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All the codeword symbols in polar codes have
the same SER under the SC decoder

Guodong Li Min Ye Sihuang Hu

Abstract

We consider polar codes constructed from the 2 × 2 kernel

[

1 0
α 1

]

over a finite field Fq , where

q = ps is a power of a prime number p, and α satisfies that Fp(α) = Fq. We prove that for any Fq-

symmetric memoryless channel, any code length, and any code dimension, all the codeword symbols in

such polar codes have the same symbol error rate (SER) under the successive cancellation (SC) decoder.

I. INTRODUCTION

Polar codes were proposed by Arıkan in [1], and they have been extensively studied over the last decade.

In his original paper [1], Arıkan introduced the successive cancellation (SC) decoder to decode polar

codes, and he proved that polar codes achieve the capacity of any binary-input memoryless symmetric

(BMS) channel under the SC decoder. Later, the successive cancellation list (SCL) decoder and the CRC-

aided SCL decoder were proposed to further reduce the decoding error probability of polar codes [2],

[3].

Although the CRC-aided SCL decoder provides state-of-the-art performance in terms of the decoding

error probability, the SC decoder still receives a lot of research attention due to the following two reasons.

First, it is amenable to theoretical analysis. In fact, a large part of theoretical research on polar codes

focuses on the performance of the SC decoder. Second, the running time of the SC decoder is much

smaller than the (CRC-aided) SCL decoder. Therefore, SC decoder is the better choice when there is a

stringent requirement on the delay of the communication system.

In an early paper [4], Arıkan observed an interesting experimental result regarding the decoding

performance of the SC decoder for binary polar codes: The average bit error rate (BER) of a subset

of codeword coordinates is much smaller than the average BER of the message bits. Even till today,

there is no rigorous analysis that can explain this phenomenon. As we repeated the experiments in [4],

we found another interesting phenomenon—the BER of each codeword coordinates in polar codes is

surprisingly stable under the SC decoder. This is not a coincidence. In fact, Theorem 2 of [5] implies

that all the codeword coordinates in binary polar codes have the same BER under the SC decoder,

although this conclusion was never explicitly mentioned in [5] or any other papers.

In this paper, we extend the above conclusion to polar codes over finite fields. Specifically, we consider

polar codes constructed from the 2 × 2 kernel

[

1 0
α 1

]

over a finite field Fq, where q = ps is a power

of a prime number p, and α satisfies that Fp(α) = Fq. According to [6, Corollary 15], Fp(α) = Fq is
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a necessary and sufficient condition for the constructed codes to polarize. We prove that for any Fq-

symmetric memoryless channel, any code length, and any code dimension, all the codeword symbols in

polar codes have exactly the same symbol error rate (SER) under the SC decoder.

The rest of this paper is organized as follows. In Section II, we provide the background on polar

codes and state the main result. In Section III, we prove the main result. In Section IV, we discuss the

connection between our results and the observation in [4].

II. BACKGROUND AND THE MAIN RESULT

For a set A = {i1, i2, . . . , is} of size s, we use xA to denote the vector (xi1 , xi2 , . . . , xis), where

we assume that i1 < i2 < · · · < is are nonnegative integers. We use x[a:b] to denote the vector

(xa, xa+1, xa+2, . . . , xb). Let q = ps, where p is a prime number and s is a positive integer. We say

that a memoryless channel W : Fq → Y is Fq-symmetric if it satisfies the following two conditions: (1)

there exist q permutations {σb : b ∈ Fq} on the output alphabet Y such that W [y|x] = W [σx′−x(y)|x
′]

for all y ∈ Y and all x, x′ ∈ Fq; (2) there exist q − 1 permutations {πa : a ∈ F
∗
q} on Y such that

W [y|x] = W [πa(y)|ax] for all y ∈ Y , x ∈ Fq, and a ∈ F
∗
q . Both qSC and qEC satisfy these two

conditions. Below we use the shorthand notation

y + b = σb(y) and a · y = πa(y) for a ∈ F
∗
q , b ∈ Fq, y ∈ Y. (1)

The construction of polar codes with code length n = 2m involves the n×n matrix Gn =

[

1 0
α 1

]⊗m

,

where α satisfies that Fp(α) = Fq, and ⊗ is the Kronecker product. According to [6, Corollary 15],

Fp(α) = Fq is a necessary and sufficient condition for the polarization of the constructed codes. The matrix

Gn serves as a linear mapping between the message vector u[0:n−1] and the codeword vector x[0:n−1]. The

message vector u[0:n−1] consists of information symbols and frozen symbols. We use A ⊆ {0, 1, . . . , n−1}
to denote the index set of information symbols and use Ac = {0, 1, . . . , n − 1} \ A to denote the index

set of frozen symbols. A polar code has four parameters—the code length n, the code dimension k, the

index set A of information symbols, and the vector ūAc ∈ F
n−k
q of frozen symbols1. More precisely, we

define

Polar(n, k,A, ūAc) := {u[0:n−1]Gn : uAc = ūAc , uA ∈ F
k
q}.

Next let us recall how the SC decoder works. For a symmetric channel W : Fq → Y , we define

W n : Fn
q → Yn as W n(y[0:n−1]|x[0:n−1]) =

∏n−1
i=0 W (yi|xi) for x[0:n−1] ∈ F

n
q and y[0:n−1] ∈ Yn. For

0 ≤ i ≤ n− 1, we further define the synthetic channel W
(n)
i : Fq → Yn × F

i
q as

W
(n)
i (y[0:n−1], u[0:i−1]|ui) =

1

qn−1

∑

u[i+1:n−1]∈F
n−i−1
q

W n(y[0:n−1]|u[0:n−1]Gn).

The SC decoder decodes one by one from u0 to un−1. If i ∈ Ac, then the decoding result of the ith
symbol is ûi = ūi. If i ∈ A, then the decoding result of the ith symbol is

ûi = ûi(y[0:n−1], u[0:i−1]) = argmax
ui∈Fq

W
(n)
i (y[0:n−1], u[0:i−1]|ui). (2)

We write the elements in Fq as {a0, a1, a2, . . . , aq−1}. If there is a tie, i.e., if

W
(n)
i (y[0:n−1], u[0:i−1]|ai0) = · · · = W

(n)
i (y[0:n−1], u[0:i−1]|ais−1

)

>W
(n)
i (y[0:n−1], u[0:i−1]|ais) ≥ · · · ≥ W

(n)
i (y[0:n−1], u[0:i−1]|aiq−1

),

where {i0, i1, . . . , iq−1} is a permutation of {0, 1, . . . , q − 1}, then the SC decoder outputs a random

decoding result with probability P(ûi = ai0) = · · · = P(ûi = ais−1
) = 1/s. The decoding results of the SC

1We use ū and its variations to denote the true value. We use û and its variations to denote the decoded value.
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decoder depend not only on the channel output vector y[0:n−1], but also on the set A and the values of the

frozen symbols ūAc . We write the SC decoding result of the message vector as û[0:n−1](y[0:n−1],A, ūAc).
The SC decoding result of the codeword vector is

x̂[0:n−1](y[0:n−1],A, ūAc) = û[0:n−1](y[0:n−1],A, ūAc)Gn. (3)

For a polar code C = Polar(n, k,A, ūAc), a symmetric channel W , and a specific choice of information

vector ūA ∈ F
k
q , we write the transmitted codeword as x̄[0:n−1] = ū[0:n−1]Gn. In this case, the SER of

the jth codeword symbol under the SC decoder is

SERj(C,W, ūA)

=
∑

y[0:n−1]∈Yn

∑

x[0:n−1]∈Fn
q

W n(y[0:n−1]|x̄[0:n−1])P(x̂[0:n−1](y[0:n−1],A, ūAc) = x[0:n−1])1[xj 6= x̄j].

The term P(x̂[0:n−1](y[0:n−1],A, ūAc) = x[0:n−1]) appears because the SC decoder involves randomness

when there is a tie in (2). The average SER of the jth codeword symbol over all choices of the information

vector is

SERj(C,W ) =
1

2k

∑

ūA∈Fk
q

SERj(C,W, ūA).

For an integer 0 ≤ i ≤ 2m − 1, we write its binary expansion as

i = 2m−1bm−1(i) + 2m−2bm−2(i) + · · · + 2b1(i) + b0(i), (4)

where bm−1(i), bm−2(i), . . . , b1(i), b0(i) ∈ {0, 1}. For two integers 0 ≤ i, j ≤ 2m − 1, we say that i � j
if br(i) ≥ br(j) for all 0 ≤ r ≤ m− 1. Now we are ready to state our main result.

Theorem 1. Let n = 2m and k be two positive integers satisfying k ≤ n. Let A ⊆ {0, 1, . . . , n − 1} be

a set of size |A| = k satisfying the following condition:

If j ∈ A and i � j, then i ∈ A. (5)

Let ūAc ∈ F
n−k
q be a q-ary vector of length n − k. We write C = Polar(n, k,A, ūAc). Then for any

Fq-symmetric memoryless channel W , we have

SER0(C,W ) = SER1(C,W ) = SER2(C,W ) = · · · = SERn−1(C,W ).

We need the following lemma to apply Theorem 1 to polar codes.

Lemma 1. The set A in polar code construction always satisfies the condition (5).

This lemma was proved in [7]–[9] for binary polar codes, and the extension to polar codes over

finite fields is trivial. In fact, [7]–[9] proved an even stronger result, showing that binary polar codes

are decreasing monomial codes. The properties of decreasing monomial codes were used to reduce the

complexity of encoding, decoding, and code construction for polar codes [10], [11].

Note that the condition (5) is necessary for Theorem 1 to hold. Let us consider the simplest case of

n = 2, k = 1, and q = 2. The choice of A = {1} satisfies the condition (5). Under this choice, u0 is

the frozen symbol, so its decoding result û0 is equal to the true value ū0. The decoding results of the

codeword symbols are x̂0 = û0 + αû1 and x̂1 = û1. Therefore, the three events {x̂0 6= x̄0}, {x̂1 6= x̄1}
and {û1 6= ū1} are the same, so the two codeword symbols have the same SER. On the other hand,

the choice of A = {0} does not satisfy the condition (5). Under this choice, u1 is the frozen symbol,

so its decoding result û1 is equal to the true value ū1, which implies that x̂1 = x̄1. However, the event

{x̂0 6= x̄0} happens with positive probability unless the channel W is noiseless. Therefore, the two

codeword symbols do not have the same SER when the condition (5) is not satisfied.
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III. PROOF OF THE MAIN RESULT

A. Restricting to the all-zero codeword

By (1), we have W (y|x) = W (a ·y+ b|a ·x+ b) for all a ∈ F
∗
q, b ∈ Fq, x ∈ Fq, y ∈ Y . For a ∈ F

∗
q and

two vectors b[0:n−1] ∈ F
n
q , y[0:n−1] ∈ Yn, we define a · y[0:n−1]+ b[0:n−1] = (a · y0+ b0, a · y1 + b1, . . . , a ·

yn−1+ bn−1). Then we have W n(y[0:n−1]|x[0:n−1]) = W n(a · y[0:n−1]+ b[0:n−1]|a ·x[0:n−1]+ b[0:n−1]) for

all a ∈ F
∗
q and b[0:n−1], x[0:n−1] ∈ F

n
q .

We first prove that the SER of each codeword symbol is independent of the true value ū[0:n−1] of

the message vector. Note that the proof technique of Lemma 2 below is quite standard in polar coding

literature. In fact, this proof technique was already used in Arıkan’s original paper; see Section VI of

[1]. The only difference is that the proof in [1] focused on the word error rate while we focus on SER.

Lemma 2. For any ū[0:n−1] ∈ F
n
q , any ū′[0:n−1] ∈ F

n
q , and any 0 ≤ j ≤ n− 1, we have

SERj(Polar(n, k,A, ūAc),W, ūA) = SERj(Polar(n, k,A, ū′Ac),W, ū′A).

Proof. For any ū[0:n−1] ∈ F
n
q and ū′[0:n−1] ∈ F

n
q , we can always find a pair a ∈ F

∗
q and b[0:n−1] ∈ F

n
q

such that

ū′[0:n−1] = a · ū[0:n−1] + b[0:n−1].

In fact, for each choice of a ∈ F
∗
q , we can always find a vector b[0:n−1] ∈ F

n
q satisfying the above

equation, so there are q − 1 choices of the pair (a, b[0:n−1]) in total. We may pick an arbitrary one of

them in this proof2.

Define x̄[0:n−1] = ū[0:n−1]Gn, x̄′[0:n−1] = ū′[0:n−1]Gn, and xb[0:n−1] = b[0:n−1] · Gn. Then we have

x̄′[0:n−1] = a · x̄[0:n−1] + xb[0:n−1], so

W n(y[0:n−1]|x̄[0:n−1]) = W n(a · y[0:n−1] + xb[0:n−1]|x̄
′
[0:n−1]) for all y[0:n−1] ∈ Yn,

1[z 6= x̄j] = 1[a · z + xbj 6= x̄′j] for all z ∈ Fq and all 0 ≤ j ≤ n− 1.
(6)

In this proof, we use the shorthand notation

û[0:n−1](y[0:n−1]) = û[0:n−1](y[0:n−1],A, ūAc), û′[0:n−1](y[0:n−1]) = û[0:n−1](y[0:n−1],A, ū′Ac). (7)

We first prove that

P
(

û[0:n−1](y[0:n−1]) = u[0:n−1]

)

= P
(

û′[0:n−1](a · y[0:n−1] + xb[0:n−1]) = a · u[0:n−1] + b[0:n−1]

)

(8)

for all u[0:n−1] ∈ F
n
q . The randomness here comes from the random decision of the SC decoder when

there is a tie in (2). Note that

P
(

û[0:n−1](y[0:n−1]) = u[0:n−1]

)

=

n−1
∏

i=0

P
(

ûi(y[0:n−1], u[0:i−1]) = ui
)

,

P
(

û′[0:n−1](a · y[0:n−1] + xb[0:n−1]) = a · u[0:n−1] + b[0:n−1]

)

=

n−1
∏

i=0

P
(

û′i(a · y[0:n−1] + xb[0:n−1], a · u[0:i−1] + b[0:i−1]) = a · ui + bi
)

.

Therefore, in order to prove (8), we only need to show that

P
(

ûi(y[0:n−1], u[0:i−1]) = ui
)

= P
(

û′i(a · y[0:n−1] + xb[0:n−1], a · u[0:i−1] + b[0:i−1]) = a · ui + bi
)

(9)

2For the proof of Lemma 2, we can simply choose a = 1. Other choices of a are needed for the proof of Lemma 3.



5

for all 0 ≤ i ≤ n − 1 and all u[0:i] ∈ F
i+1
q . If i ∈ Ac, then ûi = ūi and û′i = ū′i. Since ū′i = a · ūi + bi,

the equality (9) clearly holds. If i ∈ A, then we need to analyze the synthetic channel in (2). More

specifically, we have

W
(n)
i (y[0:n−1], u[0:i−1]|ui) =

1

qn−1

∑

u[i+1:n−1]∈F
n−i−1
q

W n(y[0:n−1]|u[0:n−1]Gn)

=
1

qn−1

∑

u[i+1:n−1]∈F
n−i−1
q

W n(a · y[0:n−1] + xb[0:n−1]|(a · u[0:n−1] + b[0:n−1])Gn)

=W
(n)
i (a · y[0:n−1] + xb[0:n−1], a · u[0:i−1] + b[0:i−1]|a · ui + bi).

The last equality holds because when u[i+1:n−1] ranges over all values in F
n−i−1
q , the sum a ·u[i+1:n−1]+

b[i+1:n−1] also ranges over all values in F
n−i−1
q . This equality together with the decoding rule (2)

immediately implies that (9) holds for i ∈ A. This completes the proof of (8) and (9).

Recall the notation for the decoding result of the codeword vector in (3). Similarly to (7), we use the

shorthand notation

x̂[0:n−1](y[0:n−1]) = x̂[0:n−1](y[0:n−1],A, ūAc), x̂′[0:n−1](y[0:n−1]) = x̂[0:n−1](y[0:n−1],A, ū′Ac).

With this notation, Equation (8) is equivalent to

P
(

x̂[0:n−1](y[0:n−1]) = x[0:n−1]

)

= P
(

x̂′[0:n−1](a · y[0:n−1] + xb[0:n−1]) = a · x[0:n−1] + xb[0:n−1]

)

(10)

for all x[0:n−1] ∈ F
n
q . Combining this with (6), we have

SERj(Polar(n, k,A, ūAc),W, ūA)

=
∑

y[0:n−1]∈Yn

∑

x[0:n−1]∈Fn
q

W n(y[0:n−1]|x̄[0:n−1])P(x̂[0:n−1](y[0:n−1]) = x[0:n−1])1[xj 6= x̄j ]

=
∑

y[0:n−1]∈Yn

∑

x[0:n−1]∈Fn
q

(

W n(a · y[0:n−1] + xb[0:n−1]|x̄
′
[0:n−1])

× P
(

x̂′[0:n−1](a · y[0:n−1] + xb[0:n−1]) = a · x[0:n−1] + xb[0:n−1]

)

1[a · xj + xbj 6= x̄′j]
)

(∗)
=

∑

y[0:n−1]∈Yn

∑

x[0:n−1]∈Fn
q

W n(y[0:n−1]|x̄
′
[0:n−1])P(x̂

′
[0:n−1](y[0:n−1]) = x[0:n−1])1[xj 6= x̄′j ]

=SERj(Polar(n, k,A, ū′Ac),W, ū′A).

The equality (∗) is obtained from replacing a ·y[0:n−1]+xb[0:n−1] with y[0:n−1] and replacing a ·x[0:n−1]+

xb[0:n−1] with x[0:n−1]. These two replacements are eligible because when y[0:n−1] ranges over Yn, a ·

y[0:n−1]+xb[0:n−1] also ranges over all values in Yn; similarly, when x[0:n−1] ranges over Fn
q , a ·x[0:n−1]+

xb[0:n−1] also ranges over all values in F
n
q . Moreover, since a ·xj+xbj is the jth coordinate of a ·x[0:n−1]⊕

xb[0:n−1], we also replace a · xj + xbj with xj when we replace a · x[0:n−1] + xb[0:n−1] with x[0:n−1]. This

completes the proof of the lemma.

This lemma implies that in the analysis of SER of the SC decoder, we can always assume that the

true value ū[0:n−1] of the message vector (including both information symbols and frozen symbols) is

all-zero, or equivalently, the transmitted codeword is all-zero. More specifically, we have the following

expression for the SER:

SERj(Polar(n, k,A, ūAc),W )

=SERj(Polar(n, k,A, 0n−k),W ) = SERj(Polar(n, k,A, 0n−k),W, 0k)

=
∑

y[0:n−1]∈Yn

∑

x[0:n−1]∈Fn
q

W n(y[0:n−1]|0
n)P(x̂[0:n−1](y[0:n−1],A, 0n−k) = x[0:n−1])1[xj 6= 0],

(11)
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where 0i is the all-zero vector of length i.
Note that (10) immediately implies the following lemma, which will be used later to prove the main

theorem.

Lemma 3. Let xb[0:n−1] = b[0:n−1]Gn be a codeword of Polar(n, k,A, 0n−k), i.e., bi = 0 for all i ∈ Ac.

Then
P
(

x̂[0:n−1](y[0:n−1],A, 0n−k) = x[0:n−1]

)

=P
(

x̂[0:n−1](a · y[0:n−1] + xb[0:n−1],A, 0n−k) = a · x[0:n−1] + xb[0:n−1]

)

for all a ∈ F
∗
q, x[0:n−1] ∈ F

n
q and all y[0:n−1] ∈ Yn.

As a final remark, we note that we do not need condition (5) for the set A in Lemma 2 and Lemma 3,

but we will need this condition later in the proof of the main theorem.

B. Recursive implementation of the SC decoder

In practice, the SC decoder is usually implemented recursively based on the transition probability.

Below we recap this recursive structure since it is needed in the next step of our proof. Recall that

W : Fq → Y is a symmetric channel. We denote the set of transition probabilities for an output symbol

y ∈ Y as

T (y) = {W (y|u) : u ∈ Fq}.

For a channel output vector y[0:n−1] ∈ Yn, we define a vector

T[0:n−1] = T[0:n−1](y[0:n−1]) = (T0, T1, . . . , Tn−1), where Ti = T (yi) for 0 ≤ i ≤ n− 1.

Note that each coordinate Ti = T (yi) is the set of transition probabilities for the output symbol yi. We

write T[0:n−1](y[0:n−1]) when we want to emphasize its dependence on y[0:n−1]. In most scenarios this

dependence is clear from the context, and we will simply write T[0:n−1].

It is well known that the decoding result of the SC decoder only depends on the transition proba-

bilities of the channel outputs. In other words, if two channel output vectors have the same vector of

transition probabilitiy sets, then their decoding results have the same probability distribution3 under the

SC decoder. Below we will write ûi(y[0:n−1], u[0:i−1]) and ûi(T[0:n−1], u[0:i−1]) interchangeably. We also

write û[0:n−1](y[0:n−1],A, ūAc) and û[0:n−1](T[0:n−1],A, ūAc) interchangeably.

For a ∈ F
∗
q, b[0:n−1] ∈ F

n
q , and T[0:n−1] = T[0:n−1](y[0:n−1]), we define

a · T[0:n−1] + b[0:n−1] = (a · T0 + b0, a · T1 + b1, . . . , a · Tn−1 + bn−1),

where a · Ti + bi = T (a · yi + bi) for 0 ≤ i ≤ n− 1.

Each coordinate a · Ti + bi = T (a · yi + bi) is the set of transition probabilities for the output symbol

a · yi + bi. With the new notation, we restate Lemma 3 as follows.

Lemma 4. Let xb[0:n−1] = b[0:n−1]Gn be a codeword of Polar(n, k,A, 0n−k), i.e., bi = 0 for all i ∈ Ac.

Then
P
(

x̂[0:n−1](T[0:n−1],A, 0n−k) = x[0:n−1]

)

=P
(

x̂[0:n−1](a · T[0:n−1] + xb[0:n−1],A, 0n−k) = a · x[0:n−1] + xb[0:n−1]

)

for all a ∈ F
∗
q, x[0:n−1] ∈ F

n
q and all y[0:n−1] ∈ Yn.

3Recall that the SC decoder produces a random decoding result when there is a tie in (2).
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We need some more notation to describe the recursive structure of the SC decoder. For y0, y1 ∈
Y and u0 ∈ Fq, we define two sets T−(y0, y1) = {W−(y0, y1|u) : u ∈ Fq} and T+(y0, y1, u0) =
{W+(y0, y1, u0|u) : u ∈ Fq} of size q, where

W−(y0, y1|u) =
1

q

∑

u1∈Fq

W (y0|u+ αu1)W (y1|u1),

W+(y0, y1, u0|u) =
1

q
W (y0|u0 + αu)W (y1|u).

(12)

For y[0:n−1] ∈ Yn and u[0:n/2−1] ∈ F
n/2
q , we define

T−
[0:n/2−1](y[0:n−1]) = (T−

0 , T−
1 , . . . , T−

n/2−1), where T−
i = T−(yi, yi+n/2) for 0 ≤ i ≤ n/2− 1,

T+
[0:n/2−1](y[0:n−1], u[0:n/2−1]) = (T+

0 , T+
1 , . . . , T+

n/2−1),

where T+
i = T+(yi, yi+n/2, ui) for 0 ≤ i ≤ n/2− 1.

(13)

For a set A ⊆ {0, 1, . . . , n− 1}, we define

A− = A ∩ {0, 1, . . . , n/2− 1} and A+ = {i : i+ n/2 ∈ A ∩ {n/2, n/2 + 1, . . . , n− 1}}.

The encoding procedure x[0:n−1] = u[0:n−1]Gn for polar codes can be decomposed in the following

way: Let z[0:n/2−1] = u[0:n/2−1]Gn/2 and z[n/2:n−1] = u[n/2:n−1]Gn/2, i.e., we first encode the two halves

separately. Then x[0:n/2−1] = z[0:n/2−1]+α·z[n/2:n−1] and x[n/2:n−1] = z[n/2:n−1]. This recursive structure

can be summarized as

u[0:n−1]Gn = ((u[0:n/2−1] + α · u[n/2:n−1])Gn/2, u[n/2:n−1]Gn/2). (14)

From this point on, we assume that all the frozen symbols take value 0, which is justified by Lemma 2.

We use the shorthand notation

û[0:n−1](T[0:n−1],A) = û[0:n−1](T[0:n−1],A, 0n−k), x̂[0:n−1](T[0:n−1],A) = x̂[0:n−1](T[0:n−1],A, 0n−k).

Given a channel output vector y[0:n−1], the SC decoder first decodes u[0:n/2−1] as

û[0:n/2−1](T
−
[0:n/2−1](y[0:n−1]),A

−).

Then it calculates ẑ[0:n/2−1] = û[0:n/2−1](T
−
[0:n/2−1](y[0:n−1]),A

−)Gn/2. In the next step, the SC decoder

decodes u[n/2:n−1] as

û[0:n/2−1](T
+
[0:n/2−1]

(y[0:n−1], ẑ[0:n/2−1]),A
+).

In summary, we have

P
(

û[0:n−1](y[0:n−1],A) = u[0:n−1]

)

=P
(

û[0:n/2−1](T
−
[0:n/2−1](y[0:n−1]),A

−) = u[0:n/2−1]

)

× P
(

û[0:n/2−1](T
+
[0:n/2−1](y[0:n−1], u[0:n/2−1]Gn/2),A

+) = u[n/2:n−1]

)

(15)

for all y[0:n−1] ∈ Yn and all u[0:n−1] ∈ F
n
q . In light of (14), Equation (15) is equivalent to

P
(

x̂[0:n−1](y[0:n−1],A) = (z[0:n/2−1] + α · z[n/2:n−1], z[n/2:n−1])
)

=P
(

x̂[0:n/2−1](T
−
[0:n/2−1](y[0:n−1]),A

−) = z[0:n/2−1]

)

× P
(

x̂[0:n/2−1](T
+
[0:n/2−1](y[0:n−1], z[0:n/2−1]),A

+) = z[n/2:n−1]

)

(16)

for all y[0:n−1] ∈ Yn and all z[0:n−1] ∈ F
n
q .
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C. Proof of Theorem 1

For n = 2m, we define m permutations δ
(m)
0 , δ

(m)
1 , . . . , δ

(m)
m−1 on the set {0, 1, . . . , n− 1}. For 0 ≤ i ≤

n− 1, let (bm−1(i), bm−2(i), . . . , b1(i), b0(i)) be its binary expansion defined in (4). For 0 ≤ r ≤ m− 1,

δ
(m)
r (i) is obtained from flipping the rth digit in the binary expansion of i. In other words, the binary

expansion of δ
(m)
r (i) is

(bm−1(i), bm−2(i), . . . , br+1(i), br(i)⊕ 1, br−1(i), . . . , b1(i), b0(i)).

As a concrete example, if we apply the permutation δ
(2)
1 to each coordinate of (0, 1, 2, 3), then we obtain

(2, 3, 0, 1); if we apply the permutation δ
(2)
0 to each coordinate of (0, 1, 2, 3), then we obtain (1, 0, 3, 2).

We further define m mappings ξ
(m)
0 , ξ

(m)
1 , . . . , ξ

(m)
m−1 on vectors of length n. For 0 ≤ r ≤ m − 1 and a

length-n vector x[0:n−1], we define

ξ(m)
r (x[0:n−1]) = (a0 · xδ(m)

r (0), a1 · xδ(m)
r (1), . . . , an−1 · xδ(m)

r (n−1)),

where ai = −α if br(i) = 0 and ai = −α−1 if br(i) = 1. In particular, we have

ξ
(m)
m−1(x[0:n−1]) = (−α · x[n/2:n−1],−α−1 · x[0:n/2−1]).

Lemma 5. Let n = 2m. Suppose that all the frozen symbols take value 0. Suppose that the index set A
of information symbols satisfies the condition (5). Then

P
(

x̂[0:n−1](y[0:n−1],A) = x[0:n−1]

)

= P
(

x̂[0:n−1](ξ
(m)
m−1(y[0:n−1]),A) = ξ

(m)
m−1(x[0:n−1])

)

(17)

for all y[0:n−1] ∈ Yn and all x[0:n−1] ∈ F
n
q .

Proof. We will prove another equation that is equivalent to (17). Specifically, we will prove that

P
(

x̂[0:n−1](y[0:n−1],A) = (z[0:n/2−1] + α · z[n/2:n−1], z[n/2:n−1])
)

=P

(

x̂[0:n−1](ξ
(m)
m−1(y[0:n−1]),A) =

(

− α · z[n/2:n−1],−α−1 · (z[0:n/2−1] + α · z[n/2:n−1])
)

) (18)

for all y[0:n−1] ∈ Yn and all z[0:n−1] ∈ F
n
q . These two equations are equivalent because (18) is obtained

from replacing x[0:n−1] with (z[0:n/2−1] + α · z[n/2:n−1], z[n/2:n−1]) in (17).

By (12), we have

W−(−α · y1,−α−1 · y0|u0) =
1

q

∑

u1∈Fq

W (−α · y1|u0 + αu1)W (−α−1 · y0|u1)

=
1

q

∑

u1∈Fq

W (y1| − α−1u0 − u1)W (y0| − αu1) =
1

q

∑

u1∈Fq

W (y0| − αu1)W (y1| − α−1u0 − u1)

(a)
=

1

q

∑

v∈Fq

W (y0|u0 + αv)W (y1|v) = W−(y0, y1|u0) for all u0 ∈ Fq and y0, y1 ∈ Y,

where equality (a) is obtained by setting v = −α−1u0 − u1 and observing that −αu1 = u0 + αv.

Therefore, T−(y0, y1) = T−(−α·y1,−α−1 ·y0). Definition (13) further implies that T−

[0:n/2−1](y[0:n−1]) =

T−
[0:n/2−1](ξ

(m)
m−1(y[0:n−1])) for all y[0:n−1] ∈ Yn. Therefore,

P
(

x̂[0:n/2−1](T
−
[0:n/2−1](y[0:n−1]),A

−) = z[0:n/2−1]

)

=P
(

x̂[0:n/2−1](T
−
[0:n/2−1](ξ

(m)
m−1(y[0:n−1])),A

−) = z[0:n/2−1]

)
(19)

for all y[0:n−1] ∈ Yn and all z[0:n/2−1] ∈ F
n/2
q .
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By (12),

W+(−α · y1,−α−1 · y0, u0|u1) =
1

q
W (−α · y1|u0 + αu1)W (−α−1 · y0|u1)

=
1

q
W (y1| − α−1u0 − u1)W (y0| − αu1) =

1

q
W (y0| − αu1)W (y1| − α−1u0 − u1)

=W+(y0, y1, u0| − α−1u0 − u1) = W+(−1 · (y0, y1, u0)|α
−1u0 + u1)

=W+(−1 · (y0, y1, u0)− α−1u0|u1)

for all y0, y1 ∈ Y and u0, u1 ∈ Fq. In the Appendix, we prove that W+ is also an Fq-symmetric

memoryless channel. Therefore, for a ∈ F
∗
q and b ∈ Fq, we can use (1) to define the operation a ·

(y0, y1, u0) + b on the output symbol (y0, y1, u0) of W+. In particular, −1 · (y0, y1, u0)− α−1u0 in the

above equations is defined in this way. Therefore, T+(−α·y1,−α−1·y0, u0) = −1·T+(y0, y1, u0)−α−1u0.

Definition (13) further implies that

T+
[0:n/2−1](ξ

(m)
m−1(y[0:n−1]), z[0:n/2−1]) = −1 · T+

[0:n/2−1](y[0:n−1], z[0:n/2−1])− α−1 · z[0:n/2−1] (20)

for all y[0:n−1] ∈ Yn and all z[0:n/2−1] ∈ F
n/2
q .

Let |A| = k, |A−| = k−, and |A+| = k+. The condition (5) implies that A− ⊆ A+. As a consequence,

Polar(n, k−,A−, 0n/2−k−

) ⊆ Polar(n, k+,A+, 0n/2−k+

). In other words, if z[0:n/2−1] is a codeword in

Polar(n, k−,A−, 0n/2−k−

), then it must also be a codeword in Polar(n, k+,A+, 0n/2−k+

).
We divide the proof into two cases.
Case 1) If z[0:n/2−1] is not a codeword in Polar(n, k−,A−, 0n/2−k−

), then the probability on both sides

of (19) is 0. This is simply because the SC decoder can only output a valid codeword as the decoding

result. In this case, (16) implies that the probability on both sides of (18) is 0.
Case 2) If z[0:n/2−1] is a codeword in Polar(n, k−,A−, 0n/2−k−

), then it is also a codeword in

Polar(n, k+,A+, 0n/2−k+

). In this case, we have

P
(

x̂[0:n/2−1](T
+
[0:n/2−1](ξ

(m)
m−1(y[0:n−1]), z[0:n/2−1]),A

+) = −α−1 · (z[0:n/2−1] + α · z[n/2:n−1])
)

=P
(

x̂[0:n/2−1](−1 · T+
[0:n/2−1]

(y[0:n−1], z[0:n/2−1])− α−1z[0:n/2−1],A
+) = −z[n/2:n−1] − α−1z[0:n/2−1]

)

=P
(

x̂[0:n/2−1](T
+
[0:n/2−1](y[0:n−1], z[0:n/2−1]),A

+) = z[n/2:n−1]

)

for all z[n/2:n−1] ∈ F
n/2
q , where the first equality follows from (20), and the second equality follows from

Lemma 4. Combining this with (16) and (19), we complete the proof of (18). Since (18) is equivalent

to (17), this completes the proof of the lemma.

Lemma 6. Let n = 2m. Suppose that all the frozen symbols take value 0. Suppose that the index set A
of information symbols satisfies the condition (5). Then

P
(

x̂[0:n−1](y[0:n−1],A) = x[0:n−1]

)

= P
(

x̂[0:n−1](ξ
(m)
m−r(y[0:n−1]),A) = ξ

(m)
m−r(x[0:n−1])

)

(21)

for all y[0:n−1] ∈ Yn, all x[0:n−1] ∈ F
n
q , and all 1 ≤ r ≤ m.

Proof. We prove by induction on r. The base case r = 1 is already proved in Lemma 5. Now we assume

that (21) holds for r − 1 and all values of m, and we prove it for r. Observe that

T−
[0:n/2−1](ξ

(m)
m−r(y[0:n−1])) = ξ

(m−1)
m−r (T−

[0:n/2−1](y[0:n−1])).

Since A satisfies the condition (5), both A+ and A− also satisfy the condition (5). By the induction

hypothesis, (21) holds for r − 1 and m− 1, so

P
(

x̂[0:n/2−1](T
−

[0:n/2−1]
(y[0:n−1]),A

−) = z[0:n/2−1]

)

=P
(

x̂[0:n/2−1](ξ
(m−1)
m−r (T−

[0:n/2−1](y[0:n−1])),A
−) = ξ

(m−1)
m−r (z[0:n/2−1])

)

=P
(

x̂[0:n/2−1](T
−
[0:n/2−1](ξ

(m)
m−r(y[0:n−1])),A

−) = ξ
(m−1)
m−r (z[0:n/2−1])

)

(22)
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Fig. 1: Simulation results of the (n = 256, k = 128) binary polar code over binary-input AWGN channel

with Eb/N0 = 2dB

for all z[0:n/2−1] ∈ F
n/2
q . It is easy to verify that

T+
[0:n/2−1](ξ

(m)
m−r(y[0:n−1]), ξ

(m−1)
m−r (z[0:n/2−1])) = ξ

(m−1)
m−r (T+

[0:n/2−1](y[0:n−1], z[0:n/2−1])).

Again by the induction hypothesis,

P
(

x̂[0:n/2−1](T
+
[0:n/2−1](y[0:n−1], z[0:n/2−1]),A

+) = z[n/2:n−1]

)

=P
(

x̂[0:n/2−1](ξ
(m−1)
m−r (T+

[0:n/2−1](y[0:n−1], z[0:n/2−1])),A
+) = ξ

(m−1)
m−r (z[n/2:n−1])

)

=P
(

x̂[0:n/2−1](T
+
[0:n/2−1](ξ

(m)
m−r(y[0:n−1]), ξ

(m−1)
m−r (z[0:n/2−1])),A

+) = ξ
(m−1)
m−r (z[n/2:n−1])

)

for all z[n/2:n−1] ∈ F
n/2
q . Combining this with (16) and (22), we obtain that

P
(

x̂[0:n−1](y[0:n−1],A) = (z[0:n/2−1] + α · z[n/2:n−1], z[n/2:n−1])
)

=P
(

x̂[0:n−1](ξ
(m)
m−r(y[0:n−1]),A) = (ξ

(m−1)
m−r (z[0:n/2−1] + α · z[n/2:n−1]), ξ

(m−1)
m−r (z[n/2:n−1]))

)

for all z[0:n−1] ∈ F
n
q . Since

(ξ
(m−1)
m−r (z[0:n/2−1] + α · z[n/2:n−1]), ξ

(m−1)
m−r (z[n/2:n−1]))

=(ξ
(m)
m−r((z[0:n/2−1] + α · z[n/2:n−1], z[n/2:n−1])),

we further obtain that

P
(

x̂[0:n−1](y[0:n−1],A) = (z[0:n/2−1] + α · z[n/2:n−1], z[n/2:n−1])
)

=P
(

x̂[0:n−1](ξ
(m)
m−r(y[0:n−1]),A) = ξ

(m)
m−r((z[0:n/2−1] + α · z[n/2:n−1], z[n/2:n−1]))

)

for all z[0:n−1] ∈ F
n
q . Finally, (21) follows from replacing (z[0:n/2−1] + α · z[n/2:n−1], z[n/2:n−1]) with

x[0:n−1]. This completes the proof of the lemma.

Lemma 7. Let n = 2m. Let W be a Fq-symmetric memoryless channel. Suppose that the index set A of

information symbols satisfies the condition (5). Then

SERj(Polar(n, k,A, ūAc),W ) = SERδ(m)
r (j)(Polar(n, k,A, ūAc),W )
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for all 0 ≤ j ≤ n− 1, all 0 ≤ r ≤ m− 1, and all ūAc ∈ F
n−k
q .

Proof. By (11), we have

SERj(Polar(n, k,A, ūAc),W )

=
∑

y[0:n−1]∈Yn

∑

x[0:n−1]∈Fn
q

W n(y[0:n−1]|0
n)P(x̂[0:n−1](y[0:n−1],A) = x[0:n−1])1[xj 6= 0]

=
∑

y[0:n−1]∈Yn

∑

x[0:n−1]∈Fn
q

(

W n(ξ(m)
r (y[0:n−1])|0

n)

× P
(

x̂[0:n−1](ξ
(m)
r (y[0:n−1]),A) = ξ(m)

r (x[0:n−1])
)

1[xj 6= 0]
)

=
∑

y[0:n−1]∈Yn

∑

x[0:n−1]∈Fn
q

W n(y[0:n−1]|0
n)P(x̂[0:n−1](y[0:n−1],A) = x[0:n−1])1[xδ(m)

r (j) 6= 0]

=SERδ(m)
r (j)(Polar(n, k,A, ūAc),W ),

where the second equality follows from W n(y[0:n−1]|0
n) = W n(ξ

(m)
r (y[0:n−1])|0

n) and Lemma 6; the

third equality is obtained from replacing ξ
(m)
r (y[0:n−1]) with y[0:n−1] and replacing ξ

(m)
r (x[0:n−1]) with

x[0:n−1].

Lemma 7 immediately implies Theorem 1 because for any j ∈ {0, 1, . . . , n− 1}, we can always apply

a subset of δ
(m)
0 , δ

(m)
1 , . . . , δ

(m)
m−1 to j and obtain 0. This means that SERj(Polar(n, k,A, ūAc),W ) =

SER0(Polar(n, k,A, ūAc),W ) for all j ∈ {0, 1, . . . , n− 1} and completes the proof of Theorem 1.

IV. THE CONNECTION TO [4]

In this section, we restrict ourselves to binary polar codes. As mentioned in Introduction, we observed

the simulation results in Fig. 1 as we repeated the experiments in [4]. From Fig. 1 we can see that the

variance of the BERs of message bits is very large. In contrast, the BERs of codeword bits are extremely

stable, to the extent that they form a straight line. At this point, it makes sense to discuss the connection

between our results and [4].

We still use u[0:n−1] to denote the message vector and use x[0:n−1] to denote the codeword vector. The

set A is still the index set of information bits. The main observation in [4] is that the average BER of xA
is much smaller than the average BER of uA under the SC decoder. This is somewhat counter-intuitive

because the SC decoder directly decodes uA, and xA is obtained from multiplying the decoding result

of u[0:n−1] with the encoding matrix Gn. Even till today, no rigorous analysis is available to explain this

phenomenon.

The results in this paper imply that the BERs of all the codeword bits are equal to each other, and

they all equal to the BER of the last message bit because the last codeword bit is the same as the last

message bit. On the bright side, the last message bit is the best-protected message bit if we assume that

all the previous message bits are decoded correctly. However, we also have an argument in the opposite

direction: The decoding error in the SC decoder accumulates, and the last message bit takes the most

damage from decoding errors in previous message bits. In fact, if we look at Fig. 1 closely, we can see

that there is an increasing trend in the BERs of message bits (increasing with the indices). The BER of

the last message bit is an outlier because it drops abruptly compared to the previous bits.

To conclude, although our result is somewhat correlated with the observation in [4], we are still not

able to explain the phenomenon in [4]. That calls for future research effort.
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APPENDIX

Lemma 8. If W is an Fq-symmetric memoryless channel, then both W+ and W− defined in (12) are

Fq-symmetric memoryless channels.

Proof. We first prove the claim for W+. By definition, we need to show that (1) there exist q permutations

{σb : b ∈ Fq} on the output alphabet Y2 × Fq such that W+(y0, y1, u0|u) = W+(σu′−u((y0, y1, u0))|u
′)

for all y0, y1 ∈ Y and all u, u′, u0 ∈ Fq; (2) there exist q − 1 permutations {πa : a ∈ F
∗
q} on Y2 × Fq

such that W+(y0, y1, u0|u) = W+(πa((y0, y1, u0))|au) for all y0, y1 ∈ Y , u, u0 ∈ Fq, and a ∈ F
∗
q .

We may choose σb((y0, y1, u0)) = (y0 +αb, y1 + b, u0) and πa((y0, y1, u0)) = (a · y0, a · y1, au0). The

following calculations allow us to verify this choice.

W+(σb((y0, y1, u0))|u+ b) = W+(y0 + αb, y1 + b, u0|u+ b)

=
1

q
W (y0 + αb|u0 + α(u+ b))W (y1 + b|u+ b) =

1

q
W (y0|u0 + αu)W (y1|u)

=W+(y0, y1, u0|u),

W+(πa((y0, y1, u0))|au) = W+(a · y0, a · y1, au0|au)

=
1

q
W (a · y0|au0 + αau)W (a · y1|au) =

1

q
W (y0|u0 + αu)W (y1|u)

=W+(y0, y1, u0|u).

As for W−, we need to show that (1) there exist q permutations {σb : b ∈ Fq} on the output alphabet

Y2 such that W−(y0, y1|u) = W−(σu′−u((y0, y1))|u
′) for all y0, y1 ∈ Y and all u, u′ ∈ Fq; (2) there

exist q − 1 permutations {πa : a ∈ F
∗
q} on Y2 such that W−(y0, y1|u) = W−(πa((y0, y1))|au) for all

y0, y1 ∈ Y , u ∈ Fq, and a ∈ F
∗
q .

We may choose σb((y0, y1)) = (y0+b, y1) and πa((y0, y1)) = (a ·y0, a ·y1). The following calculations

allow us to verify this choice.

W−(σb((y0, y1))|u+ b) = W−(y0 + b, y1|u+ b)

=
1

q

∑

u1∈Fq

W (y0 + b|u+ b+ αu1)W (y1|u1)
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=
1

q

∑

u1∈Fq

W (y0|u+ αu1)W (y1|u1) = W−(y0, y1|u),

W−(πa((y0, y1))|au) = W−(a · y0, a · y1|au)

=
1

q

∑

u1∈Fq

W (a · y0|au+ αu1)W (a · y1|u1)

=
1

q

∑

u1∈Fq

W (a · y0|au+ αau1)W (a · y1|au1)

=
1

q

∑

u1∈Fq

W (y0|u+ αu1)W (y1|u1) = W−(y0, y1|u).
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