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Abstract

Recently, federated learning (FL), which replaces data sharing with model sharing, has emerged as an

efficient and privacy-friendly machine learning (ML) paradigm. One of the main challenges in FL is the huge

communication cost for model aggregation. Many compression/quantization schemes have been proposed to

reduce the communication cost for model aggregation. However, the following question remains unanswered:

What is the fundamental trade-off between the communication cost and the FL convergence performance?

In this paper, we manage to answer this question. Specifically, we first put forth a general framework for

model aggregation performance analysis based on the rate-distortion theory. Under the proposed analysis

framework, we derive an inner bound of the rate-distortion region of model aggregation. We then conduct

an FL convergence analysis to connect the aggregation distortion and the FL convergence performance. We

formulate an aggregation distortion minimization problem to improve the FL convergence performance. Two

algorithms are developed to solve the above problem. Numerical results on aggregation distortion, convergence

performance, and communication cost demonstrate that the baseline model aggregation schemes still have great

potential for further improvement.

Index Terms

Federated learning, model aggregation, rate-distortion theory, distributed source coding, Berger-Tung cod-

ing, majorization-minimization.

I. INTRODUCTION

Currently, there are nearly 6.3 billion smartphones [1] and more than 11.3 billion connected Internet

of Things (IoT) devices [2] worldwide, which constantly collect/generate a wealth of data, such as

videos, images, and measurements. In the conventional cloud-centric machine learning (ML) paradigm,

all the training data is uploaded to a cloud server to produce effective inference models [3]. However,
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version may no longer be accessible.
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this centralized paradigm becomes unsatisfactory due to (i) the increasing sensitivity to data privacy and

(ii) the increasing burden on the backbone network caused by the ever-growing data to be transmitted

[4]. A decentralized ML paradigm called federated learning (FL) has been proposed to tackle these

challenges. In FL, a number of user devices collaboratively train a global machine learning model with

the help of a parameter server (PS). In each training iteration, the PS first broadcasts the parameters of

the global model to some selected devices. Each selected device then computes a local update, e.g., a

gradient vector based on its local dataset, and then transmit it to the PS. Subsequently, the PS aggregates

the locally computed updates to acquire a global update. Finally, FL updates the parameters of the

global model and proceeds to the next iteration. In this way, FL avoids direct data transmission and

only requires exchanges of model parameters/updates, thereby reducing the overall communication cost

without sacrificing data privacy. However, in each iteration, the selected user devices need to transmit

their local updates to the PS, still entailing a significant volume of uplink transmission. Currently,

the uplink communication cost appears to be a critical bottleneck in the employment of FL systems,

especially for FL over wireless networks [5].

An interesting line of research to reduce the communication cost for FL over wireless networks

is introducing the over-the-air computation (AirComp) technique into the FL uplink, referred to as

over-the-air FL. In over-the-air FL, all selected user devices concurrently transmit their local updates

using the same radio resource. By utilizing the signal superposition property of the multiple-access

channel, AirComp has been shown to significantly relieve the communication bottleneck of FL [6],

[7]. Nevertheless, over-the-air FL has some intractable deficiencies: (i) not directly deployable on

current digital communication systems due to analog modulation; (ii) vulnerable to the stragglers [7];

(iii) difficult to combat the Byzantine attack effectively due to the uncoded nature [8]. Therefore,

orthogonal FL uplink, where user devices are allocated with orthogonal resource units, is considered

a more mature and practical setting by far.

There is also a growing body of research aiming to design communication-efficient FL systems with

orthogonal uplink. For example, the authors of [9] proposed to select only part of the user devices to

transmit their local updates. To save uplink communication resource, the selection is based on certain

criteria such as link quality [10]. Some works also proposed to exploit the sparsity in local gradients

[11]–[13]. It was assumed that a portion of elements in local updates have very small magnitudes.

These elements are considered negligible to the global model training, hence not being transmitted

to the PS. The above schemes discard either a portion of local updates or a portion of elements in

local updates. Such a coarse-grained discarding strategy could easily leave out exploitable information,



3

potentially leading to a deterioration of the learning performance.

Another popular approach to reduce the FL uplink cost is to adopt techniques of compression

and/or quantization [14]–[18]. For example, the authors in [14] suggested to only transmit the signs

of elements in the local updates, so as to reduce the payload of the uplink transmission. In [15]–[17],

various random scalar quantization methods are used to compress the local updates. The authors in

[18] further proposed a lattice-based vector quantization scheme.

In the above works for orthogonal FL uplink, the local updates from different user devices are

treated as samples from independent information sources. The local updates are separately transmitted

to the PS via orthogonal channels. Based on the received signals, the PS first decodes all the local

updates independently, and then aggregates them to generate the global model update. However, it was

observed that the local updates are not independent in practical machine learning tasks but possess

a significant correlation among user devices [19], [20]. This correlation, if properly utilized, can

potentially reduce a great amount of communication cost for model aggregation. Furthermore, the PS

does not have to estimate all the local updates but only the global update, which is a function of the

local updates. Naturally, we have the following question: What is the performance limit of federated

learning, especially when the adopted model aggregation scheme takes full advantage of the above

two properties?

In this paper, we manage to answer the above question. The main contributions are listed as follows:

• We put forth a general information-theoretic analysis framework for the analysis of the model

aggregation performance. In this analysis framework, the encoding, transmission, and aggregation

(decoding) of the local updates are unified as a lossy distributed source coding (DSC) problem

[21]–[25].

• Under the proposed analysis framework, we derive an inner bound of the rate-distortion region

of model aggregation by giving an achievability scheme.

• We conduct an FL convergence analysis to characterize the relationship between the FL conver-

gence performance and the aggregate distortion. We further develop two algorithms (for general

and symmetric FL systems, respectively) to search for the point with minimum aggregation

distortion in our proposed inner region.

Numerical results are provided to evaluate the performance gap between baseline model aggregation

schemes and our theoretical bound in terms of aggregation distortion, convergence performance, and

communication cost. The results demonstrate that the baseline model aggregation schemes still have

great potential for further improvement in the considered scenarios.
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The remainder of this paper is organized as follows. In Section II, we introduce the FL system

and formulate a framework for aggregation performance analysis. In Section III, we derive an inner

bound of the rate-distortion region of model aggregation. Sections IV and V develop two algorithms

to minimize the aggregation distortion for general and symmetric FL systems, respectively. In Section

VI, we present the numerical results. Finally, conclusions are drawn in Section VII.

Notation : Scalars, vectors, and matrices are denoted by regular letters (lower-case or upper-case),

bold lower-case letters and bold upper-case letters, respectively. The transpose of a vector a or a

matrix A is denoted by a⊤ and A⊤, respectively. 0, 1 denote all-zero or all-one vectors or matrices,

respectively, and I denotes the identity matrix. We use [a]m to represent the m-th element in vector a.

We use R
d, Z+ to represent the d-dimensional Euclidean space and the positive integer set, respectively.

We also use [n] as the abbreviation of {1, 2, · · · , n}. Given a set S ⊆ [d], Sc denotes the set [d]\S.

Given a vector a∈R
d and a nonempty set S⊆ [d], aS denotes the |S|-dimensional vector obtained by

removing all the i-th elements of a with i∈Sc. Similarly, given a matrix A∈R
d1×d2 and nonempty

sets S1 ⊆ [d1], S2 ⊆ [d2], A
S1,S2 denotes the |S1|×|S2| matrix obtained by removing all the (i, j)-th

elements of A with i∈ [d1]\S1 or j∈ [d2]\S2. When S1=S2=S, we will simplify the notation AS1,S2

as AS . We use N (µ, σ2) to denote normal distribution with mean µ and variance σ2, and N (µ,Σ)

to denote the multivariate normal distribution with mean vector µ and covariance matrix Σ.

Let f be a scalar-value function with n scalar inputs. We say that f is applied element-wise on n

vectors a1, · · · , an ∈ R
d, if f outputs a vector b = f(a1, · · · , an) ∈ R

d with each element given by

[b]i = f([a1]i, · · · , [am]i), ∀i ∈ [d].

II. SYSTEM MODEL AND AGGREGATION PERFORMANCE ANALYSIS FRAMEWORK

A. Federated Learning System

We consider a federated learning (FL) system comprising a central parameter server (PS) and M

distributed user devices. The objective of the FL system is to cooperatively train a global machine

learning model (parameterized by vector θ ∈ R
N ) based on the data collected by the user devices.

Specifically, in FL, each device m is only allowed to access its local dataset Dm = {ζm,k}Km

k=1, where

Km is the sample size and ζm,k is the k-th training sample collected by device m1. For each device

m, we define a local empirical loss function with respect to the global model parameter θ, given by

Lm(θ;Dm) ,
1

Km

Km∑

k=1

l(θ; ζm,k), (1)

1For example, in supervised learning each training sample ζm,k consists of a feature vector and a corresponding label.
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where l(θ; ζm,k) denotes the sample-wise loss function. FL aims to minimize the global empirical loss

function, i.e.,

min
θ

L(θ) ,
1

K

M∑

m=1

KmLm(θ;Dm), (2)

where K =
∑M

m=1Km denotes the total sample size.

FL involves multiple rounds of iteration for convergence. At the t-th iteration round, FL performs

the following four steps:

(i) Model broadcast: The PS broadcasts the current global model parameter θ(t) to all the devices.

(ii) Local update computation: Each device m computes a local update g
(t)
m ∈ R

N on the basis of the

received θ(t) and the local dataset Dm.

(iii) Model Aggregation:

– Encoding: Each device m properly encodes its local update g
(t)
m into codewords.

– Transmission: Each device m transmits its messages to the PS via a bit-constrained error-free

link [15], [18], [26].2

– Decoding: After the PS receives all the codewords, it performs joint decoding to obtain ĝ(t),

which is an estimation of global update g(t).3 The global update g(t) is a function of the local

updates, denoted by

g(t) , κ
(
g
(t)
1 , . . . , g

(t)
M

)
, (3)

where κ : R× · · · × R︸ ︷︷ ︸
M

7→ R is the aggregation target function and is applied element-wise

to the M local updates in (3).4

(iv) Global model update: The PS updates the global model by ĝ(t) with a learning rate η, i.e.,

θ(t+1) = θ(t) − ηĝ(t).

B. Analysis Framework for Model Aggregation Performance

In this subsection, we propose an analysis framework for model aggregation performance from a

rate-distortion theory perspective [21]–[25]. We consider the M N-dimensional local updates at the

2In this paper, we do not restrict the communication links to be wired or wireless, but only requires them to be independent/orthogonal

without interfering with each other.

3Since the transmission links from the user devices to the PS are bit-constrained and thus can not transmit continuous-valued local

updates losslessly, the PS ends up with only an estimation of g(t).

4A more general way is to define the aggregation target function as a vectors-to-vector mapping. However, this broader definition

might cause unnecessary difficulty in understanding. Thus, we use an element-wise function here.
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t-th round to be M vectors randomly generated from a joint distribution P(t)
N , i.e.,

(
g
(t)
1 , g

(t)
2 , · · · , g(t)

M

)
∼ P(t)

N . (4)

We emphasize that the elements in each g
(t)
m are not necessarily independently or identically distributed.

In the following, we focus on an arbitrary iteration round t and omit the superscript (t) for brevity

whenever causing no ambiguity. We further add a superscript of N to clarify the model dimension,

i.e., denoting the local update by gN
m, ∀m ∈ [M ].

We now introduce the performance analysis framework for the model aggregation step. First, each

user device employs an encoder

fN
m : RN 7→ [BN

m ], ∀m ∈ [M ], (5)

that maps its local update to a positive integer bNm = fN
m (gN

m) and transmits bNm to the PS. Upon

receiving the codewords {bNm}Mm=1, the PS employs a joint decoder

ψN : [BN
1 ]× · · · × [BN

M ] 7→ R
N , (6)

to generate ĝN = ψN(bN1 , · · · , bNm), which is an estimation of the global update gN = κ(gN
1 , . . . , g

N
M).

Let d : RN ×R
N 7→ R+ be a distortion measure between two N-dimensional vectors. Then, we have

the following definition:

Definition 1. A rate-distortion tuple (R1, . . . , RM , D) is said to be achievable if for any ǫ > 0 and

any sufficiently large N , there exists M encoders {fN
m }Mm=1 and a joint decoder ψN such that rate

1

N
log
(
BN

m

)
≤ Rm + ǫ, ∀m ∈ [M ], and expected aggregation distortion E[d(gN , ĝN)] ≤ D + ǫ.

Loosely speaking, if a rate-distortion tuple (R1, · · · , RM , D) is proved to be achievable, then, as the

model dimension N increases, the expected aggregation distortion E[d(gN , ĝN)] can be less than and

arbitrarily close to D with the rate log
(
BN

m

)
/N less than and arbitrarily close to Rm, ∀m ∈ [M ]. We

also call Rm and D rate and distortion, respectively. The rate-distortion region of model aggregation

is defined as the set of all achievable rate-distortion tuples, denoted by RD⋆. In the next section,

we analyze the model aggregation performance by characterizing an inner bound of RD⋆ under the

quadratic distortion measure and the linear aggregation target function.

Remark 1. Most of the model aggregation schemes in mainstream FL research [14]–[18] are covered

by our analysis framework in Fig. 1.

Remark 2. Our analysis framework for model aggregation performance is similar to the framework

of the well-studied distributed function computation problem (please refer to [23], [24], [27]–[29]
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Fig. 1: Conventional model aggregation schemes for orthogonal FL uplink.

and references therein for further details). The main difference between them is that our framework

allows the existence of correlations among the elements of the local updates, which better matches

the application of FL (where the elements of the local updates are generally correlated [20], [30]).

More specifically, we essentially model the FL model aggregation problem as a lossy compression

problem for sources with memory rather than for memoryless sources considered in the distributed

function computation problem. In the next section, to give a constructive analysis, we introduce some

randomness (in the random rotation step) to break these element-wise correlations.

III. AN INNER REGION OF RD⋆
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Pre-processor
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Pre-processor
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1
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N

M
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b

Fig. 2: The achievability scheme characterizing the inner region RDin.

In this section, we give an achievability scheme, which characterizes an inner region of RD⋆, denoted

by RDin. Following the common practice [18]–[20], [31], we consider a quadratic distortion measure

d(gN , ĝN) = ‖gN − ĝN‖2/N and a linear aggregation target function κ(gN
1 , . . . , g

N
M) =

∑M
m=1 cmg

N
m.
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Fig. 2 summarizes the achievability scheme. First, the local update of each device m is fed into

the m-th modified Berger-Tung encoder after pre-processing, and then each encoder encodes the

preprocessed data into a codeword with rate Rm. The modified Berger-Tung decoder performs joint

decoding after receiving all the codewords, whose output is post-processed to obtain an estimation of

the global update. In the remainder of this section, We first introduce the specific operations performed

by each module in Fig. 2 and then characterize RDin.

A. Data Processing

1) Data pre-processing: The data pre-processing procedure consists of two steps: mean removal

and random rotation. The main objective is to process the local updates so they can be modelled as

samples from memoryless correlated Gaussian sources asymptotically.

In the mean removal step, Each device m computes the average of the elements of gN
m as ḡm =

∑N
n=1[g

N
m]n/N , which are then uploaded to the PS.5 Subsequently, each device m computes the mean-

removed vector

g̃N
m , gN

m − ḡm1N . (7)

In the random rotation step, the PS and all the devices generate a shared Haar distributed6 matrix

AN ∈ R
N×N using public randomness. Each device m computes

xN
m = AN g̃N

m ∈ R
N , ∀m ∈ [M ], (8)

then feeds xN
m into the modified Berger-Tung encoder.

In the following, we show that, under certain assumptions on {gN
m}Mm=1, the resulting {xN

m}Mm=1 can

be asymptotically approximated by correlated Gaussian vectors in the sense of the quadratic distortion.

We state the assumptions and the corresponding consequences as follows.

Assumption 1. (Correlation model) The M sequences of the mean-removed vectors {g̃N
m ∈ R

N}N∈Z+
,

m ∈ [M ], can be modeled as g̃N
m =

∑K
k=1 em,kp

N
k , where each em,k ∈ R is a constant coefficient, and

the base vectors {pN
k ∈ R

N}N∈Z+
, k ∈ [K], are K sequences of random vectors satisfying

(i) {pN
k }Kk=1 are mutually independent, ∀N ∈ Z+;

(ii) {pN
k }Kk=2 are isotropically distributed7, ∀N ∈ Z+;

5We assume that the cost of transmitting the scalars {ḡm}Mm=1 is negligible relative to that of transmitting the local updates.

6That is, uniformly distributed on the set of orthogonal matrices.

7A random vector x is said to be isotropically distributed if, for any orthogonal matrix A, Ax and x have the same distribution.
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(iii) limN→∞ ‖pN
k ‖22/N

a.s.
= τ 2k for some τk > 0, ∀k ∈ [K];

Assumption 1 models the mean-removed local updates {g̃N
m}Mm=1 as linear combinations of a group

of random vectors {pN
k }Kk=1. The correlation between local updates comes from their shared base

vectors. We note that one of the base vectors, pN
1 , is allowed to be non-isotropic, and hence the

mean-removed local updates {g̃N
m}Mm=1 can possess a certain directional preference.

Remark 3. We give the following justifications for Assumption 1:

1) Recall that the local empirical loss function is written as a linear combination of a group of

mutually independent components (i.e., the sample-wise loss functions), where the randomness

of these components comes from the randomness of the sample generation process. This linear

combination property tends to be inherited in model updates, for example, when the model updates

are gradients of the local empirical loss functions. This justifies our linear combination assumption

to some extent.

2) In Assumption 1, all local updates are assumed to be weighted sums of the non-isotropic random

vector pN
1 and some isotropic noise vectors {pN

k }Kk=2. That is, if a local update possesses a

certain directional preference, this directional preference come only from the base vector pN
1 .

This is consistent with a property of federated learning: every device hopes to update model

parameters in the direction of the global update.

3) Assumption 1 allows the noises of local updates (i.e., {∑K
k=2 em,kp

N
k }Mm=1) to be correlated by

sharing common base vectors. In practice, the correlated noises are originated from common

sources of randomness during the data collection/measurement.

4) The well-known Gaussian Chief Executive Officer (CEO) model [32], which is often used to model

correlations in distributed systems8, is included as a special case of Assumption 1. In Gaussian

CEO, local updates are modeled as g̃N
m = pN

1 +pN
m+1, ∀m ∈ [M ], where {pN

1 }∪{pN
m+1}Mm=1 are

mutually independent random vectors with independent Gaussian elements. In our setting, pN
1

can be any random vector satisfying Assumptions 1-(i) and 1-(iii), which covers a much broader

class of distributions than independent Gaussian. In particular, the elements of the local updates

are generally correlated [20], [30]. Our model allows for such correlations, in contrast to the

Gaussian CEO model.

8The CEO model has been used to model the correlation between local updates in [31].
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Proposition 1. Consider a sequence of Haar distributed matrices {AN ∈ R
N×N}N∈Z+

and M

sequences of mean-removed vectors {g̃N
m ∈ R

N}N∈Z+
, m ∈ [M ]. Assume that Assumption 1 holds,

and denote σ2
m1,m2

= limn→∞ E[(g̃N
m1
)⊤g̃N

m2
]/N , ∀m1, m2 ∈ [M ]. Then, there exist M sequences of

random vectors {x̃N
m ∈ R

N}N∈Z+
, ∀m ∈ [M ], such that

(i) x̃N
m ∼ N

(
0, σ2

m,mIN
)
, ∀m ∈ [M ], N ∈ Z+;

(ii) [x̃N
1 ]n, [x̃

N
2 ]n, . . . , [x̃

N
M ]n are jointly Gaussian with E

[
[x̃N

m1
]n · [x̃N

m2
]n
]
= σ2

m1,m2
, ∀m1, m2 ∈ [M ],

n ∈ [N ], N ∈ Z+;

(iii) limN→∞

∥∥AN g̃N
m − x̃N

m

∥∥2
2
/N

a.s.
= 0, ∀m ∈ [M ].

Proof. See Appendix A.

By Proposition 1, under Assumption 1, for the quadratic distortion measure, the elements of each

xN
m in (8) can be asymptotically treated as i.i.d. zero-mean Gaussian variables, and {[xN

m]n}Mm=1 can be

asymptotically treated as joint Gaussian variables with covariance matrix ΣX satisfying [ΣX ]m1,m2
=

limN→∞E[(g̃N
m1
)⊤g̃N

m2
]/N , ∀m1, m2 ∈ [M ]. This allows us to consider {[xN

1 ]n, . . . , [x
N
M ]n}Nn=1 as N

samples generated from an M-component memoryless Gaussian source (X1, . . . , XM) ∼ N (0,ΣX),
9

and to apply the modified Berger-Tung coding to compress {xN
m}Mm=1, as detailed in the next subsection.

2) Data post-processing: Given the output x̂N of the modified Berger-Tung decoder (which is an

estimate of xN ,
∑M

m=1 cmx
N
m, as will be detailed in the next subsection), we perform the inverse

process of data pre-processing to obtain an estimation of the global update gN =
∑M

m=1 cmg
N
m, i.e.,

the PS computes

ĝN = (AN)⊤x̂N +

(
M∑

m=1

cmḡm

)
· 1N . (9)

B. Modified Berger-Tung Coding

Under Assumption 1, sequence {[xN
1 ]n, . . . , [x

N
M ]n}Nn=1 can be asymptotically treated as N samples

from an M-component memoryless Gaussian source (X1, . . . , XM) ∼ N (0,ΣX). Since the local

updates are correlated [19], [20], [31], and only a function of the local updates needs to be recovered,

we modify Berger-Tung coding to compress {xN
m}Mm=1.

Berger-Tung coding, as the achievability scheme of the Berger-Tung inner bound [33], [34], is a well-

known random coding technique that non-cooperatively compresses multiple correlated information

sources. Loosely speaking, in Berger-Tung coding, M correlated sources (X1, · · · , XM) are encoded

9Hereinafter, we also occasionally refer to the components of the M -component source as M sources for convenience.
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into codewords by M separate encoders; based on the codewords, a joint decoder estimates all the

sources {Xm}Mm=1; the estimation performance is evaluated using M preset distortion measures.

However, in our application, the decoder only aims to estimate a function Y ,
∑M

m=1 cmXm of

the sources with quadratic distortion E[(Y − Ŷ )2], where Ŷ denotes the output of the decoder. To

achieve this, we modify Berger-Tung coding by changing the constraints of codebook design to fit our

application, i.e., changing the constraints from {E[(Xm − X̂m)
2] ≤ DBTC,m}Mm=1 to E[(Y − Ŷ )2] ≤

DMBTC.10 Following the achievability proof of the Berger-Tung inner bound10, any rate-distortion tuple

in the following region can be achieved by our modified Berger-Tung coding (MBTC) scheme:

RDMBTC =

{
(RMBTC,1, . . . , RMBTC,M , DMBTC) : ∃ Ŷ : RM → R and (U1, · · · , UM), s.t.

(i) (x/Xm
,u/Um

) ↔ Xm ↔ Um, ∀m ∈ [M ];

(ii)
∑

m∈S

RMBTC,m ≥ I
(
xS ;uS | uSc)

, ∀S ⊂ [M ], S 6= Ø;

(iii)
∑

m∈[M ]

RMBTC,m ≥ I (x;u) ; (iv) DMBTC ≥ E[(Y − Ŷ (u))2]

}
,

(10)

where x , [X1, . . . , XM ]⊤, u , [U1, . . . , UM ]⊤ denotes the auxiliary random vector, x/Xm
denotes

the random vector obtained by deleting Xm from x, I (x; u) denotes the mutual information between

x and u, I
(
xS ; uS | uSc

)
denotes the conditional mutual information between xS and uS given uSc

,

and the notation (x/Xm
,u/Um

) ↔ Xm ↔ Um indicates that (x/Xm
,u/Um

), Xm and Um form a Markov

chain in this order.

C. The Inner Region RDin

Subsections III-A and III-B have introduced the achievability scheme in Fig. 2. In this subsection,

we derive the inner region RDin, a set of rate-distortion tuples that can be achieved using our proposed

scheme.

Note that the expected aggregation distortion under our achievability scheme is given by

E[d(gN , ĝN)] =
1

N
E



∥∥∥∥∥

M∑

m=1

cmg
N
m − ĝN

∥∥∥∥∥

2

 (a)

=
1

N
E



∥∥∥∥∥

M∑

m=1

cmx
N
m − x̂N

∥∥∥∥∥

2

 , (11)

where the equality (a) follows from the orthogonality of matrix AN . The right-hand side of (11)

happens to be the expected distortion of MBTC. Furthermore, from Fig. 2, the coding rates of MBTC

10Please refer to [25, Chapter 12] for a detailed description.
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are exactly the rates of our achievability scheme. Together, we make the following key observation:

any rate-distortion tuple in RDMBTC is numerically identical to a rate-distortion tuple in RDin and vice

versa. This yields RDin, given by the following proposition.

Proposition 2. Under Assumption 1, considering distortion measure d(a,b) = ‖a − b‖2/N with

a,b ∈ R
N and aggregation target function κ(a1, . . . , aM) =

∑M
m=1 cmam, an inner region of RD⋆,

RDin, is given by

RDin =

{
(R1, . . . , RM , D) : ∃Ŷ : RM → R and (U1, . . . , UM), s.t.

(i) (x/Xm
,u/Um

) ↔ Xm ↔ Um, ∀m ∈ [M ], x ∼ N (0,ΣX);

(ii)
∑

m∈S

Rm ≥ I
(
xS ; uS | uSc)

, ∀S ⊂ [M ], S 6= Ø;

(iii)
∑

m∈[M ]

Rm ≥ I (x; u) ; (iv) D ≥ E

[
(Y − Ŷ (u))2

]}
,

(12)

where Ŷ (·) is termed the reconstruction function, x , [X1, . . . , XM ]⊤, u , [U1, . . . , UM ]⊤, Y ,
∑M

m=1 cmXm, and ΣX ∈R
M×M satisfies [ΣX ]m1,m2

=limN→∞E[(g̃N
m1

)⊤g̃N
m2
]/N , ∀m1, m2 ∈ [M ].

IV. AGGREGATION DISTORTION MINIMIZATION

In this section, we develop an algorithm to minimize the aggregation distortion. Specifically, we

first conduct a convergence analysis and show that the optimization of the convergence rate can be

transformed into the problem of aggregation distortion minimization. Subsequently, we put forth an

algorithm to solve the distortion minimization problem.

A. FL Convergence Analysis

We now conduct a convergence analysis to establish the relationship between the FL convergence rate

and the aggregation distortion, i.e., the mean square error of the estimated global update. To this end,

we set the local update to the model gradient with respect to the local dataset, i.e., g
(t)
m = ∇Lm(θ

(t)),

∀m ∈ [M ], and make the following standard assumptions [13], [35]:

Assumption 2. The global loss function L is strongly convex with parameter ω, and has Lipschitz

gradient with parameter Ω, i.e., for any a,b ∈ R
N ,

L(b) ≥ L(a) + (b− a)⊤ ∇L(a) + ω ‖b− a‖2 /2 (13)

‖∇L(b)−∇L(a)‖ ≤ Ω‖b− a‖. (14)
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Proposition 3 gives a characterization of the FL convergence performance.

Proposition 3. Under Assumption 2, consider g
(t)
m = ∇Lm(θ

(t)), ∀m ∈ [M ], and set the learning rate

η = 1/Ω. After T communication rounds,

L(θ(T+1))− L(θ⋆) ≤
(
1− ω

Ω

)T+1 [
L(θ(0))− L(θ⋆)

]
+
N

2Ω

T∑

t=0

(
1− ω

Ω

)T−t

D(t), (15)

where D(t) denotes the aggregation distortion at the t-th round.

Proof. See Appendix B.

B. Problem Formulation

The upper bound in Proposition 3 is a monotonically increasing function of each D(t), implying

that we can potentially improve the FL convergence performance by separately minimizing each D(t).

Recall that any rate-distortion tuple in RDin is achievable. Thus the problem reduces to finding a rate-

distortion tuple in RDin that minimizes the distortion D(t). However, there are two pending issues:

(i) RDin is intractable due to the arbitrariness of the choice of (U1, . . . , UM) and Ŷ (·);
(ii) The rates in the rate-distortion tuples are chosen to satisfy the bit constraints of the FL uplinks.

In what follows, we first give a tractable inner region of RDin in Subsection IV-B1, and then formulate

an aggregation distortion minimization problem with link budget constraints in Subsection IV-B2.

1) A tractable inner region of RDin: We give a tractable inner region of RDin by picking M

parameterized auxiliary random variables and a specific reconstruction function for RDin. For Gaussian

equivalent sources {Xm}Mm=1, setting the auxiliary variables to be Gaussian is a common choice

[22], [23], [25]. Specifically, we define mutually independent random variables {Vm ∼ N (0, qm)}Mm=1

independent of {Xm}Mm=1. Then we set the auxiliary random variable

Um = Xm + Vm, m ∈ [M ]. (16)

Since the quadratic distortion measure is considered, we set the reconstruction function as the minimum

mean squared error (MMSE) estimator, i.e.,

Ŷ (u) = E [Y | u] = c⊤ΣX(ΣX +ΣV )
−1u, (17)
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where c , [c1, . . . , cM ]⊤ and ΣV , diag(q), q , [q1, . . . , qM ]⊤. Then, we derive closed form

expressions of I
(
xS ; uS | uSc

)
, I (x; u) and E[(Y − Ŷ (u))2] to obtain an inner region of RDin:

RDG
in =

⋃

q∈RM
+

{
(R1, . . . , RM , D) :

∑

m∈S

Rm ≥ I
(
xS ; uS | uSc)

, ∀S ⊂ [M ], S 6= Ø;

∑

m∈[M ]

Rm ≥ I (x; u) ; D ≥ v(q)

}
, (18)

where

I
(
xS ; uS | uSc)

=
1

2
log

(
det (ΣX +ΣV )

det
(
ΣSc

X +ΣSc

V

)
det
(
ΣS

V

)
)
, ∀S ⊂ [M ], S 6= Ø, (19)

I (x; u) =
1

2
log

(
det (ΣX +ΣV )

det (ΣV )

)
, (20)

v(q) , c⊤ΣXc− c⊤ΣX (ΣX +ΣV )
−1

Σ⊤
Xc. (21)

We emphasize that RDG
in ⊂ RDin for general ΣX and c. Since different choices of q lead to different

codebooks of MBTC, we term q MBTC parameters.

2) Optimization problem formulation: We now formulate an optimization problem to search the

rate-distortion tuple in RDG
in with minimum distortion D. From (18), for given MBTC parameters, the

minimum distortion is given by v(q). Thus the problem reduces to finding a minimal v(q) in RDG
in

by tuning the MBTC parameters q.

As mentioned before, q cannot be arbitrarily chosen due to the link bit constraints. Let rtotm denote

the maximum number of total bits that device m can transmit to the PS. To ensure reliable uplink

transmission, the (source coding) rates in (18) need to satisfy

Rm ≤ rm, ∀m ∈ [M ], (22)

where rm , rtotm /N . Combining (18), (21), (22) and the above discussion, the distortion minimization

problem is formulated as

max
q

c⊤ΣX (ΣX +ΣV )
−1

Σ⊤
Xc (23a)

s.t. I
(
xS ; uS | uSc) ≤

∑

m∈S

rm, ∀S ⊂ [M ], S 6= Ø, (23b)

I (x; u) ≤
∑

m∈[M ]

rm. (23c)

C. MBTC Optimization Algorithm

In this subsection, we propose an iterative algorithm based on majorization-minimization (MM) to

solve problem (23). Our algorithm starts with a feasible point called the current-point. Each iteration
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round consists of two steps. In the first step, we construct a surrogate problem, whose objective serves

as a lower bound of the original objective with equality holds at the current-point. Besides, the feasible

region of the surrogate problem should be a subset of the original feasible region and contains the

current-point. In the second step, we solve the surrogate problem, and the solution will be used as the

current-point in the next iteration.

Before proceeding, we present two lemmas for constructing the surrogate problem. Specifically,

Lemma 1 helps find a lower bound of the original objective (23a), and Lemma 2 helps find a subset

of the original feasible region.

Lemma 1 [36, Theorem 2]. For any a,b ∈ R
M and positive definite matrix B ∈ R

M×M ,

a⊤B−1a ≥ 2a⊤b− b⊤Bb, (24)

where the equality holds when a, b and B satisfy b = B−1a.

Proof. a⊤B−1a ≥ a⊤B−1a− (b−B−1a)⊤B(b−B−1a) = 2a⊤b− b⊤Bb, where the equality holds

when b = B−1a.

Lemma 2. Let x ∼ N (0,ΣX) and v ∼ N (0,ΣV ) with diagonal ΣV . Denote u = x + v ∈ R
M .

Given a nonempty S ⊂ [M ], for any E ∈ R
|S|×|Sc| and F ∈ R

|S|×|S| with F ≻ 0, we have

I
(
xS ; uS | uSc) ≤ χS(E,F,ΣV ) + ξS(E,F), (25)

where

χS(E,F,ΣV ) =
log(e)

2
tr
{
F−1ΣS

V

}
+

log(e)

2
tr
{
E⊤F−1EΣSc

V

}
− 1

2
log
(
det(ΣS

V )
)
, (26)

ξS(E,F)=
1

2
log (det(F))+

log(e)

2
tr
{
F−1

(
ΣS

X+EΣSc

X E⊤−EΣ
Sc,S
X −Σ

S,Sc

X E⊤
)}

−|S| log(e)
2

,

(27)

and the equality holds when E = Σ
S,Sc

X (ΣSc

X +ΣSc

V )−1 and F = ΣS
X+ΣS

V −Σ
S,Sc

X (ΣSc

X +ΣSc

V )−1Σ
Sc,S
X .

Similarly, for any G ∈ R
M×M with G ≻ 0, we have

I (x; u) ≤ χ[M ](G,ΣV ) + ξ[M ](G), (28)

where

χ[M ](G,ΣV ) =
log(e)

2
tr
{
G−1ΣV

}
− 1

2
log (det(ΣV )) , (29)

ξ[M ](G) =
1

2
log (det(G)) +

log(e)

2
tr
{
G−1ΣX

}
− M log(e)

2
, (30)

and the equality holds when G = ΣX +ΣV .
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Proof. See Appendix C.

Recall that ΣV = diag(q). Given a feasible point ΣV = Σ̂V , we construct a problem as

max
ΣV

2c⊤ΣXb− b⊤(ΣX +ΣV )b (31a)

s.t. χS(ES ,FS ,ΣV ) + ξS(ES ,FS) ≤
∑

m∈S

rm, ∀S ⊂ [M ], S 6= Ø, (31b)

χ[M ](G,ΣV ) + ξ[M ](G) ≤
∑

m∈[M ]

rm, (31c)

where b = (ΣX + Σ̂V )
−1ΣXc, ES = Σ

S,Sc

X (ΣSc

X + Σ̂
Sc

V )−1 and FS = ΣS
X + Σ̂

S

V − Σ
S,Sc

X (ΣSc

X +

Σ̂
Sc

V )−1Σ
Sc,S
X for all nonempty set S ⊂ [M ], and G = ΣX + Σ̂V . According to Lemma 1, (31a) is a

lower bound of (23a) with the equality holds when ΣV = Σ̂V . From Lemma 2, the feasible region of

(23) contains the feasible region of (31) and both of them contain the point ΣV = Σ̂V . Thus (31) is

a surrogate problem of (23) and point ΣV = Σ̂V is the current-point.

It is not difficult to verify that (31a) is a linear function of q, and both χS(ES ,FS ,ΣV ) and

χ[M ](G,ΣV ) are convex functions of q. Thus the surrogate problem (31) is convex and can be solved

optimally with existing convex optimization solvers such as CVXPY [37]. By repeatedly constructing

and solving this surrogate problem following the MM framework introduced before, we can finally

obtain a suboptimal solution to the original problem (23). We summarize the proposed MM-based

algorithm as Algorithm 1. This algorithm converges since the objective value of the original problem

(23) monotonically non-decreasing in the iterative process.

Note that problem (31) has 2M − 1 constraints (inherited from problem (23)), which increases

exponentially with the device number M . Thus, when considering FL systems with a relatively large

number of devices, Algorithm 1 becomes computationally prohibitive. In the next section, under some

symmetry assumptions, we show that problem (23) can be reformulated into a form with much fewer

constraints, allowing the development of more efficient algorithms.

V. AGGREGATION DISTORTION MINIMIZATION UNDER SYMMETRIC ASSUMPTIONS

In this section, we recast problem (23) into a form with far fewer constraints under certain symmetry

assumptions, and then develop an optimization algorithm to solve it.

A. Problem Formulation under Symmetry Assumptions

The discussion in this section is based on the following three symmetry assumptions.
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Algorithm 1 MBTC Optimization Algorithm

Input: ΣX , c, {rm}Mm=1.

Output: solution q∗.

1: Initialize q(0) to a feasible point of problem (23), let Σ
(0)
V = diag(q(0)), initialize iteration number

i = 0 and threshold ǫ > 0.

2: repeat

3: Σ̂V = Σ
(i)
V .

4: Solve convex problem (31) to obtain Σ
(i+1)
V .

5: Update i = i+ 1.

6: until the fractional increase of the objective value of problem (23) is below the threshold ǫ or the

maximum number of iterations is reached.

7: Set [q∗]m = [Σ
(i)
V ]m,m, ∀m ∈ [M ].

Assumption 3. The FL system is symmetric in the following senses:

(i) Symmetry of sources: The covariance matrix ΣX = ρσ2
X11

⊤ + (σ2
X − ρσ2

X)I;

(ii) Symmetry of target coefficients: c = λ · 1 with λ 6= 0;

(iii) Symmetry of bit-constraints: All devices are divided into J groups {Gj ⊂ [M ]}Jj=1, and the

devices in each group have the same bit-constraint, i.e., rm = r(j), ∀m ∈ Gj , j ∈ [J ].

We first justify these assumptions. When data is i.i.d. among the devices and all devices have similar

sample sizes, Assumption 3-(i) approximately holds, as shown in Fig. 4 of [20]. Assumption 3-(ii) can

be satisfied by simply adjusting the aggregation target function.11 Assumption 3-(iii) is also not difficult

to satisfy since devices with loose bit-constraints can accommodate devices with tighter bit-constraints

by reducing the number of transmitted bits.

We next recast problem (23) under Assumption 3. It can be verified that under Assumption 3,

problem (23) is symmetric with respect to the optimization variables in the same group (defined

in Assumption 3-(iii)). Thus the optimal solution of problem (23), {qoptm }Mm=1, satisfies qoptm = qopt(j) ,

11For instance, when considering the function κ(gN
1 , . . . ,gN

M ) =
∑M

m=1 KmgN
m/K, Assumption 3-(ii) can be satisfied by adjusting

the sample size Km of every device to be the same.
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∀m ∈ Gj , j ∈ [J ]. Thus we can solve (23) by solving

max
{q(j)}J

j=1

c⊤ΣX (ΣX +ΣV )
−1

Σ⊤
Xc (32a)

s.t. (23b) and (23c) hold, (32b)

qm = q(j), ∀m ∈ Gj , j ∈ [J ]. (32c)

Denote Mj , |Gj |, j ∈ [J ]. From Appendix D, we can recast problem (32) as

max
{q(j)}J

j=1

J∑

j=1

Mj

q(j) + (1− ρ)σ2
X

(33a)

s.t. ϑ
(
{q(j)}Jj=1; {ςj}Jj=1

)
≤

J∑

j=1

ςjr(j), ∀ςj ∈ {0} ∪ [Mj ], j ∈ [J ],

J∏

j=1

ςj 6= 0, (33b)

where

ϑ
(
{q(j)}Jj=1; {ςj}Jj=1

)
,
1

2

J∑

j=1

ςj log

(
1+

(1−ρ)σ2
X

q(j)

)
+
1

2
log

(
1+

J∑

j=1

Mjρσ
2
X

(1−ρ)σ2
X + q(j)

)

− 1

2
log

(
1 +

J∑

j=1

(Mj − ςj)ρσ
2
X

(1− ρ)σ2
X + q(j)

)
.

(34)

The solution {q∗(j)}Jj=1 of (33) gives rise to a solution of (23) i.e., q∗m = q∗(j), ∀m ∈ Gj , j ∈ [J ].

B. MBTC Optimization Algorithm Under Symmetry Assumptions

We now develop an MM-based algorithm to solve problem (33). Specifically, to construct a surrogate

problem, we need to find a lower bound of the objective (33a) and an upper bound of function ϑ. Note

that functions log(1+a/x), a ≥ 0, x>0 and log(1+
∑J

j=1 aj/(b+xj)), b ≥ 0, aj ≥ 0, xj>0, ∀j ∈ [J ],

are both convex. Thus an appropriate upper bound of function ϑ can be obtained by expanding its

third term as its first-order Taylor polynomial. Specifically, given a feasible point {q̂(j)}Jj=1, we have

J∑

j=1

Mj

q(j) + (1− ρ)σ2
X

≥
J∑

j=1

Mj

q̂(j) + (1− ρ)σ2
X

−
J∑

j=1

Mj(
q̂(j) + (1− ρ)σ2

X

)2
(
q(j) − q̂(j)

)
, (35a)

and ϑ
(
{q(j)}Jj=1; {ςj}Jj=1

)
is upper-bounded by

ϑup
(
{q(j)}Jj=1; {ςj}Jj=1

)
,

1

2

J∑

j=1

ςj log

(
1 +

(1− ρ)σ2
X

q(j)

)

+
1

2
log

(
1 +

J∑

j=1

Mjρσ
2
X

(1− ρ)σ2
X + q(j)

)
− 1

2
log

(
1 +

J∑

j=1

(Mj − ςj)ρσ
2
X

(1− ρ)σ2
X + q̂(j)

)

+
1

2

log(e)(
1 +

∑J
i=1

(Mi−ςi)ρσ2
X

(1−ρ)σ2
X+q̂(i)

)
J∑

j=1

(Mj − ςj)ρσ
2
X(

(1− ρ)σ2
X + q̂(j)

)2
(
q(j) − q̂(j)

)
, (35b)
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where both the equalities in (35a) and (35b) hold when q(j) = q̂(j), ∀j ∈ [J ]. Further, note that the

maximization of the right-hand side with respect to {q(j)}Jj=1 of (35a) is equivalent to the minimization

of the term
∑J

j=1Mjq(j)/(q̂(j) + (1− ρ)σ2
X)

2. Thus, a surrogate problem is given by

min
{q(j)}J

j=1

J∑

j=1

Mjq(j)(
q̂(j) + (1− ρ)σ2

X

)2 (36a)

s.t. ϑup
(
{q(j)}Jj=1; {ςj}Jj=1

)
≤

J∑

j=1

ςjr(j), ∀ςj ∈ {0} ∪ [Mj ], ∀j ∈ [J ],

J∏

j=1

ςj 6= 0. (36b)

Since ϑup
(
{q(j)}Jj=1; {ςj}Jj=1

)
is convex, problem (36) is convex and can be solved optimally by

existing convex optimization solvers such as CVXOPT [38]. Again, by repeatedly constructing and

solving this surrogate problem, we can finally obtain a suboptimal solution to problem (33). We

summarize this algorithm as Algorithm 2. This algorithm converges since the objective value of problem

(33) is monotonically non-decreasing in the iterative process.

Problem (36) has
∏J

j=1(Mj + 1) − 1 constraints, with growth rate much slower than that of (31),

which is 2M −1. Thus Algorithm 2 can be used to optimize the MBTC parameters for larger-scale FL

systems. Clearly, the choice of group number J gives rise to a trade-off between the computational

complexity for solving (36) and the system performance. Specifically, if J = 1, problem (36) has only

M constraints. This greatly reduces the computational complexity compare with Algorithm 1, but may

severely sacrifice the aggregation accuracy in order to satisfy Assumption 3-(iii). As J approaches M ,

the computational complexity gradually catches up with that of problem (23), while the degradation of

aggregation accuracy also diminishes. In practice, we can flexibly determine the value of J as needed.

VI. NUMERICAL RESULTS

In this section, we first introduce the method to numerically evaluate the limits of FL convergence

performance, then reveal the gap between the baseline schemes and our theoretical bound in terms of

aggregation distortion, convergence performance, and communication cost.

A. FL Convergence Performance Evaluation

Note that the solution q∗ obtained by solving problem (23) not only corresponds to a point in RDG
in

with small distortion, but also implies a codebook generation method for our achievability scheme.

At each iteration round t, we can apply our achievability scheme with the q∗-codebook to compute

ĝ(t) and then use it to update the global model. In this way, the FL convergence performance limits

(in the sense of the performance limits of model aggregation) can be numerically evaluated. In the

following, we detail the convergence performance evaluation method.
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Algorithm 2 MBTC Optimization Algorithm under Symmetry Assumptions

Input: ρ, σ2
X , {Gj}Jj=1, {r(j)}Jj=1.

Output: solution q∗.

1: Set Mj = |Gj|, ∀j ∈ [J ], initialize {q(0)(j)}Jj=1 to a feasible point of problem (33), initialize iteration

number i = 0 and threshold ǫ > 0.

2: repeat

3: q̂(j) = q
(i)
(j), j ∈ [J ].

4: Solve convex problem (36) to obtain {q(i+1)
(j) }Jj=1.

5: Update i = i+ 1.

6: until the fractional increase of the objective value of problem (33) is below the threshold ǫ or the

maximum number of iterations is reached.

7: Set [q∗]m = q∗(j), ∀m ∈ Gj , ∀j ∈ [J ].

Recall that the FL training follows the four steps in Subsection II-A. Since the steps (i), (ii), and (iv)

are straightforward, we focus on the model aggregation step, i.e., how to compute ĝN using {gN
m}Mm=1.

Specifically, given the local updates {gN
m}Mm=1 at iteration round t, we first compute {xN

m}Mm=1 using

(7) and (8)12. Then, we follow Section IV-B1 for the encoding and decoding of MBTC. Specifically,

to calculate the output of the decoder, we first approximate ΣX by [ΣX ]m1,m2
≈ (g̃N

m1
)⊤g̃N

m2
/N ,

∀m1, m2 ∈ [M ], then solve problem (23) to obtain the MBTC parameters q∗ = [q∗1, . . . , q
∗
M ]⊤. Denoting

Σ∗
V , diag(q∗), we combine (16) and (17) to calculate the output of the decoder as

[x̂N ]n = c⊤ΣX(ΣX +Σ∗
V )

−1
[
[xN

1 + vN
1 ]n, . . . , [x

N
M + vN

M ]n
]⊤
, ∀n ∈ [N ], (37)

where {vN
m ∼ N (0, q∗mIN)}Mm=1 are mutually independent and are independent of {xN

m}Mm=1. Note that

the vector xN
m + vN

m in (37) approximates the codeword corresponding to gN
m, ∀m ∈ [M ], according

to the properties of jointly typical sequences. Finally, ĝN is computed using (9).

B. Aggregation Distortion Comparison

In this subsection, the baseline schemes are compared (using synthetic data) with our bound in

terms of the aggregation distortion with fixed source coding (quantization) rate R, i.e., the number of

12In the simulation, as an approximation to the random rotation step (8), we divide each vector g̃N
m into segments with a length of

1024 and then generate Haar matrices to multiply the segments (the remaining segment with less than 1024 elements is multiplied by

a Haar matrix with the corresponding dimension).
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Fig. 3: Average squared error versus coding/quantization rate (bits/symbol) with ρ = 0, 0.5, 0.9, and 0.99.

encoded (quantized) bits per source symbol. The baselines include QSGD [15], uniform quantization

with random rotation [26], two-dimensional UVeQFed [18], nested quantization followed by entropy

coding13 [31].

The synthetic data is generated as follows. Let s ∈ R
N and {wm ∈ R

N}Mm=1 be mutually independent

random vectors with i.i.d. standard Gaussian elements. Given ρ ∈ [0, 1], the synthetic data to be

encoded/quantized is then given by ym =
√
ρs+

√
1− ρwm, ∀m ∈ [M ]. Note that ym also has i.i.d.

standard Gaussian elements, ∀m ∈ [M ], and the correlation coefficient of [ym1
]n and [ym2

]n is exactly

ρ, ∀n ∈ [N ], m1 6= m2 ∈ [M ]. Thus we can adjust the correlation between {ym}Mm=1 by adjusting ρ.

The target is to recover the aggregated vector y ,
∑M

m=1 ym/M .

As discussed in Section III, our MBTC-based achievability scheme allows separate encoding on

each ym and joint decoding to directly obtain ŷ (an estimation of y). For the baselines, we separately

13Since the nested quantization scheme in [31] uses one-dimensional nested lattices to implement the lattice-based Wyner–Ziv coding

scheme in [39], it cannot be guaranteed to decode successfully. We slightly improve the nested quantization scheme in [31] in the

simulation: when the scheme cannot decode successfully, re-transmit.
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quantize ym into ŷm using the corresponding quantization schemes with rate-determined quantization

resolutions, and then obtain ŷ by

ŷ =
M∑

m=1

ŷm/M. (38)

The distortion is measured by the average squared error ‖y − ŷ‖2/N . In the simulation, we set the

number of samples N = 217 and the number of sources M = 10.

In Fig. 3, we plot the average squared error versus the coding (quantization) rate with different

values of ρ. As expected, the baselines are far from our bound when the correlation coefficient ρ is

large, suggesting that the baselines have great potential for further improvement when the sources

(local updates) are strongly correlated. Note that the baselines are consistently worse than our bound,

even when ρ = 0. This is due to the fact that our bound is essentially obtained by infinite-length vector

quantization.

C. FL Performance Comparison

In this subsection, we compare the baselines with our bound in terms of the convergence performance

and the communication cost. To this aim, we test our achievability scheme and the baselines by

training a convolutional neural network (CNN), illustrated by Fig. 4, in an FL fashion on the MNIST

and the Fashion-MNIST datasets. The baselines include BSC [40], top-k sparsification with residual

accumulation [41], DPCM followed by entropy coding14, and the baselines considered in the previous

subsection15. We uniformly allocate the data of the training dataset to the devices and ensure the

data allocated to each device is identically distributed. Within each training round, each device uses

its local data to train an epoch of five stochastic gradient descent (SGD) iterations with learning rate

η = 0.1. The local update is obtained by calculating the difference between the model parameters before

and after the local training. Besides, we adopt a linear aggregation target function κ(x1, . . . , xM) =
∑M

m=1Kmxm/K. The FL parameters are summarized in TABLE I.

1) Convergence performance comparison: In this part, we compare the FL convergence performance

of different schemes with identical coding (quantization) rate. We consider a wireless FL uplink for

simulation. The system consists of one single-antenna PS and M single-antenna devices, where the

14The scheme “DPCM followed by entropy coding” treats each local update as a sample sequence drawn from a source with memory

and then encodes the sequence using first-order differential pulse code modulation (DPCM), where the predictor weights are calculated

statistically.

15We do not consider scheme “Random rotation + uniform quantization” for comparison since it is inapplicable for the settings of

Fig. 5.
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TABLE I: Federated learning paramaters.

Convergence performance comparison Communication cost comparison

Machine learning model CNN illustrated in Fig. 4 CNN illustrated in Fig. 4

Number of devices (M ) 8 20

Learning rate (η) 0.1 0.1

Local update times 5 5

Local batch size 1500 600

Data distribution iid iid

Image: 28 (height)  28 (width)  1 (channel)´ ´Image: 28 (height)  28 (width)  1 (channel)´ ´

Convolution with 5 5 kernel (no pad): 24 24 12´ ´ ´Convolution with 5 5 kernel (no pad): 24 24 12´ ´ ´

Convolution with 5 5 kernel (no pad): 8 8 24´ ´ ´Convolution with 5 5 kernel (no pad): 8 8 24´ ´ ´

Pool with 2 2 max. kernel + 2 stride: 4 4 24´ ´ ´

Dense: 200 fully connected neurons

Dense: 10 fully connected neurons

Pool with 2 2 max. kernel + 2 stride: 12 12 12´ ´ ´Pool with 2 2 max. kernel + 2 stride: 12 12 12´ ´ ´ ReLu, dropout p=0.5

ReLu

ReLu, dropout p=0.5

Softmax

Fig. 4: CNN structure.

devices are randomly distributed inside a circle centered on the PS with radius d. For the uplink

channels, we consider the Rayleigh fading model and the 5G Urban Macro (UMa) pathloss model given

by European Telecommunications Standards Institute (ETSI) [42]. The channels are assumed to be

unchanged during a communication round. For each device m, we assume that its uplink information

rate can reach its channel capacity Cm, m ∈ [M ]. Further, we assume that each device performs

Υ times of channel realizations in each communication round. Then the maximum source coding

(quantization) rate rm of device m can be calculated by rm = ΥCm/N , ∀m ∈ [M ], where N = 86546

according to the CNN structure. At each round, each scheme is adjusted to meet the maximum

coding (quantization) rate constraints. Specifically, our achievability schemes can naturally meet these

maximum rate constraints since they appear as constraints of problem (23). As for the baselines, we

adjust their quantization resolutions to meet these constraints, and adopt (38) for aggregation. In the

simulation, we set M = 8, d = 1.5 km, the power of additive white Gaussian noise (AWGN) as −80

dBm, the devices’ transmitting power as 5 dBm, the height of the PS antenna as 25 m, the height of

the device antennas as 1.5 m, and the center frequency as 755 MHz.

Fig. 5 plots the FL convergence performance of the considered schemes under MNIST and Fashion-

MNIST datasets with the value of channel use times Υ adopted as 1.5×108, 7.5×108, and 1.5×109,

respectively. It is worth emphasizing that when Υ takes 1.5 × 108, 7.5 × 108, and 1.5 × 109, each

local update element is quantized on average to 0.603 bits, 3.015 bits, and 6.030 bits, respectively. For
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Fig. 5: Classification accuracy versus communication round t under MNIST and Fashion-MNIST datasets with different

values of channel use times Υ.

the “Our bound with symmetry assumptions” case, we divide the eight devices into four groups in

pairs such that the devices in the same group have relatively closer bit-constraints. For each group, we

make the bit-constraints of both devices to be the same by tightening the looser one, which is always

realizable. Besides, we assume that Assumption 3-(i) holds. The above settings and assumption allow

us to tune the MBTC parameters using Algorithm 2. For the error free case, the local updates are

aggregated without quantization. As shown in Fig. 5, with the increase of the number of bits allowed

to be transmitted in each round (realized by the increase of Υ), the convergence rate and the final

convergence point of every scheme increases. Further, we observe that our bounds are close to the error-



25

TABLE II: Rates (×10
−4 bits/symbol) required to reach a preset classification accuracy at the 100-th communication

round.

Dataset MNIST Fashion-MNIST

Classification accuracy 90% 93% 95% 72% 75% 78%

2-D UVeQFed 462 982 1790 763 1460 3390

Nested quantization + entropy coding 497 1040 2070 786 1620 3470

QSGD 57.8 196 705 104 462 2310

Our bound 6.93 34.7 173 23.1 127 832

free case, providing a promising convergence performance. Besides, we observe that the performance

loss brought by devices grouping is negligible. This implies that, when the symmetry assumptions are

satisfied, the grouping method is promising to reduce the complexity of coding parameters optimization

with slight performance penalty.

2) Communication cost comparison: In this part, we compare the minimum source coding (quanti-

zation) rates required to achieve given convergence performances. We consider a fully symmetric FL

system for simulation. Specifically, we assume that Assumptions 3-(i) and -(ii) hold and consider all the

devices share the same source coding (quantization) rate. We set the number of devices M = 20 and

the source coding (quantization) rate R = rtot/N , where the number of symbols N = 86546 according

to the CNN structure. In the simulation, we increase rtot initialized to a sufficiently small positive

number with 100-bit increment repeatedly until the classification accuracy at the 100-th communication

round is greater than a preset value. TABLE II records this first-arrival rate for different schemes under

different preset accuracies and datasets. We see that, to achieve a certain accuracy, the rates required

by the baselines are all much greater than that needed by our achievability scheme (which leads to

our bound).

We now summarize the qualitative analysis of the numerical results in this section. Our bound is a

“good” achievable bound mainly due to the following three properties of our proposed achievability

scheme: 1) exploit the correlation between local updates for compression; 2) perform joint decoding

at PS to directly reconstruct the global update, i.e., a linear combination of the local updates; 3) use

infinite-length vector quantization. Due to 1), the baselines in Fig. 3 deviate farther and farther away

from our bound as the data correlation increases; due to 3), the baselines in Fig. 3 are consistently worse

than our bound, even if the data are completely uncorrelated. Properties 1) and 2) allow the re-allocation

of the communication demands among devices by utilizing the correlation between local updates,

thereby reducing the number of bits that need to be transmitted by deep-fading devices, explaining
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the “good” performance of our bound in Fig. 5. The results in TABLE II are mainly due to properties

1) and 3) since, under the considered fully symmetric simulation setup, the baseline’s aggregation

scheme (i.e., first decoding separately and then arithmetically averaging) is efficient enough.

VII. CONCLUSION

In this paper, we studied the FL uplink from an information-theoretic perspective. We introduced a

general performance analysis framework for model aggregation. We then characterized the performance

limits of model aggregation in the form of an inner region of the rate-distortion region. Further,

we developed two algorithms to search for the minimum aggregation distortion in the derived inner

region for general and symmetric FL systems, respectively. Numerical results demonstrated that the

baseline model aggregation schemes still have great potential for further improvement in the considered

scenarios.

APPENDIX A

PROOF OF PROPOSITION 1

Denote zNk , ANpN
k , ∀k ∈ [K]. Since (i) AN is Haar distributed, (ii) {pN

k }Kk=2 are isotropically

distributed, and (iii) {pN
k }Kk=1 are mutually independent, we have p(zNk | Zk) = p(zNk ), ∀Zk ⊆

{zNi }Ki=1,i 6=k, Zk 6= Ø, k ∈ [K], i.e., {zNk }Kk=1 are mutually independent. Since AN is Haar distributed,

zN1 is isotropically distributed; since orthogonal transformation does not change the distribution of

an isotropically distributed vector, {zNk }Kk=2 are also isotropically distributed. Thus, for any N ∈
Z+, {zNk /‖zNk ‖2}Kk=1 can be generated by a group of mutually independent Gaussian vectors {qN

k ∼
N (0, IN)}Kk=1 through

zNk
‖zNk ‖2

=
qN
k

‖qN
k ‖2

, ∀k ∈ [K]. (39)

Then,
1

N

∥∥zNk − τkq
N
k

∥∥2
2
=

1

N

∥∥zNk
∥∥2
2
− 2τk

N

∥∥zNk
∥∥
2
·
∥∥qN

k

∥∥
2
+
τ 2k
N

∥∥qN
k

∥∥2
2
. (40)

By assumption,

lim
N→∞

1

N
‖zNk ‖22 = lim

N→∞

1

N
‖pN

k ‖22
a.s.
= τ 2k , (41)

implying

lim
N→∞

1√
N

∥∥zNk
∥∥
2

a.s.
= τk and lim

N→∞

1

N
E[‖pN

k ‖22] = τ 2k . (42)

Since qN
k ∼ N (0, IN), according to the strong law of large numbers,

lim
N→∞

1

N
‖qN

k ‖22
a.s.
= 1. (43)
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Note that ‖zNk ‖2 is a random variable independent of qN
k . Combining (40)-(43), we obtain

lim
N→∞

1

N

∥∥zNk − τkq
N
k

∥∥2
2

a.s.
= 0. (44)

By the definitions,

σ2
m1,m2

= lim
N→∞

1

N

K∑

k=1

em1,kem2,kE[‖pN
k ‖22] + lim

N→∞

1

N

K∑

k1=1

K∑

k2=1
k1 6=k2

em1,k1
em2,k2

E[(pN
k1
)⊤pN

k2
]. (45)

By assumption, when k1 6=k2∈ [K], pN
k1

and pN
k2

are mutually independent and at least one of them is

isotropically distributed. Without loss of generality, assume pN
k2

is isotropically distributed. Then we

have E[(pN
k1
)⊤pN

k2
|pN

k1
] = 0, leading to E[(pN

k1
)⊤pN

k2
] = 0. Combining with (42) and (45),

σ2
m1,m2

=

K∑

k=1

em1,kem2,kτ
2
k , ∀m1, m2 ∈ [M ]. (46)

Now, let x̃N
m ,

∑K
k=1 em,kτkq

N
k , ∀m ∈ [M ]. By the independence of {qN

k }Kk=1, we have x̃N
m ∼

N
(
0, σ2

m,mIN
)
. Note that for any n ∈ [N ], the independent Gaussian variables {[qN

k ]n}Kk=1 can be

viewed as (a special case of) jointly Gaussian variables, and linear combination preserves the joint

Gaussianity. Thus the entries [x̃N
1 ]n, [x̃

N
2 ]n, . . . , [x̃

N
M ]n are jointly Gaussian with E

[
[x̃N

m1
]n] · [x̃N

m2
]n]
]
=

σ2
m1,m2

, ∀m1, m2 ∈ [M ], n ∈ [N ]. Moreover,

1

N

∥∥AN g̃N
m − x̃N

m

∥∥2
2
=

1

N

∥∥∥∥∥

K∑

k=1

em,k(z
N
k − τkq

N
k )

∥∥∥∥∥

2

2

≤ K

K∑

k=1

e2m,k

(
1

N

∥∥zNk − τkq
N
k

∥∥2
2

)
→ 0 (47)

almost surely as N → ∞. We complete the proof.

APPENDIX B

PROOF OF PROPOSITION 3

To standardize the notations, we rewrite the lemma used in the proof as follows.

Lemma 3 [43, Lemma 2.1]. Under Assumptions 2, set the learning rate η = 1/Ω, we have

L(θ(t+1))− L(θ⋆) ≤
(
1− ω

Ω

) [
L(θ(t))− L(θ⋆)

]
+

1

2Ω
‖e(t)‖2, ∀t ≥ 0, (48)

where the gradient error e(t) , ĝ(t) − g(t).

From the recursion in Lemma 3, we have

L(θ(T+1))− L(θ⋆) ≤
(
1− ω

Ω

)T+1 [
L(θ(0))− L(θ⋆)

]
+

1

2Ω

T∑

t=0

(
1− ω

Ω

)T−t

‖e(t)‖2. (49)

Recall that ĝ(t) is the estimation of g(t) given by the MBTC-based uplink scheme. Thus, by definitions,

1

N
‖e(t)‖2 = 1

N
‖ĝ(t) − g(t)‖2 ≤ D(t), (50)

as N → ∞. Thus, we approximately have ‖e(t)‖2 ≤ ND(t). Combining with (49), we obtain (15).
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APPENDIX C

PROOF OF LEMMA 2

Let r(uS | uSc

) be any conditional probability density function. For any nonempty set S ⊂ [M ],

I
(
xS ; uS | uSc)

=

∫
p(xS ,uS ,uSc

) log
p(uS | xS ,uSc

)

p(uS | uSc)
dxSduSduSc

(a)
=

∫
p(uS ,uSc

) log
1

p(uS | uSc)
duSduSc − h(uS | xS)

(b)

≤
∫
p(uS ,uSc

) log
1

r(uS | uSc)
duSduSc − h(uS | xS),

(51)

where h(uS | xS) denotes the conditional differential entropy of uS given xS . Note that step (a)

follows from the fact that uS ↔ xS ↔ uSc

, implying p(uS | xS ,uSc

) = p(uS | xS), and step (b) is

obtained by the following result:
∫
p(uS ,uSc

) log
1

r(uS | uSc)
duSduSc −

∫
p(uS ,uSc

) log
1

p(uS | uSc)
duSduSc

=

∫
p(uSc

)

∫
p(uS | uSc

) log
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)

r(uS | uSc)
duSduSc

=

∫
p(uSc

)KL
(
p(uS | uSc

)‖r(uS | uSc

)
)
duSc ≥ 0.

(52)

According to (52), the equality in (51) holds when r(uS | uSc

) = p(uS | uSc

).

Recall that x ∼ N (0,ΣX), v ∼ N (0,ΣV ) independently from x, and u = x + v. Then we have

p(u) = N (u; 0,ΣU), p(u
S | uSc

) = N (uS ;ΣS,Sc

U (ΣSc

U )−1uSc

,ΣS
U −Σ

S,Sc

U (ΣSc

U )−1Σ
Sc,S
U ), and

p(uS | xS) = N (uS ;xS ,ΣS
V ), (53)

where ΣU = ΣX +ΣV . Note that (51) holds even when we restrict r(uS | uSc

) to be

r(uS | uSc

) = N (uS ;EuSc

,F), (54)

where auxiliary matrices E ∈ R
|S|×|Sc| and F ∈ R

|S|×|S| with F ≻ 0. In this case, the equality in (51)

holds when E = Σ
S,Sc

U (ΣSc

U )−1 and F = ΣS
U−Σ

S,Sc

U (ΣSc

U )−1Σ
Sc,S
U . By substituting (53) and (54) into

the right-hand side of (51), we have
∫
p(uS ,uSc

) log
1

r(uS | uSc)
duSduSc

=
1

2
log
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(2π)|S|det(F)

)
+

log(e)

2
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uS − EuSc)⊤
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(
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(55)

where

EuS ,uSc

[(
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(
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= tr
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F−1

EuS ,uSc
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uS−EuSc) (

uS−EuSc)⊤]}

(a)
=tr

{
F−1ΣS

V

}
+tr
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E⊤F−1EΣSc

V

}
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F−1

(
ΣS

X+EΣSc

X E⊤−EΣ
Sc,S
X −Σ

S,Sc

X E⊤
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,
(56)



29

with step (a) follows from ΣU = ΣX +ΣV with ΣV be a diagonal matrix (implying ΣS
U = ΣS

X +ΣS
V ,

ΣSc

U = ΣSc

X +ΣSc

V , Σ
S,Sc

U = Σ
S,Sc

X , and Σ
Sc,S
U = Σ

Sc,S
X ). Similarly, we have

h(uS | xS) =
1

2
log
(
(2π)|S|det(ΣS

V )
)
+

log(e)

2
ExS ,uS

[(
uS − xS
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V

)−1 (
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1

2
log
(
(2π)|S|det(ΣS

V )
)
+

log(e)

2
EvS
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)−1
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(
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1

2
log
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(57)

Combining (51) and (55)-(57), we finally obtain

I
(
xS ; uS | uSc) ≤ χS(E,F,Σ

S
V ) + ξS(E,F), (58)

where the equality holds when E = Σ
S,Sc

X (ΣSc

X +ΣSc

V )−1 and F = ΣS
X+ΣS

V−Σ
S,Sc

X (ΣSc

X +ΣSc

V )−1Σ
Sc,S
X .

In the same way, we obtain an upper bound of I(x; u):

I (x; u) ≤ χ[M ](G,ΣV ) + ξ[M ](G), (59)

where G ∈ R
M×M with G ≻ 0. The equality in (59) holds when G = ΣX +ΣV .

APPENDIX D

PROBLEM TRANSFORMATION

We first consider the objective of problem (32). According to Assumptions 3-(i) and -(ii), we have

Σ⊤
Xc = ((M − 1)ρ+ 1)λσ2

X · 1. (60)

Let Σtemp = (ΣV + (1− ρ)σ2
XI)

−1. According to the Sherman–Morrison formula, we have

(ΣX +ΣV )
−1 = Σtemp −

ρσ2
XΣtemp11

⊤Σtemp

1 + ρσ2
X1

⊤Σtemp1
. (61)

Together, the objective function of problem (32) can be rewritten as

c⊤ΣX(ΣX +ΣV )
−1Σ⊤

Xc =
[
((M − 1)ρ+ 1)λσ2

X

]2
/(

1

1⊤Σtemp1
+ ρσ2

X

)
. (62)

To maximize (62) by tuning {q(j)}Jj=1, we only need to maximize 1⊤Σtemp1, which equals to
∑J

j=1Mj/(q(j)+

(1− ρ)σ2
X) according to (32c). This gives the objective of problem (33).

We then consider the constraints of problem (32). Since constraint (32c) is simple variable substi-

tutions, we focus on constraint (32b). From (19) and (20), constraint (32b) is given by

I
(
xS ; uS | uSc)

=
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2
log
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det (ΣX +ΣV )
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X +ΣSc

V

)
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(
ΣS

V

)
)

≤
∑

m∈S

rm, ∀S ⊂ [M ], S 6= Ø, (63)

I (x; u) =
1

2
log

(
det (ΣX +ΣV )

det (ΣV )

)
≤
∑

m∈[M ]

rm. (64)
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Further transformation relies on the following key observation. Given nonempty sets S1, S2 ⊂ [M ]

satisfy |S1| = |S2|. If the elements in sets S1 and S2 are clustered in the same way (i.e., the number

of elements assigned to each group is the same), the two constraints corresponding to these two sets

have exactly the same form, i.e., they degenerate into one constraint. This inspires us to distinguish

constraints by the number of devices selected (by a set S) in each group. Specifically, let ςj ∈ {0}∪[Mj]

denote the number of devices selected (by a set S) in group j, ∀j ∈ [J ]. Note that for a matrix

A = b · 11⊤ + diag([a1, . . . , aM ]), its determinant det(A) = (1 +
∑M

m=1 b/am)
∏M

m=1 am. Thus for

any set S satisfying |{s|s ∈ groupj , s ∈ S}| = ςj , ∀j ∈ [J ], we have

det
(
ΣS

V

)
=

J∏

j=1

q
ςj
(j), (65)

det
(
ΣSc

X +ΣSc

V

)
=

(
1 +

J∑

j=1

(Mj − ςj)ρσ
2
X

(1− ρ)σ2
X + q(j)

)
J∏

j=1

[(1− ρ)σ2
X + q(j)]

Mj−ςj . (66)

Similarly,

det (ΣV ) =

J∏

j=1

q
Mj

(j) , (67)

det (ΣX +ΣV ) =

(
1 +

J∑

j=1

Mjρσ
2
X

(1− ρ)σ2
X + q(j)

)
J∏

j=1

[(1− ρ)σ2
X + q(j)]

Mj . (68)

Substituting (65)-(68) into (63) and (64), we obtain the left-hand side of (33b). The right-hand side

of (33b) can be directly obtained according to Assumption 3-(iii).
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