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Abstract—In this paper, simultaneously transmitting and re-
flecting (STAR) reconfigurable intelligent surface (RIS) is investi-
gated in the multi-user mobile edge computing (MEC) system to
improve the computation rate. Compared with traditional RIS-
aided MEC, STAR-RIS extends the service coverage from half-
space to full-space and provides new flexibility for improving
the computation rate for end users. However, the STAR-RIS-
aided MEC system design is a challenging problem due to the
non-smooth and non-convex binary amplitude coefficients with
coupled phase shifters. To fill this gap, this paper formulates
a computation rate maximization problem via the joint de-
sign of the STAR-RIS phase shifts, reflection and transmission
amplitude coefficients, the receive beamforming vectors, and
energy partition strategies for local computing and offloading. To
tackle the discontinuity caused by binary variables, we propose
an efficient smoothing-based method to decrease convergence
error, in contrast to the conventional penalty-based method,
which brings many undesired stationary points and local optima.
Furthermore, a fast iterative algorithm is proposed to obtain a
stationary point for the joint optimization problem, with each
subproblem solved by a low-complexity algorithm, making the
proposed design scalable to a massive number of users and STAR-
RIS elements. Simulation results validate the strength of the
proposed smoothing-based method and show that the proposed
fast iterative algorithm achieves a higher computation rate than
the conventional method while saving the computation time by at
least an order of magnitude. Moreover, the resultant STAR-RIS-
aided MEC system significantly improves the computation rate
compared to other baseline schemes with conventional reflect-
only/transmit-only RIS.

Index Terms—Binary optimization problem, computation rate,
mobile edge computing (MEC), simultaneously transmitting
and reflecting reconfigurable intelligent surface (STAR-RIS),
smoothing-based method.

I. INTRODUCTION

I
N traditional cloud computing systems, the mobile users’

data would be sent to a remote cloud center distant from the

end devices [1]. However, this paradigm cannot fit the future
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Internet of Things era due to the unprecedentedly increasing

amount of data generated by a massive number of users and

the latency-critical requirements of new applications, such

as industrial monitoring multi-sensory communications and

mobile virtual reality [2]. Therefore, mobile edge computing

(MEC) has emerged and has drawn much attention from

both academia and industry. It promotes using computing

capabilities at the edge servers attached to the wireless access

points (APs), where the users’ data can be offloaded to the

nearby APs, and the results are delivered back to the users

after the computation [3]. It dramatically reduces latency

and communication overhead of the network backhaul, thus

overcoming the critical challenges for materializing beyond

5G.

In the MEC paradigm, the system objective shifts from

purely maximizing the communication sum rate to maximizing

the computation rate. Since the edge server has powerful

computation capability and the users’ computation results are

in very small sizes, the bottleneck of the computation rate for

wireless-aided MEC systems is the uplink offloading perfor-

mance [4]–[6]. However, the uplink offloading performance is

severely restricted in practice due to the energy-limited mobile

users and the adverse wireless channel condition.

In order to improve the uplink offloading performance in

wireless-aided MEC systems, great attention has been drawn to

the emerging technology of reconfigurable intelligent surfaces

(RIS) due to its advantages of low cost, easy deployment,

and directional signal enhancement or interference nulling

[7]–[11]. However, the traditional RIS can only reflect or

transmit the incident wireless signal (conventional reflect-

only/transmit-only RISs). In this case, the AP and users must

be located on the same side (for reflect-only RIS) or the

opposite side (for transmit-only RIS) of the RIS, leading to

only a half-space coverage. This geographical restriction may

not always be satisfied in practice and severely limits the

flexibility of the deployment and effectiveness of the RISs. To

overcome this limitation, the simultaneously transmitting and

reflecting RIS (STAR-RIS) was proposed [12]–[14], where the

wireless signals to the STAR-RIS from either side of the sur-

face are divided into two parts [15]. One part (reflected signal)

is in the same half-space (i.e., the reflection space), and the

other (transmitted signal) is transmitted to the opposite half-

space (i.e., the transmission space). By controlling a STAR-

0000–0000/00$00.00 © 2023 IEEE
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RIS element’s electric and magnetic currents, the transmitted

and reflected signals can be reconfigured via two generally

independent coefficients, known as the transmission and the

reflection coefficients [13]. With the recently developed proto-

types resembling STAR-RISs [15]–[18], a highly flexible full-

space coverage will become a reality. Due to the full-space

coverage advantage, the STAR-RIS-aided MEC network will

break the geographical restriction of the accessed devices to

provide a high coverage ratio and support continuous MEC

service with better quality.

In this paper, we aim to study the computation rate of a

STAR-RIS-aided MEC system. In particular, we formulate the

computation rate maximization problem by considering the

local and offloaded computation rates under the energy budget.

Since the STAR-RIS’s transmission and reflection coefficient

matrix couples with the design of receive beamforming vectors

and uplink transmission power, the resulting optimization

problem is an intertwined design of resource allocation in the

STAR-RIS-aided MEC network. Worse still, the reflection and

transmission amplitude coefficients of STAR-RIS are discrete

binary variables, leading to a challenging mixed-integer non-

convex optimization problem.

To address the above challenges, we transform the binary

constraints into their equivalent continuous form and then

resort to the penalty-based method. However, this equiva-

lent transformation may introduce many undesired stationary

points and local optima1, thus diminishing the solution quality.

Therefore, we further adopt the logarithmic smoothing func-

tion for binary variables in the penalized objective to eliminate

the undesirable stationary points and local optima. With the

above ideas, the resultant problem can be solved under the

block coordinate descent (BCD) framework. Furthermore, to

obtain an overall low complexity algorithm, each subproblem

is solved with either closed-forms or first-order algorithms,

with complexity orders only scaling linearly with respect to

the number of elements in the STAR-RIS or users. Extensive

simulation results show that the proposed STAR-RIS-aided

MEC system outperforms systems with conventional RIS. At

the same time, the proposed smoothing-based method for

binary variables optimization leads to better performance than

the conventional penalty-based method.

The rest of the paper is organized as follows. The system

model and the computation rate maximization problem are

formulated in Section II. The binary reflection and transmis-

sion amplitude coefficients design problem are handled in

Section III. Section IV optimizes the other variables under the

BCD framework. Simulation results are presented in Section

V. Finally, a conclusion is drawn in Section VI.

Notations: We use boldface lowercase and uppercase letters

to represent vectors and matrices, respectively. The transpose,

conjugate, conjugate transpose, and diagonal matrix are de-

noted as (·)T, (·)∗, (·)H, and diag(·), respectively. The symbols

|·| and Re(·) denote the modulus and the real component of

a complex number, respectively. The n × n identity matrix

is denoted as In and the (i, j)th element of a matrix X

1These undesired stationary points and local optima have a lower objective
value than the global optimum.

Fig. 1: The STAR-RIS-aided MEC system.

is denoted by (X)ij . The complex normal distribution is

denoted as CN . Notations ≤ or ≥ are used for element-wise

comparison. For example, if x1 ≤ x2, x2 is element-wise

greater than x1.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model

We consider a STAR-RIS-aided MEC system as shown

in Fig. 1, in which there are an AP with N antennas, K
single-antenna users, and an M -element STAR-RIS. The AP

is attached to a MEC edge server. Since the STAR-RIS

can provide full-space coverage by allowing simultaneous

transmission and reflection of the incident signal, it serves

both T users in the transmission space and R users in the

reflection space.

Each user has a limited energy budget but has intensive

computation tasks to deal with, and the available energy for

computing the task in user k is denoted as Ek in Joules (J).

In practice, if the computation task is too complicated to be

completed by a user (possibly due to excessive energy or time

involved), part of the task should be delegated to the edge

server. Hence, a partial offloading mode is adopted [3]. Partial

offloading is designed to cope with computation tasks that

can be arbitrarily divided to facilitate parallel operations at

users for local computing and the AP for edge computing.

Being grid-powered, the MEC server has strong computation

and storage capabilities for helping users to compute their of-

floaded tasks and report the computation results in a negligible

time.2

For uplink transmission, let T = {1, . . . , T }, R = {T +
1, . . . ,K} and K = {T ∪ R} denote the index sets of the T
users in transmission space, the R = K−T users in reflection

space, and all the users, respectively. Let st and sr ∈ C with

zero mean and unit variance denote the information symbols of

user t ∈ T and user r ∈ R for the offloading task, and pt and

pr denote the transmit power of user t and user r, respectively.

Note that all the users with offloading requirements transmit

2In practice, as long as the overall computation workload of users doesn’t
exceed the MEC server’s computing capacity, the computation time can be
disregarded as the computation at MEC servers is conducted simultaneously
with the uplink data transmission [5], [19], [20].
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their signals simultaneously, and thus we can express the

corresponding received signal y ∈ C
N×1 at the AP as

y =
∑

t∈T

gt

√
ptst +

∑

r∈R

gr

√
prsr + z, (1)

where gt, gr ∈ C
N×1 are respectively the equivalent base-

band channels from the user t and r to the AP, and z ∼
CN

(
0, σ2IN

)
is the receiver noise at the AP with σ2 being

the noise power.

With the deployment of a STAR-RIS, the equivalent base-

band channels from the user t or r to the AP consists of

both the direct link and transmitted or reflected link from the

STAR-RIS. Therefore, gt can be modeled as

gt = hd,t + (G)
H
ΩtΘhs,t, ∀t ∈ T , (2)

where hd,t ∈ CN×1,hs,t ∈ CM×1, and G ∈ CM×N are

the narrow-band quasi-static fading channels from user t to

the AP, from user t to the STAR-RIS, and from the STAR-

RIS to the AP, respectively. The STAR-RIS phase shift matrix

Θ = diag
(
ejθ1 , . . . , ejθM

)
∈ CM×M is a diagonal matrix

with θm ∈ [0, 2π) being the phase shift of the mth element and

m ∈ M = {1, 2, . . . ,M}. The STAR-RIS transmission am-

plitude coefficient matrix Ωt = diag (ρt1, . . . , ρ
t
M ) ∈ RM×M

is a diagonal matrix with ρtm being the transmission amplitude

coefficient of the mth element.

Similar to (2), gr is expressed as

gr = hd,r + (G)H ΩrΘhs,r, ∀r ∈ R, (3)

where hd,r ∈ CN×1, hs,r ∈ CM×1 denote the narrow-

band quasi-static fading channels from the user r to the

AP, and from the user r to the STAR-RIS, respectively.

The STAR-RIS reflection amplitude coefficient matrix Ωr =
diag (ρr1, . . . , ρ

r
M ) ∈ RM×M is a diagonal matrix with ρrm

being the reflection amplitude coefficient of the mth element.

In this paper, we consider the mode switching (MS) protocol,

where ρtm, ρrm ∈ {0, 1} and (ρtm)
2
+ (ρrm)2 = 1. Such an

“on-off” type operating protocol is much easier to implement

compared to the energy splitting (ES) protocol and therefore

more practical in the application scenarios [12]. Moreover,

from the users’ perspective, the MS protocol has lower latency

than time switching (TS) protocols, which separates two

orthogonal time slots for reflection and transmission users

and inevitably incurs higher latency for users assigned to the

second time slot.

For the offloading task, we introduce an energy partition

parameter ak ∈ [0, 1] for user k ∈ K, and akEk represents the

energy used for computation offloading. Correspondingly, the

transmit power of user k for computation offloading is given

as

pk =
akEk

L
, ∀k ∈ K, (4)

where L is the length of the time slot.

We consider the linear beamforming strategy and denote

vk ∈ CN×1 as the receive beamforming vector of the AP for

decoding sk. Based on (1), the received signal at the AP for

user k, denoted by ŝk ∈ C, is then given by

ŝk=(vk)
Hgk

√
pksk+(vk)

H
∑

l 6=k

gl

√
plsl+(vk)

H
z, ∀k∈K. (5)

The uplink signal-to-interference-plus-noise ratio (SINR)

observed at the AP for user k is thus given by

γk

(

a,vk,Θ,ρ
)

=
pk

∣
∣
∣(vk)

H
gk

∣
∣
∣

2

∑

l 6=kpl

∣
∣
∣(vk)

H
gl

∣
∣
∣

2

+σ2‖vk‖2
, ∀k∈K, (6)

where we denote an energy partition vector a = [a1, . . . , aK ]T

and a reflection and transmission amplitude coefficient vector

ρ = [ρt1, · · · , ρtM , ρr1, · · · , ρrM ]T. Then the computation rate of

user k due to offloading is

Rk

(

a,vk,Θ,ρ
)

=B log2

(

1+γk

(

a,vk,Θ,ρ
))

, ∀k∈K, (7)

where B is the system bandwidth.

Regarding local computing, the computation rate is fk/Ck,

where Ck is the number of required CPU cycles for users to

compute 1-bit of input data, and fk is the user’s CPU fre-

quency. We adopt the dynamic voltage and frequency scaling

technique for increasing the computation energy efficiency for

users through adaptively controlling the CPU frequency for

local computing. Specifically, the energy consumption for the

user can be calculated as Lκkf
2
k with κk being the effective ca-

pacitance coefficient of user k. Also, as (1−ak)Ek represents

the energy for local computing, we have (1−ak)Ek = Lκkf
2
k .

By expressing fk in terms of other parameters in this equation,

we finally obtain the local computation rate of user k as

Rloc
k (ak) =

fk
Ck

=
1

Ck

√

(1− ak)Ek

Lκk

, ∀k ∈ K. (8)

B. Problem Formulation

We aim to maximize the computation rate (both due to of-

floading and local computation) of all the users in a given time

slot of duration L through jointly optimizing the phase shifts

in Θ, the reflection and transmission amplitude coefficients

in ρ = [ρt1, · · · , ρtM , ρr1, · · · , ρrM ]T, the receive beamforming

vectors in V = [v1, . . . ,vK ], and the energy partition parame-

ters in a. The corresponding optimization problem is formally

written as

P0 : max
a,V ,Θ,ρ

K∑

k=1

(

Rk

(

a,vk,Θ,ρ
)

+Rloc
k (ak)

)

, (9a)

s.t. ak ∈ [0, 1], ∀k ∈ K, (9b)

|(Θ)m,m| = 1, ∀m ∈M, (9c)

ρtm, ρrm ∈ {0, 1}, ∀m ∈ M, (9d)
(
ρtm
)2

+ (ρrm)2 = 1, ∀m ∈M. (9e)

However, problem (9) is a non-convex optimization problem

without a closed-form solution as V , a, Θ, and ρ are highly

coupled in (9a). Therefore, we apply the BCD framework to

P0 so that each block is handled iteratively. Furthermore, due

to the binary nature of reflection and transmission amplitude
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coefficients ρtm and ρrm, problem (9) is a nonlinear mixed-

integer problem, and it usually requires an exponential time

complexity to find the optimal solution. To address the above

issue, we apply the logarithmic smoothing-based method to

solve the binary variables of P0 in the next section.

Remark 1. For a MIMO channel without the STAR-RIS,

the number of data streams cannot exceed the degree of

freedom (DoF) the channel provides, which is limited by

the number of transceiver antennas [21]. However, with the

presence of a STAR-RIS, currently, there is no study on the

rule for the number of antennas at AP N and the number

of STAR-RIS elements M to support K users. In Appendix

A, we have shown that for the system model considered in

this paper, assuming N ≥ K , the necessary condition for

the number M required to serve K users simultaneously

is M ≥ K − b − j, where b and j are the ranks of the

aggregated direct channel between transmission users and

the AP Hd,t = [hd,1 · · · hd,T ] ∈ CN×T and reflection

users between the AP Hd,r = [hd,T+1 · · · hd,K ] ∈ CN×R,

respectively. If there are no direct links between transmission

and reflection users and the AP, b and j equal zero, and the

condition becomes M ≥ K .

III. LOGARITHMIC SMOOTHING-BASED METHOD FOR

HANDLING BINARY VARIABLES

In this section, we optimize ρ with other variables in P0

fixed. We first transform the discontinued binary constraints

into their equivalent continuous form and then resort to the

penalty-based method. However, it is not likely to obtain a

solution of good quality with the assistance of penalty terms

since many undesired stationary points and local optima could

be introduced [22], [23], leading to a poor quality converged

solution. To diminish the performance loss, we further propose

the logarithmic smoothing-based method that eliminates the

undesired stationary points and local optima by suppressing

the unsmooth part of the penalized problem.

A. Penalty-Based Method for Updating ρ

When other variables are fixed, the subproblem for optimiz-

ing ρ is given as

max
ρ

∑

t

Rt(ρ) +
∑

r

Rr(ρ), (10a)

s.t. ρtm, ρrm ∈ {0, 1}, ∀m ∈ M, (10b)

ρtm + ρrm = 1, ∀m ∈M, (10c)

where we replaced (9e) with (10c) since they are equiva-

lent when ρtm, ρrm ∈ {0, 1}, and Rk(ρ) = B log2

(

1 +

γk (ρ)
)

, k ∈ {t, r} is obtained from (7) by fixing all variables

except ρ. The binary constraint (10b) can be equivalently

transformed into the following constraints [24]

ρxm − (ρxm)
2
= 0, ∀x ∈ {t, r},m ∈M, (11)

0 ≤ ρtm, ρrm ≤ 1, m ∈ M. (12)

Based on (12), we always have ρxm − (ρxm)
2 ≥ 0, where the

equality holds if and only if ρxm is 0 or 1, i.e., a binary variable,

and the term ρxm − (ρxm)
2

attains its maximum at ρxm = 1
2 .

Rather than directly handling the nonlinear constraints (11),

we add a penalty term ρxm − (ρxm)
2

with a penalty parameter

γ > 0. The problem (10) then becomes

max
ρ

∑

t

Rt(ρ)+
∑

r

Rr(ρ)−γ
∑

m

∑

x

(

ρxm − (ρxm)2
)

, (13a)

s.t. ρtm + ρrm = 1, ∀m ∈M, (13b)

0 ≤ ρtm, ρrm ≤ 1, ∀m ∈ M, (13c)

where the penalty function introduced this way is “exact” in

the sense that the problem (13) and (10) have the same global

optimum for a sufficiently large penalty parameter γ. In terms

of the penalty parameter, we employ an increasing penalty

strategy to enforce the exact constraints successively.
The above idea of applying a penalty term to enforce

binary constraint generally performs well, as verified by the

simulations in [25], [26]. However, the penalty term might

introduce many undesired stationary points and local optima.

To avoid getting stuck in undesired stationary points or local

optima during the optimization process, we further consider a

smoothing technique.

B. Smoothing-Based Optimization Method for Updating ρ

A popular method to eliminate poor local optima is using

smoothing methods to suppress the unsmoothness of the ob-

jective function [27]. It aims to transform the original problem

with many local optima into one with fewer local optima

and thus has a higher chance of obtaining the global optimal

solution.
The basic idea of smoothing is to add a strictly convex

function (or concave, depending on maximizing or minimizing

objective function) to the original objective, i.e.,

max
x,µ

F(x, µ) = f(x)− µΦ(x), (14)

where f(x) is the original objective function, Φ(x) is a

strictly convex function, and µ is the barrier parameter. If

Φ(x) is chosen to have a Hessian that is sufficiently positive

definite for all x, then F(x, µ) is strictly convex when µ is

large enough. This is important in smoothing-based methods

because the basic idea is to solve the problem (14) iteratively

for a decreasing sequence of µ starting with a large value.

With a sufficiently large parameter µ at the beginning, any

local optima of F(x, µ) is also the unique global optimum

and thus is trivial to optimize.
For a binary vector, a strongly convex function Φ(x) is [28]

Φ(x) = −
n∑

c=1

lnxc −
n∑

c=1

ln(1 − xc). (15)

This function is well-defined when 0 < x < 1 and attains its

maximum at xc =
1
2 . Based on (14) and (15), we can derive a

smoothing-based algorithm for handling (13). Applying (15)

to the optimization problem (13), it can be formulated as

max
ρ

∑

t

Rt(ρ)+
∑

r

Rr(ρ)−γ
∑

m

∑

x

(

ρxm−(ρxm)2
)

−µΦ(ρ),

(16a)

s.t. ρtm + ρrm = 1, ∀m ∈M, (16b)
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0 ≤ ρtm, ρrm ≤ 1, m ∈M. (16c)

Since (16) has a continuously differentiable objective function

and a convex feasible set, the projected-gradient (PG) method

can be exploited to tackle this problem. It alternatively per-

forms an unconstrained gradient descent step and computes

the projection of the update onto the feasible set of the

optimization problem. To be specific, the update of the ith

iteration is given by

ρ

(

i+
1

2

)

= ρ(i) + τ(i)∇ρQ (ρ) , (17)

where Q (ρ) is the objective function in (16), τ(i) is the

Armijo step size to guarantee convergence, and ∇ρQ (ρ) is

the gradient of Q (ρ), with its explicit expression shown in

(37) of Appendix B.
On the other hand, to project ρ

(
i+ 1

2

)
onto the feasible

set determined by constraints (16b) and (16c), an update point

ρ(i+1) can be obtained by solving the following optimization

problem

ρ(i+ 1) = argmin
ρ

∥
∥
∥
∥
ρ− ρ

(

i+
1

2

)∥
∥
∥
∥

2

, (18a)

s.t.
[
IM IM

]
ρ = 1, (18b)

0 ≤ ρ ≤ 1, (18c)

where
[
IM IM

]
∈ RM×2M and we transformed the con-

straints (16b) into its equivalent compact matrix form (18b).

Since the feasible set of ρ is the intersection of a hyperplane

and a box, a closed-form solution can be derived based on

the Karush-Kuhn-Tucker (KKT) condition and is given by

the following Proposition 1, which is proved in Appendix C.

Based on (17), (37) and (19), we can iteratively update ρ,

where the convergent point is guaranteed to be a stationary

point of (16).

Proposition 1. The optimal solution to (18) is given by

ρ⋆ = PBox[0,1]

(

ρ

(

i+
1

2

)

−
[
λ⋆

λ⋆

])

, (19)

where λ⋆ = [λ⋆
1, . . . , λ

⋆
K ] and PBox[0,1](x) =

(min {max {xi, 0} , 1})ni=1 ,x ∈ Rn. The λ⋆
m is a solution to

the equation

[
IM IM

]
PBox[0,1]

(

ρ

(

i+
1

2

)

−
[
λ⋆

λ⋆

])

= 1, (20)

and can be obtained via the bisection search.

In order to enforce the smoothness induced by the last

term of (16a), the problem (16) is solved for a sequence of

decreasing values of µ since the solution to (16), ρ⋆(µ), is

a continuously differentiable function [29]. Initially, it starts

with a suitably large µ = µ0 since it is vital that the iterates

move away from an undesired local optimum. After obtaining

the solution of (16) with µ = µ0, it is used as the starting

point of solving (16) but with µ = µ1 = ηµµ0 where

ηµ < 1. The iteration goes on until µk reaches the tolerance

for barrier value ǫµ [30]. In terms of γ, it can be changed

synchronously with µ by a multiplicative factor ηγ > 1 since

both smoothing-based and penalty-based methods use solution

Algorithm 1: Logarithmic Smoothing-based Method

for Solving (10)

Input : ǫF , ǫµ, ǫγ , ηµ, ηγ , µ0 and γ0.

Set : µ = µ0 and γ = γ0.

while γ < ǫγ or µ > ǫµ do
while The increase of the objective value of (16) is

above ǫF do

Update ρ based on equation (17) and (19).
end

Update the penalty parameter γ ← ηγγ.

Update the barrier parameter µ← ηµµ.
end

ρ from the previous iteration as the starting point of the

next iteration. The overall algorithm for solving ρ under the

proposed logarithmic smoothing framework is summarized in

Algorithm 1. Since the barrier parameter ends with a value that

is close to zero [23], for a sufficiently large value of the penalty

parameter γ, Algorithm 1 will obtain a stationary point of the

original problem (10) [25]. The performance improvement of

Algorithm 1 compared with the conventional penalty-based

method will be illustrated later in Section V-A.

IV. FAST ITERATIVE BCD ALGORITHM FOR SOLVING P0

With the binary transmission and reflection amplitude coef-

ficients solved in Section III, this section derives the details of

optimization algorithms for other subproblems under the BCD

framework. Specifically, to facilitate a fast iterative algorithm,

all the subproblems are solved in closed-form or with a first-

order algorithm, with complexity orders only scaling linearly

with respect to the number of elements in the STAR-RIS or

the number of users.

A. Updating a

When other variables are fixed, the subproblem for updating

a is

max
a

K∑

k=1

Rk(a) +

K∑

k=1

Rloc
k (ak) , (21a)

s.t. ak ∈ [0, 1], ∀k ∈ K. (21b)

Conventionally, since Rk (a) in (21a) can be re-expressed as

the difference of two concave functions, the DC programming

method can be applied to convexify the problem (21) and

further solved numerically by the existing convex solvers such

as CVX (the second term in (21a) is already concave). How-

ever, the above method is a multi-stage iterative optimization

algorithm with the outer loop involving DC programming, and

the inner loop still requires iterative numerical methods, thus

incurring high computational complexity3. To overcome this

difficulty, we propose a new approach based on a Lagrangian

dual reformulation of the energy partition maximization prob-

lem and subsequently apply the quadratic transform method.

3A common practice is to use the interior-point method, and its complexity
order is at least O(K3.5).
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This leads to an algorithm in which each iteration is performed

in closed-forms and bisection search rather than being solved

with numerical convex solvers. Thus the proposed method is

more desirable and computationally efficient.

First, to establish the legitimacy of applying Lagrangian

dual reformulation of (21), we provide the following property,

which is proved in Appendix D.

Proposition 2. The energy partition maximization problem

(21) is equivalent to

max
a,{ηk}K

k=1

D
(
a, {ηk}Kk=1

)
,

s.t. ak ∈ [0, 1], ∀k ∈ K,
(22)

where ηk refers to the auxiliary variable, and the new objective

is given by

D
(
a, {ηk}Kk=1

)
=
∑

k∈K

log2(1 + ηk)−
∑

k∈K

ηk
ln 2

+
1

ln 2

∑

k∈K

(1 + ηk)
∣
∣
∣(vk)

H
gk

∣
∣
∣

2

akEk

∑

l∈K

∣
∣
∣(vk)

H
gl

∣
∣
∣

2

alEl + Lσ2 ‖vk‖2

+
∑

k∈K

1

Ck

√

(1− ak)Ek

Lκk

.

(23)

Based on Proposition 2, variables a and {ηk}Kk=1 are

updated iteratively. When a is fixed, the function D is concave

with respect to ηk. Therefore, the global optimal ηk is obtained

by setting ∂D/∂ηk to zero, i.e.,

η⋆k =
akEk

∣
∣
∣(vk)

H
gk

∣
∣
∣

2

∑

l 6=k alEl

∣
∣
∣(vk)

H
gl

∣
∣
∣

2

+Lσ2 ‖vk‖2
, ∀k ∈ K. (24)

To optimize a when {ηk}Kk=1 is fixed, we apply the

quadratic transform on the fractional term in (23). In particular,

when ηk is held fixed, only the last two terms of D, which are a

sum-of-ratio form and a sum of square roots, are related to the

optimization of ak. In general, if the objective function is a

sum of fractional forms with the fraction’s numerator being

concave and the denominator being convex (known as the

concave-convex form), one can employ the quadratic transform

to convert the concave-convex fractional programming into a

sequence of convex subproblems [31], [32]. Since the sum of

square roots can be considered as a special case of sum-of-

ratio form with a denominator equal to 1, by the quadratic

transform, we further recast D to

Dq

(
a, {yk, zk}Kk=1

)
=
∑

k∈K





√

4z2k
Ck

4

√

(1− ak)Ek

Lκk

−z2k





+
∑

k∈K

2yk

√

(1 + ηk)
∣
∣
∣(vk)

H
gk

∣
∣
∣

2

akEk+
∑

k∈K

log2(1+ηk)

−
∑

k∈K

y2k

(
∑

l∈K

∣
∣
∣(vk)

H
gl

∣
∣
∣

2

alEl+Lσ2 ‖vk‖2
)

−
∑

k∈K

ηk,

(25)

where {yk, zk}Kk=1 are the auxiliary variables. Then according

Algorithm 2: Proposed Algorithm for Energy Partition

Maximization (21)

Input : Initial ak and ηk.

while Stopping criterion is not satisfied do

Update ηk by equation (24).

while Stopping criterion is not satisfied do

Update yk and zk by equation (27) and (26).

Update ak by applying bisection search method

on (28).
end

end

to the iterative update rules of the quadratic transform, with

fixed a, the optimal {yk, zk}Kk=1 can be directly given as

y⋆k =

√

(1 + ηk)
∣
∣
∣(vk)

H
gk

∣
∣
∣

2

akEk

∑

l∈K

∣
∣
∣(vk)

H
gl

∣
∣
∣

2

alEl + Lσ2 ‖vk‖2
, ∀k ∈ K, (26)

z⋆k = 4

√

(1− ak)Ek

Lκk

, ∀k ∈ K. (27)

On the other hand, since Dq is concave with respect to a with

fixed {yk, zk}Kk=1, the iterative update for ak is obtained by

setting ∂Dq/∂ak to zero, i.e.,

sk(1− ak)
− 3

4 + ok(ak)
− 1

2 − wk = 0, ak ∈ [0, 1], (28)

where

wk =

(
∑

k∈K

y2k

)

|(vk)
Hgk|2Ek > 0, (29a)

ok = yk

√

(1 + ηk)
∣
∣
∣(vk)

H
gk

∣
∣
∣

2

Ek > 0, (29b)

sk = −
√

z2k
4Ck

(
Ek

Lκk

)
1

4 < 0. (29c)

Note that equation (28) is a strictly decreasing function with

respect to ak ∈ [0, 1] since its derivative is derived as 3
4sk(1−

ak)
− 7

4− ok
2 a−

3

2 < 0. Furthermore, if ak is 0 or 1, the left-hand

side of the equation (28) will go to infinity and minus infinity,

respectively. The above characteristics imply that equation (28)

must have a unique solution, and a bisection search algorithm

can be used to find the optimal a⋆k. The details are omitted

here for brevity.

These updating steps amount to an iterative optimization as

stated in Algorithm 2. The objective function (23) is bounded

above and monotonically nondecreasing after each iteration.

The solution of Algorithm 2 arrives at a stationary point

of the reformulated problem (22). Since the problem (22)

is equivalent to (21), it is a stationary point of the original

problem (21) [32].
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B. Updating V

When other variables are fixed, the subproblem of P0 for

updating V is

max
V

K∑

k=1

Rk (vk) . (30)

Since the uplink SINR of user k only contains its own receive

beamforming vector vk, we can optimize vk in a parallel

manner, and the objective function is simply the SINR in (6).

This gives the kth subproblem as maxvk
γk (vk) =

vH

k
Akvk

vH

k
Bkvk

,

where Ak = pkgk (gk)
H

and Bk =
∑K

i=1,i6=k pigi (gi)
H
+

σ2
IN . It is easy to recognize that this is a generalized

eigenvector problem, and its optimal solution v⋆
k should be

the eigenvector corresponding to the largest eigenvalue of the

matrix (Bk)
−1

Ak.

C. Updating Θ

When other variables are fixed, the subproblem for updating

STAR-RIS phase shifts is given by

max
Θ

∑

t

Rt (Θ) +
∑

r

Rr (Θ) , (31a)

s.t. |(Θ)m,m| = 1, ∀m ∈M. (31b)

To handle the modulus constraints in (31b), the semi-definite

relaxation (SDR) method and manifold method are widely

adopted. However, SDR-based methods only yield an ap-

proximate solution without an optimality guarantee and incur

a heavy computational burden as the variable’s dimension

increases. Furthermore, manifold optimization methods slow

down the convergence due to their nested loop architecture

[33]. Therefore, we propose a gradient descent (GD) method

algorithm as follows. In contrast to the SDR and manifold

optimization-based methods, this method avoids convex relax-

ation, does not need to solve high-dimensional SDP problems,

and gets rid of the nested loops. Thus, it significantly improves

computational efficiency.

Observe that the unknown variable Θ in the feasible set

(31b) is in fact {θm}Mm=1 ∈ [0, 2π). Therefore, problem (31)

can be recast into an unconstrained optimization problem as

max
{θm}M

m=1

H
(
{θm}Mm=1

)
:=
∑

t

Rt

(
{θm}Mm=1

)
+
∑

r

Rr

(
{θm}Mm=1

)
,

(32)

where we drop the constraints θm ∈ [0, 2π), ∀m ∈ M since

the objective function is periodic and taking modulus of 2π
can recover a θm ∈ [0, 2π). Since (32) is an unconstrained

optimization problem with a differentiable objective function,

it can be readily solved by the GD method to obtain a

stationary point [34]. To be specific, the update of θm at the

ith iteration is given by

θm (i+ 1) = θm(i) + τ(i)∇θmH
(
{θm}Mm=1

)
, (33)

where τ(i) is the Armijo step size to guarantee convergence

and∇θmH
(
{θm}Mm=1

)
is the gradient ofH

(
{θm}Mm=1

)
given

Algorithm 3: Overall Algorithm for Solving Compu-

tation Rate Maximization Problem P0

Input : K,M,L,B,N, {Ek, Ck, κk,hd,k,hs,k}k∈K,

G.

while Stopping criterion is not satisfied do

Update {vk}Kk=1 as the eigenvector for B−1
k Ak

corresponding to its largest eigenvalue.
while Stopping criterion is not satisfied do

Update {θm}Mm=1 based on equation (33).
end

Solving ρ by using Algorithm 1.

Solving a by using Algorithm 2.
end

by

∇θmH(θm)=
∑

k

(

1

ln2(1+γk)
2Re






(

pkG
∗v∗

kv
T
k g

∗
kh

T
r,k

)

m,m
jejθm

∑

l 6=k pl

∣
∣
∣(vk)

H
gl

∣
∣
∣

2

+σ2‖vk‖2

−
pk

∣
∣
∣(vk)

H
gk

∣
∣
∣

2∑

l 6=k

(

plG
∗v∗

kv
T
k g

∗
l h

T
r,l

)

m,m
jejθm

(
∑

l 6=k pl

∣
∣
∣(vk)

H
gl

∣
∣
∣

2

+σ2 ‖vk‖2
)2















.

(34)

D. Summary and Computation Complexity

The proposed four-block BCD optimization algorithm for

solving the computation rate maximization problem P0 in

(9) is summarized in Algorithm 3, where the converged point

is guaranteed to a stationary point [35].

Notice that the iteration with respect to {θm}Mm=1 is based

on the GD method, which only involves first-order differ-

entiation. Therefore, it has O(M) complexity order. On the

other hand, the computational complexity of the iteration with

respect to ρ is dominated by the gradient step. Hence, the

complexity order for updating ρ is also O(M). Furthermore,

the complexity to update V and a in Algorithm 2 is O(KN3)
and O(K), respectively [36]. Based on the above discussions,

the complexity order of solving (9) is linear in M and

K . This makes the proposed algorithm suitable for massive

elements and user networks. The computation complexity of

the proposed algorithm is summarised in Table I.

V. SIMULATION RESULTS

In this section, we present simulation results to verify the

effectiveness of the proposed algorithm. As illustrated in Fig.

2, under a three-dimensional Cartesian coordinate system, we

consider a system with 4 users in transmission space and 4

users in reflection space, and they are uniformly and randomly

located in a square region of 50 m× 50 m centered at the 3-

dimensional coordinate (45, 0, 0) and (95, 0, 0), respectively.

The STAR-RIS and AP are located at the 3-dimensional

coordinate (75, 0, 15) and (0, 0, 15), respectively.
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TABLE I: The computation complexity of the proposed algorithm.

Updating Θ Updating ρ Updating a Updating V

Computation complexity O(M) O(M) O(K) O(KN3)

Fig. 2: The simulated STAR-RIS-aided MEC network sce-

nario.

Spatially independent Rician fading channel is consid-

ered for all channels to account for both the line-of-

sight (LoS) and non-LoS (NLoS) components [21]. For

example, the AP-RIS channel is expressed as G =
√

LAR(d)
(√

κAR

1+κAR
GLoS +

√
1

1+κAR
GNLoS

)

, where κAR

is the Rician factor representing the ratio of power between

the LoS path and the scattered paths, GLoS is the LoS

component modeled as the product of the unit spatial signature

of the AP-RIS link [21], [37], GNLoS is the Rayleigh fading

components with entries distributed as CN (0, 1), and LAR(d)
is the distance-dependent path loss of the AP-RIS channel.

We consider the following distance-dependent path loss model

LAR(d) = T0

(
d
d0

)−αAR

, where T0 is the constant path loss

at the reference distance d0 = 1 m, d is the Euclidean distance

between the transceivers, and αAR is the path loss exponent

[38]. Since the STAR-RIS can be practically deployed in

LoS with the AP, we set αAR = 2 and κAR = 30 dB
[38]. In addition, other channels are similarly generated with

αAU = 3.5 and κAU = 0 (i.e., Rayleigh fading to account

for rich scattering) for the AP-user channel, αRU = 2.5 and

κRU = 3 for the RIS-user channel [39], [40]. We consider

a system with a bandwidth 1 MHz, T0 = −30 dB and

the effective noise power density is −150 dBm/Hz [41].

Thus the noise power at the AP is σ2 = −90 dBm. Each

antenna at the AP is assumed to have an isotropic radiation

pattern, and the antenna gain is 0 dBi [42]. Unless specified

otherwise, other parameters are set as follows: Ek = 10 J,

Ck = 200 cycles/bit, κk = 10−25, and L = 1 s [40].

A. Performance of the Proposed Algorithms

First, we demonstrate the convergence behavior of Algo-

rithm 1 compared with the penalty-based method in Section

III for solving (10). Note that both the smoothing-based and

penalty-based methods are solved by the PG method for a fair

comparison.

The superiority of the proposed smoothing-based method

in terms of the objective values is shown in Fig. 3a under a

specific channel realization. It is observed that the proposed

algorithm achieves a higher computation rate compared with

the penalty-based method. This shows the effectiveness of

the proposed smoothing-based method in eliminating the poor

local optima and therefore achieving a higher computation

rate.
Next, in Fig. 3b, we compare the convergence behavior of

Algorithm 2 and the DC programming with CVX for solving

(21). It shows that Algorithm 2 and the DC programming

reach almost the same objective value at the end. Although

DC programming converges in fewer iterations than Algorithm

2, Algorithm 2 is much more efficient than DC programming

on a per-iteration basis since Algorithm 2 updates variables

in closed-forms or via bisection search, while DC program-

ming requires solving a convex optimization numerically in

each iteration. This is reflected by the computation time of

Algorithm 2 to reach a computation rate of 4.61× 107 being

only 0.057 s while that of the DC programming is 3.116 s.
In addition, we demonstrate the overall convergence of

the proposed algorithm (Algorithm 3) and compare with

the following two benchmarks: SDR-DC method for solving

{θm}Mm=1 via SDR and solving a with DC programming, and

the ‘Penalty-based Method’ for solving (10) with the penalty-

based method as in Section III with exact binary constraints.

The superiority of the proposed algorithm in terms of the

computation rate is shown in Fig. 4 under a specific channel

realization. It is observed that the proposed algorithm achieves

a higher computation rate than the penalty-based method.

On the other hand, as the proposed algorithm include an

extra smoothing parameters update step, it takes more steps

in outer iterations in the BCD algorithm to converge. It is

also observed that both the proposed and the penalty-based

methods outperform the SDR-DC method in convergence

speed and computation rate performance.
In Fig. 5, we show the average performance gap between

the proposed and penalty-based methods versus the number

of elements in STAR-RIS. We can see that the proposed

method outperforms the penalty-based method in terms of

the objective values obtained. Moreover, as the number of

elements increases, the performance gap widens in general.

It illustrates the potential of the proposed smoothing-based

method in solving a massive STAR-RIS-aided wireless system.
To further show the low computational complexity of the

proposed algorithm, we compare the computation time with

SDR-DC and penalty-based methods. As shown in Fig. 6a

and Fig. 6b, with the number of elements or users increases,

the proposed method and penalty-based method save the

computation time to a large extent compared with the SDR-DC

method (e.g., more than 10 times differences with 60 elements

and 8 times differences with 14 users, in Fig. 6a and Fig. 6b,
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Fig. 3: Comparisons of convergence behavior with M = 30,

N = 10, K = 8.
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Fig. 4: Convergence behaviour of the proposed algorithms with

M = 30, N = 10, K = 8.

respectively), and the advantage becomes more prominent as

K or M increases. On the other hand, it shows that the pro-

posed algorithm achieves almost the same computation time

compared with the penalty-based method for small numbers of

M and K . As M and K increase, the computation time of the

proposed algorithm is only marginally higher than that of the
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Fig. 5: Performance gains over the penalty-based method with

N = 10, K = 8.
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Fig. 6: Average computation time compared with the SDR-DC

and penalty-based method.

penalty-based method. Both the proposed and penalty-based

methods are suitable for large-scale STAR-RIS optimization.

B. Performance Comparison with Other Schemes

To verify the effectiveness of the STAR-RIS in the proposed

MEC system and the performance of the proposed algorithm,

we compare the performance with the following schemes.
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1) Conventional RISs: In this case, the full-space coverage

facilitated by the STAR-RIS in Fig. 1 is achieved by employing

one conventional reflect-only RIS and one transmit-only RIS.

The two conventional RISs are deployed adjacent to each other

at the same location as the STAR-RIS. For a fair comparison,

each conventional reflect-only/transmit-only RIS is assumed

to have M/2 elements. This baseline scheme can be regarded

as a special case of the STAR-RIS in MS mode, where M/2
elements can transmit the signal and M/2 elements can reflect

the signal.

2) Random phase shift: In this case, θm in Θ are uniformly

and randomly distributed in [0, 2π).
3) Performance upper bound provided by energy splitting

(ES): In this case, we assume that all elements of the STAR-

RIS are operated in the transmission and reflection mode,

where the incident energy on each element is split into the

energies of the transmitted and reflected signals with an energy

splitting ratio of ρtM : ρrM and ρtM , ρrM ∈ [0, 1]. The resulting

optimization problem can be obtained by replacing the binary

constraints (10b) with the constraints ρtM , ρrM ∈ [0, 1], ∀m ∈
M in the problem (10) and can be solved by applying

Algorithm 3. Notice that this scheme will theoretically obtain a

better computation rate than the MS mode, as the ρ is relaxed

from {0, 1} to [0, 1]. However, as the ES mode cannot be

implemented in hardware at this moment, this serves as an

upper bound for the STAR-RIS.

4) Equal time allocation: In this case, we divide the length

of the time slot L equally into two parts and let the STAR-

RIS transmits the signal half the time and reflects the signal

half the time. This baseline scheme can be regarded as mode

switching in the time domain.

5) Zero-forcing (ZF) and Equal energy allocation: The

equal energy allocation scheme equally allocates the users’

energy budget for local computing and computation offloading,

and the ZF scheme leverages ZF receive beamforming at the

AP. Note that the ZF receive beamforming cannot effectively

deal with the cases when N < K , while our proposed optimal

solution in Section IV can perform well even in these cases.

In Fig. 7, we show the computation rate of different schemes

with respect to the number of elements of the STAR-RIS.

From this figure, we can observe that all schemes’ computation

rates increase with the number of elements, which coincides

with the intuition that STAR-RISs with more elements have

a stronger capability to rectify the channel. It is clear that

significant performance improvement can be achieved by the

proposed BCD-optimized solution, verifying the great benefits

of deploying STAR-RIS with joint optimization of the STAR-

RIS’s amplitude coefficients and phase shifts. It is confirmed

that the STAR-RIS with MS mode provides a 17% improve-

ment in computation rate over the benchmark of conventional

RISs and almost double in computation rate over the bench-

mark of random phase shift. In addition, the performance

upper bound provided by ES mode outperforms MS mode

by nearly 10%. We observed that the equal time allocation

scheme only performs better than the random phase shift. This

is because both users in the transmission or reflection space

are served by STAR-RIS only for half the duration of the time

length L.
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Fig. 7: Computation rate versus the number of elements with

K = 8, N = 10.

The performance in terms of the computation rate versus the

number of the AP’s antennas is presented in Fig. 8a. The sys-

tem equipped with STAR-RIS always has better performance

than the conventional RIS. Furthermore, as the number of an-

tennas decreases, the performance of the ZF and equal energy

allocation schemes degrade dramatically. It is because the ZF

scheme cannot separate the signal streams when the number

of users exceeds the number of antennas at the AP, while

optimal beamforming design selects a beamformer between

ZF and maximum ratio combining to maximize the SINR.

Also, since the equal energy allocation scheme cannot control

the uplink transmission power, if the number of antennas is

less than the number of users (when the linear beamformer

cannot eliminate other users’ interference), it causes severe

interference issues, and thus affects the offloading computation

rates. In addition, we can observe that all the curves of the

computation rate increase as N grows, and the performance

improvement becomes less prominent with larger N .

In Fig. 8b, we study the effects of the number of users,

i.e., K , on the system performance of computation rate. It

can be observed that the system equipped with STAR-RIS

always performs better than the conventional RIS. Although

the computation rates increase as the number of users grows,

the performance improvement becomes less significant. It is

due to the fact that the system is capacity limited when the

number of users is small and becomes interference limited

as the number of users increases. In addition, similar results

can be observed from Fig. 8a that instead of performance

degradation like ZF and equal energy allocation, the proposed

solutions have better performance as K becomes larger than N
through effectively designing the receive beamforming vectors

and the users’ energy allocation.

To reveal insight into the energy trade-off between offload-

ing and local computation, we investigate how the optimal

energy partition parameter varies with the distance between

STAR-RIS and the user. Specifically, in Figure 9, we consider

the user with varying energy budgets ranging from Ek = 0.1 J
to Ek = 10 J. For users with high energy budgets, i.e.,

Ek = 5 or 10 J, we observed that the optimal strategy is to

allocate more energy to computation offloading as the distance
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Fig. 8: Computation rate versus the number of users and

number of antennas at the AP with M = 30.
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Fig. 9: Optimal energy partition parameter versus distance with

M = 30, N = 10.

increases. This is because computation offloading can provide

a higher computation rate than local computation, and as the

distance increases, the user needs to spend more energy on

the data offloading. In contrast, for a user with a low energy

budget, i.e., Ek = 1 J, the optimal energy partition parameter

first increases as the distance increases. However, as it reaches

the maximum value of 1, it starts to decline as the distance

increases. The reason for the rise of the optimal energy

partition parameter at the first segment is the same as that

of users with a high energy budget. However, as the distance

increases further, a limited energy budget cannot support high-

speed data transmission in computation offloading; therefore,

computation offloading becomes less economical than local

computing. Thus, we observe a decline in the optimal energy

partition parameter at the second segment. As for the case of

Ek = 0.1 J, the optimal energy partition parameter reaches

the maximum value of 1 with a lower distance compared

with Ek = 1 J and then followed by a decline as the

distance increases. The simulation results demonstrate that the

optimal energy allocation strategy for computation offloading

depends on the user’s energy budget and the distance between

the STAR-RIS and the user. In general, the optimal energy

partition parameter first increases as the distance increases

before reaching its maximum value of 1 and then decreases as

the distance increases. The optimal energy partition parameter

curve will shift to the right if the energy budget is abundant,

while the curve will shift to the left if the energy budget is

small.

VI. CONCLUSION

In this paper, a STAR-RIS-aided MEC system with com-

putation offloading has been investigated. Specifically, the

computation rate was maximized via the collaborative design

of the STAR-RIS phase shifts, reflection and transmission

amplitude coefficients, the AP’s receive beamforming vectors,

and the users’ energy partition strategies for local computing

and offloading. To handle the binary reflection and trans-

mission amplitude coefficients of the STAR-RIS, the loga-

rithm smoothing-based method has been proposed to eliminate

the undesired stationary points and local optima induced

by conventional penalty-based methods. Furthermore, a low-

complexity iterative algorithm has been proposed to obtain a

stationary point of the non-convex joint optimization problem.

Due to the linear scaling of the computational complexity

with respect to the number of users or STAR-RIS elements,

the proposed algorithm is suitable for massive scenarios.

Numerical results showed that the proposed low-complexity

algorithm could save computation time by at least an order

of magnitude compared to the DC programming and SDR-

based solution. Besides, the STAR-RIS could significantly

improve the computation rate of the system compared to the

conventional RIS system.

APPENDIX A

DEGREE OF FREEDOM TO SUPPORT K USERS WITH

STAR-RIS

We first examine the DoF between transmission users and

the AP. The received signal yt ∈ CN×1 at the AP due to all

transmission users is

yt = (GtΘtHs,t +Hd,t) st + z, (35)

where Hd,t = [hd,1 · · · hd,T ] ∈ CN×T denotes the direct

link between transmission users and the AP, Hs,t ∈ CZ×T

denotes the link between transmission users and the STAR-RIS
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elements in the transmission mode, with Z being the number

of STAR-RIS elements in transmission mode, Θt ∈ C
Z×Z is

the phase shift matrix of the STAR-RIS elements in transmis-

sion mode, Gt ∈ CN×Z is the channel from the elements in

transmission mode to the AP, and st ∈ CT×1 is the aggregated

information symbols of transmission users. We here assume

that the direct link Hd,t has a rank b > 0. The DoF of the

equivalent channel GtΘtHs,t+Hd,t is its rank and is upper

bounded by min (T,N,Z + b) [43]. The intuition behind this

result is that the direct path channel can be regarded as a

separate RIS with b elements where the phase shifts are fixed

at 0 (or any arbitrary phase).

Similarly, the channel between reflection users to the

AP can be written as GrΘrHs,r + Hd,r, where Hd,r =
[hd,T+1 · · · hd,K ] ∈ CN×R with rank j > 0 denotes

the direct link between reflection users and the AP, R is

the number of reflection users, Hs,r ∈ CF×R denotes the

link between reflection users and the STAR-RIS elements in

the reflection mode, with F being the number of STAR-RIS

elements in reflection mode, Θr ∈ CF×F is the phase shift

matrix of the STAR-RIS elements in reflection mode, and

Gr ∈ CN×F is the channel from the STAR-RIS elements in

reflection mode to the AP. Correspondingly, the rank of this

channel is upper bounded by min (R,N, F + j).
Then the received signal at the AP due to all users can be

represented as

y = [H1 H2]
︸ ︷︷ ︸

H

s+ z, (36)

where s ∈ CK×1 is the aggregated information symbols for

all users, H1 = GtΘtHs,t +Hd,t, and H2 = GrΘrHs,r +
Hd,r. Note that the maximum DoF for channel H ∈ CN×K is

not exactly min (N,K) but it is related to the DoF of H1 ∈
CN×T and H2 ∈ CN×R. To illustrate the above idea, we

assume N ≥ K in the following. Since the maximum DoF

of H1 is min (T,N,Z + b), if Z + b < T , then the DoF

of H cannot reach K , since the rank of H1 is lower than T .

Similarly, since the maximum DoF of H2 is min(T,N, F+j),
if F + j < R, then the DoF of H cannot reach K either,

since the rank of H2 is lower than R. Therefore the necessary

condition for H to have K DoF to support K users is the

number of elements in transmission mode Z greater than or

equal to T − b and the number of elements in reflection mode

F greater than or equal to R − j. Since Z + F = M , we

obtain M ≥ K − j − b.

APPENDIX B

DERIVATION OF THE GRADIENT OF ∇ρQ(ρ)
Firstly, the gradient of (16) for the third term

−γ∑m

∑

x

(

ρxm − (ρxm)
2
)

and the fourth term −µΦ(ρ)
with respect to ρxm can be obtained as −γ(1 − 2ρxm) and

µ
(

1
ρx
m

− 1
(1−ρx

m
)

)

, respectively. Then for the first term and

second term:
∑T

t=1 Rt(ρ) and
∑R

r=1 Rr(ρ), the gradient

with respect to ρxm can be obtained based on chain rules for

complex-valued variables [44]. The overall results are given

below in (37).

APPENDIX C

PROOF OF PROPOSITION 1

Recall that the orthogonal projection of ρ is the optimal

solution of (18), the Lagrangian of the problem is

L(ρ;λ) =

∥
∥
∥
∥
ρ− ρ

(

i+
1

2

)∥
∥
∥
∥

2

+

M∑

m=1

λm

(
eTmρ− 1

)
, (38)

where λ refers to a collection of variables {λ1, . . . , λM} and

em ∈ R2M is a vector with its mth and 2mth positions equal

to 1 and others equal to 0. Since strong duality holds for the

problem (38), it follows that ρ⋆ is an optimal solution to the

problem (18) if and only if there exists λ⋆ ∈ R
M for which

ρ⋆ ∈ argmin
0≤ρ≤1

L(ρ;λ⋆), (39a)
[
IM , IM

]
ρ⋆ = 1, (39b)

Using the expression of the Lagrangian given in (38), the

relation (39a) can be equivalently written as

PBox[0,1]

(

ρ

(

i+
1

2

)

−
[
λ⋆

λ⋆

])

. (40)

The feasibility condition (39b) can then be rewritten as

[
IM , IM

]
PBox[0,1]

(

ρ

(

i+
1

2

)

−
[
λ⋆

λ⋆

])

= 1. (41)

APPENDIX D

PROOF OF PROPOSITION 2

First, by introducing a new variable ηk to replace each ratio

term inside the logarithm, (21) can be rewritten as

max
a,η

∑

k∈K

log2(1 + ηk) +
∑

k∈K

1

Ck

√

(1− ak)Ek

Lκk

, (42a)

s.t. ak ∈ [0, 1], ∀k ∈ K, (42b)

ηk ≤
pk

∣
∣
∣(vk)

H
gk

∣
∣
∣

2

∑

l 6=k pl

∣
∣
∣(vk)

H
gl

∣
∣
∣

2

+σ2 ‖vk‖2
, ∀k ∈ K,

(42c)

where η = {η1, . . . , ηK}. The above optimization can be

thought of as an outer optimization over a and an inner

optimization over ηk with fixed a. The inner optimization is

max
η

∑

k∈K

log2(1 + ηk) , (43a)

s.t. ηk ≤
pk

∣
∣
∣(vk)

H
gk

∣
∣
∣

2

∑

l 6=k pl

∣
∣
∣(vk)

H
gl

∣
∣
∣

2

+σ2 ‖vk‖2
, ∀k ∈ K.

(43b)

Note that (43) is a convex optimization problem, so the

strong duality holds. We introduce the dual variable ζk for

each inequality constraint in (43b) and form the Lagrangian
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∇ρt
m
Q(ρtm)=−

∑

r








1

ln 2(1+γr)
2Re








pr
∣
∣(vr)

Hgr

∣
∣
2∑

l 6=r,l∈R

(

plG
∗v∗

rv
T
r g

∗
l h

T
r,l

)

m,m
ejθm

(
∑

l 6=r,l∈R pl

∣
∣
∣(vr)

H
gl

∣
∣
∣

2

+σ2 ‖vr‖2
)2














+µ

(
1

ρtm
− 1

(1− ρtm)

)

−γ(1−2ρtm)

+
∑

t








1

ln 2(1+γt)
2Re








(

ptG
∗v∗

tv
T
t g

∗
th

T
r,t

)

m,m
ejθm

∑

l 6=t,l∈T pl

∣
∣
∣(vt)

H
gl

∣
∣
∣

2

+σ2‖vt‖2
−
pt

∣
∣
∣(vt)

H
gt

∣
∣
∣

2∑

l 6=t,l∈T

(

plG
∗v∗

tv
T
t g

∗
l h

T
r,l

)

m,m
ejθm

(
∑

l 6=t,l∈T pl

∣
∣
∣(vt)

H
gl

∣
∣
∣

2

+σ2 ‖vt‖2
)2















,

(37a)

∇ρr
m
Q(ρrm)=−

∑

t








1

ln 2(1+γt)
2Re








pt
∣
∣(vt)

Hgt

∣
∣
2∑

l 6=t,l∈T

(

plG
∗v∗

tv
T
t g

∗
l h

T
r,l

)

m,m
ejθm

(
∑

l 6=t,l∈T pl

∣
∣
∣(vt)

H
gl

∣
∣
∣

2

+σ2 ‖vt‖2
)2














+µ

(
1

ρrm
− 1

(1− ρrm)

)

−γ(1−2ρrm)

+
∑

r








1

ln 2(1+γr)
2Re


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

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(

prG
∗v∗
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T
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∗
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T
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)
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ejθm

∑

l 6=r,l∈Rpl
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∣

2

+σ2‖vr‖2
−
pr
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H
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∣
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(

plG
∗v∗
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T
r g

∗
l h

T
r,l

)

m,m
ejθm

(
∑

l 6=r,l∈R pl

∣
∣
∣(vr)

H
gl

∣
∣
∣

2

+σ2 ‖vr‖2
)2















.

(37b)

function

L(η, ζ)=
∑

k∈K

log2(1 + ηk)

−
∑

k∈K

ζk




ηk−

pk

∣
∣
∣(vk)

H
gk

∣
∣
∣

2

∑

l 6=kpl

∣
∣
∣(vk)

H
gl

∣
∣
∣

2

+σ2‖vk‖2




 ,

(44)

where ζ refers to the collection of variables {ζ1, . . . , ζK}. Due

to strong duality, the optimization (43) is equivalent to the dual

problem

min
ζ�0

max
η

L(η, ζ). (45)

Let (η⋆, ζ⋆) be the saddle point of the problem (45). It must

satisfy the first-order condition ∂L/∂ηk = 0 :

ζ⋆k =
1

(1 + η⋆k) ln 2
, ∀k ∈ K. (46)

Given the constraint (43b), the optimal η⋆k is obtained with

the equality of (43b). Hence, the optimal ζ⋆k is given by

ζ⋆k =
1

ln 2

∑

l 6=k pl

∣
∣
∣(vk)

H
gl

∣
∣
∣

2

+σ2 ‖vk‖2

∑

l∈K pl

∣
∣
∣(vk)

H
gl

∣
∣
∣

2

+σ2 ‖vk‖2
, ∀k ∈ K. (47)

Note that ζ⋆k ≥ 0 is automatically satisfied since both the

numerator and denominator in (47) are positive. Putting (47)

in (45), problem (42) can then be reformulated as

max
η

L (η, ζ⋆) . (48)

Furthermore, combining with the outer maximization over a

and after some algebra, we can find (48) to be the same as

the maximization of (23) in the Proposition 2.
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