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Abstract

Pulse-based integrated sensing and communication (ISAC) systems have the advantages of high

ranging resolution and strong resistance to self-interference, compared with continuous wave (CW)

based systems. However, for pulse-based ISAC systems, multi-path channels pose various challenges to

data recovery and ranging by providing diversity gain for data recovery but incurring the interference

to the identification of the first path in ranging. In this paper, we design a pulse-based ISAC receiver

for multi-path channels. The designed receiver can obtain the diversity gain by correlating the received

signal with the estimated template signal. Meanwhile, it can detect the arrival of the first path by using

a threshold detection method based on a constant false alarm rate (CFAR). Furthermore, we extend the

pulse-based ISAC design to a low-resolution analog-to-digital converter (ADC) scenario. A low-cost

receiver design is provided for the pulse-based ISAC system that can recover data and estimate range

simultaneously considering the non-linear effect caused by the low-resolution ADC. Simulation results

show that compared with the generalized maximum likelihood (GML) based receiver, the proposed

full-resolution pulse-based ISAC receiver has 1dB signal-to-noise ratio (SNR) loss in bit error rate

(BER) and almost the same mean squared error (MSE) performance with the significantly reduced

computational complexity. Also, compared with the full-resolution ISAC receiver, the ISAC receiver

with 3-level quantization incurs only 0.8dB SNR loss in BER and 1dB SNR loss in MSE.
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I. INTRODUCTION

Integrated sensing and communication (ISAC) has been a promising solution to the spectrum

scarcity problem [1]–[4]. It can combine the functionalities of communication and sensing in a

single system by sharing the same resources, including waveform, hardware, signal processing.

To satisfy the growing demand for sensing in wireless communication systems, such as vehicle

to everything (V2X) and industrial internet of thing (IoT), ISAC systems should not only keep

high-quality wireless communication, but also have high-accuracy sensing capability.

Based on the used signal waveforms, ISAC systems can be mainly divided into continuous

wave (CW) based ISAC systems and pulse-based ISAC systems. CW-based ISAC systems

transmit signals constantly or only with a very short guard interval, and listen to echo signals or

response signals simultaneously, while pulse-based ISAC systems adopt pulsed signals with low

duty cycle, and the silent time (i.e. the time out of pulse duration) is usually used for waiting echo

signals or response signals [1], [2]. In CW-based ISAC systems, the receivers can acquire the

sensing information from the transmitted signal typically covering a large range of frequencies.

Frequency modulated carrier wave (FMCW) is a traditional CW sensing signal, and it has been

studied in the context of ISAC [5], [6]. In order to be used for both communication and sensing,

FMCW has be multiplexed with or modulated by communication signals, such as frequency

index modulation [5] and index modulation [6]. In addition to FMCW, orthogonal frequency-

division multiplexing (OFDM) wave has also been adopted by CW-based ISAC systems [7]–[13].

In [7], the delay and Doppler estimation based on OFDM was performed by using fast Fourier

transform (FFT) and inverse fast Fourier transform (IFFT). This algorithm mitigated the impact

of random communication symbols and decoupled the two estimation. In [8]–[10], OFDM-based

ISAC systems were implemented by allocating orthogonal wireless resources in spectral and code

domains, such that communication and sensing did not interfere with each other. To achieve the

joint optimization of sensing and communication, the shared waveform design of OFDM-based

ISAC has been studied in [11]–[13].

Although CW-based ISAC has the advantage of high spectral efficiency for communication, it

has the disadvantage of low-resolution sensing. High-resolution target location and imaging often

require pulse-based systems [14]. Also, self-interference is a serious issue for CW-based ISAC

systems [1], [15], [16]. The full-duplex operation based on the self-interference cancellation

scheme was proposed in [15], [16], but these schemes were unable to obtain perfect self-

interference cancellation, and they suffered from extremely high computational complexity in

digital domain.

Pulse-based sensing systems have been widely used for many sensing applications, such
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as location [17]–[20], target detection [21], [22] and imaging [23]–[26]. For communication

systems, pulsed signals also have the advantages of low power consumption, high safety and high

resistance against the narrowband interference [27]–[29]. Many modulation technologies, such as

index modulation [30] and enhanced pulse position modulation [31], have been proposed for the

high spectral efficiency and the low bit error rate (BER) of pulse-based communication systems.

In [27], the power limit of pulsed signals considering the interference in in-car communication

was discussed. A multi-user interference (MUI) and inter-symbol interference (ISI) problem in

pulse-based communication systems was considered and a deep learning (DL) based receiver

was designed to suppress MUI and ISI in [32]. An important issue of deep learning approaches

was that the channel statistics for off-line training and on-line testing were not the same. The

channel mismatches reduced the performance of the DL-based receiver.

Most research works about pulsed-based ISAC systems have mainly focused on waveform

or beamforming design [33]–[36]. The design of signal waveform or beamforming was usually

modeled as an optimization problem for satisfying the demands of communication and sensing.

Because of the contradicting performance indicators for communication and sensing, the key

parameters of signal waveform or beamforming were obtained by making a tradeoff between

communication and sensing. These works have obtained the optimal ISAC waveform or beam-

forming based on different criterions, but not concerned the received signal processing.

The receiver design of pulse-based ISAC systems has not been well studied to the best of

our knowledge. The main challenge is the channel estimation in dense multi-path channels for

post-processing. For communication, the energy of the ultra-short sub-nanosecond transmitted

pulses spreads over a very large number of multi-path components. In order to collect sufficient

signal energy, combining a large number of multi-path components is required. For sensing,

multi-path components will overlap with or even mask the target component and hence make

sensing difficult. Although the aforementioned pulse-based sensing and communication systems

considered the effect of multi-path channels, the multi-path effects on communication and sensing

were so different that these existing designs could not be used directly in pulse-based ISAC

systems.

The pulse-based sensing systems mainly adopted pulse-Doppler signals to perceive the en-

vironment [21], [23], [24]. The signals reflecting from non-target scatters were considered as

clutters and should be suppressed to achieve a high-quality ranging-Doppler (RD) map. The

traditional pulse-based radio systems collected multi-path signals by energy detection (ED) [37]–

[39]. The information of energy distribution acquired by ED was used for data recovery, but

not suitable for accurate time of arrival (ToA) estimation because of limited time resolutions
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TABLE I

THE SUMMARY OF LITERATURE REVIEW

Feature

work CW-based Pulse-based
Our work

[6] [5], [7], [8] [9]–[13] [18], [26] [19]–[25] [33]–[36] [41]–[43]

ISAC
√ √ √ √ √

High-precision sensing
√ √ √ √ √

Imperfect CSI
√ √

Low-cost scheme
√ √ √ √

Received signal processing
√ √ √ √ √ √

Frame Structure Design
√ √

[40]. The high-speed sampling reception method is a promising solution with advantages of

high precision ranging and flexible signal processing in digital domain [41]–[43]. In [41], [43],

a transmitted reference pulse cluster (TRPC) based receiver was proposed for joint symbol

and ToA estimation by using an iterative detection algorithm. The data blocks should be used to

obtain the reference signal iteratively. In [42], a pulse-based ISAC receiver based on a generalized

maximum likelihood (GML) method [44], [45] has been provided. Although GML was able to

offer the whole parameter information of multi-path channels (i.e. delay and path gain), the

iterative computations made the computational complexity of GML excessively high.

Another challenge comes from the quantization of pulsed signals. The large bandwidth of

pulsed signals is beneficial for high-accuracy sensing but incurs a high cost of the full-resolution

analog-to-digital converter (ADC) (i.e. 8 bits or more) with a high-speed sampling rate. For

example, a ideal b-bit ADC with flash architecture contains 2b − 1 comparators and its power

consumption increases exponentially with the number of quantization bits [46]. To reduce power

consumption and hardware cost, low-resolution ADCs (i.e. 1-2 bits) are applied at the cost of the

performance loss [47]–[51]. The use of the low-resolution ADCs complicates the digital signal

processing of sensing and communication because of the discretization of signal levels, which

makes the low-resolution receiver design challenging.

In this paper, we study a pulse-based ISAC system which uses a packet consisting of preamble

frames (PF) part for data recovery and ranging estimation. We propose a full-resolution receiver

designed for joint data recovery and ranging estimation in multi-path channels. The noiseless

sampled received waveform is adopted as channel state information (CSI) and simply obtained by

maximum likelihood estimation (MLE) criterion based on PF. Then, we model data recovery and

ranging estimation as two hypothesis testing problems. The symbol detector for data recovery

is designed to perform an inner product calculation with the estimated CSI for achieving the
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diversity gain. Then, by reusing CSI, the estimator for ranging can detect the ToA of the returned

packet by the threshold detection method based on Neyman-Pearson (NP) rule. Associated

BER and Cramer-Rao lower bound (CRLB) expressions are provided. Considering the high

cost of the high-speed full-resolution ADC, an ISAC receiver with the low-resolution ADC is

proposed for low-cost design. To avoid infeasible non-linear calculations caused by discrete

signal levels, we obtain the linear detectors of data recovery and ranging estimation from

Taylor series expansions of the log-likelihood ratio (LLR), and associated BER and CRLB

expressions are also provided. Finally, we analyze the optimization of some key parameters (i.e.

quantization thresholds and PF length) and then propose the corresponding parameter design

schemes. The simulation results verify the theoretical analysis of key parameters, show the

impact of narrowband interference (NBI) and the correlation of sample points on the proposed

ISAC systems, and offer the performance comparison between conventional receivers and our

proposed receivers. Compared with the GML-based receiver, the proposed full-resolution ISAC

receiver has about 1dB signal-to-noise ratio (SNR) loss in the same BER and near the same

mean squared error (MSE) performance with the significantly reduced computational complexity.

The performance loss caused by the low-resolution quantization is also provided. The 3-level

ISAC receiver, for example, has about 0.8dB SNR gap compared with the full-resolution ISAC

receiver in BER, and about 1dB SNR gap in MSE, which is exchanged for reducing the cost of

the ADC. The main contributions of this paper are summarized as follows:

• Full-resolution pulse-based ISAC receiver and performance: Considering the different

effects of the multi-path components on data recovery and ranging estimation, the proposed

receiver can effectively obtain the diversity gain for data recovery, and estimate the delay

of the first path for ranging estimation. The BER and CRLB are analyzed to assess their

performances.

• Low-cost low-resolution pulse-based ISAC receiver and performance: To reduce the

cost of high-speed full-resolution ADC, we propose a pulse-based ISAC receiver using a

low-resolution ADC for low-cost design. The low-resolution receiver eliminates the non-

linear effect on both data recovery and ranging estimation caused by discrete signal levels.

The BER and CRLB are provided.

• Key parameters analysis and design: Based on the design of the above receivers, we

analyze the effects of quantization thresholds and PF length on BER and CRLB. Then, the

analytical expressions of the optimal quantization thresholds that minimize BER and CRLB

are obtained, and the allocation method of PF length based on maximum data transmission

capability is proposed.



6

The rest of the paper is organized as follows. In Section II, we will describe the ISAC system

based on pulsed signals. In Sections III and IV, we will present the receiver design with the full-

resolution and low-resolution ADC respectively, and analyze their BER and CRLB. The effect

and design of PF length and quantization thresholds are discussed for the parameter optimization

of the pulse-based ISAC receivers. Simulation results will be shown in Section V, followed by

the conclusions in Section VI

Notations: a is a scalar, a is a vector, A is a matrix. Ia is an a×a identity matrix. R represents

a real number field. x ∼ CN (a,A) means that x obeys a Gaussian distribution with mean a

and autocovariance matrix A. E[·] and var[·] are the calculations of mathematical expectation

and variance respectively, and cov(a) is the autocovariance matrix of the random vector a. (·)T

is defined as the transpose of a matrix or a vector. diag{a} represents a diagonal matrix whose

diagonal elements are a. [a] is a rounding function which obtains the integer part of a. f(t)∗g(t)
represents the convolution calculation of continuous functions f(t) and g(t), and ⟨a,b⟩ represents

the inner product of vectors a and b.

II. SYSTEM MODEL

Consider an ISAC system using pulsed signals, as illustrated in Fig. 1. The system has two

ISAC nodes, which generalizes the typical applications in the dense multi-path propagation

environment (e.g. indoor field or city block), like indoor communication and location, V2X,

industrial IoT, etc. Assuming that the channels are reciprocal, Node A and Node B communicate

with each other in packets, and estimate the distance by single-sided two-way ranging (SS-TWR)

[52]. The distance between two nodes is denoted as D = (Trd − Trp)/2c, where D is the distance

between Node A and Node B, Trd is the duration from sending out the transmitted packet to

receiving the returned packet, Trp is the fixed processing delay and c is the speed of light.

The packet is divided into data frames (DF) and PF. The PF consist of known pulses. From

communication perspective, PF are used for obtaining CSI and DF are used for information

exchange. From ranging perspective, CSI is reused for ranging. The length of PF and DF can

be denoted as Np and Nd, respectively.

Therefore, the transmitted pulsed signal of a packet can be given by

s(t) =

Np−1∑
kp=0

akpp(t− kpTs) +

Nd−1∑
kd=0

bkdp(t−NpTs − kdTs), (1)

where a = [a0, a1, ..., aNp−1]
T and b = [b0, b1, ..., bNd−1]

T are transmitted symbol vectors of PF

and DF respectively, p(t) is the shaping pulse and Ts is the symbol duration. Note that kp and

kd represents the kpth symbol duration of preamble frames and the kdth symbol duration of
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data frames respectively. In addition, k is adopted for the whole packet which is comprised of

preamble frames (k ∈ [0, Np − 1]) and data frames (k ∈ [Np, N − 1]). N = Np +Nd is the total

number of symbols in the packet.

The multi-path channel is modeled as a linear time-invariant system with a finite impulse

response which is given by

h(t) =
L∑
l=1

hlδ(t− τl), (2)

where hl and τl are the gain and delay of the lth tap respectively. L is the number of paths

in multi-path channels. Without loss of generality, we assume that τ1 ⩽ τ2 ⩽ ... ⩽ τL. τ1 is

the ToA of the pulsed signal. The accurate ToA estimation of the returned packet is critical for

a high-precision distance measurement. In a non line of sight (NLoS) environment, since the

signals reflecting from scatters travel an extra distance compared to a line of sight (LoS) path, a

positive bias called NLoS error is present in the distance measurement [53]. There have existed

many NLoS identification and mitigation methods dealing with NLoS error [20], [54], [55]. For

simplicity, we assume that the system operates in the LoS scenario.

At first, the transmitted signal is distorted by the multi-path channels and additive white

Gaussian noise (AWGN), and then is filtered by a low-pass filter (LPF) of bandwidth B to

eliminate out-of-band noise, Then, the filtered received signal is given by

rf(t) =

Np−1∑
kp=0

akppf(t− kpTs) +

Nd−1∑
kd=0

bkdpf(t−NpTs − kdTs) + n(t), (3)

where pf(t) = p(t) ∗ h(t) ∗ hLPF(t) is the filtered pulse with the distortion resulting from the

multi-path channels, hLPF(t) is the impulse response of the LPF and n(t) is the filtered noise

with double-sided power spectral density N0/2 limited in the frequency band [B,−B]. Assume

that the symbol duration Ts is larger than the maximum channel delay so that ISI can be ignored.

After being filtered, rf(t) should be sampled with sampling period Tsam, and then quantized

by a full-resolution ADC for digital processing. Every symbol is sampled by Ns = [Ts/Tsam]

points. The resultant of sampling can be a vector r

r = [r0,0, ..., rNs−1,0, r0,1, ..., rNs−1,1, ..., rNs−1,N−1]
T ,︸ ︷︷ ︸

The first symbol
︸ ︷︷ ︸

The second symbol

(4)

where ri,k is the ith full-resolution sample point within the kth symbol duration of the packet.

In order to facilitate the subsequent analysis, the vector r is reshaped as a full-resolution sample



8

point matrix R ∈ RNs×N according to different symbol durations, which is given by

R = wdT +N

=


r0,0 . . . r0,Np−1 r0,Np . . . r0,N−1

r1,0 . . . r1,Np−1 r1,Np . . . r1,N−1

... . . . ...
... . . . ...

rNs−1,0 . . . rNs−1,Np−1 rNs−1,Np . . . rNs−1,N−1

 ,

︸ ︷︷ ︸
preamble frames: Rp

︸ ︷︷ ︸
data frames: Rd

(5)

where w = [w0, w1, ..., wNs−1]
T is the sample point vector of pf(t) being independent of k,

dT = [aT ,bT ] is the row symbol vector, and N ∈ RNs×N is a random matrix whose entries ni,k

are independent identically distributed (i.i.d.) Gaussian random variables with zero mean and

variance σ2
n = N0B. Furthermore, R can be divided into the PF sample point matrix Rp and

the DF sample point matrix Rd whose entries are denoted as r
(i,kp)
p and r

(i,kd)
d respectively. N

can also be divided into Np and Nd in the same way, and their entries are denoted as n
(i,kp)
p

and n
(i,kd)
d respectively.

Then, the PF sample point matrix Rp is used for channel estimation. After channel estimation,

the ISAC receiver will use the DF sample point matrix Rd to recover the data. The results of

the data decision is denoted as b̂ = [b̂0, b̂1, ..., b̂Nd−1]. Simultaneously, the output of the channel

estimation can be reused to estimate the distance D.

For the receiver design of the pulse-based ISAC system, the multi-path components lead to

different problems for data recovery and ranging. For data recovery, multi-path components can

be collected to achieve the diversity gain, while for ranging estimation, the first path will be

identified in the presence of nuisance multi-path components.

III. RECEIVER DESIGN WITH FULL RESOLUTION

In this section, we propose a joint data recovery and ranging estimation method for multi-path

channels using the full-resolution sampled signal. The block diagram of the post quantization

processing part is illustrated in Fig. 2. We first propose a MLE method using PF for channel

estimation. After the channel estimation, a symbol detector based on minimum BER criterion is

designed for the data recovery of DF, and the BER of this symbol detector is provided in Section

III-B. By reusing CSI, we design a ToA estimator based on threshold detection for ranging, and

provide the CRLB of the ranging estimation in Section III-C. Finally, we analyze the effect of

PF length Np on both data recovery and ranging estimation, and propose an allocation method

of time slots for pulse-based ISAC systems in Section III-D.
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Fig. 1. System Model: a node-to-node ISAC system based on pulsed signals

A. Channel Estimation

Before the data recovery and the ranging estimation, we require the CSI of multi-path channels.

From (5), it is noted that wi =
∑L

l=1 hlpr((i+ 1)Tsam − τl) with pr(t) = p(t) ∗ hLPF(t) contains

the parameters (i.e. delay and gain) of multi-path components. Only w is needed, which is

estimated by using MLE criterion. The log-likelihood function of w is given by

L(Rp|a,w) =
Ns−1∑
i=0

Np−1∑
kp=0

log fn(r
(i,kp)
p − akpwi), (6)

where fn(·) is the probability distribution function (PDF) of a Gaussian distribution with zero

mean and variance σ2
n. From (6), we can decompose the estimation of w into its entries wi as

L(r(i)p,row|a, wi) =

Np−1∑
kp=0

log fn(r
(i,kp)
p − akpwi),

i = 0, 1, . . . , Ns − 1

(7)

where r
(i)
p,row denotes the ith row vector of Rp. Thus, the MLE of wi is given by

ŵi = argmax
wi

L(r(i)p,row|a, wi)

=
1

Np

Np−1∑
kp=0

akpr
(i,kp)
p , i = 0, 1, . . . , Ns − 1

(8)
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where ŵ = [ŵ0, ŵ1, ..., ŵNs−1]
T is defined as the estimated CSI.

B. Data recovery

The data detection can be modeled as a hypothesis testing problem. We have two comple-

mentary hypotheses, bkd = 1 or − 1. That is,

H1 : r
(i,kd)
d = wi + n

(i,kd)
d

H0 : r
(i,kd)
d = −wi + n

(i,kd)
d .

(9)

Assuming that p(H0) = p(H1) = 1
2
, the log-likelihood ratio test (LLRT) of kdth DF symbol

based on minimum BER criterion is given by

Λd(r
(kd)
d,col) =

Ns−1∑
i=0

log
fn(r

(i,kd)
d − wi)

fn(r
(i,kd)
d + wi)

=
2

σ2
n

Ns−1∑
i=0

wir
(i,kd)
d

H1

≷
H0

0,

(10)

where r
(kd)
d,col denotes the kdth column vector of Rd. From (10), the symbol detector can be

simplified as

Cfull(r
(kd)
d,col,w) =

Ns−1∑
i=0

wir
(i,kd)
d

H1

≷
H0

0. (11)

Above all, the communication part of the post quantization processing shown in Fig. 2 consists

of the channel estimation module and the data recovery module which are designed according

to (8) and (11) respectively. The channel estimation module can be obtained by an correlator

and a divider, and the data recovery module can be obtained by a correlator and a sign detector.

With the input of r
(kd)
d,col and ŵ, the correlator calculates the combined output

∑Ns−1
i=0 ŵir

(i,kd)
d .

Then, the sign detector recovers the kdth DF symbol by judging the polarity of
∑Ns−1

i=0 ŵir
(i,kd)
d .

Finally, the BER of the detector (11) considering the channel estimation error is given in

Proposition 1.

Proposition 1 (BER of the full-resolution symbol detector). Considering the channel estima-

tion error and under the condition of large sample points (Np ≫ 1, Ns ≫ 1), the BER of

Cfull(r
(kd)
d,col, ŵ) is given by [56]

Pe,full = Q

(√
2µSNR

1 + Ns

Np
(2µSNR)−1

)
, (12)

where

SNR =

∫ Ts

0
p2f (t)dt

N0

(13)
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Fig. 2. The block diagram of the post quantization processing part of the full-resolution ISAC receiver

is the SNR of pf(t), µ is the constant ratio of the Nyquist sampling period Tmin = 1
2B

to the

sampling period Tsam and Q(·) denotes Gaussian Q function.

Proof. The proof is given in Appendix A.

C. Ranging Estimation

As mentioned in Section II, only Trd is unknown for ranging, which transforms the ranging

estimation into the ToA estimation. Using PF, we propose a threshold detection method using

LLRT which can be built on the estimated CSI (i.e. the MLE of w). At first, the ToA estimation

can be modeled as a signal detection problem

H1 : r
(i,kp)
p = akpwi + n(i,kp)

p

H0 : r
(i,kp)
p = n(i,kp)

p .
(14)

Given the PF symbol vector a, the LLR of the ith sample point is evaluated as

Λr(r
(i)
p,row) =

Np−1∑
kp=0

log
fn(r

(i,kp)
p − akpwi)

fn(r
(i,kp)
p )

=
1

σ2
n

Np−1∑
kp=0

akpwir
(i,kp)
p − Npw

2
i

2σ2
n

,

(15)

where r
(i)
p,row denotes the ith row vector of Rp. Note that the amplitude of wi has no effect on

the detection, but the polarity of wi decides the direction of the one-sided test. By considering

the polarity of wi and eliminating the irrelevant variables, the signal detector can be given by

Rfull(r
(i)
p,row, a, wi) = sgn(wi) ·

Np−1∑
kp=0

akpr
(i,kp)
p

H1

≷
H0

γi, (16)
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where γi is the decision threshold at ith sample point. The threshold γi with a constant false

alarm rate ϵ is designed according to NP rule [56], which is set to

γi = Φ−1(1− ϵ)

√
var[Rfull(r

(i)
p,row, a, wi)|H0] + E[Rfull(r

(i)
p,row, a, wi)|H0], (17)

where Φ(·) is the cumulative distribution function (CDF) of the standard normal distribution.

The first sample point that exceeds the threshold will be judged as the signal arrival. Then, ToA

is estimated by

τ1 = Tsammin
i
{i|Rfull(r

(i)
p,row, a, wi) > γi} − Tsam/2. (18)

Above all, the ranging part of the post quantization processing shown in Fig. 2 consists of

the channel estimation module and the ranging estimation module which are designed according

to (8) and (16) respectively. Note that the calculation of Rfull(r
(i)
p,row, a, ŵi) is equivalent to the

MLE of |wi|. Thus, the output of the channel estimation module can be reused for the threshold

detection. Then, the result of the ToA estimation is adopted for distance measurement.

The accuracy of the ranging estimation depends on many factors: transmitted pulsed signal

waveform, multi-path channel state, the number of PF pulses, etc. To assess the impact of

different factors on the ranging estimation, we choose CRLB as the performance metric. The

CRLB of D is given in Proposition 2.

Proposition 2 (CRLB of D with full resolution). Because D is in a linear relationship with

τ1, the CRLB of D is equivalent to the CRLB of τ1 multiplied by a constant c2. Thus, we can

evaluate the CRLB of D as

CRLBD,full =
c2

8π2(1− η)Npβ2µSNRp

, (19)

where

SNRp =

∫ +∞
−∞ h2

0

∣∣Pr(f)
2
∣∣df

N0

(20)

and

β2 =

∫ +∞
−∞ f 2 ·

∣∣Pr(f)
2
∣∣df∫ +∞

−∞

∣∣Pr(f)
2
∣∣df (21)

are the SNR of the first path and the effective bandwidth of the filtered shaping pulse pr(t) =

p(t) ∗ hLPF(t) respectively, Pr(f) is the Fourier transform of pr(t) and η ∈ [0, 1] represents the

overlapping coefficient caused by multi-path components (except the first path).

Proof. The proof is given in Appendix B.
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Fig. 3. Analytical λ(Np) of the full-resolution ISAC receiver at various Np and SNRs

Remark 1 (The effect of the multi-path overlapping). As mentioned in Appendix B, η is a

coefficient which describes the effect of the other paths on the estimation of the first path delay

(i.e. τ1). When the first path signal does not overlap with the other paths, η = 0. It means that

we hope to reduce or eliminate the performance loss caused by irrelevant multi-path components

in the ranging estimation. On the contrary, multi-path components are beneficial for the data

recovery, which are considered as the copies of the transmitted signal and bring the extra gain

of SNR.

D. PF Length Design

Because the size of a packet is limited, the appropriate allocation of time slots for DF and PF

is critical. As in (12) and (19), the increase of PF length Np will reduce the BER and CRLB of

the ISAC receiver, but decrease the DF length Nd. Thus, choosing an appropriate Np is a key

step of making a tradeoff among data transmission capacity, BER and CRLB.

At first, we study the effect of Np on the data recovery and the ranging estimation. Some

interesting properties can be obtained from (12) and (19). We consider a ISAC system with

the initial PF length Np,int. For the ranging estimation, when Np,int is increased by j times,

CRLB will be decreased by j times. However, for the data recovery, the incremental gain of

Np is limited. Although Pe,full(Np) increases monotonically with Np, its growth rate decreases

monotonically with Np and limNp→+∞ Pe,full(Np) = Q(
√
2µSNR). When Np,int is small, the

increase of Np will significantly reduce BER, but when Np,int is large enough, the channel

estimation error is so small that BER is almost not affected by Np. In this case, the increase of
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Np is only beneficial to the ranging estimation and harmful to the data recovery because of the

reduction of spectral efficiency.

In Fig. 3, we show the analytical results of BER and CRLB at various Np and SNR. Np,int

is initialized to 600. The symbol duration Ts = 100ns and the pulse bandwidth B = 12.5GHz

are chosen. To assess the performance improvement of the ISAC receiver, we define λ as the

incremental gain of Np, which is given by

λ(Np) =
Pe,full(Np)

Pe,full(Np,int)
(or

CRLBD,full(Np)

CRLBD,full(Np,int)
). (22)

The prefixes ”IG-BER” and ”IG-CRLB” are used to represent the incremental gains λ(Np) of

BER and CRLB respectively. We can notice that there is a dividing point Np,div ≈ 2Ns = 5000

differing two performance regions: λ(Np) of BER decreases rapidly in the region (0, Np,div],

while becomes almost flat in the region (Np,div,+∞). Unlike BER, λ(Np) of CRLB decreases

with Np and has no lower bound. Thus, in order to ensure the performance of the communication

part, Np should be kept within the region (0, Np,div].

Another problem is how to choose an appropriate Np. In practical applications, the ISAC

system usually has the constraints on BER and MSE of the distance denoted as P and S

respectively. To maximize data transmission resources, we can obtain minimum Np satisfying

both constraints. The result is given by

Np,min = max{P−1
e,full(P ),MSE−1

full(S)}, (23)

where P−1
e,full(·) is the inverse function of BER given in (12) about Np, and MSE−1

full(·) is the

inverse function of MSE of the estimated distance about Np. Because the relationship between

the received signal and the distance is difficult to obtain, the relation between MSE and Np can

only be acquired from simulation.

IV. RECEIVER DESIGN WITH LOW RESOLUTION

The high time resolution of pulsed signals is beneficial to ranging. However, the large band-

width of pulsed signal requires a high sampling rate. In practice, the cost of the full-resolution

ADC with such a high sampling rate is excessive. Thus, the low-resolution ADC is attractive

because of its lower hardware cost and lower power consumption compared with the full-

resolution ADC.

In this section, the pulse-based ISAC receiver design with low-resolution ADC is discussed.

We first propose a MLE method using PF to obtain CSI. Under the condition of the low-resolution

quantization, we redesign the symbol detector based on minimum BER criterion for the data
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recovery and the estimator based on NP rule for the ranging estimation. The BER and CRLB of

the low-resolution ISAC receiver are also obtained in Section IV-C and Section IV-D. Finally, we

discuss the key parameters in the low-resolution ISAC receiver design. The optimal quantization

threshold vector is obtained in Section IV-E, and the analysis and allocation method of PF length

are given in Section IV-F.

A. Low-resolution ADC

Assuming that the low-resolution ADC has the same quantization thresholds for positive and

negative regions, the M -level ADC is given by

xi,k =



l1, c0 < ri,k < c1

l2, c1 ≤ ri,k < c2

. . .

lM−1, cM−2 ≤ ri,k < cM−1

lM , cM−1 ≤ ri,k < cM

, for all i,k (24)

where c = [c0, c1, ..., c[M/2]]
T is a quantization threshold vector in negative regions with c0 <

c1 < ... < c[M/2] ≤ 0, c0 = −∞, and l = [l1, ..., lM ]T is the quantization level vector. Moreover,

quantization thresholds in positive regions (including zero) are given by cm = −cM−m, m =

[M/2] + 1, ...,M .

In the special case of M = 2, a monobit ADC is given by

xi,k =

{
l1, −∞ ≤ ri,k ≤ 0

l2, 0 ≤ ri,k ≤ +∞
, for all i,k (25)

with c0 = −∞, c2 = +∞ and c1 = 0. The monobit ADC only preserves the polarity of sample

points and is equivalent to the sign detector.

Furthermore, we denote the output of the low-resolution ADC as the low-resolution sample

point matrix X ∈ RNs×N whose entries are xi,k. X = [Xp,Xd] is divided in the same way as R,

and their entries are denoted as x
(i,kp)
p and x

(i,kd)
d . Then, X will be used in the following digital

signal processing.

B. Channel Estimation

Similar to Section III-A, we first acquire CSI. The estimation of w is also obtained by the

MLE method based on PF. Then, the log-likelihood function of w is given by

L(Xp|a,w) =
Ns−1∑
i=0

M∑
m=1

Nm
i · log Pr(x(i,kp)

p = lm|wi, akp), (26)
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Fig. 4. The block diagram of the post quantization processing part of the low-resolution ISAC receiver

where Nm
i denotes the number of lm at the ith sample points of PF, and Pr(x

(i,kp)
p = lm|wi, akp)

is the probability of x
(i,kp)
p = lm when wi and akp are known (i.e. Pr(·|·) is a conditional

probability). From (26), we can decompose the estimation of w into its entries wi.

L(x(i)
p,row|a, wi) =

M∑
m=1

Nm
i · log Pr(x(i,kp)

p = lm|wi, akp),

i = 0, 1, . . . , Ns − 1

(27)

where x
(i)
p,row denotes the ith row vector of Xp. the MLE of wi is given by

ŵi = argmax
wi

L(x(i)
p,row|a, wi). i = 0, 1, . . . , Ns − 1 (28)

It is difficult to get a closed-form expression for the low-resolution ISAC receiver to estimate wi.

In practice, we use a lookup table. The table is indexed by wi, and each row of the table stores

M entries: {log Pr(lm|wi, akp)}Mm=1. For each Nm
i vector, we can perform the inner product of

it with each row. The row which gives the maximum inner product corresponds to the MLE of

wi.

C. Data recovery

Unlike the full-resolution ISAC receiver, the low-resolution ISAC receiver recovers data

symbols from Xd whose entries are discrete random variables as

H1 : x
(i,kd)
d = lm ∼ f (i,kd)

m

H0 : x
(i,kd)
d = lm ∼ g(i,kd)m ,

(29)

1The inner product can be equivalent to matrix multiplication and the lookup table stores data in advance through read-only

registers (ROM).
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where f
(i,kd)
m = Pr(x

(i,kd)
d = lm|r(i,kd)d = wi + n

(i,kd)
d ), g(i,kd)m = Pr(x

(i,kd)
d = lm|r(i,kd)d = −wi +

n
(i,kd)
d ). With p(H0) = p(H1) = 1

2
, the LLRT of the kdth symbol based on minimum BER

criterion is given by

Λd(x
(kd)
d,col) =

Ns−1∑
i=0

log
f
(i,kd)
m

g
(i,kd)
m

H1

≷
H0

0, (30)

where x
(kd)
d,col denotes the kdth column vector of Xd. It is too complicated to use LLRT for data

recovery because of the non-linear calculation of log(·).
To simplify (30), we use the linear symbol detector which can be obtained from the Taylor

series expansion of (30) at w = 0. Define Fn(·) as the CDF of fn(·), and let r(i,kd)d be in the

quantization interval [cmi,kd
−1, cmi,kd

] (i.e. x(i,kd)
d = lmi,kd

). Then, we have f
(i,kd)
m = Fn(cmi,kd

−
wi) − Fn(cmi,kd

−1 − wi), g
(i,kd)
m = Fn(cmi,kd

+ wi) − Fn(cmi,kd
−1 + wi). A linear approximation

of (30) is obtained by the approximate formula Fn(cmi,kd
±wi) = Fn(cmi,kd

)±wifn(cmi,kd
) and

Taylor series expansion log f
(i,kd)
m

g
(i,kd)
m

≈ f
(i,kd)
m

g
(i,kd)
m

− 1. That is,

Λd(x
(kd)
d,col) =

Ns−1∑
i=0

log
f
(i,kd)
m

g
(i,kd)
m

≈
Ns−1∑
i=0

(
Fn(cmi,kd

− wi)− Fn(cmi,kd
−1 − wi)

Fn(cmi,kd
+ wi)− Fn(cmi,kd

−1 + wi)
− 1

)

≈
Ns−1∑
i=0

2wi

fn(cmi,kd
−1)− fn(cmi,kd

)

Fn(cmi,kd
)− Fn(cmi,kd

−1)
.

(31)

The linear symbol detector can be written as

Clow(x
(kd)
d,col,w) =

Ns−1∑
i=0

wi

fn(cmi,kd
−1)− fn(cmi,kd

)

Fn(cmi,kd
)− Fn(cmi,kd

−1)

H1

≷
H0

0. (32)

The communication part of the post quantization processing shown in Fig. 4 is designed

according to (28) and (32). The quantization level in (24) can be set to

xi,k = lm =
fn(cm−1)− fn(cm)

Fn(cm)− Fn(cm−1)
. ri,k ∈ [cm−1, cm) (33)

Note that the values of quantization levels are constant and only dependent on the quantization

threshold vector c. The channel estimation uses a lookup table method, as mentioned in Section

IV-B. The test statistic (32) can be directly obtained by the inner product of ŵ and x
(kd)
d,col, which

is given by

⟨ŵ,x
(kd)
d,col⟩ =

Ns−1∑
i=0

ŵix
(i,kd)
d

=
Ns−1∑
i=0

ŵi

fn(cmi,kd
)− fn(cmi,kd

)

Fn(cmi,kd
)− Fn(cmi,kd

)
.

(34)
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Finally, the data symbols are given by the output of the sign detector.

We analyze the BER of the detector (32). At first, when Np ≫ 1, we can approximate the

channel estimation error w̃ as a Gaussian random variable vector, which is based on Lemma 1.

Lemma 1 (The asymptotic distribution of ŵ). Under the condition of large data records (Np ≫
1), the MLE of w can be asymptotically distributed according to

ŵ ∼ CN (w,F−1
w ), (35)

where the autocorrelation matrix F−1
w is given by

F−1
w =

σ2
n

Np

· diag{α−1
w0
, α−1

w1
, . . . , α−1

wNs−1
}, (36)

where

αwi
=

M∑
m=1

(
ϕ( cm−wi

σn
)− ϕ( cm−1−wi

σn
)
)2

Φ( cm−wi

σn
)− Φ( cm−1−wi

σn
)

(37)

is the quantization efficiency of the ith sample point, with ϕ(·) being the PDF of the standard

normal distribution.

Proof. The proof is given in Appendix C.

Subsequently, the BER of the detector (32) considering the channel estimation error is in

Proposition 3.

Proposition 3 (BER of the low-resolution symbol detector). Considering the channel estima-

tion error and under the condition of large sample points (Ns ≫ 1, Np ≫ 1), the BER of

Clow(x
(kd)
d,col, ŵ) is given by

Pe,low = Q

(√
2α0 · µSNR

1 + Ns

Np
(2α0 · µSNR)−1

)
, (38)

where

α0 =
M∑

m=1

(
ϕ( cm

σn
)− ϕ( cm−1

σn
)
)2

Φ( cm
σn
)− Φ( cm−1

σn
)

(39)

is the quantization efficiency of the signal strength wi = 0.

Proof. The proof is given in Appendix D.

Remark 2 (The effect of the quantization efficiency α0). Compared with (12), (38) involves the

effect of the low-resolution quantization. The quantization efficiency α0 is used to describe the

performance loss caused by the low-resolution quantization, and α0 ∈ [0, 1]. We can provide a



19

simple proof in the following. It can be seen that when M → +∞, the full-resolution quantization

can be achieved, and α0 reaches the maximum value. That is,

lim
M→+∞

α0 = lim
M→+∞

M∑
m=1

(
ϕ′( cm−1

σn
)
)2

Φ′( cm−1

σn
)

(cm − cm−1)

= lim
M→+∞

M∑
m=1

(
cm−1

σn

)2

ϕ(
cm−1

σn

)(
cm
σn

− cm−1

σn

)

=
1√
2π

∫ +∞

−∞
x2e−

x
2
2

dx

= 1.

(40)

Because lim
M→+∞

cm − cm−1 = 0, m = 1, 2, ...,M , we have the Taylor series expansion ϕ( cm
σn
)−

ϕ( cm−1

σn
) = ϕ′( cm−1

σn
)(cm − cm−1), Φ( cmσn

) − Φ( cm−1

σn
) = Φ′( cm−1

σn
)(cm − cm−1) substituted in the

first step of (40). We notice that when M → +∞, α0 = 1, the low-resolution symbol detector

(32) will be converted to the full-resolution symbol detector (11), and BER will yield to (12).

D. Ranging Estimation

Using Xp, we can employ the threshold detection method for ranging. At first, the detection

of the signal arrival can be modeled as

H1 : x
(i,kp)
p = lm ∼ p(i,kp)m

H0 : x
(i,kp)
p = lm ∼ q(i,kp)m ,

(41)

where p
(i,kp)
m = Pr(x

(i,kp)
p = lm|r(i,kp)p = akpwi+n

(i,kp)
p ), q(i,kp)m = Pr(x

(i,kp)
p = lm|r(i,kp)p = n

(i,kp)
p ).

The LLR of the ith sample point is given by

Λr(x
(i)
p,row) =

Np−1∑
k=0

log
p
(i,kp)
m

q
(i,kp)
m

, (42)

where x
(i)
p,row denotes the ith row vector of Xp. Let r

(i,kp)
p be in the quantization interval

[cmi,kp−1, cmi,kp
] (i.e. x(i,kp)

p = lmi,kp
). Note that p(i,kp)m = Fn(cmi,kp

−akpwi)−Fn(cmi,kp−1−akpwi)

and q
(i,kp)
m = Fn(cmi,kp

) − Fn(cmi,kp−1). To avoid the non-linear calculation of log(·), a linear
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approximation of (42) can be obtained by using the approximate formula Fn(cmi,kp
± wi) ≈

Fn(cmi,kp
)± wifn(cmi,kp

) and the Taylor series expansion log p
(i,kp)
m

q
(i,kp)
m

≈ p
(i,kp)
m

q
(i,kp)
m

− 1.

Λr(x
(i)
p,row) =

Np−1∑
k=0

log
p
(i,kp)
m

q
(i,kp)
m

≈
Np−1∑
k=0

(
fn(cmi,kp

− akpwi)− fn(cmi,kp−1 − akpwi)

Fn(cmi,kp
)− Fn(cmi,kp−1)

− 1

)

≈ wi

Np−1∑
k=0

akp
fn(cmi,kp−1)− fn(cmi,kp

)

Fn(cmi,kp
)− Fn(cmi,kp−1)

.

(43)

By eliminating the amplitude of wi, the linear signal detector can be given by

Rlow(x
(i)
p,row, a, wi) = sgn(wi) ·

Np−1∑
k=0

akp
fn(cmi,kp−1)− fn(cmi,kp

)

Fn(cmi,kp
)− Fn(cmi,kp−1)

H1

≷
H0

γi. (44)

When Np is large enough, Rlow(x
(i)
p,row, a, wi) can be approximated as a Gaussian random variable

by using the central limit theorem. Thus, the threshold based on NP rule with a constant false

alarm rate ϵ can be set to

γi = Φ−1(1− ϵ)

√
var[Rlow(x

(i)
p,row, a, wi)|H0] + E[Rlow(x

(i)
p,row, a, wi)|H0]. (45)

Finally, ToA is calculated as

τ1 = Tsam min
i
{i|Rlow(x

(i)
p,row, a, wi) > γi} − Tsam/2. (46)

The ranging part of the post quantization processing shown in Fig. 4 is designed according

to (28) and (44). By reusing the result of channel estimation module, the ranging estimation

module calculates the inner product of sgn(ŵi) · a and x
(i)
p,row by utilizing a correlator, and then

performs the threshold detection to estimate ToA. The distance measurement can be acquired

from the ToA of the returned packet.

The CRLB of the low-resolution ISAC receiver is analyzed in Proposition 4.

Proposition 4 (CRLB of D with low resolution). Considering a linear relationship that CRLBD,low =

c2 · CRLBτ1,low and the effect of the low-resolution quantization on the ranging estimation, we

can evaluate the CRLB of D as

CRLBD,low =
c2

8π2(1− η)Npβ2α0µSNRp

. (47)

Proof. The proof is given in Appendix E.
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TABLE II

OPTIMAL QUANTIZATION THRESHOLD VECTOR OF M -LEVEL ADC

M -level Quantization Threshold Vector

2 {−∞, 0,+∞}
3 {−∞,−0.610σn, 0.610σn,+∞}
4 {−∞,−0.982σn, 0, 0.982σn,+∞}

E. Quantization Threshold Vector Design

When pulsed signals are input to the low-resolution ADC, the lower quantization thresholds

will cause the signal to be clipped, while the higher quantization thresholds will make the

resolution of signal too low. Thus, the optimal quantization threshold vector copt should be

chosen. In the above sections, we use Pe,low and CRLBD,low as the performance metrics of the

low-resolution ISAC receiver. As mentioned in Proposition 3 and Proposition 4, both BER and

CRLB of the low-resolution quantization decrease when α0 increases. Thus, we can obtain copt

by maximizing α0. When M is even, we have

copt = argmax
c

α0

= argmax
c

[M/2]∑
m=1

2

(
ϕ( cm

σn
)− ϕ( cm−1

σn
)
)2

Φ( cm
σn
)− Φ( cm−1

σn
)

,

(48)

or when M is odd, we have

copt = argmax
c

α0

= argmax
c


[M/2]∑
m=1

2

(
ϕ( cm

σn
)− ϕ( cm−1

σn
)
)2

Φ( cm
σn
)− Φ( cm−1

σn
)

+

(
ϕ(

c[M/2]+1

σn
)− ϕ(

c[M/2]

σn
)
)2

Φ(
c[M/2]+1

σn
)− Φ(

c[M/2]

σn
)

 .
(49)

By letting ∂α0

∂cm
= 0, m = 1, 2, ..., [M/2], copt is calculated as

cm,opt

σn

=
1

2

(
ϕ( cm−1,opt

σn
)− ϕ( cm,opt

σn
)

Φ( cm,opt

σn
)− Φ( cm−1,opt

σn
)
+

ϕ( cm,opt

σn
)− ϕ( cm+1,opt

σn
)

Φ( cm+1,opt

σn
)− Φ( cm,opt

σn
)

)
,

m = 1, 2, . . . , [M/2]

(50)

whether M is odd or even. We can get the optimal quantization threshold vectors of low-

resolution ISAC receivers (i.e. 2-4 level) through using a fixed-point iteration method [57] once

the initial thresholds are decided as
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c0 = −∞,

c[M/2] =

{
0 M is even

−c[M/2]+1 M is odd
.

(51)

Note that the convergence of the fixed-point iteration method is proved by Banach fixed point

theorem [57]. Finally, the optimal quantization threshold vectors of M = 2, 3, 4 are given in

Table. II.

F. PF Length Design

In the low-resolution ISAC receiver, the effect of PF length Np is also discussed. We use the

incremental gain λ(Np) to assess the performance improvement brought by the increase of Np,

which is given by

λ(Np) =
Pe,low(Np)

Pe,low(Np,int)
(or

CRLBD,low(Np)

CRLBD,low(Np,int)
). (52)

In Fig. 5(a), we provide λ(Np) of BER and CRLB at various Np and SNR. In this figure,

we choose Np,int = 600, Ts = 100ns and B = 12.5GHz, and the optimal quantization threshold

vector copt mentioned in Section IV-E is used. It is shown that the number of quantization levels

M only affects the declining rate of λ(Np) of BER in small Np case, while is irrelevant to the

dividing point Np,div. In the end, we come to the same conclusion as the full-resolution ISAC

receiver described in Section III-D.

For the low-resolution ISAC receiver with the constraints of BER P and MSE S, the PF

length design based on maximum data transmission capability criterion is given by

Np,min = max{P−1
e,low(P ),MSE−1

low(S)}, (53)

where P−1
e,low(·) is the inverse function of the BER of the low-resolution symbol detector (38)

about Np, and MSE−1
low(·) is the inverse function of the MSE of the distance estimated by the

low-resolution ISAC receiver about Np.

V. SIMULATION RESULTS AND DISCUSSION

In this section, we provide the simulation results for the proposed ISAC receiver. We employ

the standard CM1 channel model for simulation with 1000 realizations [58], and the impulse
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Fig. 5. (a) Analytical λ(Np) of the low-resolution ISAC receiver at various Np and SNRs, (b) The impulse response of the

standard CM1 channel with the normalized amplitude |h|

response of the standard CM1 channel in one realization is given in Fig. 5(b). The transmitted

pulse is chosen to be a second order derivative Gaussian pulse

p(t) =

[
1−

(
t

τps

)2
]
· exp

[
−2π

(
t

τps

)2
]
, (54)

where τps = 0.29ns is a time constant which controls the pulse duration (i.e. about 0.7 ns) [59].

The ToA of the received signal is uniformly distributed over [0ns, 50ns]. The symbol duration

Ts is 100ns. Then, the impulse response of LPF is given by

hLPF(t) =
sin(2πBt)

πt
, (55)

where the filter bandwidth B is 12.5GHz. The sampling interval Tsam is 40ps. The optimal

quantization thresholds of the low-resolution ADC mentioned in Section IV-E are used. For the

channel estimation of the low-resolution ISAC receiver, we use a lookup table quantizing si

in [-5,5] with a step size 0.005. The false alarm probability ϵ is appropriately set to 10−7. All

parameters conform to the standard IEEE 802.15.4z [60], and are summarized at Table III.

In Fig. 6(a) and Fig. 6(b), we compare the performance of the proposed ISAC system (denoted

as ”MLE”) with full-resolution (denoted as ”FR”) and M -level quantization, the GML-based

receiver at Np = 1000 [42] and the TRPC-based receiver at Nd = 1000 [41], [43]. The

computational complexity and signaling overhead of these ISAC receivers are shown in Table

IV. Note that NT and NG are the iteration times of the TRPC-based receiver and the GML-

based receiver and NL is the number of quantization levels of the lookup table. It is shown
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Fig. 6. BER and MSE performance of the full-resolution and M-level (M = 2, 3, 4) MLE-based receivers, the TRPC-based

receiver and the GML-based receiver at various SNRs and Np = 1000 (the simulation results of the MLE-based receivers

denoted as blue lines and the theoretical results denoted as black lines)

TABLE III

PARAMETERS FOR SIMULATION ANALYSIS

Parameter value

Shaping pulse (54) Pulse parameter τps 0.29 ns

Packet structure (1)

Symbol duration Ts 100 ns

PF length Np 500 - 3000

DF length Nd 5000

M -level ADC (II)
Sampling interval Tsam 40ps

Quantization precision M 2 - 4 level

Low-pass filter (55) Passband width B 12.5 GHz

Lookup table
Searching range [-5 , 5]

Searching step 0.005

NP rule(17),(45) False alarm probability 10−7

that for full resolution, the TRPC-based receiver has an advantage of extremely low signaling

overhead by reusing DF for the channel estimation iteratively. The GML-based receiver obtains

CSI by many times of iterative calculations, and the computational complexity of one iterative

calculation is mainly dependent on the estimation of delay which occupies the main computation

overhead. Only one delay estimation requires O(N2
s ) (i.e. about 106 ∼ 108 in this simulation,

Ns ∈ [103, 104]) additions and multiplications. The proposed full-resolution MLE method can

achieve CSI with low cost because of adopting the closed-form solution, while for low resolution,

the MLE method is realized by using the lookup table to search CSI. The computational



25

0 1 2 3 4 5 6 7 8 9 10

SNR(dB)

10
-5

10
-4

10
-3

10
-2

10
-1

B
E

R

MLE 2-level N
p
=1000

MLE 3-level N
p
=1000

MLE 4-level N
p
=1000

MLE FR N
p
=1000

MLE 2-level perfect CSI

MLE 3-level perfect CSI

MLE 4-level perfect CSI

MLE FR perfect CSI

(a) BER

0 1 2 3 4 5 6 7 8 9 10

SNR(dB)

10
-1

10
0

M
S

E
(n

s
2
)

MLE 2-level N
p
=1000

MLE 3-level N
p
=1000

MLE 4-level N
p
=1000

MLE FR N
p
=1000

MLE 2-level perfect CSI

MLE 3-level perfect CSI

MLE 4-level perfect CSI

MLE FR perfect CSI

(b) MSE

Fig. 7. BER and MSE performance of the pulsed-based ISAC receiver with perfect CSI and estimated CSI at Np = 1000
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Fig. 8. BER and MSE performance of the pulsed-based ISAC receiver with LLR and its linear approximation at Np = 1000

complexity of the lookup table method depends on the estimated range and step, which can

be adjusted to meet requirements. From simulation, it can be seen that the GML-based receiver

with NG = 100 has the best performance. The TRPC-based receiver makes a good performance

in a high SNR case, but its performance is very bad at low SNR, because of the inaccurate

channel estimation caused by high BER. The proposed full-resolution MLE receiver has about

1dB SNR loss in BER and near the same ranging accuracy compared with the GML-based

receiver with NG = 100. The performance gap between the full-resolution ISAC receivers with

perfect CSI and estimated CSI is shown in Fig. 7(a) and Fig. 7(b). Compared with the receiver

with perfect CSI, the MLE receiver with Np = 1000 has about 1.5dB SNR loss in BER and
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Fig. 9. λ(Np) of the full-resolution and M -level ISAC receivers (M = 2, 3, 4) at various Np and SNRs

TABLE IV

COMPUTATIONAL COMPLEXITY AND SIGNALING OVERHEAD OF ISAC RECEIVERS

M -level

MLE

Full Resolution

TRPC GML MLE

Addition O(MNLNs) O(NTNdNs) O(NGN
2
s ) O(NpNs)

Multiplication O(MNLNs) None O(NGN
2
s ) None

PF Overhead Np 1 Np Np

0.4dB SNR loss in MSE. Also, in Fig. 6(a), the theoretical results from (12) and (38) denoted

as black lines are almost equal to the simulation results denoted as blue lines.

Then, we discuss the performance of the proposed ISAC receiver with different quantizations.

In Fig. 6(a) and Fig. 6(b), it is shown that the full-resolution receiver has the best performance

in both data recovery and ranging estimation, and the performance of the low-resolution receiver

improves with the increase of M . For example, the 3-level ISAC receiver has a gain of 1dB in

SNR for BER and of 1.2dB in SNR for MSE over the 2-level ISAC receiver, and about 0.4dB

SNR loss for both BER and MSE compared with the 4-level ISAC receiver. Also, compared

with the full-resolution ISAC receiver, the SNR gaps of the 3-level ISAC receiver in BER

and MSE are around 0.8dB and 1dB respectively. It is noticed that the gain from using an

additional quantization level decreases and 3-level quantization can obtain near the full-resolution

performance (about 1dB SNR gap) with low ADC cost. With further increasing the number of

quantization levels, the ISAC receiver can only achieve a limited performance gain (within 1dB)

but lead to the rapidly increasing ADC cost. Thus, the 3-level receiver can be an attractive
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Fig. 10. BER and MSE performance of the 3-level ISAC receiver at various quantization thresholds |c2|
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Fig. 11. BER and MSE performance of the 4-level ISAC receiver at various quantization thresholds |c2|

solution to make the tradeoff between the cost and the performance.

In Fig. 8(a) and Fig. 8(b), we discuss the performance loss caused by an inaccurate linear ap-

proximation of LLR. The postfix ”LLR” represents the pulse-based ISAC receiver using LLR in-

stead of its linear approximation. The simulation results prove that the performance loss caused by

the inaccurate linear approximation is small enough to be ignored when SNR< 11dB. Although

the performance loss will continuously increase with SNR, we think this loss is unimportant in

a high SNR region (SNR> 11dB) because the receivers with the linear approximation of LLR

have a sufficiently good performance for ISAC applications (BER< 10−3,MSE< 0.1ns2,when

SNR> 11dB). Thus, a linear approximation of LLR can be used as a perfect substitute for
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avoiding the infeasible non-linear calculation log(·).
In Fig. 9(a) and Fig. 9(b), the effect of Np is investigated. It shows that MSE performance

is sensitive to the change of Np, while BER is not when Np is large (i.e. Np > 2Ns = 5000).

This agrees with the observations in Section III-D and Section IV-F. But unlike the theoretical

performance of the ideal ranging estimation, it is noted that the accuracy of the ranging estimation

has a lower bound in the practical applications because the threshold detection method has an

inevitable gap with the real ToA deriving from the discretization processing. As a result, when

SNR or M increases, MSE will decrease but the declining rate of λ(Np) of MSE reduces. In

this paper, we mainly consider the pulse-based ISAC system working in a low SNR case, and

hence the error caused by the discretization processing is not considered as a primary factor of

the ranging estimation.

The optimal quantization threshold vector mentioned in Section IV-E is also proved to be valid

by simulation. We provide BER and CRLB of the 3-level ISAC receiver at various quantization

thresholds |c2| in a low SNR and different PF length case in Fig. 10(a) and Fig. 10(b), and

of the 4-level ISAC receiver in Fig. 11(a) and Fig. 11(b). The simulation results show that

minimum BER and MSE of the 3-level receiver are located near the theoretical optimal value

|c2,opt| = 0.610, and those of the 4-level receiver appear near |c2,opt| = 0.982. It proves that the

design of the optimal quantization thresholds can minimize the performance loss brought by the

low-resolution quantization.

Because of the large bandwidth of pulsed signals, the pulse-based ISAC systems should

coexist with the existing radio systems with relatively narrow bandwidth. The signals radiated

by narrowband radio systems are considered as NBI in the view of pulse-based ISAC systems.

Considering that there exists the unknown NBI, the filtered received signal can be given by

rfn(t) = rf(t) + rI(t), (56)

where rI(t) is the filtered NBI.

In Fig. 12(a) and Fig. 12(b), we study the impact of NBI on the proposed ISAC systems. The

NBI is modeled as a binary phase-shift keying (BPSK) modulation signal with center frequency

Fc = 5GHz and bit rate RNBI = 100Kbit/s [61], [62]. The signal-to-interference ratio (SIR) is

defined as

SIR =

∫ Ts

0
p2f (t)dt∫ Ts

0
r2I (t)dt

. (57)

The simulation results show that the full-resolution ISAC receiver with no NBI has a SNR gap

within 0.5dB in BER at SIR=-10dB and 1dB in MSE at SIR=-20dB. Clearly, BER and MSE

will increase when SIR decreases, and the communication system is more sensitive to NBI than
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Fig. 12. BER and MSE performance of the pulsed-based ISAC receiver at and various SIR and Np = 3000 (No NBI denoted

as solid lines, SIR= −5dB denoted as dash lines and SIR= −10dB denoted as dash-dotted lines)

ranging. Generally, from simulation, when SIR is controlled more than -10dB, the performance

loss caused by NBI is limited within 1dB SNR loss.

The correlation of sample points caused by high-speed sampling may also have an impact on

the proposed ISAC systems. Considering the sampling interval of sample points used for ranging

(i.e. r(i)p,row) is large enough to ignore the correlation of sample points, we only need to consider

the communication system. In Appendix F, it is shown that when the Nyquist sampling rate

µ = 2 is adopted, all the sample points are independent. Considering the imperfect sampling

clock or oversampling (i.e. 2 ≤ µ ≤ 4), the correlated random variable sequence r
(kd)
d,col can be

modeled as a m-dependent Gaussian random variable sequence (defined in Appendix F), whose

autocovariance matrix cov(r
(kd)
d,col) is given by

cov(r
(kd)
d,col) =


σ2
n σcov 0 . . . 0 0

σcov σ2
n σcov . . . 0 0

... . . . ...
... . . . ...

0 0 0 . . . σcov σ2
n

 , (58)

where σcov is the covariance of two adjacent samples.

The impact of the correlation on the BER of the full-resolution receiver and M -level ISAC

receiver at Np = 3000 is shown in the Fig. 13. The 3-level ISAC receiver, for example, has about

0.5dB and 1dB SNR gap compared with σcov = 0 at σcov = 0.1 and σcov = 0.2 respectively.

Although the performance loss cause by the correlation of sample point is inevitable, it can be

limited within 1dB SNR loss by adopting an appropriate sampling rate 2 ≤ µ ≤ 4.
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VI. CONCLUSION

In this paper, we have proposed a full-resolution pulse-based ISAC receiver for multi-path

channels. The proposed receiver can obtain the diversity gain of multi-path components to recover

data symbols, and pick up the first path in the presence of multi-path components and AWGN

by a threshold detection method based on NP rule. To reduce the cost of the high-speed full-

resolution ADC, we have proposed a pulse-based ISAC receiver using a low-resolution ADC.

The optimal quantization thresholds of the low-resolution ADC have also been obtained. Based

on simulation results, we have shown that compared with the GML-based receiver, the proposed

full-resolution ISAC receiver has 1dB SNR loss in BER and almost the same MSE performance

with lower computational complexity, and compared with the full-resolution ISAC receiver, the

SNR loss of the 3-level ISAC receiver is about 0.8dB in BER and 1dB in MSE but the ADC

cost is significantly reduced.

APPENDIX A

THE PROOF OF PROPOSITION 1

We first denote the channel estimation error as w̃ = ŵ−w = [w̃0, w̃1, ..., w̃Ns−1]
T . From (8),

we know that ŵ ∼ CN (w, σ2
n

Np
INs) by the sum of Gaussian random variables r

(i,kp)
p . Considering

the channel estimation error w̃, the symbol detector (11) can be written as
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Cfull(r
(kd)
d,col, ŵ) =

Ns−1∑
i=0

[
(bkdwi + n

(i,kd)
d )(wi + w̃i)

]
=

Ns−1∑
i=0

(bkdw
2
i + bkdwiw̃i + n

(i,kd)
d wi + n

(i,kd)
d w̃i).

(59)

Cfull(r
(kd)
d,col, ŵ) is a non-Gaussian random variable. Thanks to the broadband of pulsed signal

and Nyquist sampling theorem, Ns should be very large. Thus, the only non-Gaussian term∑Ns−1
i=0 n

(i,kd)
d w̃i of (59) can be approximated as a Gaussian random variable by using the

central limit theorem, and Cfull(r
(kd)
d,col, ŵ) can be approximated to a Gaussian distribution in

large samples case. The BER performance is estimated as Q(dmin/
√

4σ2
eq) [56], where dmin =

2E[Cfull(r
(kd)
d,col, ŵ)|bkd = 1] denotes the equivalent Euclidean distance between two constellation

symbols, and σ2
eq = var[Cfull(r

(kd)
d,col, ŵ)|bkd = 1] denotes the equivalent noise variance. The

expectation of Cfull(r
(kd)
d,col, ŵ) when bkd = 1 is given by

E[Cfull(r
(kd)
d,col, ŵ)|bkd = 1] =

Ns−1∑
i=0

w2
i . (60)

Then, the variance of Cfull(r
(kd)
d,col, ŵ) when bkd = 1 is given by

var[Cfull(r
(kd)
d,col, ŵ)|bkd = 1] =

Ns−1∑
i=0

w2
i σ

2
n +

σ2
n

Np

Ns−1∑
i=0

(w2
i + σ2

n). (61)

Taking (60) and (61) into the calculation of BER, we can evaluate Pe,full as

Pe,full ≈ Q


√√√√√ Es

σ2
n

1 + Ns

Np

(
Es

σ2
n

)−1

 (as Ns > Np ≫ 1)

= Q

(√
2µSNR

1 + Ns

Np
(2µSNR)−1

)
,

(62)

where

Es =
Ns−1∑
i=0

w2
i =

1

Tsam

∫ +∞

−∞
p2f (t)dt. (63)

APPENDIX B

THE PROOF OF PROPOSITION 2

Because there is a linear relationship between D and τ1, CRLBD,full = c2 · CRLBτ1,full.

We first obtain Fisher information matrix (FIM) of θ to calculate CRLBτ1,full, where θ =
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[τ1, h1, ..., τL, hL]
T is a vector of unknown parameters of the multi-path channel. It is very

complicated to compute Fθ directly. Thus, we can use the reparametrization of FIM [63] to

evaluate Fθ as

Fθ =

(
∂wT

∂θ

)
Fw

(
∂wT

∂θ

)T

, (64)

where

Fw = E

[(
∂

∂w
ln Pr(Rp|a,w)

)(
∂

∂w
ln Pr(Rp|a,w)

)T
]
. (65)

Note that Pr(Rp|a,w) =
∏Ns−1

i=0

∏Np−1
kp=0 Pr(r

(i,kp)
p |akp , wi) with Pr(r

(i,kp)
p |akp , wi) = fn(r

(i,kp)
p −

akpwi). The each entry of Fw is evaluated as

E

[
∂2

∂wi∂wj

ln Pr(Rp|a,w)

]
= 0,

E

[
∂2

∂w2
i

ln Pr(Rp|a,w)

]
= −Np

σ2
n

.

i, j = 0, 1, . . . , Ns − 1 i ̸= j

(66)

Then, taking (66) into (65), Fw can be evaluated as

Fw =
Np

σ2
n

INs . (67)

Then, we can evaluate ∂wT

∂θ
as

∂wT

∂θ
=



−h1ṗr(Tsam − τ1) . . . −h1ṗr(NsTsam − τ1)

pr(Tsam − τ1) . . . pr(NsTsam − τ1)
... . . . ...

−hLṗr(Tsam − τL) . . . −hLṗr(NsTsam − τL)

pr(Tsam − τL) . . . pr(NsTsam − τL)


, (68)

where ṗr(t) =
∂pr(t)
∂t

. Taking (67) and (68) into (64), we can evaluate 2L× 2L FIM Fθ as

Fθ =
Np

σ2
n



h2
1P̈1,1 h1Ṗ1,1 . . . h1hLP̈1,L h1Ṗ1,L

h1Ṗ1,1 P1,1 . . . hLṖL,1 P1,L

...
... . . . ...

...

h1hLP̈1,L hLṖL,1 . . . h2
LP̈L,L hLṖL,L

h1Ṗ1,L P1,L . . . hLṖL,L PL,L


, (69)
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where

P̈l,l′ =
Ns∑
i=1

ṗr(iTsam − τl)ṗr(iTsam − τl′),

Ṗl,l′ = −
Ns∑
i=1

ṗr(iTsam − τl)pr(iTsam − τl′),

Pl,l′ =
Ns∑
i=1

pr(iTsam − τl)pr(iTsam − τl′).

(70)

Because our goal is to estimate τ1, θ can be divided into two part: θ = [τ1, θ̄], where θ̄ is the

parameter vector without the need to be estimated. Fθ can be rewritten as

Fθ =
Np

σ2
n

[
h2
1P̈1,1Fτ1θ̄

FT
τ1θ̄

Fθ̄

]
, (71)

where Fτ1θ̄ and Fθ̄ contain the Fisher information of θ̄. Fτ1 is the Fisher information of τ1, and

can be calculated by the Schur complement of Fθ̄. That is,

Fτ1 =
Np

σ2
n

(h2
1P̈1,1 − Fτ1θ̄F

−1
θ̄
FT

τ1θ̄
). (72)

Thus, the CRLB of τ1 is evaluated as

CRLBτ1,full = F−1
τ1

=
σ2
n

(1− η)Nph2
1P̈1,1

, (73)

where

η =
Fτ1θ̄F

−1
θ̄
FT

τ1θ̄

h2
1P̈1,1

(74)

represents the influence coefficient of the unknown nuisance parameter vector θ̄. Because Fτ1θ̄F
−1
θ̄
FT

τ1θ̄
≥

0 (Fθ̄ is positive-semidefinite) and Fτ1 ≥ 0, η ∈ [0, 1]. Then, with some manipulations, we can

transform CRLBτ1,full into a familiar form. Because Ts ≫ Tsam, h2
1P̈1,1

σ2
n

can be evaluated as

h2
1P̈1,1

σ2
n

≈ h2
1

Tsamσ2
n

∫ Ts

0

ṗr(t)
2dt

=
8π2µh2

1

N0

∫ +∞

−∞
f 2
∣∣Pr(f)

2
∣∣df

= 8µπ2

∫ +∞
−∞ h2

1

∣∣Pr(f)
2
∣∣df

N0

·
∫ +∞
−∞ f 2 ·

∣∣Pr(f)
2
∣∣df∫ +∞

−∞

∣∣Pr(f)
2
∣∣df

= 8π2β2µSNPp.

(75)

The second step is due to σ2
nTsam = N0BTsam = N0

2µ
. Taking (75) into (73), CRLBτ1,full can be

expressed as

CRLBτ1,full = F−1
τ1

=
1

8π2(1− η)Npβ2µSNRp

. (76)
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Then, CRLBD,full is given by

CRLBD,full =
c2

8π2(1− η)Npβ2µSNRp

. (77)

APPENDIX C

THE PROOF OF LEMMA 1

Because ŵ is a non-Gaussian random vector with unknown distribution, it is hard to analyze

the effect of the channel estimation error on the data recovery. Thus, we hope to obtain the

asymptotic PDF of ŵ under the condition of the large samples (i.e. Np ≫ 1). According to [64],

ŵ is asymptotically distributed according to

ŵ ∼ CN (w,F−1
w ). (78)

The fitting conditions of (78) are the existence of the first order and second order derivatives

of the log-likelihood function and Fisher information being nonzero. Note that Pr(x
(i,kp)
p =

lm|akp , wi) = Fn(cm − akpwi) + Fn(cm−1 − akpwi) with akp being a known symbol. It can be

easily proved that the derivatives of ln Pr(x
(i,kp)
p = lm|akp , wi) can be well defined. Then, we

evaluate the value of Fw as

Fw = E

[(
∂

∂w
ln Pr(Xp|a,w)

)(
∂

∂w
ln Pr(Xp|a,w)

)T
]
. (79)

Note that Pr(Xp|a,w) =
∏Ns−1

i=0

∏Np−1
kp=0 Pr(x

(i,kp)
p |akp , wi), with Pr(x

(i,kp)
p = lmi,kp

|akp , wi) =

Fn(cmi,kp
− akpwi)− Fn(cmi,kp−1 − akpwi). The each entry of Fw is evaluated as

E

[
∂2

∂wi∂wj

ln Pr(Xp|a,w)

]
= 0,

E

[
∂2

∂w2
i

ln Pr(Xp|a,w)

]
= −Npαwi

σ2
n

.

i, j = 0, 1, . . . , Np − 1 i ̸= j

(80)

Finally, taking (80) into (79) and performing a matrix inversion, we have

F−1
w =

σ2
n

Np

· diag{α−1
w0
, α−1

w1
, . . . , α−1

wNs−1
}. (81)

APPENDIX D

THE PROOF OF PROPOSITION 3

In Lemma 1, we obtain the asymptotic PDF of the channel estimation error w̃. Considering

the effect of w̃, the symbol detector (32) can be rewritten as

Clow(x
(kd)
d,col, ŵ) =

Ns−1∑
i=0

(wi + w̃i)
fn(cmi,kd

−1)− fn(cmi,kd
)

Fn(cmi,kd
)− Fn(cmi,kd

−1)
. (82)



35

It is proved in [65] that the LLR can be approximated as a Gaussian random variable in multi-

path channels. Due to the large delay spread of the multi-path channel, the number of samples

Ns is very large. It makes relatively large samples (more than 10) share a similar signal strength

wi. We can use the central limit theorem to approximate the sum of these samples as a Gaussian

random variable, and then LLR can also be approximated to a Gaussian distribution by adding

up such approximate Gaussian random variables. BER can be evaluated as Q(dmin/
√
4σ2

eq),

where dmin = 2E[Clow(x
(kd)
d,col, ŵ)|bkd = 1] and σ2

eq = var[Clow(x
(kd)
d,col, ŵ)|bkd = 1]. At first, we

can evaluate dmin as
dmin = 2E[Clow(x

(kd)
d,col, ŵ)|bkd = 1]

=
2

σ2
n

Ns−1∑
i=0

w2
i

M∑
m=1

(
ϕ( cm

σn
)− ϕ( cm−1

σn
)
)2

Φ( cm−1

σn
)− Φ( cm−1

σn
)

= 4α0 · µSNR,

(83)

where α0 is the quantization efficiency at wi = 0. Then, we can evaluate σ2
eq as

σ2
eq = var[Clow(x

(kd)
d,col, ŵ)|bkd = 1]

=
Ns−1∑
i=0

var[ŵi]E[(x
(i,kd)
d )2|bkd = 1] +

Ns−1∑
i=0

var[x
(i,kd)
d |bkd = 1]E[ŵi]

2.
(84)

Then, (84) can be divided into two terms. The first term can be evaluated as
Ns−1∑
i=0

var[x
(i,kd)
d |bkd = 1]E[ŵi]

2 =
Ns−1∑
i=0

w2
i

 M∑
m=1

l2mf
(i,kd)
m −

(
M∑

m=1

lmf
(i,kd)
m

)2


=
α0

σ2
n

Ns−1∑
i=0

w2
i +

α2
0

σ4
n

Ns−1∑
i=0

w4
i

= 2α0 · µSNR +
4α2

0µ
2Tsam

N2
0

·
∫ +∞

−∞
p4f (t)dt

≈ 2α0 · µSNR. (as Tsam → +∞)

(85)

The second term can be evaluated as
Ns−1∑
i=0

var[ŵi]E[(x
(i,kd)
d )

2
|bkd = 1] =

Ns−1∑
i=0

σ2
n

Npαwi

M∑
m=1

l2mf
(i,kd)
m

=
Ns−1∑
i=0

σ2
n

Npαwi

M∑
m=1

(fn(cm)− fn(cm−1))
2

Fn(cm)− Fn(cm−1)

=
Ns−1∑
i=0

α0

Npαwi

≈ Ns

Np

.

(86)
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Because pulsed signals has the low duty-cycle (i.e. the large percentage of sample points satisfies

wi = 0) and the ISAC system works in a weak signal case,
∑Ns−1

i=0
α0

αwi
≈ Ns can be workable

and substituted in (86). Taking (85) and (86) into (84), (84) can be written as

σ2
eq = 2α0 · µSNR +

Ns

Np

. (87)

Finally, we can evaluate Pe,low as

Pe,low = Q(

√
2α0 · µSNR

1 + Ns

Np
(2α0 · µSNR)−1 ). (88)

We remark that the conclusions can be obtained under the condition of low SNR. When SNR

is high, our approximation is not accurate. However, the inaccuracy of approximation can be

ignored, because the performance of ISAC system is dominated by deep fading channel in which

useful signals are submerged in noise. Therefore, the low SNR case is reasonably assumed.

APPENDIX E

THE PROOF OF PROPOSITION 4

Similar to Appendix B, we first obtain the FIM Fθ by the reparametrization of FIM mentioned

in (64). Fw has been calculated in Appendix C. Taking (68) and (81) into (64), we can evaluate

Fθ as

Fθ =
Np

σ2
n



h2
1Q̈1,1 h1Q̇1,1 . . . h1hLQ̈1,L h1Q̇1,L

h1Q̇1,1 Q1,1 . . . hLQ̇L,1 Q1,L

...
... . . . ...

...

h1hLQ̈1,L hLQ̇L,1 . . . h2
LQ̈L,L hLQ̇L,L

h1Q̇1,L Q1,L . . . hLQ̇L,L QL,L


, (89)

where

Q̈l,l′ =
Ns∑
i=1

αwi
ṗr(iTsam − τl)ṗr(iTsam − τl′),

Q̇l,l′ = −
Ns∑
i=1

αwi
ṗr(iTsam − τl)pr(iTsam − τl′),

Ql,l′ =
Ns∑
i=1

αwi
pr(iTsam − τl)pr(iTsam − τl′).

(90)

Considering θ = [τ1, θ̄], Fθ can be rewritten as

Fθ =
Np

σ2
n

[
h2
1Q̈1,1Fτ1θ̄

FT
τ1θ̄

Fθ̄

]
. (91)
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Then, Fτ1 can be evaluated as

Fτ1 =
Np

σ2
n

(h2
1Q̈1,1 − Fτ1θ̄F

−1
θ̄
FT

τ1θ̄
). (92)

Note that Q̈1,1 ≈
∑Ns

i=1 α0ṗr(iTsam − τl)ṗr(iTsam − τl′) = α0P̈1,1 in the low duty-cycle and weak

signal case. From (75), CRLBτ1,low can be evaluated as

CRLBτ1,low = F−1
τ1

=
σ2
n

(1− η)Npα0h2
1P̈1,1

=
1

8π2(1− η)Npβ2α0µSNRp

.

(93)

Then, CRLBD,low is given by

CRLBD,low =
c2

8π2(1− η)Npβ2α0µSNRp

. (94)

APPENDIX F

THE CORRELATION OF SAMPLE POINTS

At first, we will analyze the correlation function of sample points. In the proposed system,

the received signal is firstly filtered by a ideal low-pass filter (LPF) of bandwidth B whose



38

frequency response can be given by

H(f) =

{
1, −B ≤ f ≤ B

0, the other
. (95)

From (3), n(t) is the filtered additive white Gaussian noise (AWGN). The power spectral density

function of n(t) can be given by

Sn(f) = |H(f)|2 · SAWGN(f) =

{
N0/2, −B ≤ f ≤ B

0, the other
, (96)

where

SAWGN(f) = N0/2 ∀f (97)

is the power spectral density of AWGN. The autocorrelation function of n(t) (denoted as Rn(τ))

can be obtained by the Fourier transform of Sn(f), That is

Rn(τ) =
N0 sin(2πBτ)

2πτ
. (98)

In Fig. 14, it is shown that all the sample points are independent when the Nyquist sampling

rate µ = 2 is adopted. However, when the sampling rate increases, the correlation of sample

points will brings the inevitable impact on the proposed ISAC system.

Considering that the offset of sampling frequency exists or the oversampling rate (i.e. 2 ≤
µ ≤ 4) is performed, the sample point sequence r

(kd)
d,col = [r

(0,kd)
d , r

(1,kd)
d , ..., r

(Ns−1,kd)
d ]T can be

modeled as a m-dependent Gaussian random variable sequence with m = 1 in which only the

adjacent sample points are relevant. The autocovariance matrix cov(r
(kd)
d,col) of the m-dependent

Gaussian random variable sequence when m = 1 can be given by (58). (58) can be valid under

two certain assumptions: (1) all the sample points are only relevant to the nearest sample points.

(2) the covariance of two adjacent samples is a fixed constant. The assumption (1) can be proved

in Fig. 14. When 2 ≤ µ ≤ 4, only the nearest sample points are located in the main lobe, and the

correlation with the other sample points lied in side lobes can be ignored. We assume that the

sampling frequency offset is fixed for the duration of signal processing, and hence the assumption

(2) can hold. The central limit theorem (CLT) of the m-dependent random variable sequence

has been proved in [66], [67].
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