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Abstract

In this paper, we consider the robust beamforming design in a reconfigurable intelligent surface

(RIS)-aided cell-free (CF) system considering the channel state information (CSI) uncertainties of both

the direct channels and cascaded channels at the transmitter with capacity-limited backhaul. We jointly

optimize the precoding at the access points (APs) and the phase shifts at multiple RISs to maximize the

worst-case sum rate of the CF system subject to the constraints of maximum transmit power of APs,

unit-modulus phase shifts, limited backhaul capacity, and bounded CSI errors. By applying a series

of transformations, the non-smoothness and semi-infinite constraints are tackled in a low-complexity

manner that facilitates the design of an alternating optimization (AO)-based iterative algorithm. The

proposed algorithm divides the considered problem into two subproblems. For the RIS phase shifts

optimization subproblem, we exploit the penalty convex-concave procedure (P-CCP) to obtain a sta-

tionary solution and achieve effective initialization. For precoding optimization subproblem, successive

convex approximation (SCA) is adopted with a convergence guarantee to a Karush-Kuhn-Tucker (KKT)

solution. Numerical results demonstrate the effectiveness of the proposed robust beamforming design,

which achieves superior performance with low complexity. Moreover, the importance of RIS phase
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shift optimization for robustness and the advantages of distributed RISs in the CF system are further

highlighted.

Index Terms

Cell-free (CF), reconfigurable intelligent surface (RIS), robust beamforming design, capacity-limited

backhaul.

I. INTRODUCTION

A cell-free (CF) system, that is a user-centric network paradigm, has recently attracted great

attention to satisfy unprecedented growing demands for next-generation wireless networks [2],

[3]. Unlike the conventional architecture of cellular networks, a large number of serving antennas,

known as access points (APs), are distributed over a wide service area to mitigate the negative

influence of shadow fading and to shorten communication distances between transceivers. In

particular, all the APs in a CF system connect to a central processing unit (CPU) via backhaul

links and these APs serve all users simultaneously with dynamic cooperation [4]–[6]. Besides,

by combining the advantages of massive multiple-input multiple-output (MIMO) and network

MIMO, a CF system increases the network capacity substantially [7]. Moreover, CF systems are

free of inter-cell interference, which avoid any potential poor cell-edge user performance since

the cell boundaries are eliminated.

Despite its significant advantages, there are various new technical challenges in CF systems,

such as demanding backhaul capacity, high energy consumption, and huge computational com-

plexity. For CF deployments, in practice, a large amount of data need to be conveyed through

backhaul links to ensure efficient cooperation between all APs [2]. Limited backhaul capacity

is therefore a key bottleneck in practice that restricts the performance of CF systems to a great

extent. In [8]–[10], these works have considered the beamforming design for spectral efficiency

maximization with backhaul capacity constraints for CF systems.

While achieving better performance, the energy consumption in a CF system is also a serious

concern in practice due to the deployment of a large number of APs. Reconfigurable intelligent

surface (RIS) has been a promising supplement to help unlock the potential of CF systems with

reduced energy and cost [11], [12]. Specifically, the RIS is able to adaptively manipulate the

electromagnetic wave propagation environment and to help decrease the overall system energy

consumption by equipping a large number of low-cost passive reflecting elements [13]–[17].
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Indeed, the deployment of RIS in CF systems has been demonstrated as an effective approach

for enhancing the performance of wireless communication in a number of recent works [18]–

[23]. In [18], by replacing some APs with low-cost RISs, the authors proposed a joint precoding

and RIS phase optimization framework for maximizing the system weighted sum rate, leading

to significant network capacity improvement. In [19], the energy efficiency was maximized

by the optimization of hybrid beamforming in a RIS-aided CF system. It was shown that

the system energy efficiency can be improved substantially through the introduction of RIS.

Particularly, the performance gain depends on the number of RISs and the physical size of

each RIS. Further, a decentralized beamforming scheme was proposed in [20] for a RIS-aided

CF system, which asymptotically approaches the performance of a centralized design. In [21],

the authors considered the cooperative beamforming (CBF) besign for a RIS-aided CF system,

where the hybrid beamforming at BSs and passive beamforming at RISs were jointly optimized to

enhance the spectral efficiency. In addition, a two-timescale transmission design was considered

in [22], [23] for RIS-aided CF systems. The considerable performance gains from the adoption of

the CF paradigm and the deployment of RISs were revealed through theoretical and simulation

results. It has been widely expected that RIS-aided CF is a key to exhibit higher spectral and

energy efficiencies in future wireless communication networks for supporting broad emerging

applications.

It is worth noting that the beamforming design for RIS-aided CF systems in most of these

works, e.g., [18]–[21], optimistically assumed the availability of perfect channel state information

(CSI), which is however impossible to acquire in practice due to limited system resources. In fact,

the passive nature of RIS does not facilitate any signal transmission, reception, and processing.

Besides, the huge signaling overhead brought by the large number of reflecting elements makes it

challenging to estimate channels involving RISs [24]. Specifically, without employing any active

elements at RIS for advanced signal processing, the cascaded channel of the AP-RIS link and

the RIS-user link is usually estimated as an alternative [25]–[27]. To reduce the huge signaling

overhead of training pilots, a compressed channel estimation method exploiting the sparsity

in millimeter-wave (mmWave) propagations was proposed in [28]. In addition, the authors in

[29] proposed a novel reflection pattern at the RIS to simplify the beamforming and channel

estimation design, where the reflecting elements of RIS were grouped and group-based phase

shift pattern was optimized. Apart from these typical passive RIS, hybrid reflecting and sensing

RISs (HRISs), which allows the sensing of the impinging signal, is an alternative architecture
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[30]. Thanks to these sensing capability of HRIS, channel estimation for RIS-related channels

is greatly facilitated [31]. Despite these fruitful results, only partial CSI is available in practice

and the presence of channel estimation error at the transmitter is generally inevitable.

Regarding the consideration of partial CSI, there have been a number of studies on robust

precoding design especially for multicell networks, e.g., in [32]–[34]. However, they did not

consider RIS phase shift optimization, which makes it impossible to reap the performance

gain of RIS deployment. Moreover, it has been evidenced in [32]–[34] that these worst-case

optimization with imperfect CSI is fairly involved even for typical optimization variables and

convex constraints, putting aside the additional nonconvex unit-modulus phase shift variables of

RISs. As for RIS-aided centralized wireless networks, robust beamforming design with imperfect

CSI have been studied in [35]–[38]. However, the prior works mostly considered the deployment

of a single AP with the assistance of a single RIS, which can hardly guarantee the performance

for users distributed over a large area. Unlike the centralized architecture, the performance of

the CF system is also greatly limited by the backhaul capacity. Hence, considering the design

with the limited backhaul capacity is of practical significance to improve the performance of

RIS-aided CF systems. As such, in [39], the authors maximized the energy efficiency for a RIS-

aided CF system with the limited backhaul capacity constraints under the assumption of perfect

CSI. However, an effective robust beamforming design for RIS-aided CF systems against CSI

imperfectness with capacity-limited backhaul is still open.

In this paper, we investigate the robust beamforming design for a RIS-aided CF system with

capacity-limited backhaul subject to CSI uncertainties. The bounded CSI error model of both the

direct channel and cascaded channels at the transmitter is adopted. We consider the optimization

of the phase shifts at the distributed RISs and the precoding at APs by maximizing the worst-

case sum rate of the system, subject to the individual transmit power constraint of AP, the

maximum backhaul capacity constraint, and the unit-modulus constraints of phase shifts. The

main contributions of this paper are summarized as follows:

• To tackle the non-smoothness caused by the l0-norm in the backhaul constraints, we exploit

the arctangent function to derive an accurate approximation of the l0-norm. As for the semi-

infinite constraints brought by the CSI errors, we propose a novel transformation scheme

with much lower computational complexity than the traditional S-procedure based scheme

[35], [37]. Specifically, we first derive a closed-form expression to characterize the worst-

case value of the desired signal strength in order to simplify the worst-case term in the
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constraints. On the other hand, as for the interference term, an upper bound is derived

to deal with the infinite number of constraints. Through this efficient transformation, the

complexity is successfully reduced by multiple orders-of-magnitude, further promoting the

deployment of large-scale RIS-aided CF systems.

• Due to the coupled AP precoding and RIS phase shifts, we propose an iterative algorithm

via alternating optimization (AO) based on the derived transformations to maximize the

worst-case sum rate. For the phase shift optimization subproblem involving nonconvex

unit-modulus constraints, we use the penalty convex-concave procedure (P-CCP) with a

stationary solution, which avoids the challenging requirement of finding a feasible initial

point. For the precoding optimization subproblem, we exploit the successive convex approx-

imation (SCA) method to tackle the nonconvexity and obtain a Karush-Kuhn-Tucker (KKT)

solution. Moreover, considering possible violations of the backhaul constraints caused by

the approximation, we further propose an efficient refinement approach to ensure a feasible

solution.

• We verify the effectiveness of the proposed robust beamforming design for the RIS-aided CF

system via numerical results. In particular, compared with the traditional S-procedure based

method, the proposed algorithm achieves rapid convergence with marginal performance

loss. Meanwhile, the optimization for RIS phase shifts not only provides performance gain,

but also improves the robustness against the CSI imperfection. It is found that accurate

estimation of the cascaded channel plays a more critical role than that of the direct channel

in achieving satisfactory performance. A distributed deployment of RISs is more suitable

for CF systems in practice than a large-scale but centralized RIS deployment.

The rest of this paper is organized as follows. In Section II, we discuss the system model of

the RIS-aided CF system and characterize the CSI error model and backhaul capacity model.

Based on these models, we formulate the robust beamforming design problem. In Section III, we

discuss the transformations of the original problem and propose an iterative algorithm to solve

the formulated problem. Finally, numerical results and conclusions are provided in Sections IV

and V, respectively.

Notations: C denotes the complex-valued space. E{·} denotes the expectation operation. (·)T ,

(·)∗, and (·)H denote the transpose, conjugate, and conjugat transpose operations, respectively.

<{·} and ={·} denote the real part and the imaginary part of an input complex number,

respectively. ∠(·) denotes the phase of a complex number or a complex vector. ‖ · ‖0 represents
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Fig. 1. A RIS-aided CF system with N APs, K UEs, and L distributed RISs.

the l0-norm. | · |, ‖ · ‖2, and ‖ · ‖F denote the modulus of a complex number, Euclidean norm,

and Frobenius norm of matrices (or vectors), respectively. Operator diag{·} denotes the diagonal

operation.

II. SYSTEM MODEL

A. Signal Model

In this paper, we consider a RIS-aided cell-free multiple-input single-output (MISO) system,

which is shown in Fig. 1. In this system, K single-antenna users are served by N APs, each

equipped with Nt antennas, with the assistance of L distributed RISs. Each of the RISs is

equipped with M reflecting elements. In a cell-free system, all the APs are connected to a CPU

through capacity-limited backhaul links, which is responsible for the calculation of resource

allocation and scheduling. The RISs are connected to the CPU or APs and their phase shift

configuration are controlled by the CPU or APs. We assume that global CSI is available at

the CPU and centralized optimization is conducted by the CPU, which typically presents upper

bounded performance of practical implementations of RIS-aided CF systems [40].

The channel between the nth AP and the kth user includes a direct link and L reflecting paths.

Let hd,n,k ∈ CNt×1, hr,l,k ∈ CM×1, and Gn,l ∈ CM×Nt , ∀n ∈ {1, · · · , N}, ∀l ∈ {1, · · · , L},

∀k ∈ {1, · · · , K}, denote the direct channel between the nth AP and the kth user, the reflecting
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channel between the lth RIS and the kth user, and the channel between the nth AP and the lth RIS,

respectively. The phase shift control at the lth RIS is denoted by Θl = diag{ejθl,1 , · · · , ejθl,M},

where ejθl,m represents the phase shift induced by the mth antenna element of the lth RIS and

we ignore the amplitude reflection coefficient induced by RIS for simplicity. Due to severe

power loss, we neglect the signals reflected by the RISs for more than once [18]. Also, different

propagation delays due to multiple RISs are also neglected as they are generally much shorter

than the symbol duration [36]. Hence, the equivalent channel between the nth AP and the kth

user is expressed as

hHn,k = hHd,n,k +
L∑
l=1

hHr,l,kΘlGn,l , h
H
d,n,k +

L∑
l=1

vHl Zn,l,k, (1)

where vl , [ejθl,1 , · · · , ejθl,M ]H , and Zn,l,k , diag{hHr,l,k}Gn,l represents the cascaded channel

between the nth BS and the kth user through the lth RIS. For notational simplicity, we further

define v , [vH1 , · · · ,vHL ]H and Zn.k , [ZH
n,1,k, · · · ,ZH

n,L,k]
H . Then, the equivalent channel in

(1) is rewritten as

hHn,k = hHd,n,k + vHZn,k. (2)

Then, we write the received signal at the kth user as

yk =
N∑
n=1

(
hHd,n,k + vHZn,k

)
wn,ksk +

K∑
j 6=k

N∑
n=1

(
hHd,n,k + vHZn,k

)
wn,jsj + nk, (3)

where wn,k ∈ CNt×1 represents the beamforming vector at the nth BS for the kth user, sk ∈ C

is the symbol transmitted to the kth user satisfying E{|sk|2} = 1 and E{sks∗j} = 0, ∀k 6= j, and

nk denotes the additive Gaussian noise with zero mean and variance σ2
k, i.e., nk ∼ CN (0, σ2

k).

The received signal consists of both the desired signal and interference from other users.

According to the system model in (3), the SINR at the kth user can be formulated as follows

SINRk =

∣∣∣∑N
n=1

(
hHd,n,k + vHZn,k

)
wn,k

∣∣∣2∑K
j 6=k

∣∣∣∑N
n=1

(
hHd,n,k + vHZn,k

)
wn,j

∣∣∣2 + σ2
k

, (4)

and thus the achievable rate of the kth user can be evaluated as

Rk = log2(1 + SINRk). (5)
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B. Channel Uncertainty Model

In practice, only partial and imperfect CSI is available at the transmitter. In this paper, we adopt

a bounded model to characterize the CSI imperfection, which is a general model that isolates

the resource allocation design from the specific channel estimation design [37]. Specifically,

the bounded error model is suitable to capture different types of CSI errors, e.g., due to noisy

channel estimation, quantization, limited feedbacks, and other possible factors [34], [36], which

is appealing for large-scale distributed systems such as RIS-aided CF systems. Considering

that the channel consists of the direct link and cascaded channels, there exist different channel

uncertainties. Specifically, the direct link, hd,n,k, and the cascaded channel, Zn,k, are, respectively,

modeled as

hd,n,k = ĥd,n,k + ∆hd,n,k, ‖∆hd,n,k‖2 ≤ εd,n,k,

Zn,k = Ẑn,k + ∆Zn,k, ‖∆Zn,k‖F ≤ εc,n,k, (6)

where ĥd,n,k and Ẑn,k are the estimates of hd,n,k and Zn,k, respectively, and the norms of the

unknown CSI errors ∆hd,n,k and ∆Zn,k are limited in the uncertainty regions of constant radii

εd,n,k and εc,n,k, respectively.

C. Backhaul Capacity

Instead of considering the availability of an infinite-capacity backhaul, we assume that the

backhaul link between the CPU and the nth AP has the maximal capacity denoted by Cn. The

data rate conveyed over the backhaul link between the CPU and the nth AP is modeled as

the sum of the achievable rates of all the users served by the nth AP [9], [10]. Moreover, the

backhaul capacity should be at least ξn ≥ 1 times larger than the data rate transmitted via the

nth backhaul link maximal capacity to ensure a feasible transmission [41]. Hence, we formulate

the backhaul capacity constraints under the worst-case transmission as

K∑
k=1

∥∥‖wn,k‖2
∥∥

0
min

{∆hd,n,k}Nn=1, {∆Zn,k}Nn=1

Rk ≤
Cn
ξn
, n = 1, 2, · · · , N. (7)

Based on this model, the backhaul capacity constraint is satisfied via the design of beamforming

and reducing the number of users being served by each AP. In particular, if the CPU does not

forward the kth user’s data to the nth AP, the nth AP is not able to serve the kth user, i.e.,

‖wn,k‖2 = 0, and the l0 norm of ‖wn,k‖2 equals to 0, otherwise equals to 1.
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D. Problem Formulation

In this paper, we aim to maximize the worst-case sum rate of all the users by jointly optimizing

both the precoding of APs and the phase shift of the RISs and taking into account the impacts

of CSI uncertainties and limited backhaul capacity. The optimization problem is formulated as

(P1) : maximize
W ,v

K∑
k=1

min
{∆hd,n,k}Nn=1, {∆Zn,k}Nn=1

Rk

s.t. C1 :
K∑
k=1

‖wn,k‖2
2 ≤ Pn, n = 1, 2, · · · , N,

C2 : |[v]m|2 = 1, m = 1, 2, · · · ,ML,

C3 :
K∑
k=1

∥∥‖wn,k‖2
∥∥

0
min

{∆hd,n,k}Nn=1, {∆Zn,k}Nn=1

Rk ≤
Cn
ξn
, n = 1, 2, · · · , N,

(8)

where Pn is the maximum power constraint of the nth AP, W , {wn,k} is the set of all

precoding vectors, and [v]m is the mth element of v. The constraint in C2 represents the unit-

modulus constraint of each reflecting RIS element.

It is worth noting that the problem (P1) is neither convex nor smooth and thus challenging

to be solved. Particularly, the precoding matrix, W , and the phase shift vector, v, are coupled

so that it further complicates their designs. In the following sections, we first provide useful

transformations and approximations to simplify the problem at hand that pave the way for

developing a computationally efficient algorithm to solve it.

III. PROPOSED ROBUST BEAMFORMING DESIGN

Due to the intractable form of (P1), we first propose a transformation to recast the problem to

a more tractable and more computationally efficient form. Then, we develop a suboptimal AO-

based algorithm to divide the transformed problem into two subproblems, i.e., the phase shift

optimization subproblem and the precoding optimization subproblem, which are respectively

solved by the P-CCP and SCA technique. In Table I, we mainly summarize the technical details

of the proposed algorithm.
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TABLE I

MAIN TECHNIQUES OF THE PROPOSED ROBUST BEAMFORMING DESIGN

Objective Difficulty Relaxation and transformation Algorithms and features Complexity

(P3)

semi-infinite

constraints and

unit-modulus

constraint

C3 → C̄3 → C̃3,

P-CCP, with a stationary

solution and effective

initialization (Alg. 1)

O(KM4.5L4.5)

C4 → C̄4 → C5−7

C5 → C̄5 → C̃5,

C6 → C̄6,

C2 → C11−12 → C̄11−12

(P4)
Non-smoothness, and

nonconvexity

C3 → C̄3 → C8−10 → Ĉ8−10
SCA, with a KKT point

(Alg. 2)
O(K5.5N4.5N4

t )C5 → C̄5 → Ĉ5

C6 → C̄6

(P5, 6)
Possible infeasible so-

lution
C3 → C13

Solving (P5) and (P6) via

P-CCP and SCA, with a

strictly feasible solution

O(KM4.5L4.5),

O(K5.5N4.5N4
t )

A. Problem Transformation

To begin with, we deal with the nonconvex objective function. By introducing the slack

optimization variables {γk}Kk=1 to replace the worst-case SINR terms, we reformulate the original

problem (P1) as

maximize
W ,v,γ

K∑
k=1

log2(1 + γk)

s.t. C1, C2,

C3 :
K∑
k=1

∥∥‖wn,k‖2
2

∥∥
0

log2(1 + γk) ≤
Cn
ξn
, n = 1, 2, · · · , N,

C4 : min
{∆hd,n,k}Nn=1, {∆Zn,k}Nn=1

SINRk ≥ γk, k = 1, 2, · · · , K. (9)

In addition to the nonconvexity, constraint C3 is nonsmooth due to the l0-norm and constraint

C4 contains semi-infinite constraints due to the CSI uncertainties. Then, we tackle the non-

smoothness and the semi-infinite constraints in the following.

1) l0-norm Approximation: To further make the problem tractable, we focus on the nonsmooth

l0-norm in the backhaul constraint C3. By means of the arctangent smooth function in [42], we

can approximate ‖‖wn,k‖2
2‖0 as∥∥‖wn,k‖2

2

∥∥
0
≈ 2

π
arctan

(
‖wn,k‖2

2

$

)
, f$

(
‖wn,k‖2

2

)
, (10)
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where $ > 0 is a predetermined parameter controlling the accuracy of the approximation. The

smaller $, the more accurate the approximation is. It is worth noting that f$(·) is a smooth

and concave function for nonnegative input arguments [42]. Then, we obtain an alternative to

constraint C3 as follows

C̄3 :
K∑
k=1

f$
(
‖wn,k‖2

2

)
log2(1 + γk) ≤

Cn
ξn
, n = 1, 2, · · · , N, (11)

which is a smooth but nonconvex. Its nonconvexity will be addressed in the next subsection.

2) Infinite Constraints Reformulation: The worst-case SINRs in constraint C4 is intractable

due to the existence of nonconvexity and infinite constraints. It is easy to first give a lower bound

for the worst-case SINR at the kth user as

min
{∆hd,n,k}Nn=1, {∆Zn,k}Nn=1

SINRk ≥
min{∆hd,n,k}Nn=1, {∆Zn,k}Nn=1

∣∣∣∑N
n=1

(
hHd,n,k + vHZn,k

)
wn,k

∣∣∣2
max{∆hd,n,k}Nn=1, {∆Zn,k}Nn=1

∑
j 6=k

∣∣∣∑N
n=1

(
hHd,n,k + vHZn,k

)
wn,j

∣∣∣2 + σ2
k

.

(12)

Due to the nonconvexity of the SINRs, we replace it with this lower bound and thus obtain a

performance lower bound of the original problem. Constraint C4 is replaced by

C̄4 :
min{∆hd,n,k}Nn=1, {∆Zn,k}Nn=1

∣∣∣∑N
n=1

(
hHd,n,k + vHZn,k

)
wn,k

∣∣∣2
max{∆hd,n,k}Nn=1, {∆Zn,k}Nn=1

∑
j 6=k

∣∣∣∑N
n=1

(
hHd,n,k + vHZn,k

)
wn,j

∣∣∣2 + σ2
k

≥ γk, ∀k. (13)

Then we further split constraint C̄4 into the following equivalent constraints

C5 : min
{∆hd,n,k}Nn=1, {∆Zn,k}Nn=1

∣∣∣∣∣
N∑
n=1

(
hHd,n,k + vHZn,k

)
wn,k

∣∣∣∣∣
2

≥ α2
k, k = 1, 2, · · · , K,

C6 : max
{∆hd,n,k}Nn=1, {∆Zn,k}Nn=1

∑
j 6=k

∣∣∣∣∣
N∑
n=1

(
hHd,n,k + vHZn,k

)
wn,j

∣∣∣∣∣
2

+ σ2
k ≤ βk, k = 1, 2, · · · , K,

C7 :
α2
k

βk
≥ γk, k = 1, 2, · · · , K, (14)

where α , [α1, · · · , αK ]T and β , [β1, · · · , βK ]T are slack variables to decompose the fractions.

It is worth noting that the left-hand side (LHS) of C7 is a convex quadratic-over-linear function

and hence C7 is a convex constraint.

Before handling the constraints C5 and C6, we first simplify them through the following

definitions. To be specific, define the effective direct and cascaded channel related to the kth

user as hd,k , [hHd,1,k, · · · ,hHd,N,k]H and Zk , [Z1,k, · · · ,ZN,k], respectively. Their estimates are
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denoted by ĥd,k and Ẑk, respectively. According to (6) and [36], the uncertainties of hd,k and

Zk follow

‖∆hd,k‖2 ≤

√√√√ N∑
n=1

ε2d,n,k , εd,k and ‖∆Zk‖F ≤

√√√√ N∑
n=1

ε2c,n,k , εc,k, (15)

respectively. Now, the constraint in C5 is reformulated as

min
∆hd,k,∆Zk

∣∣(hHd,k + vHZk

)
wk

∣∣2 ≥ α2
k, k = 1, 2, · · · , K, (16)

where wk , [wH
1,k, · · · ,wH

N,k]
H . To further simplify the expression of C6, we define W−k ,

[w1, · · · ,wk−1,wk+1, · · · ,wK ] and the constraint in C6 is rewritten as

max
∆hd,k,∆Zk

∥∥(hHd,k + vHZk

)
W−k

∥∥2

2
≤ βk − σ2

k, k = 1, 2, · · · , K. (17)

Note that the constraints C5 and C6 are both infinite many constraints due to that CSI uncertainties

∆hd,k and ∆Zk are respectively lie in the regions ‖∆hd,k‖2 ≤ εd,k and ‖∆Zk‖F ≤ εc,k. To deal

with the infinitely many constraints, the S-procedure [43] is an effective technique to transform C5

and C6 into tractable forms of linear matrix inequalities (LMIs). For a conventional MIMO system

with not-too-many antenna elements, the S-procedure based method achieves good performance

with relatively low complexity. However, for a large-scale antenna system, especially for the

considered large-size RISs, the scale of LMIs generated by the S-procedure become excessively

large due to the introduction of a growing number of reflecting RIS elements, resulting in

prohibitively high computational complexity. To this end, we alternatively introduce the following

lemma before devising a low-complexity transformation.

Lemma 1: For any choices of W and v, the worst-case value of LHS in constraint C5 is

equivalent to

min
∆hd,k,∆Zk

∣∣(hHd,k + vHZk

)
wk

∣∣ = max
{∣∣∣(ĥHd,k + vHẐk

)
wk

∣∣∣− (εd,k +
√
MLεc,k

)
‖wk‖2, 0

}
,

(18)

under the CSI uncertainty regions, i.e., ‖∆hd,k‖2 ≤ εd,k, and ‖∆Zk‖F ≤ εc,k, for n = 1, 2, · · · , N .

Analogously, the maximal value of LHS in constraint C6 follows

max
∆hd,k,∆Zk

∥∥(hHd,k + vHZk

)
W−k

∥∥
2
≤
∥∥∥(ĥHd,k + vHẐk)W−k

∥∥∥
2

+
(
εd,k +

√
MLεc,k

)
‖W−k‖F .

(19)

Proof: Please refer to Appendix A. �
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We first equivalently rewrite constraint C5 by applying Lemma 1. It follows

C̄5 :
∣∣∣(ĥHd,k + vHẐk

)
wk

∣∣∣− εk‖wk‖2 ≥ αk, αk ≥ 0, k = 1, · · · , K, (20)

where εk , εd,k +
√
MLεc,k and we assume that

∣∣∣(ĥHd,k + vHẐk

)
wk

∣∣∣ ≥ εk‖wk‖2. Although

constraint C̄5 is still nonconvex, we will show later that it is computationally efficient to deal

with compared to solving large-scale LMIs. Similarly, according to Lemma 1, we can also rewrite

constraint C6 as

C̄6 :
∥∥∥(ĥHd,k + vHẐk)W−k

∥∥∥
2

+
(
εd,k +

√
MLεc,k

)
‖W−k‖F ≤

√
βk − σ2

k, k = 1, · · · , K.

(21)

It is worth noting that C̄6 is a convex constraint.

Based on the above discussion, we recast the problem (P1) as

(P2) : maximize
W ,v,γ α,β

K∑
k=1

log2(1 + γk)

s.t. C1, C2, C̄3, C̄5, C̄6, C7. (22)

Note that the problem (P2) is still hard to solve due to some nonconvex constraints and the

coupled variables, W and v. But we are ready to introduce an effective solution based on AO

in the next subsection.

B. AO Algorithm for Worst-case Sum Rate Maximization in (P2)

For the coupled variables, we follow the popular AO framework [44], [45] and optimize the

precoding matrix, W , and phase shifts, v, in an alternating manner.

1) Phase Shift Optimization: Given the optimized precoding matrix, W , we consider the

optimization of phase shifts. The problem with respect to v reduces to

(P3) : maximize
v,γ,α,β

K∑
k=1

log2(1 + γk)

s.t. C2, C̄3, C̄5, C̄6, C7. (23)

Firstly, the nonconvex modulus constraint C2 is a strict equality and is hard to deal with. To

tackle this difficulty, we decompose constraint C2 into two equivalent constraints

C11 : |[v]m|2 ≤ 1, m = 1, 2, · · · ,ML,

C12 : |[v]m|2 ≥ 1, m = 1, 2, · · · ,ML. (24)
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Now, we find that constraint C11 is convex and C12 exhibits a nonconvex form. Moreover,

constraints C̄3 and C̄5 are also nonconvex difference of convex (DC) constraints. To handle these

nonconvex constraints, we apply the P-CCP [46] which is proved to be effective in obtaining a

feasible stationary point of the original problem [47]. Specifically, following the framework of

P-CCP, we linearize the nonconvex parts of these constraints and reformulate them as

C̃3 :
K∑
k=1

f$ (‖wn,k‖2
2)(

1 + γ
(t)
k

)
ln2

(
γk − γ(t)

k

)
≤ Cn

ξn
+ [c1]n, [c1]n ≥ 0, ∀n,

C̃5 :
<
{(
ĥHd,k + v(t),HẐk

)
wkw

H
k

(
ĥd,k + ẐH

k v
)}

∣∣∣(ĥHd,k + v(t),HẐk

)
wk

∣∣∣ − εk‖wk‖2 ≥ αk − [c2]k, [c2]k ≥ 0, ∀k,

C̃11 : |[v]m|2 ≤ 1 + [c3]m, [c3]m ≥ 0, ∀m,

C̃12 : 2<
{[
v(t)
]∗
m

[v]m

}
−
∣∣[v(t)

]
m

∣∣2 ≥ 1− [c3]m, [c3]m ≥ 0, ∀m, (25)

where c1, c2, and c3 are newly introduced slack vectors with nonnegative elements. Moreover,

the penalty terms with respect to c1, c2, and c3 are imposed to the original objective function

to penalize the violation of constraints, i.e.,
∑K

k=1 log2(1 + γk) − ρ(t) (‖c1‖1 + ‖c2‖1 + ‖c3‖1).

In this way, after some basic manipulations, we obtain the transformed problem as

maximize
v,γ,α,β

K∑
k=1

log2(1 + γk)− ρ(t) (‖c1‖1 + ‖c2‖1 + ‖c3‖1)

s.t. C̃3, C̃5, C̄6, C7, C̃11, C̃12, (26)

which is a convex problem and thus can be efficiently solved by existing numerical convex

program solvers, e.g., CVX tools [48]. Moreover, ρ(t) is the penalty parameter in the t-th iteration

for controlling the feasibility of the constraints. There exists an upper limit of ρ(t), i.e., ρ(t) ≤

ρmax, which is used to avoid numerical unstable problems.

In addition, it is worth noting that violation of the constraints is allowed due to the introduction

of slack vectors in the initial stage of this algorithm. It is usually challenging to construct a

feasible initial point due to the backhaul constraints. Therefore, we exploit the P-CCP not only

for nonconvex constraints reformulation but also for effective initialization, which prompts this

algorithm with efficient implementation.

We summarize the P-CCP for solving the problem (P3) in Algorithm 1. It should be pointed

out that for a sufficiently small ϕ1, the violation is small enough such that the nonconvex

constraint is satisfied when the iteration is terminated. Furthermore, the update of the penalty
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Algorithm 1 P-CCP for Phase Shift Optimization
1: Initialize Iteration number t = 0, feasibility tolerances ϕ1 > 0 and ϕ2 > 0, scale factor

µ > 1, and penalty parameter ρ(0). Initialize v(0), and γ(0).

2: Repeat

3: Solve the problem in (26). Output the solutions v(t+1), γ(t+1), and the slack vectors c1,

c2, c3.

4: Update ρ(t+1) = min
{
µρ(t), ρmax

}
.

5: Update t = t+ 1.

6: End if ‖c1‖1 + ‖c2‖1 + ‖c3‖1 ≤ ϕ1 and
∥∥v(t) − v(t−1)

∥∥
2
≤ ϕ2.

parameter follows the philosophy that a smaller ρ(t) is selected to pursue better performance at

the initial stage and the nonconvex constraint is satisfied by increasing ρ(t) later. The algorithm is

still guaranteed to converge to a stationary point [47] even though the objective function obtained

in the iterative process is not strictly monotonic.

2) Precoding Optimization: While fixing the phase shifts, the optimization problem of the

precoding matrix, W , reduces to

(P4) : maximize
W ,γ,α,β

K∑
k=1

log2(1 + γk)

s.t. C1, C̄3, C̄5, C̄6, C7. (27)

Firstly, the constraint in C̄3 involves a bilinear function of W and γ. By exploiting the fact

that 4xy = (x+ y)2− (x− y)2 and introducing two sets of auxiliary variables a = {an,k|∀n, k}

and b = {bk|∀k} [49], we equivalently rewrite C̄3 as

C8 :
K∑
k=1

[
(an,k + bk)

2 − (an,k − bk)2
]
≤ 4Cn

ξn
, an,k, bk ≥ 0, n = 1, 2, · · · , N,

C9 : f$
(
‖wn,k‖2

2

)
≤ an,k, n = 1, 2, · · · , N, k = 1, 2, · · · , K,

C10 : log2(1 + γk) ≤ bk, k = 1, 2, · · · , K. (28)

Due to the existence of concave parts, constraints C8−10 are still nonconvex. To tackle the concave

parts in constraints C̄5, C8−10, we exploit the SCA technique to obtain a suboptimal solution.
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Algorithm 2 SCA for Precoding Optimization
1: Initialize Iteration number t = 0 and feasibility tolerances ε > 0. Initialize W (0), γ(0), a(0),

and b(0) and calculate the initial objective value Obj(0).

2: Repeat

3: Solve problem in (30). Output the solutions W (t+1), γ(t+1), a(t+1), and b(t+1), and the

objective value Obj(t+1).

4: Update t = t+ 1.

5: End if
∣∣∣Obj(t) −Obj(t−1)

∣∣∣/Obj(t) ≤ ε.

Specifically, through the Taylor expansion, the concave parts can be replaced by their first-order

upper bounds and then these nonconvex constraints become

Ĉ5 :
<
{
w

(t)
k ĥkĥ

H
k wk

}
∣∣∣ĥHk w(t)

k

∣∣∣ − εk‖wk‖2 ≥ αk, αk ≥ 0, ∀k,

Ĉ8 :
K∑
k=1

[
(an,k + bk)

2 − 2
(
a

(t)
n,k − b

(t)
k

)
(an,k − bk) +

(
a

(t)
n,k − b

(t)
k

)2
]
≤ 4Cn

ξn
, an,k, bk ≥ 0, ∀n,

Ĉ9 : f$

(
‖w(t)

n,k‖
2
2

)
+∇f$

(
‖w(t)

n,k‖
2
2

)(
‖wn,k‖2

2 − ‖w
(t)
n,k‖

2
2

)
≤ an,k, ∀n, k,

Ĉ10 :
1(

1 + γ
(t)
k

)
ln2

(
γk − γ(t)

k

)
≤ bk, ∀k, (29)

where ĥk , ĥd,k + ẐH
k v and w(t)

k , γ(t)
k , a(t)

n,k, and b(t)
k are the optimal solutions obtained from the

t-th iteration.

Now we are able to formulate the optimization problem in the t-th iteration for solving (P4)

as the following convex problem, i.e.,

maximize
W ,γ,α,β,a, b

K∑
k=1

log2(1 + γk)

s.t. C1, Ĉ5, C̄6, C7, Ĉ8, Ĉ9, Ĉ10. (30)

To summarize, we conclude the SCA algorithm for solving (P4) in Algorithm 2. Moreover, the

feasible initial solutions of W (0), γ(0), a(0), and b(0) are constructed based on the optimization

results of problem (P3). It is worth noting that the proposed SCA-based algorithm is guaranteed

to converge to a KKT solution of the nonconvex problem (P4) [50].
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3) Refinement: It is worth mentioning that the approximation of l0-norm in (10) is not very

accurate in some special values and may lead to infeasible solutions. Specifically, if the nth AP

does not serve the kth user, the obtained ‖wn,k‖2
2 via optimization would not be exactly zero

and is replaced by a sufficiently small value, which may results in the violation of backhaul

constraint at the nth AP. Hence, we perform the refinement similar to that in [49] to guarantee

the feasibility of the solution.

In detail, we fix the user cluster for each AP according to the solutions obtained via AO

iterations, and then perform another AO iteration to ensure a feasible solution. Accordingly,

based on the obtained precoding matrix, we denote the user cluster at the nth AP by Sn =

{k|‖wn,k‖2
2 ≥ µth, ∀k}, where µth is a predetermined small-value threshold. Accordingly, we

reformulate constraint C3 as

C13 :
∑
k∈Sn

log2(1 + γk) ≤
Cn
ξn
, n = 1, 2, · · · , N. (31)

Hence, we reformulate the phase shift optimization subproblem (P3) as

(P5) : maximize
v,γ α,β

K∑
k=1

log2(1 + γk)

s.t. C2, C̄5, C̄6, C7, C13, (32)

which can also be handled with P-CCP. Similarly, the optimization subproblem of precoding

matrix in (P4) is rewritten as

(P6) : maximize
W ,γ α,β

K∑
k=1

log2(1 + γk)

s.t. C1, C̄5, C̄6, C7, C13. (33)

Note that the SCA technique is also useful for solving (P6). By solving (P5) and (P6) alterna-

tively, we arrive at a strictly feasible solution. The description of this algorithm to solve (P2)

is elaborated in Algorithm 3.

C. Complexity Analysis

According to [35], since all the resulting convex problems involving second order cone (SOC)

and affine constraints, a standard interior-point method (IPM) is effective to solve these problems.

Based on the complexity analysis of IPM, the general computational complexity is given by

O

(
√

2I

(
n3 + n2

I∑
i=1

a2
i

))
, (34)
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Algorithm 3 AO-based Algorithm to Solve Problem (P2)

1: Initialize Iteration number i = 0, feasibility tolerances ε. Initialize W (0) and v(0).

2: Repeat

3: Given W (i), solve (P3) via P-CCP and output the solution v(i+1).

4: Given v(i+1), solve (P4) via SCA and output the solution W (i+1) and the objective value

Obj(i+1).

5: Update i = i+ 1.

6: End if
∣∣∣Obj(i−1) −Obj(i−2)

∣∣∣/Obj(i−1) ≤ ε.

7: Refinement:

8: Determine the user cluster for each AP based on W (i).

9: Solve (P5) via P-CCP and (P6) via SCA.

where n is the number of variables, and I is the number of SOC of size ai. We consider a

typical setup where the total number of reflecting elements is much larger than the number of

users, i.e., ML� K. Then in Table II, we summarize the complexity analysis of solving these

problems. From this table, it concludes that the computational complexity of the proposed robust

design is at the order of

O
(
K5.5N4.5N4

t +KM4.5L4.5
)
. (35)

On the other hand, in the S-procedure based method [35], [37], the constraints C̄5 and C̄6 are

LMIs with size (ML + 1)NNt + 1 and K + 2NNt, respectively. Hence, the computational

complexity of the S-procedure based method is at the order of

O
(
K2.5N4.5N4

tM
3L3 +KN3N3

tM
4.5L4.5

)
. (36)

By comparing (35) and (36), it is obvious that the proposed approximation method has a much

lower complexity.

IV. SIMULATION RESULTS

A. Simulation Setup

In this section, we provide simulation results to demonstrate the effectiveness of the proposed

algorithms. We consider a system with the topology as depicted in Fig. 2. Four APs located at

(100, 0), (−100, 0), (0, 100), and (0,−100), respectively, are deployed in this network. Moreover,
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TABLE II

DETAILED COMPLEXITY ANALYSIS OF THE PROPOSED ALGORITHM

Phase shift

Optimization

(P3), (P5)

SOC constraints C̃5 C̄6 C̃11 C̃12 /

Number of SOCs K K ML ML /

Size ML ML 1 1 /

Number of variables ML

Overall complexity O
(
KM4.5L4.5

)
Precoding

Optimization

(P4), (P6)

SOC constraints C1 Ĉ5 C̄6 Ĉ8 Ĉ9

Number of SOCs N K K N NK

Size KNt NNt (K − 1)NNt K Nt

Number of variables KNNt +KN +K

Overall complexity O
(
K5.5N4.5N4

t

)

four RISs are randomly dropped with a uniform distribution in this area of interest, i.e., following

the Poisson point process. The K users are randomly dropped in a circle with radius R. The

heights of APs, RISs, and users are set to 20 m, 5 m, and 1.5 m, respectively. The channels

between each AP and the users are assumed as Rayleigh channels, while the cascaded channels

are modelled as Rician channels, which are given by

H =
√
β

(√
κ

κ+ 1
HLoS +

√
1

κ+ 1
HNLoS

)
, (37)

where β denotes the large-scale path loss, κ ≥ 0 is the Rician factor, HLoS and HNLoS represent

the line-of-sight (LoS) component and non-LoS (NLoS) component, respectively. The columns

of HNLoS follow the complex Gaussian distribution with a zero mean and unit variance. Note

that Rayleigh channels contain only NLoS components. In addition, when the distance between

RIS and user exceeds a certain value, we assume that due to the presence of obstacles, there is

no LoS path. The large-scale path loss β is formulated as β = β0 (d/d0)−α, where d0 = 1 m is

the reference distance, β0 = −30 dB is the path loss at the reference distance, and α is the path-

loss exponent [51]. The path-loss exponents of the Rician channels and Rayleigh channels are

denoted by α1 and α2, respectively. For ease of presentation, we define δd, δc as the uncertainty

level of direct and cascaded channels, respectively, which follow δd = ‖∆hd,k‖2/‖hd,k‖2 and

δc = ‖∆Zk‖F/‖Zk‖F , ∀k. For simplicity, we set the maximum power of all the APs to be

P , and the maximum capacity of all backhauls to be C. Unless otherwise specified, the other

parameters are listed in Table III.
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TABLE III

SIMULATION PARAMETERS

Number of transmit antennas of each AP, Nt 4 Parameter of backhaul capacity margin ξn, ∀n 1.1

Number of reflecting elements of each RIS, M 16 Parameter of approximation accuracy, $ 10−3

Number of users, K 4 SCA and AO convergence tolerance, ε 10−4

Cell radius, R 100 m Thresholds for P-CCP convergence, ϕ1 and ϕ2 10−3

Available bandwidth 10 MHz Threshold for refinement, µth 10−3

Noise power, σ2
k, ∀k −80 dBm Rician factor, κ 3

Maximum transmit power, P 30 dBm Path-loss exponent of direct channels, α1 3.75

Maximum backhaul capacity, C 200 Mbps Path-loss exponent of cascaded channels, α2 2.2
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Fig. 2. The simulated RIS-aided CF system.

We mainly compare our proposed algorithms with the following five baseline schemes.

• Non-robust RIS-CF: the imperfect CSI is treated as perfect for beamforming design to

highlight the potential performance degradation caused by CSI imperfectness.

• RandPhase: we only optimize the precoding vectors and randomly select the phase shifts

at RISs to evaluate the importance of phase shift optimization.

• CF w/o RIS [4]: we consider a traditional CF system without the deployment of RISs.

• SC-CF [5]: we consider the conventional small-cell scheme with the assistance of RISs, in

which each AP serves only serves a specific user.

• Centralized BS [44]: we consider a centralized base station (BS) to serve all the users in
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Fig. 3. Convergence of the proposed algorithm.

the area of interest without any backhaul constraints.

B. Convergence of the Proposed Algorithm

We first consider verifying the convergence of the proposed Algorithm 3 in Fig. 3. Here, we

set that δd = δc = δ, N = 4, Nt = 2, M = 10, and L = 2. As a comparison, we consider

a baseline method where constraints C̄5 and C̄6 are replaced by large-scale LMIs generated

by the S-procedure [35], [37]. Firstly, it is observed that the proposed algorithm is much more

computational efficient and it is order-of-magnitude faster than the S-procedure-based method. On

the other hand, compared with the S-procedure-based method, the worst-case sum rate obtained

by the proposed algorithm is almost the same. For instance, a marginal performance loss of

6% is observed when δ = 0.1. It is verified that the proposed method achieves comparable

performance with the S-procedure-based method even for relatively large uncertainty regions.

Especially for stringent backhaul constraint of C = 100 Mbps, both methods exhibit almost the

same performance. These results further validates that the proposed algorithm achieves excellent

performance with much lower complexity and faster convergence especially in the the RIS-aided

CF system with strict backhaul constraints.

C. Impact of the Maximum Transmit Power of AP

Next, we focus on the impact of the maximum transmit power of each AP in Fig. 4. The

channel uncertainties are setted as δd = 0.02 and δc = 0.04. As shown in Fig. 4, with the increase



22

20 25 30 35 40

Maximum transmit power budget per AP (dBm)

5

10

15

20

25

A
v
e
ra

g
e
 w

o
rs

t-
c
a
s
e
 s

u
m

 r
a
te

 (
b
p
s
/H

z
) Proposed algorithm

Non-robust RIS-CF

RandPhase

CF w/o RIS

SC-CF

Fig. 4. Average worst-case sum rate versus the maximum transmit power of each AP.

of the transmit power of each AP, the performance of each scheme enhances significantly and

the proposed algorithm consistently outperforms all the baseline schemes. Compared with non-

robust design, we find that the performance gap is enlarged with an increasing power budget,

which highlights the importance of robust design against CSI errors. By contrast, it is seen that

performance gap between the proposed algorithm and RandPhase algorithm decreases with the

increases of the transmit power. This is because the backhaul capacity is close to the upper

bound when the transmit power is sufficient large and phase shift optimization can only offer

marginal gain. Moreover, compared with the traditional CF system without RISs, a large number

of independent controllable paths are created through the deployment of RISs in the proposed

scheme and thus bring significant diversity gain. Furthermore, the cooperative APs are much more

robust to dynamic wireless environment than the uncooperative ones in small-cell systems, which

results in better performance. However, under the high transmit power budget, the performance

gap is reduced. Indeed, each AP in small-cell systems only serves a specific user and the backhaul

constraints are more relaxed compared with the RIS-aided CF systems, which result in the greater

performance growth.

D. Impact of Backhaul Capacity

In Fig. 5, we depict the average worst-case sum rate versus the maximum backhaul capacity

with δd = 0.02 and δc = 0.04. For all the considered schemes, with the increase of backhual

capacity, the average worst-case sum rate first increases rapidly and then gradually tends to an
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Fig. 5. Average worst-case sum rate versus the maximum backhaul capacity.

upper bound. With a small backhaul capacity, only a small amount data can be conveyed to all

the APs for effective beamforming or each AP can only serve a subset of users. In contrast, under

a sufficient capacity budget, all the APs are able to participate in the service for each user and

the worst-case sum rate is mainly limited by the transmit power and the CSI errors. Note that due

to the limited backhaul, there is little performance difference between the proposed algorithm

and RandPhase algorithm until the backhaul capacity is sufficient. Indeed, with more stringent

backhaul constraints, each AP can only serve a specific user, in which case there does not exist

any difference between the proposed CF system and small-cell system. Hence, this explains why

the proposed scheme has similar performance to small-cell system when the maximum backhaul

capacity is less than 50 Mbps. In addition, when the backhaul capacity C is less than 80 Mbps,

the centralized BS exhibits a superior performance as an upper bound. On the other hand, the

CF architecture is preferred with adequate backhaul capacity.

E. Impact of CSI Uncertainty

Fig. 6 depicts the average worst-case sum rate versus the uncertainty level of both the direct

and cascaded channels. We set the maximum backhaul capacity is 200 Mbps. It is observed that

when the uncertainty level of the direct channel δd increases from 0 to 0.1, the worst-case sum

rate of the proposed algorithm decreases by only about 20 percent. By contrast, with the decrease

of uncertainty level of the cascade channel δc, the worst-case sum rate decreases sharply. This is

because the number of reflecting elements at RISs is much larger than the number of antennas at



24

0 0.02 0.04 0.06 0.08 0.1
10

12

14

16

18

20

22

A
v
e
ra

g
e
 w

o
rs

t-
c
a
s
e
 s

u
m

 r
a
te

 (
b
p
s
/H

z
) Proposed algorithm

Non-robust RIS-CF

RandPhase

CF w/o RIS

(a)

0 0.02 0.04 0.06 0.08 0.1
10

12

14

16

18

20

22

A
v
e
ra

g
e
 w

o
rs

t-
c
a
s
e
 s

u
m

 r
a
te

 (
b
p
s
/H

z
)

Proposed algorithm

Non-robust RIS-CF

RandPhase

CF w/o RIS

(b)

Fig. 6. (a) Average worst-case sum rate versus the uncertainty level of direct channels; (b) Average worst-case sum rate versus

the uncertainty level of cascaded channels.

the APs. As a result, the CSI error of the cascaded channel dominates the potential diversity gain

and causes a more severe performance loss. The result illustrates that the uncertainty level of the

cascaded channel has a greater impact on the worst-case sum rate than that of the direct channel.

In other words, even if we have accurate estimation of the direct channel, a large uncertainty

level of the cascaded channel can lead to a sharp decline in the sum rate.

Moreover, we find that although RandPhase algorithm has similar performance as the proposed

algorithm when the uncertainty level is low, its performance deteriorates severely as the uncer-

tainty level of CSI error increases. Indeed, the performance of RandPhase algorithm is sensitive
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Fig. 7. Average worst-case sum rate versus the number of reflecting elements.

to the CSI errors of both the direct channel and the cascaded channel, as the degraded CSI

estimation quality magnifies the mismatches in resource allocation. This illustrates the necessity

of RIS phase shift optimization under large CSI errors. Then, compared with the traditional CF

system, it can be seen that when δc increases to 0.09, the deployment of RISs cannot bring any

performance gain and even plays a negative role. This further shows that having accurate CSI

of cascaded channels is the key to unlock the potential of RIS.

F. Number of Reflecting Elements

In Fig. 7, the relationship between the worst-case sum rate and the number of reflection

elements at each RIS is discussed. The uncertainty level of the direct channel δd is fixed as

0.02 in the following simulations because its impact on worst-case sum rate is relatively small.

For the schemes with the deployment of the RISs, the performance increases monotonically as

the number of reflecting elements increases. However, for larger CSI errors, i.e., δc = 0.04,

the performance gain in having more reflecting elements is limited. In fact, the diversity gain

brought by increasing the number of RIS reflecting elements is neutralized by the performance

degradation brought by the larger CSI errors. Therefore, it is not necessarily economical to

employ a large number of reflecting elements in the case of large CSI errors. Moreover, despite

the availability of perfect CSI, i.e., δc = 0, when sufficient reflecting elements have been

deployed, the performance gain introduced by increasing the number of reflecting elements is

still limited. This is because the limited backhaul capacity hinders the growth of the worst-case
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Fig. 8. Average worst-case sum rate versus the number of RISs.

sum rate. Hence, even if we have accurate CSI, increasing the number of reflecting elements

may not introduce a significant improvement in performance under a low backhaul capacity.

G. Number of RISs

In Fig. 8, we investigate the influence brought by the number of RISs when the total number

of reflecting elements is fixed. We can find that when the users are relatively close to each other,

i.e., when the radius R is small, the centrally deployed RIS demonstrates obvious performance

advantages over distributed RISs. By contrast, when the user distribution becomes more and

more dispersed over the service area, adopting distributed RISs can offer a higher worst-case

sum rate. In particular, distributed RISs are likely to create more strong end-to-end LoS paths

when the users are scattered in a larger area [52].

V. CONCLUSION

In this paper, we investigated the robust beamforming design for a RIS-aided CF system with

the consideration of CSI uncertainties at the transmitter and the capacity-limited backhaul. The

precoding at the APs and the phase shifts at the RISs were jointly optimized for maximizing

the worst-case sum rate. To address the nonsmooth constraints and semi-infinite constraints, we

proposed a computational-efficient transformation scheme to pave the way for the development

of an iterative suboptimal algorithm based on AO. The the P-CCP and the SCA method were
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exploited for RIS phase shift and precoding optimization, respectively. Numerical results con-

firmed excellent performance of the proposed algorithm in the presence of channel errors and

further show the importance of the cascaded channel estimation and RIS phase shift optimization,

together with the advantages of decentralized deployment of RISs in CF systems. Additionally,

beamforming designs considering a more realistic cascaded channel model [53] and relying on

less CSI [54] should be of our interest in the future work.

APPENDIX A

PROOF OF LEMMA 1

By applying the triangle inequality and the Cauchy-Schwarz inequality to the LHS of constraint

C5, we obtain ∣∣∣((ĥd,k + ∆hd,k)
H + vH(Ẑk + ∆Zk)

)
wk

∣∣∣
(a)
≥
∣∣∣(ĥHd,k + vHẐk

)
wk

∣∣∣− ∣∣(∆hHd,k + vH∆Zk

)
wk

∣∣
(b)
≥
∣∣∣(ĥHd,k + vHẐk

)
wk

∣∣∣− (εd,k +
∥∥vH∆Zk

∥∥
2

)
‖wk‖2

(c)
≥
∣∣∣(ĥHd,k + vHẐk

)
wk

∣∣∣− (εd,k +
√
MLεc,k

)
‖wk‖2 (38)

where the inequality in (a) is due to the triangle inequality, the inequality in (b) comes from the

Cauchy-Schwarz inequality and ‖∆hd,k‖2 ≤ εd,k, and the inequality in (c) exploits the fact that

‖∆Zk‖2 ≤ εc,k and ‖v‖2 =
√
ML. If

∣∣∣(ĥHd,k + vHẐk

)
wk

∣∣∣ ≥ (εd,k +
√
MLεc,k

)
‖wk‖2, it is

checked that the lower bound in (38) is achieved when

∆hd,k = −εd,kejθ
wk

‖wk‖2

,

∆Zk = −εc,kejθ
vwH

k√
ML‖wk‖2

, (39)

where θ , ∠
((
ĥHd,k + vHẐk

)
wk

)
. When

∣∣∣(ĥHd,k + vHẐk

)
wk

∣∣∣ < (εd,k +
√
MLεc,k

)
‖wk‖2,

we select

∆hd,k = − εd,k

εd,k +
√
MLεc,k

wkw
H
k ĥk

‖wk‖2
2

, n = 1, · · · , N,

∆Zk = − εc,k√
MLεd,k +MLεc,k

vĥHk wkw
H
k

‖wk‖2
2

, n = 1, · · · , N. (40)
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It is easily verified that ‖∆hd,k‖2 ≤ εd,k, ‖∆Zk‖F ≤ εc,k, and
∣∣(hd,k + vHZ

)
wk

∣∣ = 0. Then, we

can conclude that the worst-case value of
∣∣(hd,k + vHZ

)
wk

∣∣ is equal to max
{∣∣∣(ĥHd,k + vHẐk

)
wk

∣∣∣
−
(
εd,k +

√
MLεc,k

)
‖wk‖2, 0

}
.

As for the maximal value of the LHS of constraint C6, we also have∥∥∥((ĥd,k + ∆hd,k)
H + vH(Ẑk + ∆Zk)

)
W−k

∥∥∥
2

≤
∥∥∥(ĥHd,k + vHẐk

)
W−k

∥∥∥
2

+
∥∥(∆hHd,k + vH∆Zk

)
W−k

∥∥
2

(a)
≤
∥∥∥(ĥHd,k + vHẐk

)
W−k

∥∥∥
2

+
(
εd,k +

√
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)
‖W−k‖F , (41)

where the inequality in (a) is similar to that derived in (38). Hence, we complete the proof.
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