based OMP algorithm to solve this

problem can be summarized in Algorithm 2.

Specifically, since there are L components in the polar-

domain, we will conduct L iterations to find L supports in

transmitter sensing matrix At and L supports in receiver

sensing matrix Ar. In l-th iteration, we will calculate the

correlation between the transmitter and receiver sensing ma-

trices At, Ar and the residual matrix R. In Step 4, we obtain

the updated support Ω, Ω1, Ω2, where Ω1, Ω2 denote the

support of transmitter and receiver sides. Then, in Step 6,

the currently estimated near-field NLoS path component ĥA is

calculated by the least square (LS) algorithm. In Step 7, the ĥA

need to be reshaped into ĤA in the polar-domain of the size

S2×S1. Finally, after L iterations are performed, we obtain the

estimated NLoS path components ĤNLoS. Since there exists

an estimation error in the first stage, i.e., LoS path component

estimation, the error of NLoS path components estimation will

contain the error of LoS path component estimation.

After estimating the near-field LoS path component and the

NLoS paths components, the Ĥ can be written as

Ĥ = ĤLoS + ĤNLoS. (36)

C. Cramér-Rao Lower Bound

The CRLB bound is a theoretical bound of MSE to evaluate

channel estimation algorithms [27]. For the channel estimation

problem (2), we utilize vec(ABC) = (CT ⊗ A)vec(B) to

reformulate (2) as

y = (PT ⊗W)h+ n = Qh+ n (37)

where y = vec(Y) ∈ CNRF
r M×1, h = vec(H) ∈ CN1N2×1,

n = vec(N) ∈ CNRF
r M×1, and Q = (PT ⊗ W) ∈

RNRF
r M×N1N2 . Since Q is a real matrix and y,h,n are

complex vectors, we can split problem (37) into real part and

imaginary part as

yu = Qhu + nu

yv = Qhv + nu

(38)

where yu = Re(y), yv = Im(y), hu = Re(h), hv = Im(h),
nu = Re(n), nv = Im(n). We denote ĥ = ĥu + ĥv as the

estimated channel. The CRLB of the unbiased estimator ĥ can

also be divided into two parts, which are shown as

CRLB = CRLBu +CRLBv

= E

{∥∥∥ĥ− h

∥∥∥
2
}

= E

{∥∥∥ĥu − hu

∥∥∥
2
}
+ E

{∥∥∥ĥv − hv

∥∥∥
2
} (39)

In this case, we first consider real part of (38). Since the nu

follows the distribution of Gaussian distribution with 0 mean

and σ2 variance, the conditional probability density function

of yu with the given hu is

pyu|hu
(yu;hu) =

1

(2πσ2)
NRF

r M/2
exp

{
− 1

2σ2
‖yu −Qhu‖2

}
.

(40)

The Fisher information matrix of real part of (38) can then be

derived as

[J]m,n , −E

{
pyu|hu

(yu;hu)

∂hu,m∂hu,n

}
=

1

σ2

[
QHQ

]
m,n

, (41)



10

where hu,m, hu,n denote the m-th and n-th entry of hu. Then,

the real part CRLBu is

CRLBu = E

{∥∥∥ĥu − hu

∥∥∥
2
}

≥ Tr
{
J−1
u

}
= σ2Tr

{
(QHQ)−1

}
.

(42)

Since Q = PT ⊗W, (QHQ)−1 can be presented as

(QHQ)−1 =
(
(PT ⊗W)H(PT ⊗W)

)−1

=
((

PPH
)T ⊗

(
WHW

))−1

=
((

PPH
)−1
)T

⊗
(
WHW

)−1
.

(43)

Thus, Tr
{
(QHQ)−1

}
can be calculated as

Tr
(
(QHQ)−1

)
= Tr

(((
PPH

)−1
)T)

Tr
((

WHW
)−1
)

= Tr
((

PPH
)−1
)
Tr
((

WHW
)−1
)

=

(
N1∑

i=1

λ−1
i

)


N2∑

j=1

η−1
j




≥ N1

(
N1/

N1∑

i=1

λi

)
N2


N2/

N2∑

j=1

ηj




=
N1

2

Tr {PPH}
N2

2

Tr {WHW} .
(44)

{λi}N1

i=1 and {ηj}N2

j=1 are denoted as the N1 and N2 eigen-

values of the matrix of PPH and WHW. The equality in

(44) holds when these eigenvalues satisfy λ1 = λ2 = · · ·λN1 ,

and η1 = η2 = · · · ηN2 , i.e., the columns of PH (W) and

are orthogonal. Thus, the matrix PPH of size N1 × N1

has identical diagonals equal to M , and WHW of size

N2 ×N2 has identical diagonals equal to NRF
r . In this case,

Tr
{
(PP)H

}
Tr
{
(WHW)

}
= N1MN2N

RF
r . Finally, the

CRLB of the real part of our estimation problem becomes

CRLBu = E

{∥∥∥ĥu − hu

∥∥∥
2
}

= σ2 N1N2

MNRF
r

. (45)

From the (38), we can observe that the real part and

imaginary part have the same form, CRLBv = CRLBu =

σ2 N1N2

MNRF
r

. At last, thus the CRLB of the (37) is

CRLB = CRLBu +CRLBv = 2σ2 N1N2

MNRF
r

. (46)

It is noteworthy that the columns of pilot matrix PH and

combing matrix W are not orthogonal in practical. Thus, the

MSE of the practical channel estimation algorithm cannot

achieve the CRLB bound in (46), which is verified in the

simulation results in Section VI.

D. Computational Complexity Analysis

For the proposed two stage channel estimation algorithm,

we analyze its computational complexity as follows. In the

stage of the LoS path component estimation, we can observe

that the complexity comes from two parts, i.e., coarse on-

grid estimation and refining processes. In Steps 1-4, for

coarse on-grid estimation, we need to compute the H∗
LoS

according to (14) in parameters collection and find the

best parameters. Therefore, the complexity of this part is

O
(
SLoS

(
NRF

r N1N2 +NRF
r N1M

))
, where SLoS is the size

of the parameters collection. Since we only need a coarse on-

grid estimation, SLoS usually is small. Then, for the refining

process in Steps 5-9, the complexity is introduced by the

gradient calculation. The complexity to calculate gradients

O(MI(NRF
r N1N2 + NRF

r N1 + NRF
r N2 + N2N1 + NRF

r )).
Since the N1, N2 is usually much larger than NRF

r and M ,

the complexity of the gradient calculation can be presented as

O
(
(SLoS +MI)NRF

r N1N2

)
. For the NLoS path components

estimation, the computational complexity can be obtained as

O(N1N2(S1+S2)L) by referring to the OMP algorithm [28].

VI. SIMULATION RESULT

In this section, we conduct the simulations to verify the

performance of the proposed two stage channel estimation

algorithm for the proposed mixed LoS/NLoS near-field XL-

MIMO channel model. The system parameters are as fol-

lows: the number of antenna of transmitter is N1 = 256,

the number of antenna of receiver is N2 = 128. The

carrier frequency is f = 50 GHz, corresponding to λ =
0.006m. By utilizing (22), the MIMO-RD can be calculated as
2(D1+D2)

2

λ = 2(N1λ/2+N2λ/2)
2

λ = 442.7m in this scenario. By

utilizing (26), the MIMO-ARD can be calculated as 4D1D2

λ =
4(N1λ/2)(N2λ/2)

λ = 196.6m in this scenario. The near-field

channel in (8) contains L = 3 NLoS path components.

Meanwhile, the sampled angles of arrival follow the uniform

distribution U
(
−π

3 ,
π
3

)
. The distances are generated in range

of [50, 500] meters. The pilot matrix P and combining matrix

W randomly chooses their elements from
{
− 1√

M
,+ 1√

M

}

and
{
− 1√

N2
,+ 1√

N2

}
[29].

TABLE I
COMPLEXITY COMPARISON

Method Complexity

Far-field codebook
based OMP

O(N1N2(N1 +N2)L)

Near-field codebook
based OMP

O(N1N2(S1 + S2)L)

Proposed two stage
channel estimation

O
(

(SLoS+MI)NRF
r N1N2+N1N2(S1+S2)L

)

We compare the proposed two stage channel estimation

algorithm and the existing near-field codebook based OMP

method [14] and far-field codebook based OMP method [28].

The complexities of the three methods are presented in Table I.

The normalized mean square error (NMSE) performance,

which is defined as NMSE =
E(‖H−Ĥ‖2

2)

E(‖H‖2
2)

, is used to evaluate

the accuracy of different methods. It worth to point out that

we use the CRLB
E(‖H‖2

2)
as the bound of NMSE performance.

Fig. 5 depicts the NMSE performance comparison with

respect to the distance of the transmitter from the receiver. The

range of distance is from 50 m to 500 m. The SNR is 5dB and

the size of pilot matrix is 256× 128, the compressive ratio is
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Fig. 5. NMSE performance comparison with respect to the distance of the
transmitter from the receiver.

M

N1
= 0.5 [30]. The proposed two stage method can achieve

better NMSE performance than the existing far-field codebook

based OMP method and the near-field codebook based OMP

method. Specifically, the NMSE of the proposed algorithm

is robust and remains the lowest value of all the schemes

in the whole range of distance. The NMSE performance of

the far-field codebook based OMP method and the near-field

codebook based OMP method degrades gradually with the

decrease of the distance. The reason is that there are still phase

discrepancies between the proposed channel and the existing

far-field array response vectors based channel as well as the

existing near-field channel. In other words, the existing two

channel models mismatch the feature of the piratical near-

field XL-MIMO scenario. Furthermore, we can observe that

the MIMO-RD can capture the turning point of performance

loss between the proposed two stage scheme and the far-field

codebook based OMP scheme. Specifically, when the distance

is larger than 442.7m, the performance of the proposed two

stage scheme and the far-field codebook based OMP channel

estimation show the same performance. The reason is that

when the distance is larger than MIMO-RD, the proposed

channel model degenerates into the far-field channel model.

Similarly, MIMO-ARD can capture the turning point of per-

formance loss between the proposed two stage scheme and the

near-field codebook based OMP scheme. When the distance

is larger than MIMO-ARD, i.e., 196.6m, the performance of

the proposed two stage scheme and the near-field codebook

based OMP channel estimation show the same performance.

This is because when the distance is larger than MIMO-ARD,

the phase discrepancy between the proposed channel model

and the existing model vanishes.

Fig. 6 depicts the NMSE performance comparison with

respect to the size of the pilot P under the condition of 5 dB

SNR. The proposed scheme achieves the best performance out

of all three considered schemes. When the distance becomes

large as shown in Fig. 6 (b), the NMSE achieved by the

two stage channel estimation scheme and other schemes are

similar. Since the fewer pilots, the greater the error in the first
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Proposed two stage algorithm
CRLB

(b)

Fig. 6. NMSE performance with respect to the size of the pilot. (a) r = 60m;
(b) r = 100m.

stage of the LoS path component, the gap between near-field

codebook-based OMP and the proposed algorithm at low pilot

overhead is smaller than that of low pilot overhead. When the

distance becomes smaller as shown in Fig. 6 (a), the proposed

scheme outperforms all the other schemes.

Fig. 7 shows the NMSE performance comparison with

respect to the SNR under different distances, where the size

of pilot is 256 × 64. In Fig. 7 (a) and (b), the distance

is 60m and 100m, respectively. We can see that when the

distance is smaller than MIMO-ARD, the proposed two stage

channel estimation scheme outperforms all the other schemes.

In particular, when SNR is 5 dB and r = 60m, the proposed

scheme can achieve about 4 dB improvement compared with

the near-field codebook based OMP scheme. The reason is

that the existing far-field and near-field codebook based OMP

schemes cannot deal with the LoS path component of near-

field XL-MIMO channel model when the distance is smaller

than MIMO-ARD. Furthermore, we can see that, in the Fig. 7

(b), the performance gap of NMSE of the three schemes

become smaller in the range of all the SNRs.
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Fig. 7. NMSE performance comparison with respect to the SNR under
different distances. (a) r = 60m; (b) r = 100m.

In order to evaluate the proposed two stage algorithm in

the realistic datasets, we utilize QuaDRiGa channel emulation

platform [31], [32] as the channel generator to test our

proposed method. The standard channel cluster model of 3GPP

TR 38.901 [33] is used to generate the channel dataset. The

main parameters of the channel are set as shown in the

Table. II.

TABLE II
PARAMETERS OF 3GPP TR 38.901 CHANNEL

Parameters Value

Simulation scenario UMa

Frequency 3.5GHz

Number of antennas at transmitter 64

Number of antennas at receiver 256

Receiver location
Outdoor and Indoor

LoS and NLoS

The specific simulation result with the GuaDRiGa channel

dataset is shown in Fig. 8. It can be observed that the proposed

method still outperforms the existing far-field codebook-based

OMP algorithm and the near-field codebook based OMP

-5 -4 -3 -2 -1 0 1 2 3 4 5
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Near-field codebook based OMP [14]
Proposed two stage algorithm
CRLB

Fig. 8. NMSE performance comparison with respect to the SNR under the
QuaDRiGa channel dataset.

algorithm. Thus, the proposed mixed LoS/NLoS near-field

MIMO channel model is more accurate compared with the

existing model. Furthermore, the proposed two stage channel

estimation scheme is an efficient scheme for the practical near-

field XL-MIMO.

VII. CONCLUSIONS

In this paper, the channel estimation of the near-field XL-

MIMO scenario was investigated. We proposed the mixed

LoS/NLoS near-field XL-MIMO channel model, where the

LoS and NLoS path components were characterized by ge-

ometric free space assumption and the near-field response

vectors, respectively. Then, we derived the range of the near-

field region of XL-MIMO, i.e., MIMO-RD and MIMO-ARD.

It is worth pointing out that the mixed LoS/NLoS near-field

XL-MIMO channel model proposed in this paper can be

recognized as the generalization of both the far-field channel

model as well as the existing near-field channel model for

MIMO systems. Simulation results showed that, compared

with the far-field codebook based and near-field codebook

based channel estimation schemes, the proposed two stage

channel estimation scheme achieved better NMSE perfor-

mance in both theoretical and practical channel models. For

future work, the uniform planar array (UPA) based 3D near-

field XL-MIMO channel model will attract further research

interest.

APPENDIX A

OPTIMIZATION OF G(i) IN WITH REGARD TO r(i) , θ(i) , ϕ(i)

In this appendix, the derivations of the G(i) in with regard

to r(i), θ(i), ϕ(i) are provided. For the simplification of

expression, we will ignore the superscript (i).
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For the distance r, the gradient of G is given by

∂G

∂r
=

M∑

m=1

pH
m

∂HH

∂r
WHWHpm +

M∑

m=1

pH
mHHWHW

∂H

∂r
pm

−
M∑

m=1

pH
m

∂HH

∂r
WHym −

M∑

m=1

yH
mW

∂H

∂r
pm.

(47)
Since r is a real variable, ∂HH

∂r =
(
∂H
∂r

)H
. Thus, the (47) can

be rewritten as

∂G

∂r
=

M∑

m=1

pH
m

(
∂H

∂r

)H

WH (WHpm − ym)

+

M∑

m=1

(
pH
mHHWH − yH

m

)
W

∂H

∂r
pm.

(48)

Similar to the derivation of ∂G
∂r above, the ∂G

∂θ and ∂G
∂ϕ can

be presented as

∂G

∂θ
=

M∑

m=1

pH
m

(
∂H

∂θ

)H

WH (WHpm − ym)

+

M∑

m=1

(
pH
mHHWH − yH

m

)
W

∂H

∂θ
pm,

(49)

∂G

∂ϕ
=

M∑

m=1

pH
m

(
∂H

∂ϕ

)H

WH (WHpm − ym)

+
M∑

m=1

(
pH
mHHWH − yH

m

)
W

∂H

∂ϕ
pm.

(50)

Based on the (n2, n1)-th element in the H, i.e., Hn2,n1 =
1

rn2,n1
e−j2πrn2,n1/λ, where rn2,n1 is presented in (13), we can

obtain the (n2,n1)-th element in the ∂H
∂r , ∂H

∂θ , and ∂H
∂ϕ as

∂Hn2,n1

∂r
= (d1 sin θ − d2 sin(θ + ϕ)− r) (1+jrn2,n1) Γ,

(51)

∂Hn2,n1

∂θ
= r (d1 cos θ − d2 cos(θ + ϕ)) (1+jrn2,n1) Γ,

(52)

∂Hn2,n1

∂ϕ
= jd2 (d1 sinϕ+ r cos(θ + ϕ)) (rn2,n1−j) Γ.

(53)
where Γ = e−jrn2 ,n1

r3n2,n1

.
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