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On Optimally Shaped Signals for Nonlinear
Frequency Division Multiplexed Fiber Systems

Yu Chen, Mohammadamin Baniasadi, and Majid Safari

Abstract—An approximated channel model is proposed for
direct signaling on the continuous spectrum of a nonlinear
frequency division multiplexed (NFDM) communication system,
describing the effect of noise and nonlinearity at the receiver. The
optimal input distribution that maximizes the mutual information
of the proposed approximated channel under the peak amplitude
constraint is then studied. We present that, considering the input-
dependency of the noise, the conventional amplitude-constrained
constellation designs can be geometrically shaped to provide
significant mutual information gains. However, it is observed that
further probabilistic shaping and constellation size optimization
can provide only limited additional gains beyond the best geo-
metrically shaped benchmark scheme, i.e., 64 Amplitude Phase
Shift Keying. Then, an approximated channel model that neglects
the correlation between subcarriers is proposed for the matched
filtered signaling system, based on which the input constellation is
geometrically shaped. We demonstrate that although the inter-
subcarrier interference in the filtered case is neglected in the
channel model, the shaping of the matched filtered case can
provide promising gains in mismatch capacity over the unfiltered
scenario.

Index Terms—Nonlinear Frequency Division Multiplexing,
Continuous Spectrum, Geometric Shaping, Probabilistic Shaping

I. INTRODUCTION

IT is shown that the achievable data rate of a long-haul
fiber communication system will reach saturation beyond a

launch power limit due to the signal dependent Kerr nonlinear-
ity [2]. To overcome this limitation and meet the increasing
data demand, various techniques such as digital backpropa-
gation, Volterra series nonlinear equalizers are proposed to
mitigate or compensate the nonlinearity as reviewed in [3].
Recently, the novel application of nonlinear Fourier transform
(NFT), or inverse scattering, which can be described as a
nonlinear extension of the conventional Fourier transform
(FT) is suggested to linearize the evolution of the signal in
fiber channels described by nonlinear Schrödinger equation
(NLSE) [4]. Using NFT, the temporal degrees of freedom of
an arbitrary optical signal are mapped into two distinct spectra
in the so-called nonlinear frequency spectrum, namely, the
discrete spectrum (DS) and the continuous spectrum (CS) [4].
If the nonlinear frequency spectrum is employed to modulate
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the signal, the system is commonly known as a nonlinear
frequency division multiplexed (NFDM) system [4].

The DS domain corresponds to the solitonic part of the
time domain signal, which possesses invariant property against
the pulse broadening dispersion effect and the pulse com-
pressing nonlinearity. Such pulse invariant property can only
be sustained without noise, which is unavoidable in long
distance transmission with optical amplifiers. Considering a
signal dependent non-Gaussian noise model [5], the capacity
estimation for the system is studied in various works [6]–
[8]. Most of the mentioned works neglected the inter-soliton
interaction [9], which further limits the performance of the
soliton transmission as reported in [8].

In contrast, the CS domain, which corresponds to non-
solitonic radiation, has a signal space similar to that of
orthogonal frequency division multiplexing (OFDM), i.e., lin-
ear frequency domain. This allows the direct adoption of
conventional modulation techniques originally designed for
linear systems to be used for modulating data on CS. Thus,
the CS domain is the focus of this work. Two aspects of the
CS domain can be used for modulation, namely, CS spectrum
modulation (also known as ρ-modulation) and b-modulation,
where ρ = b/a. In some works, b-modulation is favored
because of its compact support, and better spectrum efficiency
[10], [11]. As one of the main NFT-based modulation tech-
niques in the literature, in this paper, CS spectrum modulation
is considered. This avoids the energy barrier issue caused by
the unity constraint of |a|2 + |b|2 = 1 for the b-modulation
[12], which could lead to singularity in the channel modeling.
Though the energy barrier could be avoided using either one-
to-one nonlinear mapping before modulation [13] or tailored
pulse shaping [12]. It is concluded with a dual-polarization
system that the nonlinear mapping reduces the benefit of
spectral efficiency [13].

In the absence of noise, the propagation of CS signal over
the fiber is well defined. However, when noise is introduced,
the CS transmission channel model still remains an open
problem despite the recent progress in [14]–[16]. Among all
relevant works, it is pointed out that the channel noise of the
CS domain shows strong dependence on the input signal. The
statistics of the CS noise is described in both [14] and [15] up
to the second moment, but the closed-form expression of the
conditional probability density function (PDF) of the noisy
signal that defines the channel is not available. To estimate
the channel capacity, the Pinsker formula is used to lower
bound the capacity of a nonlinear inverse synthesis (NIS)
CS modulation system [14]. The application of the Pinsker
formula can be a useful capacity lower bounding tool when
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the exact channel model is not known [14]. But it should be
emphasized that the resulting bound is not necessarily a tight
one [14], [17]. In [15], the real and imaginary channels of
the complex CS spectrum are assumed to be two indepen-
dent real channels, allowing variance normalizing transform
(VNT) to be performed on each channel [18]. After VNT,
each individual channel is approximated with an additive
white Gaussian noise (AWGN) model, hence simplifying the
capacity estimation under peak power constraint [19]. In [20],
the mentioned VNT technique is employed to generate a
nonuniform spacing constellation, then the gain in signaling
over CS is compared with the other signaling methods like
NIS and CS domain matched filtering.

In this work, we explore the optimal achievable mutual
information (MI) of the CS modulated system with and
without matched filter in the CS domain. At first, an ap-
proximated channel model is proposed combining the channel
statistics based on perturbation theory [14], VNT, and also
some insights from numerical simulations for both systems.
Then, the MI of the approximated channel model is maximized
under peak amplitude constraint to obtain the optimal discrete
input distribution with a finite number of mass points. For the
system without the CS domain filter, two types of input distri-
bution shaping are considered in this work, namely geometric
shaping (GS) and full optimization (FO). The GS shaping
attempts to maximize the MI by optimizing the positions
of the mass points of the input distribution, assuming an
equiprobable distribution with a given distribution size. The
FO scheme maximizes the MI by performing probabilistic
geometric hybrid shaping for a number of distribution sizes.
Additionally, the Pinsker formula of the channel model and
the mismatch capacity employing the optimized constellation
are also produced. The results suggest that for the underly-
ing signal dependent channel considered in this work, the
additional probabilistic shaping gain of FO is insignificant
when compared with the best geometrically shaped scheme,
i.e., 64 Amplitude Phase Shift Keying (APSK). Relying on
this result, only geometric shaping is performed to maximize
the MI for the approximated filtered channel model. Note
that the developed signal shaping methods are based on the
proposed approximated channel model rather than the actual
NLSE model. Therefore, mismatch capacities are estimated for
both systems with the Monte Carlo method to provide capac-
ity lower bounds. Although introducing matched filtering in
nonlinear frequency domain could result in extra interference,
the gain in capacity lower bounds implies that filtering is still
beneficial in terms of removing excessive noise.

II. CHANNEL MODEL

The pulse evolution in an ideal distributed Raman amplified
standard single mode fiber is governed by the stochastic NLSE,

jqz(t, z) = qtt(t, z) + 2|q(t, z)|2q(t, z) + n(t, z), (1)

where q(t, z) is the normalized complex envelope of the
optical field, n(t, z) represents the normalized amplifier spon-
taneous emission (ASE) noise (both normalized with 1/γLD),
while t and z stand for the unitless time (normalized with T0)

and the propagation distance (normalized with the dispersion
length LD = 2T 2

0 /|β2|). The autocorrelation of the normalized
ASE noise is E[n(t, z)n∗(t′, z′)] = σ2δ(t − t′)δ(z − z′),
where σ2 = αhν0KT

2γT 3
0

|β2|2 . The coefficients α, β2 and γ
describe the fiber loss, the group velocity dispersion and the
Kerr nonlinearity, respectively. In addition, the hν0 denotes
the photon energy, and KT is the phonon occupancy factor.
Performing NFT on the pulse q(t, z) will decompose the signal
into CS ρ(λ, z) and DS {λm(z)

M
m=1, Cm(z)

M
m=1}. In a noise-

free propagation, the evolution of the CS is described by
a linear phasor, i.e. ρ(λ, z = l) = e4jλ

2lρ(λ, z = 0) [4].
Taking advantage of this property, the transmitted information
symbols are first encoded directly on the CS shape ρ(λ, 0)
via certain pulse shaping and inverse NFT (INFT) is taken
to convert it into the time domain pulse q(t, 0). The pulse is
then transmitted through a standard single mode fiber, where
NFT is performed at the receiver to acquire the CS ρ(λ, l)
of the received pulse q(t, l). After equalization with e−4jλ2l,
the received information symbol can be extracted by down-
sampling the equalized CS.

A. Channel Statistics and Approximated Model

In the proposed system, the information symbols are directly
modulated at different nonlinear frequencies, allowing them to
be detected by down-sampling the equalized CS. In [14], the
continuous channel statistics is discussed using perturbative
theory. If one denotes the equalized output as Yλ and the input
as Xλ, the input-output relationship of the system is given as
[14]

Yλ = e−4jλ2lρ(λ, l) = Xλ +Nλ, (2)

where the conditional statistics of the zero mean noise Nλ

given Xλ are as [14]

E
[
(Yλ −Xλ) (Yλ′ −Xλ′)

∗]
= E [NλN

∗
λ′ ]

= σ2δ(λ− λ′)(1 + |Xλ|2 + |Xλ|4), (3)
E [(Yλ −Xλ) (Yλ′ −Xλ′)] = E [NλNλ′ ]

= σ2δ(λ− λ′)X2
λ, (4)

where σ2 denotes the unitless spectral density per propagation
length as in (1), (·)∗ denotes complex conjugation, and δ(·)
denotes the Dirac-Delta function. Note that the condition is
omitted for simplicity, the Xλ should be considered given
unless specified otherwise. The δ function in the correlation
indicates that the noise at one λ is uncorrelated to that at
another λ′. It is assumed that when sufficiently sampled, the
discretized CS preserves its continuous nature well, hence
approximately, the inter-subcarrier interference (ISI) could be
neglected. Detailed discussion about this approximation is
given in the Appendix A. Employing such approximation, the
statistics of the noise conditional on the input Xλ are written
as

E
[
|Yλ −Xλ|2

]
= E

[
|Nλ|2

]
= σ2

N(1 + |Xλ|2 + |Xλ|4), (5)

E
[
(Yλ −Xλ)

2
]
= E

[
N2

λ

]
= σ2

NX
2
λ, (6)

where the σ2
N = σ2ltw corresponds to the received noise

power when the transmitted symbol Xλ = 0, l denotes the
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Fig. 1. Decomposition operation of the received symbol Yλ into the parallel
and orthogonal direction of the transmitted symbol Xλ.

unitless propagation distance and tw indicates the unitless time
domain pulse width. The σ2

N can be calculated using Parseval’s
theorem and the FT approximation of NFT when the L1 norm
of the signal is small without solitonic signal [4].

Within the reviewed literature, although the statistics of the
channel noise is available up to the second moment [14], [15],
an accurate channel model with closed-form expression for the
CS NFDM system remains unknown. To allow further analy-
sis, approximations should be made to derive the closed-form
channel law. Inspired by the Pinsker formula, a noncircular
Gaussian (NCG) model with the available first and second
order statistics can provide a closed-form expression, a more
accurate channel law can be possibly found. In this section,
a more accurate channel model compared to the benchmark
NCG model is proposed by employing VNT after a change of
basis. The advantages of our proposed model over NCG are
demonstrated through numerical simulations later.

In [15], [20], the correlation between the real and imaginary
parts of the channel is reported with numerical simulation
results. Rewriting the noise statistics (5) and (6) with the real
and imaginary parts as

E[N2
r ] =

σ2
N

2

(
1 + 2X2

r + 2X2
r X

2
i +X4

r +X4
i

)
, (7)

E[N2
i ] =

σ2
N

2

(
1 + 2X2

i + 2X2
r X

2
i +X4

r +X4
i

)
, (8)

the correlation between them is then given as

E[NrNi] = σ2
NXrXi, (9)

where Yλ = Yr + jYi = Xλ +Nλ = (Xr +Nr)+ j(Xi +Ni).
Despite the non-zero signal dependent correlation (9), it is
pointed out in [20] that the statistics of the phase noise is
dependent on the transmitted symbol amplitude rather than its
phase. The insight reveals a set of signal dependent decom-
position where the decomposed components are uncorrelated
to each other. One could decompose the received symbol Yλ

into the parallel and orthogonal directions of Xλ as

Yλ = Yp · Xr + jXi

|Xλ|
+ Yo ·

−Xi + jXr

|Xλ|
, (10)

where Yp = YrXr+YiXi

|Xλ| denotes the component on the parallel
direction and Yo = −YrXi+YiXr

|Xλ| denotes the component on the
orthogonal direction as shown in the Fig. 1.

Taking the conditional expectation given Xλ over the par-
allel component Yp allows the statistics to be derived as

E[Yp] = |Xλ|, var[Yp] =
σ2
N

2

(
1 + |Xλ|2

)2
. (11)

Similarly, the conditional statistics of the orthogonal compo-
nent Yo are obtained as

E[Yo] = 0, var[Yo] =
σ2
N

2

(
1 + |Xλ|4

)
. (12)

Note that the condition on the input Xλ is omitted for
simplicity. In terms of the correlation between the decom-
posed components, it is shown that the parallel component
is uncorrelated to the orthogonal component as

E[YpYo] =
XrXi

|X2
λ|

E[N2
r −N2

i ]−
X2

r −X2
i

|X2
λ|

E[NrNi] = 0. (13)

If the uncorrelatedness is extended to assume that the two
components are independent, the complex channel condition
on a given input can be decomposed into two independent
channels. The joint distribution of the decomposed channels
is hence given as the product of their corresponding marginal
distributions as

P (Yp, Yo|Xλ) = P (Yp|Xλ)P (Yo|Xλ). (14)

As emphasized previously, even though the conditional
statistics of the decomposed components are obtained using
the perturbative theory results [14], the accurate models with
closed-form expression for the decomposed components are
still unavailable. In order to further the capacity analysis by
performing MI maximization, additional approximations for
the channel model should be made. For the parallel component
Yp, the dependence between the mean E[Yp] and the variance
var[Yp] reveals the potential of employing VNT [15].

Lemma 1: Given a real random variable Y with mean
µY and mean dependent variance σ2

Y = f(µY ), the VNT
transformed random variable R = T (Y ) should have mean
µR ≈ T (µY ), and variance σ2

R ≈ 1, where VNT T (·) is
defined as

T (u) =

∫
1√
f(u)

du. (15)

Proof: Consider a transformed random variable R =
T (Y ) and applied Taylor expansion around Y = µY , then
R can be approximated with

R = T (Y ) ≈ T (µY ) + T ′(µY )(Y − µY ), (16)

where the higher order terms are omitted. The mean and
variance of R are then derived as

E[R] ≈ E[T (µY ) + T ′(µY )(Y − µY )] = T (µY ), (17)

var[R] ≈ T ′2(µY )σ
2
Y = T ′2(µY )f(µY ). (18)

It is clear that the transformation T (·) normalizes the mean
dependent variance to 1. Note that the variance could be
normalized to any other convenient constant according to the
use case by scaling T (·) with the square root of the constant.
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Using the statistics of Yp, the VNT transform T (·) is derived
according to Lemma 1 as

T (u) =

∫ √
2

σ2
N

1

(1 + u2)
2 du =

√
2

σ2
N

atan(u). (19)

Moreover, the distribution of the VNT transformed random
variable can be approximately described with a Gaussian
distribution. The Gaussian approximation is accurate for a
variety of mean-variance dependent non-Gaussian distribu-
tions, such as Poisson [21], Gamma [22] and noncentral-chi
distributions [8]. In this work, the Gaussian approximation for
the VNT transformed random variable is employed for the
parallel component to allow further investigation of the optimal
constellation design. Thus, it is assumed that the conditional
PDF of Rp = T (Yp) is an unit variance Gaussian with
the mean at T (|Xλ|). The probability transformation rule is
then employed to derive the marginal conditional distribution
P (Yp|Xλ) = P (T−1(Rp)|Xλ) as

P (Yp|Xλ) =
cos2 (atan(Yp))√

πσ2
N

e−
(T (Yp)−T (|Xλ|))2

2 . (20)

Note that the functionality of the VNT transformation could
introduce a peak amplitude constraint on the Rp as reported
in [15]. Due to the atan in T (·), the Rp is constrained
within [−

√
2
σ2
N

π
2 ,

√
2
σ2
N

π
2 ] to ensure the bijectivity of the

transformation. Consequently, for the Gaussian approximation
made for Rp to be effective, the constraint on Rp further limits
the regime of T (|Xλ|) to [−

√
2
σ2
N

π
2 +4,

√
2
σ2
N

π
2 −4] to ensure

almost 100% of the Gaussian PDF P (Rp|Xλ) is contained
within the valid range.

In [20], it is pointed out that the distribution of the phase
angle of the received symbol is dominantly dependent on the
input symbol amplitude rather than on the phase. Combining
this insight, the component statistics (12) and also some
numerical simulation results, the Yo is approximated with
a zero mean symmetric distribution. In this work, a signal
dependent Gaussian distribution as

P (Yo|Xλ) =
1√

πσ2
N (1 + |Xλ|4)

e
− Y 2

o
σ2
N(1+|Xλ|4) (21)

is selected to approximate the distribution of the orthogonal
component Yo for its simplicity. Note that Yo does not possess
mean-dependent variance, thus, VNT cannot be derived using
Lemma 1 for this component.

So far, the approximated marginal conditional PDFs of
the parallel channel P (Yp|Xλ) and the orthogonal channel
P (Yo|Xλ) have been proposed. Recall the assumed indepen-
dence between the two channels when |Xλ| is given, the
conditional channel is then approximated with

P (Yp, Yo|Xλ) =
cos2 (atan(Yp))

πσ2
N

√
1 + |Xλ|4

× e

(
− (T (Yp)−T (|Xλ|))2

2 − Y 2
o

σ2
N(1+|Xλ|4)

)
. (22)

Note that the MI cannot be derived within the decomposed
domain as the parallel and orthogonal directions will vary de-
pending on different input symbol phase ∠Xλ. To calculate the

MI, one will have to convert the distribution (22) back to the
original real and imaginary domain. Since the transformation
[Yp, Yo] → [Yr, Yi] has the Jacobian of unity, the conversion
is given as

P (Yr, Yi|Xλ) =

P

(
Yp =

YrXr + YiXi

|Xλ|
, Yo =

−YrXi + YiXr

|Xλ|
|Xλ

)
, (23)

where the relationships between [Yp, Yo] and [Yr, Yi] are sub-
stituted in equation (22).

B. Numerical Analysis of the Approximated Channel Model

With the approximated channel model being established,
the accuracy of the approximated channel model should be
investigated with numerical simulations of transmitting CS
modulated signals. In order to achieve reasonable accuracy
in terms of describing the CS of a time domain pulse,
the sampling frequency of the signal should be sufficiently
high. Furthermore, as pointed out in Section II-A, sufficient
samples should also be taken in the CS domain such that the
interference between nonlinear frequency subcarriers can be
neglected. In this set of numerical experiments, the transmis-
sions of an NFDM data frame are considered. The NFDM
data frame is constructed as an analogy of an OFDM signal,
M = 128 subcarriers are considered within the nonlinear
frequency window [−4, 4] with sinc pulse shaping as

ρ(λ, 0) =

M∑
m=1

xmsinc

(
M

Λ
λ+

M − (2m− 1)

2

)
, (24)

where xm denotes the information symbol encoded on the
m-th subcarrier and Λ = 8 indicates the nonlinear frequency
width of the NFDM symbol. The corresponding time domain
pulses q(t, 0) at the transmitter should be obtained using INFT,
then transmitted through a split step Fourier simulated fiber.
In this work, we considered a long haul fiber of 2000 km
with loss of α = 0.02 dB/km, group velocity dispersion
factor β2 = −2.2 × 10−26 s2/m, and Kerr nonlinear factor
γ = 1.27 × 10−3 /W/m. The time domain pulse width is
selected to be 20 ns, including total guarding interval of 10
ns to avoid interference between neighbor pulses caused by
dispersion induced pulse broadening. As for the normalizing
factors, the normalization time is selected to be T0 = 0.1 ns,
the dispersion length and normalization power are LD = 455
km and 1/γLD = 2.39 dBm accordingly. Additionally, the
wavelength employed for the signaling is 1.55 µm with the
phonon occupancy factor KT = 1.13.

In this work, the NFT/INFT algorithm provided in [23]
is employed to efficiently travel between the CS and time
domains. As highlighted previously, high resolution in both
time and CS domains is essential for two reasons. Firstly, to
reduce the computation error of NFT, the time domain signal
should be sampled sufficiently higher than Nyquist sampling
frequency. Secondly, the CS domain should have high reso-
lution such that the discretization error can be neglected. In
this work, 7.8 times Nyquist sampling is employed in the time
domain sampling and 2 times of time domain samples are used
to ensure sufficient sampling in both the time and CS domain.
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Fig. 2. The histograms (first row) of the decomposed parallel and orthogonal components Yp and Yo of the received symbol Yλ given the transmitted
symbol Xλ with different amplitudes being 0.9 and 1.5 and phases being 0, 2π/3 and 4π/3. The distributions (second row) of the received symbol given the
transmitted symbol the transmitted symbol Xλ with different amplitudes being 0.9 and 1.5 and phases being 2π/3. The corresponding non-circular Gaussian
(NCG) model and the proposed model are also included as solid curves and contour lines.

To obtain the signal dependent channel statistics, 200 trans-
missions of the NFDM data frame are performed, which in-
clude 25600 random realizations for each symbol considered.
Recall the peak amplitude constraint introduced by the func-
tionality of the VNT (19), |Xλ| for the given fiber parameters
should be limited within [0, 2.7]. Hence, the symbol ampli-
tudes considered here are 0.9 and 1.5 while phases selected
are 0, 2π/3 and 4π/3. In the first row of Fig. 2, the histograms
with the same amplitude |Xλ| are presented in the same plot,
the overlap between histograms given different phases ∠Xλ

are shown in both Yp and Yo components. This verifies the
insight that the channel model is dominantly dependent on the
amplitude of the transmitted symbol rather than the phase. The
marginalized PDFs of the non-circular Gaussian (NCG) model
with given statistics (3) and (4) and the proposed model are
also plotted. Furthermore, using ∠Xλ = 2π/3 as an example,
the NCG model and the proposed model (23) are sketched in
two-dimensional contours over color-scaled histogram of the
received symbol. A clear preference for the proposed model
could be observed for describing the peak of the histogram. In
addition to the advantage in capturing the peak, the proposed
model contours also show good agreement with the simulated
histogram, while the NCG model contours fail to capture its
elliptical direction.

III. CAPACITY ANALYSIS

In the previous section, the approximated channel model
has been proposed based on the perturbation theory channel

statistics and the VNT transformation, which will be used here
to inspire the optimal constellation designs for signaling on
CS. The model provides a full analytical description of the
channel statistics which is matched up to the second moment to
the statistics derived from perturbation theory. Therefore, the
channel model can be used for shaping the input constellation
to adapt to the signal dependence of the noise. However, due
to the assumptions made in the approximation, the shaped
input constellation is not necessarily capacity-achieving, but
the optimized constellation would lead to a lower bound on
the channel capacity. To further study the capacity of the
CS channel, other than the Pinsker lower bound [14], [17],
mismatch capacity [8], [21] with optimized input constellation
will also be included in the next sections.

A. Input Constellation Shaping

Using the proposed model, the MI between the complex
input Xλ and output Yλ is written as

I(Yλ;Xλ) = I(Yr, Yi;Xλ) = H(Yr, Yi)−H(Yr, Yi|Xλ),
(25)

where H(Yr, Yi) denotes the output entropy calculated by

H(Yr, Yi) =

∫
Yr

∫
Yi

P (Yr, Yi)log2
1

P (Yr, Yi)
dYrdYi, (26)

and H(Yr, Yi|Xλ) denotes the conditional entropy given as

H(Yr, Yi|Xλ) =
∑
x∈Xλ

P (Xλ = x)H(Yr, Yi|Xλ = x). (27)
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Note that discrete constellation is assumed to be employed
in this work, considering a closer to practice constellation.
Because of the discreteness assumed, besides the conditional
entropy (27), the output distribution P (Yr, Yi) is also written
with summation as

P (Yr, Yi) =
∑
x∈Xλ

P (Xλ = x)P (Yr, Yi|Xλ = x). (28)

Moreover, recall the unity Jacobian of the transformation
and the assumed independence between the two components,
when the input symbol is given the conditional entropy
H(Yr, Yi|Xλ = x) is then rewritten into

H(Yr, Yi|Xλ = x) = H(Yp, Yo|Xλ = x)

= H(Yp|Xλ = x) + log2

√
πeσ2

N (1 + |x|4), (29)

where the entropy H(Yp|Xλ = x) is expressed as

H(Yp|Xλ = x)

=

∫
Yp

P (Yp|Xλ = x)log2
1

P (Yp|Xλ = x)
dYp. (30)

Using the MI as the objective function, the constellation
shaping problem is formulated as

max
K

max
[X,P(X)]

I(Yλ;Xλ), (31)

s.t.
∑

P(X) = 1, |X1|, ..., |XK | ≤ Xmax, (32)

where X = [X1, X2, ..., XK ] denotes the vector whose
elements indicate the input alphabet, while the P(X) =
[P (X1), P (X2), ..., P (XK)] indicates the probabilities corre-
spond to the symbols in the alphabet. The later constraint in
(32) is interpreted as a peak amplitude constraint, which is
inherently imposed by VNT [15].

Solving the optimization problem defined in the equation
(31) subject to the constraints (32) is equivalent to the op-
timal constellation design denoted as FO in this paper. In
some scenarios, FO is not favored due to its complexity in
implementation. Since the symbols of the constellation are
originally equiprobable, a probability matcher is required to be
implemented such that an information source with optimized
probabilities can be established.

To avoid the additional probability matcher, GS is pre-
ferred in some scenarios by constraining probability further to
P(X) = 1

K1, where the bold 1 denotes a K-length vector
of ones. Furthermore, only K that is positive power of 2
is considered in GS to simplify the source coding further.
GS optimizes the positions of the input symbols Xλ with
the prior that they are equiprobable. Besides the simplified
system structure, the GS optimization also consumes less time
to converge as the dimension of the feasible region is smaller
than that of the probabilistic geometric hybrid shaping in the
FO scheme for the same K.

B. Pinsker Lower Bound

In the previous section, the MI of the approximated channel
model is maximized by performing two constellation shaping
optimizations, while the channel model is proposed under

assumptions of sufficient sampling, independence between
parallel and orthogonal components, and Gaussian PDF of the
appropriate stage. If only the sufficient sampling approxima-
tion is made, a capacity lower bound can also be derived using
the Pinsker formula and the channel statistics (5) and (6). The
Pinsker formula provides a capacity lower bound for a given
channel with known first and second order statistics while the
exact model is unknown [14], [17], [24]. The lower bounding
is provided in two aspects. On the one hand, the input
distribution is assumed to be a zero-mean circular Gaussian
with given constellation variance [24]. On the other hand, the
channel is assumed to be a real vector Gaussian channel with
the given statistics (hence only first and second order statistics
are required) [24]. Using the channel statistics (7), (8) and (9),
the Pinsker lower bound can be written considering the input
being zero-mean circular Gaussian with variance of σ2

S as

Cpin = log2

(
1 +

σ2
S

σ2
N(1 + σ2

S + 2σ4
S)

)
. (33)

The detailed derivation of (33) is provided in the Appendix B.
Note that the Gaussian input assumed in this lower bound
does not take into account the peak amplitude constraint
discussed in this work. If identical constellation variance as
the optimized constellation is employed, the Pinsker formula
will provide a lower bound with less constraint, regarding the
peak amplitude constraint as an additional constraint in the
constellation shaping schemes.

C. Mismatch Capacity Lower Bound

So far, the capacity analysis of the CS channel has been
performed under some approximations which allow the an-
alytical result to be driven. In this section, the mismatch
capacity will be discussed based on a set of realistic channel
realizations, including transmissions of CS pulses in a split
step Fourier simulated fiber with ASE noise added at each
step. Furthermore, a practical and efficient NFT/INFT [23]
algorithm is also employed to compute the CS domain pulse
shaped, which includes the effect of computational error in
practice. The mismatch capacity is given as

CM =

K∑
k=1

∫
Yr

∫
Yi

P (Xk)PT(Yr, Yi|Xk)

× log2
P (Yr, Yi|Xk)∑K

n=1 P (Xn)P (Yr, Yi|Xn)
dYrdYi,

=

K∑
k=1

P (Xk)ET

[
log2

P (Yr, Yi|Xk)∑K
n=1 P (Xn)P (Yr, Yi|Xn)

]
,

(34)

where the PT(Yr, Yi|Xk) denotes the true channel model
given symbol Xk is transmitted, and the ET(·) denotes the
expectation over the true channel, which is approximated
with the Monte Carlo method by numerically averaging over
large number of realizations. Mismatch capacity quantifies the
amount of information that could be reliably transmitted in
the true physical channel using the decoding rules optimally
designed for the auxiliary channel without specifying the
exact decoder [8], [21], [25]. This is also known as the



7

achievable information rate (AIR), where the achievability
relies on the assumed auxiliary channel based on which the op-
timal decoding rule is already known. The input distributions
employed here are obtained from the constellation shaping
discussed in the previous section, while the approximated
channel P (Yr, Yi|Xk) in (23) and (22) is selected to be the
auxiliary mismatch channel. Such an estimation not only
provides a proven capacity lower bound, but also gives an
estimate of the impact of the approximations made in deriving
the channel model (23) and (22), considering the equivalence
between the CM and the MI achieved by the same input P (X)
when P (Yr, Yi|Xk) = PT(Yr, Yi|Xk).

D. Numerical Results and Discussion

In this work, both FO and GS schemes are implemented
to estimate their corresponding optimal MI under the peak
amplitude constraint in the CS domain. By performing opti-
mizations for both schemes, the shaping gain will be estimated
to evaluate the necessity to perform the additional probabilistic
shaping and constellation size optimization. Note that the
optimal shaping in the FO scheme and the GS shaping
corresponding to the inner optimization in (31) are solved
with an interior-point algorithm with random initialization to
enhance the algorithm convergence. The optimization on the
constellation size K in FO scheme is done by identifying the
non-increasing trend of the optimized MI for different K’s.
The channel parameter σ2

N is selected to be 0.0154, which
corresponds to the same long-haul fiber employed in Section
II-B.

Implementing the optimization with the parameters de-
scribed above, the optimized MI under the peak amplitude
constraint Xmax ∈ [0.3, 2.4] is shown in Fig. 3a. The MI for
unshaped 16, 32, 64 APSK are calculated to represent the
performance of unshaped constellation as benchmarks1. The
APSKs are chosen over Quadrature Amplitude Modulations
(QAM) which are more common in optical fiber communi-
cation as the optimally shaped constellations also converge
to an APSK multi-ring constellation. The range of interest
considered here roughly corresponds to the time domain power
regime of −30 to −10 dBm. Recall that the conversion
between the symbol in CS domain and the time domain power
is not straightforward, the power regime mentioned above is
estimated under the assumptions of sinc pulse shaping and
128 subcarriers as in (24).

Overall, the MIs for both GS and FO shaping techniques
increase at higher Xmax, which corresponds to a higher signal
power. In addition, both schemes outperform the best unshaped
APSK constellation. The gain over unshaped APSK schemes
at lower values of Xmax is not as significant. For example,
at Xmax = 0.6, an MI of 3.59 bits per channel use can be
achieved with unshaped 32-APSK, while FO can only provide
an improvement of 0.07 bits per channel use. Conversely, more
significant gains are observed at higher values of Xmax. For
instance, at Xmax = 2.4, unshaped 64-APSK achieves an MI

1The APSKs employed here correspond to 4+12APSK, 4+12+16APSK,
and 8+16+20+20APSK respectively. The radius and phase angle of the points
are selected according to the highest coding spectra efficiency in [26].

of 4.51 bits per channel use, and FO can provide a gain of 0.41
bits per channel use. Moreover, it is also worth pointing out
that the unshaped APSK will result in a decreasing MI for the
high Xmax because of the unshaped APSK not being able to
adaptively change the spacing between the constellation rings
to account for the increased nonlinear effects.

When comparing between the two shaping techniques, the
additional probabilistic shaping and constellation size opti-
mization in FO result in less than 0.1% MI gain over their GS
counterparts for all the Xmax. Moreover, it is worth noticing
that the rate of increasing will start to reduce, showing a
trend towards saturation. This could be the consequence of
the noise power increasing faster than the signal power with
the increasing signal amplitude.

Comparing the optimized distributions of both schemes
shown in Fig. 4, it is observed that under the peak amplitude
constraint, both schemes converge to multi-ring constellations.
The FO scheme will allocate the probabilities of the mass
points on the ring adaptively, for example, in the Fig. 4b,
the mass points on the outer ring are assigned with higher
probabilities than those on the central rings. The GS shaping,
on the other hand, will also arrange the spacing between
the constellation rings with respect to the signal dependence
similar to FO scheme. In both Fig. 4c and Fig. 4f, it should be
noticed that the spacing between the rings is increased along
with the signal amplitude to adapt to the signal dependency
of the noise.

Employing the shaped input constellations discussed above,
the mismatch capacity is estimated as a proven lower bound
for the true capacity with 1000×M = 128000 realizations of
the channel. Additionally, the Pinsker lower bound [14] is also
calculated as a lower bound subjected to the identical variance
of the input as the FO shaped constellation. Recall this
variance constraint is a weaker constraint compared to the peak
amplitude constraint when identical variance is considered.
The mismatch capacity and Pinsker lower bounds are sketched
in Fig. 3b. As expected from the previous discussion of the
additional shaping gain from performing the extra constellation
size optimization and probabilistic shaping, almost identical
mismatch lower bounds are achieved by the FO shaped
constellation and the GS shaped 64 APSK respectively. It is
worth pointing out that the MI gap of 0.02 is observed at
Xmax = 0.5 for the FO while the gap of 0.15 is produced
at Xmax = 2.1. This implies the gap between the optimized
MI, which is calculated from the approximated channel model
(23), and the mismatch capacity will become larger at higher
Xmax.

The trend of the gap matches with the discussion in Section
II-A. The perturbative channel statistics (3) and (4) [14]
correspond to the continuous signal. However, the signal will
be discretized before further digital signal processing such
as numerical NFT [23] in the practical system and also in
the simulations considered within this work. The discretized
channel (5) and (6) are obtained based on the infinitely high
sampling rate approximation as discussed in Appendix A.
To capture the deviation between the continuous perturbative
model and the discretized model with 400 GHz sampling
rate, i.e. 7.8 times Nyquist rate, 25600 random realizations of
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Fig. 3. (a) MI achieved by the FO optimized (optimal sizes specified), GS optimized constellations and unshaped (US) 16, 32, 64 APSK. (b) Mismatch
capacity lower bound employing FO optimized, GS optimized, US 64 APSK, and also Pinsker Capacity lower bound when the input variance is equal to the
input variance of FO optimized constellation.
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Fig. 4. FO Optimized input distribution P (Xr, Xi) (right color bar) and corresponding output distribution (left color bar) P (Yr, Yi) with the peak amplitude
constraint Xmax = (a) 0.3, (b) 0.6, (c) 2.1; GS Optimized APSK input and output distribution with the peak amplitude constraint Xmax = (d) 0.3, 16
APSK (e) 0.6, 32 APSK, (f) 2.1, 64 APSK; The solid lines denote the peak amplitude constraint Xmax.

transmitting randomly selected symbols from a constellation
with continuous uniform distributed phase angles and the same
symbol amplitudes from 0 to 2.4. The variance of the received
symbol and its decomposed components are shown in Fig. 5.
When the transmitted symbol amplitude is lower than 1.2, the
well match between the numerical and analytical estimated
statistics implies the discretized channel model provides an
accurate estimation for the statistics of the noise in this regime.
Hence, the gap between the optimized MI and mismatch
capacity should also be small. However, in the higher signal
regime, it is observed that the gap between the numerical and
analytical statistics is increasing. As explained in Appendix A,
the error is signal dependent and it is introduced by discretiz-
ing a signal dependent continuous random process. Referred
as processing noise, such signal dependent deviation was also
reported in the literature due to its increasing dominance in
higher power regime [16].

Despite the deviation from the analytical MI, the shaping
constellation can provide gain over the unshaped constellation
as expected, considering the unshaped 64 APSK only achieves
a maximal of 4.59 bits per channel use at Xmax = 1.5
while the maximal of 4.72 can be achieved by the GS 64
APSK at Xmax = 2.1. When comparing the Pinsker lower
bound, a better lower bound is generated by the Pinsker lower
bound when the Xmax is small due to the additional peak
amplitude constraint on the shaping scheme. However, the
shaped constellations achieve higher lower bounds even with
the extra constraint at higher Xmax, this reveals the potential of
performing constellation shaping even using an approximated
signal dependent channel model.

IV. SIGNALING WITH MATCHED FILTER

If sinc pulse shaping is used in frequency domain, it is
commonly known that the corresponding inverse FT (IFT) is
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Fig. 5. The variance of the received symbol Yλ, and its parallel components
Yp, and orthogonal components Yo given the amplitude of the transmitted
symbols |Xλ| with uniformly distributed phase ∠Xλ.

a rectangle function which is band-limited in time domain.
Exploiting this property of the sinc pulse shaping (24), the
signal dependent noise in the CS modulated system could be
potentially reduced with a matched filter implemented in the
CS domain [20]. However, the signal dependence of the CS
noise will induce ISI at the matched filter output. Convolving
the received symbol Yλ with the matched filter, the input-
output relationship is then given as

Yfλ = hf(λ) ∗ Yλ = Xλ + hf(λ) ∗Nλ = Xλ +Nfλ, (35)

where hf(λ) denotes the impulse response of the matched filter
in CS domain given as

hf(λ) =
M

Λ
sinc

(
M

Λ
λ

)
. (36)

The convolution is equivalent to multiplying a rectangular
brick wall filter with the IFT domain of the received CS
pulses. Due to the band-limitedness of the sinc pulse in
its IFT domain, the signal Xλ will remain unchanged after
matched filtering. Using the input-output relationship (35),
autocorrelation (3) and (4), it is clear that the filtered noise
will remain zero mean, while the second order statistics are
given as

E[NfλN
∗
fλ′ ] =

∫
σ2hf(λ− ξ)hf(λ

′ − ξ)

×
(
1 + |Xξ|2 + |Xξ|4

)
dξ, (37)

E [NfλNfλ′ ] =

∫
σ2hf(λ− ξ)hf(λ

′ − ξ)X2
ξdξ, (38)

where ξ is the auxiliary variable introduced due to the con-
volution and M

Λ corresponds to the separation between the
subcarriers. It can be observed from (37) and (38) that although
the subcarriers are allocated on the zero crossing points of the
sinc(·) functions of their neighbors, the signal dependence will
still introduce ISI. In the previous sections, when filtering is
not employed, the discretized channel statistics (5) and (6) are
obtained assuming sampling in the CS domain is sufficiently
high, the ISI can be neglected as explained in Appendix A.
However, for the filtering to be effective, the passband of the

filter should be comparable to the bandwidth of the signal and
this will make the no ISI approximation not accurate. More
detailed discussion and comparison with a signal independent
noise case is also discussed in Appendix A.

In order to implement constellation shaping, the closed-form
expression of the channel law is required for the formulation of
the MI, which would be the objective function of the shaping
optimization. When ISI is considered, such a closed-form
expression would be intractable, hence, making it infeasible
to optimize the constellation. To simplify the implementation
of the constellation shaping, only the signal dependence part
of the channel noise will be considered despite the existence
of the ISI. The noise at each subcarrier is considered as a
white signal dependent noise that only depends on the signal
on the same subcarrier. Using similar approaches as Section
II-A, the CS noise statistics after filtering are then derived as

E
[
|Yfλ −Xλ|2

]
= E

[
|Nfλ|2

]
≈ σ2

fil(1 + |Xλ|2 + |Xλ|4),
(39)

E
[
(Yfλ −Xλ)

2
]
= E

[
N2

fλ

]
≈ σ2

filX
2
λ, (40)

where the σ2
fil = σ2lπM/Λ corresponds to the received

noise power when transmitted symbol Xλ = 0, the πM/Λ
denotes the unitless passband width of the filter (36) when
the small signal asymptotic IFT is performed [4]. Employing
the same methodology as the unfiltered channel, an identical
approximated channel model with attenuated noise power can
be obtained by substituting the approximated filtered received
noise power σ2

fil, the filtered received symbol Yf , and its
corresponding decomposed components into equations (23)
and (22) as

P (Yfr, Yfi|Xλ) = P (Yr = Yfr, Yi = Yfi|Xλ, σ
2
N = σ2

fil),

where

P (Yfp, Yfo|Xλ) = P (Yp = Yfp, Yo = Yfo|Xλ, σ
2
N = σ2

fil).

Similar to the previous section, numerical simulations are
performed to estimate the channel statistics to evaluate the
influence of the neglected ISI. Since the conditional channel
statistics are not dependent on the phase of the input, they are
estimated with the same approach as in the previous section.
This approach allows signal dependence of the noise and the
ISI to be decoupled to some extent, and the numerical estima-
tion of the filtered noise statistics is shown in Fig. 6a. When
the signal is small, the error of the NFT can be neglected, it is
observed that the variance of the filtered noise is well described
by the model (39), while the decomposed components show
otherwise. The decomposed components show a slightly larger
deviation from the model when compared to the unfiltered
noise shown in Fig. 5, which implies the effect of ISI when
the signal is small. As the signal becomes larger, the error
introduced by the discretized NFT becomes more significant,
the model becomes more inaccurate due to the combined effect
of the NFT error and the ISI.

Recall in Section III-D, it is pointed out that the additional
constellation size optimization and probabilistic shaping do
not provide significant gain for the signal dependent noise
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Fig. 6. (a) The variance of the matched filtered received symbol Yfλ, and its parallel components Yfp, and orthogonal components Yfo given the amplitude of
the transmitted symbols |Xλ| with uniformly distributed phase ∠Xλ. (b) Mismatch capacity employing GS 16, 32, 64 and 128 APSKs optimized constellations
and the optimized MI corresponding to the no ISI approximated filtered channel.

considered in this work. Furthermore, the filtered channel (35)
with no ISI approximation has the same functionality as the
unfiltered channel (2) considered previously. Thus, for more
practical implementation of the optimizer, only the GS-APSK
will be considered for the filtered system. The optimization
problem is hence formulated as

max
X

I(Yfλ;Xλ), (41)

subject to the same constraint (32), where probabilities PX =
1
K1 and K = 16, 32, 64, 128 are considered. Note that
K = 128 is taken into account based on the fact that the noise
power is reduced by the matched filter, suggesting that more
constellation points could be supported. Using the identical
optimizer and system parameters as in the previous section, the
optimal discrete constellation for the channel P (Yfr, Yfi|Xλ)
can be obtained. It is worth emphasizing that the ISI is not
considered in the channel model, and the numerical simula-
tion shows that the ISI is non-negligible. For the optimized
constellation to produce an effective capacity lower bound
of the system, mismatch capacity is necessary. Considering
the channel model P (Yfr, Yfi|Xλ) as an auxiliary channel, the
mismatch capacity for the filtered system is given as

CMf =

K∑
k=1

P (Xk)ETf

[
log2

P (Yfr, Yfi|Xk)∑K
n=1 P (Xn)P (Yfr, Yfi|Xn)

]
,

(42)
where the ETf(·) denotes the expectation over the true filtered
channel, which is approximated with the Monte Carlo method
by numerically averaging over 1000M realizations of the
filtered channel, where the ISI will be included. In Fig. 6b,
the mismatch capacity of the filtered system and the MI for
the no ISI approximated filtered channel model for GS 16, 32,
64 and 128 - APSKs are shown. The optimized MIs will keep
increasing along with the relaxation of the peak amplitude
constraint till saturation. The saturation is due to the capacity
of the approximated channel is higher than the source entropy,

as seen in the figure that 4 and 5 bits per channel use are
provided by 16 and 32-APSK at Xmax = 2.4.

The capacity lower bound of the true system that taken
in account the ISI, however, shows a different trend. At low
Xmax, relaxing the constraint will improve the mismatch ca-
pacity as the ISI is small when the signal is of low amplitude.
At higher Xmax, the mismatch capacity will decrease because
of the increasing ISI along with the increased signal. For
instance, the maximum capacity lower bound of 6.19 bits per
channel use is achieved by GS 128 APSK at Xmax = 1.5,
while only 5.82 can be achieved at Xmax = 2.4. Consid-
ering the pulse width being 20ns, the maximum data rate
of 2.41 Mbits/s/subcarrier is achieved, which is significantly
higher than the maximum data rate of 1.85 Mbits/s/subcarrier
achieved in the direct signaling system.

When comparing the optimized MI and the mismatch ca-
pacity, the alignment at low Xmax are all reasonably good,
which highlights the effectiveness of the approximation when
ISI is weak. When ISI becomes more dominant with the
increasing Xmax, the gap between the optimized MI and
the mismatch capacity becomes larger because the no ISI
approximation is no longer accurate as well as the signal
dependent discretization error becomes larger. The additional
error power introduced by the ISI will limit the mismatch
capacity achieved. For example, 6.4 bits per channel use MI
are predicted by no ISI optimization for GS 128 APSK at
Xmax = 1.5, while only 6.19 can be achieved by mismatch
capacity.

Furthermore, it is also worth noticing that the size of the
constellation affects the alignment of the optimized MI and
mismatch capacity. For a smaller constellation size like 16-
APSK, the distances between the constellation points are
sufficiently large to sustain the MI under the combined effect
of ISI and signal dependent noise. Hence the corresponding
mismatch capacity and optimized MI will both saturate at 4
bits per channel use. On the contrary, increasing the constel-
lation size will reduce the distance between the constellation
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points, the influence of the ISI will be more significant. As
an example, the gaps between optimized MI and mismatch
capacity are 0.14, 0.48 and 0.79 for GS 32, 64 and 128 APSKs,
respectively.

V. CONCLUSION

In this work, both direct signaling and matched filter sig-
naling of the CS modulated NFDM system are discussed.
We first propose an approximated channel model for the
direct signaling complex CS modulated NFDM system, based
on which, the mutual information gain from shaping the
distribution of the input is discussed. Promising MI gains
are observed for both FO and GS constellations over the
unshaped ring-based APSK constellations. However, the gain
from additional probabilistic shaping is not as significant when
the number of constellation points in each ring is optimally
determined. Conventionally, the probabilistic shaped QAM
constellation is preferred to avoid redesigning the analogue
digital converter and optical signal processing algorithm, in
addition to the effective shaping gain provided by Maxwell-
Boltzmann shaping [27]. The GS technique has attracted
certain attention from the development of end-to-end learning
and autoencoders, which allow the constellation to be shaped
geometrically according to the learned features of the channel
[28]. However, the autoencoder is considered to be complex
due to the large amount of training data required and the
complicated structure in the implementation. Comparing to the
learned GS, the GS constellation demonstrated in this work is
more practical to implement, as the shaped constellation can
be practically obtained using practical numerical optimizers
based on the proposed channel model. Moreover, the capacity
lower bound is also estimated with the mismatch capacity and
the Pinsker Formula. Neglecting the ISI, the approximated
channel model for the complex CS modulated NFDM system
with matched filtering is employed to geometrically shape the
constellation adapting only to the signal dependent noise. The
estimated mismatch capacity lower bound outperforms that
of the unfiltered system although the ISI is neglected in the
constellation shaping.

In future works, one could further investigate the detailed
channel model of the ISI in the system with matched filter. If
such a model can be developed and input constellation could
be shaped accordingly, a tighter capacity lower bound could
be expected.

APPENDIX A
INTER SUBCARRIER SYMBOL INTERFERENCE

APPROXIMATION ANALYSIS

In this work, the inter subcarrier interference is neglected
when the discretized CS channel statistics is proposed assum-
ing that the sampling in the CS domain is sufficiently high. In
this section, the validity of this assumption shall be explained.
For simplicity, consider a general continuous random process
with zero mean and autocorrelation as

E [NtN
∗
t′ ] = σ2δ(t− t′)(1 + |Xt|2 + |Xt|4), (43)

E [NtNt′ ] = σ2δ(t− t′)X2
t , (44)

where the σ2 is a factor that corresponds to power spectrum
density of this infinite bandwidth random process that is
dependent on a series of time variant signal Xt. If τ is
introduced as an auxiliary variable in convolution, the random
process Nht after filtering with an arbitrary filter h(t) would
possess autocorrelation as

E [NhtN
∗
ht′ |h(t)] =

∫
σ2h(t− τ)h∗(t′ − τ)

×
(
1 + |Xτ |2 + |Xτ |4

)
dτ, (45)

E [NhtNht′ |h(t)] =
∫

σ2h(t− τ)h(t′ − τ)
(
X2

τ

)
dτ. (46)

In practice, the random process will be sampled. Sampling
of an unlimited bandwidth signal would correspond to multi-
plying a brick wall filter h̃s(f) = rect(f/fs) whose bandwidth
is equal to the sampling frequency fs in the frequency domain,
which will then corresponds to convolving the corresponding
time domain impulse response hs(t) = fssinc(fst). When
fs is sufficiently large, the approximation lim

fs→∞
hs(t) = δ(t)

can be employed to show that E [NhtN
∗
ht′ |hs(t)] = E [NtN

∗
t′ ],

and E [NhtNht′ |hs(t)] = E [NhtNht′ ]. The equivalence implies
that the ISI can be neglected if sampled at sufficiently high
sampling rate.

However, as briefly mentioned in the main body of this
work, such an approximation cannot be made for the filtered
signal dependent noise. As an analogy to the CS system
discussed in this work, the input signal Xt is defined as

Xt =

M∑
m=1

xmsinc

(
M

Λ
t+

M − (2m− 1)

2

)
, (47)

where Λ
M denotes the separation between the time domain

subcarriers, and xm denotes the information symbol on the
m-th subcarrier at t = (2m−1)−M

2
Λ
M . Matching to the pulse

shaping function, the impulse response of the matched filter
is given as hf(t) =

M
Λ sinc

(
M
Λ t

)
.

For a conventional system where the noise is modeled with
i.i.d AWGN noise η with zero mean and σ2 power spectrum
density, it is trivial to find out that the power of the hf(t)
filtered noise ηf is given as M

Λ σ2. On the contrary, if the
noise is signal dependent with the correlation (43) and (44),
the noise is no longer i.i.d. The correlation of the filtered
noise is given as E [NhtN

∗
ht′ |hf(t)] and E [NhtNht′ |hf(t)].

Additionally, the passband of the filter hf(t) is equal to the
bandwidth of the signal Xt, making the δ(t) approximation
employed previously not applicable. Hence, the noise statistics
of each subcarrier will become dependent on not only the
signal on the subcarrier, but also on the signals on the neighbor
subcarriers. As an example, the autocorrelation of the filtered



12

noise is written as

E[NhtN
∗
ht′ |hf(t)]

=

∫
σ2M

Λ
sinc

(
M

Λ
(t− τ)

)
M

Λ
sinc

(
M

Λ
(t′ − τ)

)
×
(
1 + |Xτ |2 + |Xτ |4

)
dτ,

=
M

Λ
σ2sinc

(
M

Λ
(t− t′)

)
+

∫
σ2M

Λ
sinc

(
M

Λ
(t− τ)

)
M

Λ
sinc

(
M

Λ
(t′ − τ)

)
×
(
|Xτ |2 + |Xτ |4

)
dτ, (48)

by substituting signal (47) into (45). Now considering t =
(2m−1)−M

2
Λ
M , m = 1, 2, ...,M and t′ = (2m′−1)−M

2
Λ
M , m′ =

1, 2, ...,M at subcarriers, in the absence of signal dependency
(i.e., the terms |Xτ |2 and |Xτ |4 are dropped), the integral term
in the right hand side (RHS) of (48) vanishes. In addition, the
sinc term in the RHS of (48) equals M

Λ σ2 at m = m′ and
equals zero at m ̸= m′, suggesting no ISI in the absence
of signal dependency. On the contrary, the integral term in
the RHS of the (48) shows nonzero autocorrelation in both
m = m′ and m ̸= m′ cases. Hence, it is clear that ISI will be
introduced in the filtered system by the signal dependence of
the noise.

APPENDIX B
PINSKER FORMULA LOWER BOUND DERIVATION

In order to derive a capacity lower bound using the Pinsker
formula, one will first have to rewrite the complex system with
a vector real systems as [14], [24]

Y = X+N, (49)

where the conditional statistics of the noise vector are de-
scribed by (7), (8) and (9). Without knowing the exact channel
model (i.e. the conditional PDF), the capacity of such a system
could be lower bounded by the MI assuming input is a
complex circular Gaussian distribution and the channel is a
Gaussian distribution with specified correlations. In this work,
we refer to this lower bound as the Pinsker lower bound Cpin,
and it is defined by substituting the Gaussian distributions into
the random vector MI equation as

Cpin =
1

2
log2

detΣX detΣY

detΣU
(50)

where the vector U = [Xr, Xi, Yr, Yi]
T is an auxiliary random

vector introduced for the convenience in the notation, ΣX, ΣY

and ΣU are the input, output, and input-output joint covariance
matrices respectively. The complex input is considered to be
a complex circular Gaussian with zero mean and σ2

S variance,
the covariance matrix of the rewritten input vector X is
given as ΣX =

σ2
S

2 I2. The zero mean signal dependent
noise is characterized by the conditional statistics (7), (8) and
(9), hence the covariance matrix of the noise vector N is
rearranged as (51). Using the covariance matrix of the input
ΣX and the noise ΣN|X, the covariance matrix of the output

Y can be acquired by marginalizing the conditional output
correlation matrix as

ΣY =

[
σ2
N

2
(1 + σ2

S + 2σ4
S) +

σ2
S

2

]
I2. (52)

Recall the circular complex Gaussian assumed for the input,
the real and imaginary parts of the input are independent to
each other. The independence leads to zero marginal corre-
lation of the real and imaginary channels, i.e. E[YrYi] = 0.
Furthermore, this property also simplifies the computation of
the marginalization of the second moment of each output
channel, resulting in equal second moment, E[YrYr] = E[YiYi].

The final component required for the Pinsker lower bound
(50) is the input-output joint covariance matrix ΣU. The joint
covariance matrix consists of three sub-matrices as

ΣU =

[
ΣX ΣXY

ΣXY
T ΣY

]
. (53)

where ΣXY denotes the input-output covariance matrix. Due
to the assumed circular symmetric input, it is easy to show
that the input-output correlation matrix is a diagonal matrix
as

ΣXY =
σ2
S

2
I2 (54)

Finally, substitute the covariance matrices derived above
into (50) using the same techniques as in [14], the Pinsker
lower bound Cpin is obtained as

Cpin = log2

(
1 +

σ2
S

σ2
N(1 + σ2

S + 2σ4
S)

)
. (55)
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