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Abstract

Abundant high-rate (n, k) minimum storage regenerating (MSR) codes have been reported in the

literature. However, most of them require contacting all the surviving nodes during a node repair process,

resulting in a repair degree of d = n− 1. In practical systems, it may not always be feasible to connect

and download data from all surviving nodes, as some nodes may be unavailable. Therefore, there is a

need for MSR code constructions with a repair degree of d < n − 1. Up to now, only a few (n, k)

MSR code constructions with repair degree d < n − 1 have been reported, some have a large sub-

packetization level, a large finite field, or restrictions on the repair degree d. In this paper, we propose
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a new (n, k) MSR code construction that works for any repair degree d > k, and has a smaller sub-

packetization level or finite field than some existing constructions. Additionally, in conjunction with a

previous generic transformation to reduce the sub-packetization level, we obtain an MDS array code

with a small sub-packetization level and (1+ϵ)-optimal repair bandwidth (i.e., (1+ϵ) times the optimal

repair bandwidth) for repair degree d = n − 1. This code outperforms some existing ones in terms of

either the sub-packetization level or the field size.

Index Terms

Maximum distance separable, minimum storage regenerating codes, repair bandwidth, repair degree,

sub-packetization.

I. INTRODUCTION

In distributed storage systems, data are stored across multiple unreliable storage nodes. Thus,

redundancy needs to be introduced to provide fault tolerance. Classic Maximum Distance Sepa-

rable (MDS) codes can provide an optimal tradeoff between fault tolerance and storage overhead

and thus is an efficient redundancy mechanism deployed for many years. However, repairing a

failed node requires an excessive repair bandwidth, defined as the amount of data downloaded

to repair a failed node.

One way to reduce the repair bandwidth is to use MDS array codes, where the codeword

is an array of size N × n instead of a vector. For a distributed storage system encoded by an

(n, k) MDS array code, each node stores N symbols, where N is called the sub-packetization

level. The cut-set bound in [1] shows that the repair bandwidth of (n, k) MDS array codes with

sub-packetization level N is lower bounded by γoptimal =
d

d−k+1
N . Here, d such that k ≤ d < n

denotes the number of helper nodes contacted during the repair process and is named repair

degree. MDS array codes with repair bandwidth attaining this lower bound are said to have the

optimal repair bandwidth and are also referred to as MSR codes in [1].
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During the past decade, various MSR codes have been proposed [2]–[24]. However, in the high-

rate (e.g., k
n
> 1

2
) regime, existing constructions have two imperfections: i) most constructions

have a repair degree of d = n− 1, meaning that repairing a failed node requires contacting all

the remaining surviving nodes. However, it is not always feasible to connect and download data

from all the surviving nodes in a practical system, as some nodes may be unavailable due to other

assigned jobs or network congestion [25]; ii) all the known (n, k) MSR code constructions with

repair degree d = n− 1 require a significantly large sub-packetization level N , i.e., N ≥ r
n

r+1 ,

where r = n− k. This can lead to reduced design space in various system parameters and make

managing meta-data difficult, hindering implementation in practical systems [26].

A. Related work on (n, k) MSR codes with repair degree d < n− 1

Up to now, only a few results on MSR codes with repair degree d < n−1 have been reported

in the literature. In [27], [28], the authors showed the existence of MSR codes with repair degree

d < n−1, and some explicit constructions were given in [18]–[22], [24]. In this paper, we focus

only on explicit constructions.

In Sections IV and VIII of [18], Ye and Barg proposed two (n, k) MSR codes with sub-

packetization level (d − k + 1)n by using diagonal matrices and permutation matrices as the

building blocks of the parity-check matrices. In [19], an (n, k) MSR code with a smaller sub-

packetization level of (d− k + 1)
n

d−k+1 was generated, however, d is restricted to be k + 1, k +

2, k + 3. In [20], Chen and Barg presented an (n, k) MSR codes with a sub-packetization level

of (d− k + 1)n. In [21], Liu et al. gave an (n, k) MSR code with a sub-packetization level of

(d− k + 1)
n
2 . Recently, in [22], an (n, k) MSR code was constructed with a sub-packetization

level of 2
n
3 and a repair degree of d = k + 1. This MSR code was generalized to support any

repair degree d with d ∈ [k + 1 : n − 1) and a sub-packetization level of w
n

w+1 in a follow-up

work [23], where w = d − k + 1, but requires searching over a finite field with a size larger

than nw +
w+1∑
t=1

(
w+1
t

)wt(t−1)
2

. Despite the additional effort required in searching (i.e., explicit
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constructions are unknown for general code parameters n, k, and d), the MSR codes in [22]

and [23] have the smallest sub-packetization level among all existing MSR codes with the same

n, k, d. Independent and parallel to this work, Zhang and Zhou proposed an (n, k) MSR code

with a sub-packetization level of 2
n
2 in a very recent work [32], which is similar to the one

proposed in this paper but requires a larger finite field when d − k + 1 > 2. For convenience,

in this paper, these eight codes are referred to as YB code 1, YB code 2, VBK code, CB code,

LLT code, WLHY code, LWHY code, and ZZ code, respectively.

Overall, most of the aforementioned (n, k) MSR codes with repair degree d < n − 1 either

have a large sub-packetization level (i.e., N = (d − k + 1)n) [18], [20] or are limited to only

a few values of the repair degree d [19], [22]. We want to point out that there are a few MSR

codes with multiple repair degrees, e.g., [24] and MSR codes in Sections V and IX of [18],

which are outside of the scope of this paper as we only focus on MSR codes with a single

repair degree.

B. Related work on (n, k) MDS array codes with small sub-packetization level

Large sub-packetization levels in codes can hinder their implementation in practical systems

[26], making it desirable to construct codes with small sub-packetization levels. Recent works

have demonstrated that high-rate MDS array codes with small sub-packetization levels can be

constructed by sacrificing the optimality of the repair bandwidth.

In [26], two high-rate MDS array codes with small sub-packetization levels and (1+ϵ)-optimal

repair bandwidth were proposed. The first code has a sub-packetization level of N = rτ and

the repair bandwidth is no larger than (1 + 1
τ
) times the optimal repair bandwidth, where τ is

an integer and 1 ≤ τ < ⌈n
r
⌉. However, this code is constructed over a significantly large finite

field Fq, i.e., q ≥ n(r−1)N+1, which may hinder its deployment in practical systems. The second

MDS array code is obtained by combining an MDS array code with optimal repair bandwidth

and another error-correcting code with specific parameters. For convenience, we refer to these
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two codes as RTGE code 1 and RTGE code 2 in this paper.

Recently, a generic transformation was presented in [29] that can convert any MSR code into

an MDS array code with a small sub-packetization level and (1 + ϵ)-optimal repair bandwidth,

resulting in several explicit MDS array codes with small sub-packetization levels. Note that all

the MDS array codes in [26], [29] have a repair degree of d = n− 1.

C. Main Contribution

The main contribution of this paper is the derivation of a new (n, k) MSR code construction

with any given repair degree d such that k < d ≤ n − 1, where its sub-packetization level is

w⌈n
2
⌉ with w = d− k + 1. The required field size q is a prime power such that q > ⌈n

2
⌉(w + 2)

if w = 2, q > ⌈n
2
⌉(w + 1) if 2 < w < r, and q > ⌈n

2
⌉w if w = r. Compared with existing

constructions, the new MSR code C1 has advantages in terms of either the sub-packetization

level or the field size. Please refer to Tables II and III for more details.

Furthermore, the MSR code C1 can also be used for d = n − 1. When combined with the

generic transformation in [29], we obtain a new (n, k) MDS array code C2 with a small sub-

packetization level of r⌈
n
2s

⌉ and repair degree d = n− 1, where r = n− k, s is any factor of n,

and the require field size is q > sr⌈ n
2s
⌉. The sub-packetization level or finite field size of C2 is

smaller than that of existing ones.

The remainder of the paper is organized as follows. Section II reviews some necessary

preliminaries of high-rate MDS array codes. The new (n, k) MSR code C1 is presented in Section

III. Section IV gives an MDS array code C2 with a small sub-packetization level. Section V

compares key parameters among the MDS array codes proposed in this paper and some existing

ones. Finally, Section VI concludes the work.

II. PRELIMINARIES

In this section, we introduce some preliminaries on MDS array codes and a special partition

for a given basis. Throughout this paper, we assume that q is a prime power and Fq is the finite

May 30, 2023 DRAFT



6

field with q elements. Let [a : b) be the set {a, a+ 1, . . . , b− 1} for two integers a and b. For a

matrix A, denote by A[a, b], the (a, b)-th entry and A[a, :] the a-th row, where a, b ≥ 0.

A. (n, k) Array Codes

Let f0, f1, . . . , fn−1 be the data stored across a distributed storage system consisting of n nodes

based on an (n, k) array code, where fi is a column vector of length N over Fq. We consider

(n, k) array codes defined by the following parity-check form:

A0,0 A0,1 · · · A0,n−1

A1,0 A1,1 · · · A1,n−1

...
... . . . ...

Ar−1,0 Ar−1,1 · · · Ar−1,n−1


︸ ︷︷ ︸

A



f0

f1
...

fn−1


= 0rN , (1)

where r = n−k, 0rN denotes the zero column vector of length rN , and will be abbreviated as 0

in the sequel if its length is clear. The rN ×nN block matrix A in (1) is called the parity-check

matrix of the code, which can be written as A = (At,i)t∈[0:r),i∈[0:n), to indicate the block entries,

where At,i is an N ×N matrix.

Note that for each t ∈ [0 : r),
n−1∑
i=0

At,ifi = 0 contains N equations. For convenience, we say
n−1∑
i=0

At,ifi = 0 the t-th parity-check group.

B. The MDS property

An (n, k) array code defined by (1) is MDS if the source file can be reconstructed by

connecting any k out of the n nodes. That is, any r × r sub-block matrix (At,i)t∈[0:r),i∈J of

the block matrix (At,i)t∈[0:r),i∈[0:n) is non-singular [18], where J is any r-subset of [0 : n). In the

following, we introduce some lemmas that will be helpful when verifying the MDS property of

the new codes in the later sections.
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Lemma 1. For t, i ∈ [0 : r), let Bt,i be an N ×N upper triangular matrix, i.e.,

Bt,i[a, b] = 0 for 0 ≤ b < a < N, (2)

then the block matrix B = (Bt,i)t∈[0:r),i∈[0:r) is non-singular if

i) Bt,i[a, a] = (B1,i[a, a])
t for i, t ∈ [0 : r) and a ∈ [0 : N),

ii) B1,i[a, a] ̸= B1,j[a, a] for any i, j ∈ [0 : r) with j ̸= i and a ∈ [0 : N).

Proof: The proof is given in Appendix A.

C. Repair Mechanism

For an (n, k) array code, suppose that node i (i ∈ [0 : n)) fails. Let Hi be any given d-subset of

[0 : n)\{i}, which denotes the set of indices of the helper nodes, and let Li = [0 : n)\(Hi∪{i})

be the set of indices of unconnected nodes. The data downloaded from helper node j can be

represented by Ri,jfj , where Ri,j is a βi,j × N matrix of full rank with βi,j ≤ N . We refer to

Ri,j as the repair matrix of node i.

Note that the content of node i can be acquired from the parity-check equations. In this paper,

similar to [29], for convenience, we only consider the symmetric situation where δ (N/r ≤ δ ≤

N ) linearly independent equations are acquired from each of the r parity-check groups, where

these δ linear independent equations are linear combinations of the corresponding N parity-check

equations in a parity-check group. Precisely, the δ linear independent equations from the t-th

parity-check group can be obtained by multiplying it with a δ×N matrix Si,t of full rank, where

Si,t is called the select matrix. As a consequence, the following linear equations are available:



Si,0A0,i

Si,1A1,i

...

Si,r−1Ar−1,i


fi

︸ ︷︷ ︸
useful data

+
∑
l∈Li



Si,0A0,l

Si,1A1,l

...

Si,r−1Ar−1,l


fl

︸ ︷︷ ︸
unknown data by fl

+
∑
j∈Hi



Si,0A0,j

Si,1A1,j

...

Si,r−1Ar−1,j


fj

︸ ︷︷ ︸
interference by fj

= 0. (3)
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The repair of node i requires solving (3) from the downloaded data Ri,jfj , j ∈ Hi. Then the

repair bandwidth of node i is γi =
∑
j∈Hi

rank(Ri,j). If γi = d
d−k+1

N , then node i is said to have

the optimal repair bandwidth, which can be accomplished if rank(Ri,j) =
N

d−k+1
for all j ∈ Hi.

If the repair bandwidth of an MDS array code is (1 + ϵ) N
d−k+1

where ϵ < 1 is a small constant,

the MDS array code is said to have (1 + ϵ)-optimal repair bandwidth in [31].

D. Partition of basis {e0, . . . , eN−1}

Assuming that N = wm for two integers w and m with w,m ≥ 2, let e0, . . . , ewm−1 be a

basis of Fwm

q . For simplicity, one can regard them as the standard basis, i.e.,

ei = (0, . . . , 0, 1, 0, . . . , 0), i ∈ [0 : wm),

with only the i-th entry being nonzero.

Then for any a, b ∈ [0 : N), we have

ea(eb)
⊤ =

 1, if a = b,

0, otherwise,
(4)

where ⊤ represents the transpose operator.

In [29], a class of special partition sets of {e0, . . . , ewm−1} is given for w ≥ 2. As these

special partition sets play an important role in our proposed new construction, we revisit them

for completeness in the following.

Given an integer a ∈ [0 : wm), denote by (a0, . . . , am−1) its w-ary expansion with a0

being the most significant digit, i.e., a =
m−1∑
j=0

wm−1−jaj . For convenience, we also write a =

(a0, . . . , am−1). For i ∈ [0 : m) and t ∈ [0 : w), define a subset of {e0, . . . , ewm−1} as

Vi,t = {ea|ai = t, 0 ≤ a < wm}, (5)

where ai is the i-th element in the w-ary expansion of a.

Obviously, |Vi,t| = wm−1, and Vi,0, Vi,1, . . . , Vi,w−1 is a partition of the set {e0, . . . , ewm−1} for

any i ∈ [0 : m). Table I gives two examples of the set partitions defined in (5).
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TABLE I

(A) AND (B) DENOTE THE m PARTITION SETS OF {e0, . . . , ewm−1} DEFINED BY (5) FOR m = 3, w = 2, AND m = 2, w = 3,

RESPECTIVELY.

i 0 1 2 i 0 1 2

Vi,0

e0 e0 e0

Vi,1

e4 e2 e1

e1 e1 e2 e5 e3 e3

e2 e4 e4 e6 e6 e5

e3 e5 e6 e7 e7 e7

(A)

i 0 1 i 0 1 i 0 1

Vi,0

e0 e0

Vi,1

e3 e1

Vi,2

e6 e2

e1 e3 e4 e4 e7 e5

e2 e6 e5 e7 e8 e8

(B)

For convenience of notation, we also denote by Vi,t the wm−1 × wm matrix whose rows are

formed by vectors ea in their corresponding sets, and a is sorted in ascending order. For example,

when m = 3 and w = 2, V0,0 can be viewed as a 4× 8 matrix as follows

V0,0 =
(
e⊤0 e

⊤
1 e

⊤
2 e

⊤
3

)⊤
.

E. Basic Notations and Equalities

In this subsection, we introduce some useful notations and equalities that will facilitate the

proof of the new codes. Let N = wm, for a = (a0, . . . , am−1) ∈ [0 : N), i ∈ [0 : m) and

u ∈ [0 : w), define a(i, u) as

a(i, u) = (a0, . . . , ai−1, u, ai+1, . . . , am−1), (6)

i.e., replacing the i-th digit by u.

For a = (a0, a1, . . . , am−2) ∈ [0 : N/w) and i ∈ [0 : m), define

gi,u(a) = (a0, a1, . . . , ai−1, u, ai, . . . , am−2), (7)

i.e., inserting u to the i-th digit of (a0, a1, . . . , am−2). Then for i, j ∈ [0 : m) and u, v ∈ [0 : w),
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we have that the j-th digit of gi,u(a) is

(gi,u(a))j =


aj, if j < i,

u, if j = i,

aj−1, if j > i.

(8)

Replacing the j-th digit of gi,u(a) by v gives

(gi,u(a))(j, v) =


gi,u(a(j, v)), if j < i,

gi,v(a), if j = i,

gi,u(a(j − 1, v)), if j > i.

(9)

Let e(N/w)
0 , e

(N/w)
1 , . . . , e

(N/w)
N/w−1 be the standard basis vectors of FN/w

q over Fq, then by (7), Vi,u

in (5) can be rewritten as

Vi,u =

N/w−1∑
a=0

(e(N/w)
a )⊤egi,u(a), u ∈ [0 : w), (10)

i.e., the a-th row of the matrix Vi,u is

Vi,u[a, :] = egi,u(a), 0 ≤ u < w, a ∈ [0 : N/w). (11)

III. A NEW (n, k) MSR CODE C1 WITH REPAIR DEGREE k < d < n

In this section, we propose an (n = 2m, k = n − r) MSR code construction C1 with sub-

packetization level N = wm and repair degree d = k+w− 1 < n− 1 for some w ∈ [2 : r+1).

The new MSR code can be viewed as a combination of the YB code 1 in [18] and CB code in

[20], i.e., half of the parity-check matrix of C1 is similar to the parity-check matrix of the YB

code 1 while the other half is similar to that of CB code. This non-trivial combination leads to

C1 having a larger code length or, equivalently, a smaller sub-packetization level than that of the

CB code and YB code 1. Throughout this section, let c be a primitive element of the finite field

Fq.

DRAFT May 30, 2023



11

Construction 1. For N = wm and 2 ≤ w ≤ r, we define the parity-check matrix (At,i)t∈[0:r),i∈[0:n)

of the (n = 2m, k = n− r) array code C1 over Fq as

At,i =


N−1∑
a=0

λt
i,ai

e⊤a ea +
N−1∑

a=0,ai=0

w−1∑
u=1

(λt
i,0 − λt

i,u)e
⊤
a ea(i,u), if i ∈ [0 : m),

N−1∑
a=0

λt
i,ai−m

e⊤a ea, if i ∈ [m : n),

(12)

where the repair degree is d = k + w − 1, λi,j ∈ Fq, ai denotes the i-th digit of the w-ary

expansion of a, and
N−1∑

a=0,ai=0

denotes a runs through all [0 : N) but with the restriction ai = 0.

We further define the repair matrix and select matrix of node i as

Ri,j = Si,t =

 Vi,0, if i ∈ [0 : m),

Vi,0 + Vi,1 + · · ·+ Vi,w−1, if i ∈ [m : n),
(13)

for t ∈ [0 : r) and j ∈ Hi, where Hi is any d-subset of [0 : n) \ {i}, Vi,0, Vi,1, . . . , Vi,w−1 for

i ∈ [0 : m) are defined in (5) and we further define

Vi,u = Vi−m,u, for i ∈ [m,n), u ∈ [0 : w) (14)

for convenience of notation.

In what follows, we first give an example to show the connection between the new code and

the YB code 1, CB code, and then anther example to show the main idea of this construction.

Example 1. Consider the example where r = 3, w = 2, and m = 6. In this case, let

(At,i)t∈[0:3),i∈[0:12) be the parity-check matrix of the (12, 9) code C1, then (At,i)t∈[0:3),i∈[0:6) is

exactly the parity-check matrix of the (6, 3) YB code 1 in [18] while (At,i)t∈[0:3),i∈[6:12) is exactly

the parity-check matrix of the (6, 3) CB code in [20].

Example 2. An example of the (6, 3) MSR code C1 with sub-packetization level 8 and re-

pair degree 4 over Fq, where q is any prime power larger than 12. The parity-check matrix
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(At,i)t∈[0:3),i∈[0:6) is defined as

At,0 =



λt
0,0e0 + (λt

0,0 − λt
0,1)e4

λt
0,0e1 + (λt

0,0 − λt
0,1)e5

λt
0,0e2 + (λt

0,0 − λt
0,1)e6

λt
0,0e3 + (λt

0,0 − λt
0,1)e7

λt
0,1e4

λt
0,1e5

λt
0,1e6

λt
0,1e7



, At,1 =



λt
1,0e0 + (λt

1,0 − λt
1,1)e2

λt
1,0e1 + (λt

1,0 − λt
1,1)e3

λt
1,1e2

λt
1,1e3

λt
1,0e4 + (λt

1,0 − λt
1,1)e6

λt
1,0e5 + (λt

1,0 − λt
1,1)e7

λt
1,1e6

λt
1,1e7



,

At,2 =



λt
2,0e0 + (λt

2,0 − λt
2,1)e1

λt
2,1e1

λt
2,0e2 + (λt

2,0 − λt
2,1)e3

λt
2,1e3

λt
2,0e4 + (λt

2,0 − λt
2,1)e5

λt
2,1e5

λt
2,0e6 + (λt

2,0 − λt
2,1)e7

λt
2,1e7



, At,3 =



λt
3,0e0

λt
3,0e1

λt
3,0e2

λt
3,0e3

λt
3,1e4

λt
3,1e5

λt
3,1e6

λt
3,1e7



, At,4 =



λt
4,0e0

λt
4,0e1

λt
4,1e2

λt
4,1e3

λt
4,0e4

λt
4,0e5

λt
4,1e6

λt
4,1e7



, At,5 =



λt
5,0e0

λt
5,1e1

λt
5,0e2

λt
5,1e3

λt
5,0e4

λt
5,1e5

λt
5,0e6

λt
5,1e7



,

where

λ0,0 = 1, λ1,0 = c4, λ2,0 = c8, λ3,0 = c2, λ4,0 = c6, λ5,0 = c10,

λ0,1 = c, λ1,1 = c5, λ2,1 = c9, λ3,1 = c3, λ4,1 = c7, λ5,1 = c11, (15)

with c being a primitive element in Fq.

Suppose that Node 3 fails and Node 0 is not connected, we claim that Node 3 can be repaired

by connecting Nodes 1, 2, 4, 5 and downloading (V0,0+V0,1)fj (i.e., (e0+ e4)fj, (e1+ e5)fj, (e2+

e6)fj, (e3 + e7)fj) for j = 1, 2, 4, 5, and choose S3,t = V0,0 + V0,1 for t = 0, 1, 2. Then, from (3),
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we have

e0 + e4

e1 + e5

e2 + e6

e3 + e7

λ3,0e0 + λ3,1e4

λ3,0e1 + λ3,1e5

λ3,0e2 + λ3,1e6

λ3,0e3 + λ3,1e7

λ2
3,0e0 + λ2

3,1e4

λ2
3,0e1 + λ2

3,1e5

λ2
3,0e2 + λ2

3,1e6

λ2
3,0e3 + λ2

3,1e7



f3 +



e0 + e4

e1 + e5

e2 + e6

e3 + e7

λ0,0(e0 + e4)

λ0,0(e1 + e5)

λ0,0(e2 + e6)

λ0,0(e3 + e7)

λ2
0,0(e0 + e4)

λ2
0,0(e1 + e5)

λ2
0,0(e2 + e6)

λ2
0,0(e3 + e7)



f0 +



e0 + e4

e1 + e5

e2 + e6

e3 + e7

λ1,0(e0 + e4) + (λ1,0 − λ1,1)(e2 + e6)

λ1,0(e1 + e5) + (λ1,0 − λ1,1)(e3 + e7)

λ1,1(e2 + e6)

λ1,1(e3 + e7)

λ2
1,0(e0 + e4) + (λ2

1,0 − λ2
1,1)(e2 + e6)

λ2
1,0(e1 + e5) + (λ2

1,0 − λ2
1,1)(e3 + e7)

λ2
1,1(e2 + e6)

λ2
1,1(e3 + e7)



f1

=−



e0 + e4

e1 + e5

e2 + e6

e3 + e7

λ2,0(e0 + e4) + (λ2,0 − λ2,1)(e1 + e5)

λ2,1(e1 + e5)

λ2,0(e2 + e6) + (λ2,0 − λ2,1)(e3 + e7)

λ2,1(e3 + e7)

λ2
2,0(e0 + e4) + (λ2

2,0 − λ2
2,1)(e1 + e5)

λ2
2,1(e1 + e5)

λ2
2,0(e2 + e6) + (λ2

2,0 − λ2
2,1)(e3 + e7)

λ2
2,1(e3 + e7)



f2 −



e0 + e4

e1 + e5

e2 + e6

e3 + e7

λ4,0(e0 + e4)

λ4,0(e1 + e5)

λ4,1(e2 + e6)

λ4,1(e3 + e7)

λ2
4,0(e0 + e4)

λ2
4,0(e1 + e5)

λ2
4,1(e2 + e6)

λ2
4,1(e3 + e7)



f4 −



e0 + e4

e1 + e5

e2 + e6

e3 + e7

λ5,0(e0 + e4)

λ5,1(e1 + e5)

λ5,0(e2 + e6)

λ5,1(e3 + e7)

λ2
5,0(e0 + e4)

λ2
5,1(e1 + e5)

λ2
5,0(e2 + e6)

λ2
5,1(e3 + e7)



f5,

(16)
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which can be reformulated as
I4 I4 I4

λ3,0I4 λ3,1I4 λ0,0I4

λ2
3,0I4 λ2

3,1I4 λ2
0,0I4


︸ ︷︷ ︸

M


V0,0f3

V0,1f3

(V0,0 + V0,1)f0

 = κ∗, (17)

where κ∗ denotes the data related to f1, f2, f4, f5 in (16) and can be determined from the

downloaded data.

Using Lemma 1 and (15), we can see that the matrix M in (17) is non-singular. Therefore,

we can solve (17) to obtain V0,0f3 and V0,1f3 (i.e., f3) and regenerate the lost data.

In Example 2, it is obvious to see that all the matrices At,i, t ∈ [0 : 3), i ∈ [0 : 6) are upper

triangular. The situation also holds for the general case (cf. (12)). Therefore, the MDS property

can be easily verified according to Lemma 1. In the following, we formally analyze the MDS

property of the new code C1.

Theorem 1. The new code C1 is an MDS array code if

i) λi,u ̸= λj,v for u, v ∈ [0 : w) and i, j ∈ [0 : n) with i ̸≡ j mod m,

ii) λi,u ̸= λi+m,u for u ∈ [0 : w) and i ∈ [0 : m).

Proof: It suffices to prove that for any pairwise distinct j0, j1, . . . , jr−1 ∈ [0 : n), the block

matrix 

A0,j0 A0,j1 · · · A0,jr−1

A1,j0 A1,j1 · · · A1,jr−1

...
...

...
...

Ar−1,j0 Ar−1,j1 · · · Ar−1,jr−1


(18)

is non-singular over Fq.
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For any a, b ∈ [0 : N), i ∈ [0 : n) and t ∈ [0 : r), according to (12), we have

At,i[a, b] = eaAt,ie
⊤
b

=


ea

(
N−1∑
z=0

λt
i,zi

e⊤z ez +
N−1∑

z=0,zi=0

w−1∑
u=1

(λt
i,0 − λt

i,u)e
⊤
z ez(i,u)

)
e⊤b , if i ∈ [0 : m),

ea

(
N−1∑
z=0

λt
i,zi−m

e⊤z ez

)
e⊤b , if i ∈ [m : n),

=


λt
i,ai

eae
⊤
b +

(
ea

N−1∑
z=0,zi=0

w−1∑
u=1

(λt
i,0 − λt

i,u)e
⊤
z ez(i,u)

)
e⊤b , if i ∈ [0 : m),

λt
i,ai−m

eae
⊤
b , if i ∈ [m : n),

=



λt
i,ai

, if i ∈ [0 : m), and b = a,

λt
i,0 − λt

i,u, if i ∈ [0 : m), ai = 0, and b = a(i, u) for u = 1, 2, . . . , w − 1,

λt
i,ai−m

, if i ∈ [m : n) and b = a,

0, otherwise,

(19)

which implies that At,i[a, b] = 0 for 0 ≤ b < a < N (i.e., At,i is an upper triangular matrix) and

At,i[a, a] = λt
i,ai%m

= (A1,i[a, a])
t for a ∈ [0 : N), (20)

where % denotes the modulo operation, t ∈ [0 : r), and i ∈ [0 : n). This implies that i) of

Lemma 1 holds for the matrix in (18).

For any t ∈ [0 : r), a ∈ [0 : N) and 0 ≤ i < j < n, by (20), we have

A1,i[a, a]− A1,j[a, a] =

 λi,ai%m
− λj,aj%m

, if i ̸≡ j mod m,

λi,ai%m
− λj,ai%m

, otherwise,

which together with i) and ii) implies A1,i[a, a]− A1,j[a, a] ̸= 0, i.e., ii) of Lemma 1 holds for

the matrix in (18). Finally, applying Lemma 1, we claim that the matrix in (18) is non-singular,

and then we reach the desired result.

Analyzing the repair property requires that (3) is solvable based on the downloaded data. Thus

it is helpful to characterize the product of Si,t and At,j beforehand.
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Lemma 2. For any i, j ∈ [0 : n), rewrite them as i = g0m+i′ and j = g1m+j′ for g0, g1 ∈ {0, 1}

and i′, j′ ∈ [0 : m). Then for t ∈ [0 : r), we have

i) Si,tAt,i =


λt
i,0Vi,0 + (λt

i,0 − λt
i,1)Vi,1 + · · ·+ (λt

i,0 − λt
i,w−1)Vi,w−1, if i ∈ [0 : m),

λt
i,0Vi,0 + λt

i,1Vi,1 + · · ·+ λt
i,w−1Vi,w−1, if i ∈ [m : 2m),

ii) Si,tAt,j = Bt,j,iRi,j for j ̸= i, where Bt,j,i is an N
w
× N

w
matrix define by

Bt,j,i =



N/w−1∑
a=0

λt
j,aj

(e
(N/w)
a )⊤e

(N/w)
a

+
N/w−1∑

a=0,aj=0

w−1∑
u=1

(λt
j,0 − λt

j,u)(e
(N/w)
a )⊤e

(N/w)
a(j,u) , if j ∈ [0 : i′),

N/w−1∑
a=0

λt
j,aj−1

(e
(N/w)
a )⊤e

(N/w)
a

+
N/w−1∑

a=0,aj−1=0

w−1∑
u=1

(λt
j,0 − λt

j,u)(e
(N/w)
a )⊤e

(N/w)
a(j−1,u), if j ∈ [i′ + 1 : m),

N/w−1∑
a=0

λt
j,aj−m

(e
(N/w)
a )⊤e

(N/w)
a , if j ∈ [m : m+ i′),

N/w−1∑
a=0

λt
j,aj−m−1

(e
(N/w)
a )⊤e

(N/w)
a , if j ∈ [m+ i′ + 1 : n),

λt
j,0IN/w, if j ≡ i mod m,

(21)

where e
(N/w)
0 , e

(N/w)
1 , . . . , e

(N/w)
N/w−1 are the standard basis of FN/w

q .

iii) For the matrix in (21), we have

Bt,j,i[a, b] = 0 for any t ∈ [0, r), 0 ≤ b < a < N/w, (22)

and

Bt,j,i[a, a] =


λt
j,aj′

, if j′ < i′,

λt
j,0, if j′ = i′,

λt
j,aj′−1

, if j′ > i′,

(23)

for any a ∈ [0 : N/w).

Proof: The proof is given in Appendix B.

With this lemma, we can now analyze the repair property according to (3).
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Theorem 2. The new code C1 the optimal repair bandwidth with repair degree d = k+w− 1 if

i) λi,u ̸= λi,v for u, v ∈ [0 : w) with u ̸= v and i ∈ [0 : n),

ii) λi,u ̸= λj,v for u, v ∈ [0 : w) and i, j ∈ [0 : n) with i ̸≡ j mod m,

iii) If w < r, λi,0 ̸= λi+m,u and λi,u ̸= λi+m,0 for u ∈ [0 : w) and i ∈ [0 : m).

Proof: We consider the repair of node i when w < r, where we only check i ∈ [0 : m)

since the case i ∈ [m : n) can be verified similarly. By Lemma 2, we can express (3) as



Vi,0

λi,0Vi,0 +
w−1∑
t=1

(λi,0 − λi,t)Vi,t

...

λr−1
i,0 Vi,0 +

w−1∑
t=1

(λr−1
i,0 − λr−1

i,t )Vi,t


fi +

∑
l∈Li



B0,l,i

B1,l,i

...

Br−1,l,i


Ri,lfl +

∑
j∈Hi



B0,j,i

B1,j,i

...

Br−1,j,i


Ri,jfj = 0,

(24)

Let Li = {l0, l1, . . . , lr−w−1}, substituting them into the above equations, we then have



IN/w 0N/w · · · 0N/w B0,l0,i · · · B0,lr−w−1,i

λi,0IN/w (λi,0 − λi,1)IN/w · · · (λi,0 − λi,w−1)IN/w B1,l0,i · · · B1,lr−w−1,i

...
... . . . ...

... . . . ...

λr−1
i,0 IN/w (λr−1

i,0 − λr−1
i,1 )IN/w · · · (λr−1

i,0 − λr−1
i,w−1)IN/w Br−1,l0,i · · · Br−1,lr−w−1,i


︸ ︷︷ ︸

B

·



Vi,0fi
...

Vi,w−1fi

Ri,l0fl0
...

Ri,lr−w−1flr−w−1


= −

∑
j∈Hi



B0,j,i

B1,j,i

...

Br−1,j,i


Ri,jfj. (25)
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It is easy to see that the matrix B can be converted to

B′ =



IN/w IN/w · · · IN/w B0,l0,i · · · B0,lr−w−1,i

λi,0IN/w λi,1IN/w · · · λi,w−1IN/w B1,l0,i · · · B1,lr−w−1,i

...
... . . . ...

... . . . ...

λr−1
i,0 IN/w λr−1

i,1 IN/w · · · λr−1
i,w−1IN/w Br−1,l0,i · · · Br−1,lr−w−1,i


(26)

by elementary column operations.

By Lemma 2-iii), we have that the matrices B1,l0,i, . . . , B1,lr−w−1,i are upper triangular and

Bt,lj ,i[a, a] = (B1,lj ,i[a, a])
t, for t ∈ [0 : r), j ∈ [0 : r − w), and a ∈ [0 : N/w). Similar to the

proof of Theorem 1, by Lemma 1 and (23), we easily have that the block matrix B′ in (26) is

non-singular if

λi,0, λi,1, . . . , λi,w−1, B1,l0,i[a, a], . . . , B1,lr−w−1,i[a, a],

are pairwise distinct for any i ∈ [0 : m), l0, . . . , lr−w−1 ∈ Li, and a ∈ [0 : N), i.e.,

λi,0, λi,1, . . . , λi,w−1, B1,j,i[a, a], j ∈ [0 : n) \ {i},

are pairwise distinct for any i ∈ [0 : m) and a ∈ [0 : N) since Li is an arbitrary (r − w)-subset

of [0 : n) \ {i}, which can be satisfied if i)-iii) hold according to (23). Therefore, if conditions

i)-iii) hold, then B in (25) is non-singular. As a result, we can solve for Vi,0fi, · · · , Vi,w−1fi (i.e.,

fi) and Ri,lfl, l ∈ Li, since the right side hand of (25) is known from the downloaded data.

When w = r, the proof is similar to the case w < r instead that the condition in iii) is not

needed by noting Li = ∅ in (24).

Theorem 3. The requirements in items i), ii) of Theorem 1 and i)–iii) of Theorem 2 can be

fulfilled by setting

λi,u =


ci(w+2)+u, if w = 2,

ci(w+1)+u, if w ∈ [3 : r),

ciw+u, if w = r,

λi+m,u =



ci(w+2)+w+u, if w = 2,

ci(w+1)+w, if w ∈ [3 : r), u = 0,

ci(w+1)+u%(w−1)+1, if w ∈ [3 : r), u ≥ 1,

ciw+(u+1)%r, if w = r,

(27)

DRAFT May 30, 2023



19

for i ∈ [0 : m) and u ∈ [0 : w), where c is a primitive element of Fq with

q >


m(w + 2), if w = 2,

m(w + 1), if w ∈ [3 : r),

mw, if w = r.

Proof: We only verify the case w ∈ [3 : r), as the proofs for the remaining cases are similar.

For any i, j ∈ [0 : n) and u, v ∈ [0 : w) with (i, u) ̸= (j, v), rewrite i = g0m + i′ and

j = g1m+ j′, where g0, g1 ∈ {0, 1} and i′, j′ ∈ [0 : m).

i) When i ̸≡ j%m, by (27), we have λi,u = ci
′(w+1)+t and λj,v = cj

′(w+1)+s for some t, s ∈

[0 : w + 1). Then λi,u − λj,v = ci
′(w+1)+t(1− c(j

′−i′)(w+1)+s−t) ̸= 0 since

0 < |(j′ − i′)(w + 1) + s− t| ≤ (m− 1)(w + 1) + w = m(w + 1)− 1 < q − 1.

Therefore, i) of Theorem 1 and also ii) of Theorem 2 are satisfied.

ii) For i ∈ [0 : m), by (27), we have

λi+m,0 = ci(w+1)+w = cwci(w+1) = cwλi,0 ̸= λi,0,

λi+m,u = ci(w+1)+u%(w−1)+1 ̸= ci(w+1)+u = λi,u for u ≥ 1

since u%(w − 1) + 1 ̸= u for u ∈ [1 : w), which shows that ii) of Theorem 1 is satisfied.

iii) From (27), it is obvious to see λi,u ̸= λi,v for u ̸= v, i.e., i) of Theorem 2 is satisfied.

iv) For u ∈ [1 : w) and i ∈ [0 : m), by (27), we have

λi,0 − λi+m,u = ci(w+1) − ci(w+1)+(u%(w−1))+1 ̸= 0,

since c(u%(w−1))+1 ̸= 1 and λi,u−λi+m,0 = ci(w+1)+u−ci(w+1)+w ̸= 0. Note that λi,0 ̸= λi+m,0

has been proved in ii), thus, iii) of Theorem 2 is satisfied.

This completes the proof.

Remark 1. In Construction 1, we assumed that 2 | n for the (n, k) MSR code C1. If 2 ∤ n,

through shortening, one can easily obtain an (n, k) MSR code with repair degree d from an

(n+ 1, k + 1) MSR code C1 with repair degree d+ 1 [2, Theorem 6].
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Remark 2. When w = r, since Theorem 2-iii) is not needed to satisfy, then we can choose

λi+m,0, λi+m,1, . . . , λi+m,w−1 from the set {λi,0, λi,1, . . . , λi,w−1}, which leads to a smaller finite

field compared to the case w < r.

IV. A NEW MDS ARRAY CODE C2 WITH SMALL SUB-PACKETIZATION LEVEL

In [29], a generic transformation that can transform any (n′, k′) MSR code into a new (n =

sn′, k) MDS array code was proposed for any s ≥ 2, which can greatly reduce the sub-

packetization level by sacrificing a bit repair bandwidth. Note that the sub-packetization level

of the base code determines that of the new array code. Thus, it is desirable to choose an MSR

code with a small sub-packetization level as the base code. The MSR code C1 in the previous

section has a small sub-packetization and is suitable to serve as the base code. In this section,

by applying the generic transformation in [29] to the (n′, k′) code C1 with d′ = n′ − 1 in the

previous section, we construct an (n = sn′, k) MDS array code C2 with small sub-packetization

level and (1 + ϵ)-optimal repair bandwidth, where the repair degree is d = n− 1.

Construction 2. Based on the generic transformation in [29], the new (n, k) array code C2 is

constructed throught two steps as follows.

Step 1. Choosing the (n′, k′) MSR code C1 with repair degree d′ = n′ − 1 in Section III as

the base code. Let (At,i′)t∈[0:r),i′∈[0:n′), S ′
i′,t, and R′

i′,j′ denote its parity-check matrix, select

matrices, and repair matrices, where r = n′ − k′, i′, j′ ∈ [0 : n′), j′ ̸= i′, and t ∈ [0 : r).

Step 2. Applying the generic transformation in [29] to the (n′, k′) MSR code C1, then an

(n = sn′, k) array code C2 with repair degree d = n−1 is obtained, where the parity-check

matrix (At,i)t∈[0:r),i∈[0:n), select matrices Si,t, and repair matrices Ri,j are given as

At,i = xt,iA
′
t,i%n′ , Si,t = S ′

i%n′,t, Ri,j =

 R′
i%n′,j%n′ , if j ̸≡ i mod n′,

I, otherwise,
(28)

with i, j ∈ [0 : n), j ̸= i, t ∈ [0, r), xt,i ∈ Fq \ {0}, and again % denotes the modulo

operation.
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Lemma 3. ( [29, Theorem 2]) Every failed node of the new (n, k) array code C2 obtained

by the generic transformation can be regenerated by the repair matrices defined in (28), the

repair bandwidth is (1 + (s−1)(r−1)
n−1

)γoptimal, where γoptimal =
n−1
r
N denotes the optimal repair

bandwidth.

Example 3. From Construction 1, the parity-check matrix (At,i)t∈[0:2),i∈[0:4) of the (n′ = 4, k′ = 2)

MSR code C1 with d′ = 3 and N = (d′ − k′ + 1)n
′/2 = 22 is given as

At,0 =

 λt
0,0e0+(λt

0,0−λt
0,1)e2

λt
0,0e1+(λt

0,0−λt
0,1)e3

λt
0,1e2

λt
0,1e3

, At,1 =

 λt
1,0e0+(λt

1,0−λt
1,1)e1

λt
1,1e1

λt
1,0e2+(λt

1,0−λt
1,1)e3

λt
1,1e3

, At,2 =

 λt
2,0e0

λt
2,0e1

λt
2,1e2

λt
2,1e3

, At,3 =

 λt
3,0e0

λt
3,1e1

λt
3,0e2

λt
3,1e3

 ,

where t ∈ [0 : 2), λt,i, t ∈ [0 : 2), i ∈ [0 : 4) are set according to (27). By setting s = 2 in

Construction 2, we obtain an (n = 8, k = 6) MDS array code C2 with N = 22 and d = 7,

based on the (n′ = 4, k′ = 2) MSR code C1 from Construction 1. The parity-check matrix

(At,i)t∈[0:2),i∈[0:8) of the new MDS array code C2 is given as

At,0 =



λt
0,0e0 + (λt

0,0 − λt
0,1)e2

λt
0,0e1 + (λt

0,0 − λt
0,1)e3

λt
0,1e2

λt
0,1e3


, At,1 =



λt
1,0e0 + (λt

1,0 − λt
1,1)e1

λt
1,1e1

λt
1,0e2 + (λt

1,0 − λt
1,1)e3

λt
1,1e3


, At,2 =



λt
2,0e0

λt
2,0e1

λt
2,1e2

λt
2,1e3


,

At,3 =



λt
3,0e0

λt
3,1e1

λt
3,0e2

λt
3,1e3


, At,4 = c4t



λt
0,0e0 + (λt

0,0 − λt
0,1)e2

λt
0,0e1 + (λt

0,0 − λt
0,1)e3

λt
0,1e2

λt
0,1e3


, At,5 = c4t



λt
1,0e0 + (λt

1,0 − λt
1,1)e1

λt
1,1e1

λt
1,0e2 + (λt

1,0 − λt
1,1)e3

λt
1,1e3


,

At,6 = c4t



λt
2,0e0

λt
2,0e1

λt
2,1e2

λt
2,1e3


, At,7 = c4t



λt
3,0e0

λt
3,1e1

λt
3,0e2

λt
3,1e3


,

May 30, 2023 DRAFT



22

where

λ0,0 = 1, λ1,0 = c2, λ2,0 = c, λ3,0 = c3, λ0,1 = c, λ1,1 = c3, λ2,1 = 1, λ3,1 = c2, (29)

with c being a primitive element in Fq where q > 8.

Theorem 4. Setting xt,i in (28) as

xt,i = xt
i, (30)

for some xi ∈ Fq \ {0}, where i ∈ [0 : n) and t ∈ [0 : r), the code C2 in Construction 2 is

an (n = sn′, k) MDS array code with repair degree d = n − 1 over Fq and repair bandwidth

(1 + (s−1)(r−1)
n−1

)γoptimal, where γoptimal =
n−1
r
N , if the following conditions i)–iii) hold

i) xiλi′,u ̸= xjλj′,u′ for u, u′ ∈ [0 : r) and i, j ∈ [0 : n) with i ̸≡ j mod m,

ii) xiλi′,u ̸= xjλj′,u for u ∈ [0 : r) and i, j ∈ [0 : n) with i ̸= j and i ≡ j mod m,

iii) λi′,u ̸= λi′,u′ for u, u′ ∈ [0 : r) with u ̸= u′ and i′ ∈ [0 : n),

where i′ = i%n′ and j′ = j%n′.

Proof: The repair property follows from Lemma 3, and the proof of the MDS property is

similar to that of Theorem 1. Therefore, we omit it here.

Theorem 5. The requirements in items i) - iii) of Theorem 4 can be fulfilled by setting xi =

c⌊i/n
′⌋mr for i ∈ [0 : n), where c is a primitive element of Fq with q > smr.

Proof: For i, j ∈ [0 : n), we rewrite them as i = v0n
′+i′ and j = v1n

′+j′ for v0, v1 ∈ [0 : s)

and i′, j′ ∈ [0 : n), and further rewrite i′ and j′ as i′ = g0m + i′′ and j′ = g1m + j′′, where

g0, g1 ∈ {0, 1} and i′′, j′′ ∈ [0 : m). By (27), we have

xiλi′,u = c(v0m+i′′)r+(u+g0)%r. (31)

Then, by (31), items i) - iv) of Theorem 4 can be verified according to the following three

cases.
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• For u, u′ ∈ [0 : w) and i, j ∈ [0 : n) with i ̸≡ j mod m, i.e., i′′ ̸= j′′, we have

xiλi′,u − xjλj′,u′ = c(v0m+i′′)r+(u+g0)%r(1− c

(
(v1−v0)m+j′′−i′′

)
r+(u′+g1)%r−(u+g0)%r) ̸= 0

since 0 < |
(
(v1 − v0)m+ j′′ − i′′

)
r+ (u′ + g1)%r− (u+ g0)%r| ≤ smr− 1 < q− 1. Then

i) of Theorem 4 is satisfied.

• For u ∈ [0 : w) and i, j ∈ [0 : n) with i ̸= j and i ≡ j mod m, i.e, i′′ = j′′, we have

xiλi′,u − xjλj′,u = c(v0m+i′′)r+(u+g0)%r(1− c(v1−v0)mr+(u+g1)%r−(u+g0)%r) ̸= 0

since 0 < |(v1 − v0)mr + (u + g1)%r − (u + g0)%r| ≤ (s− 1)mr + 1 < q − 1, i.e., ii) of

Theorem 4 is satisfied.

• It is obvious that iii) of Theorem 4 is satisfied according to (27).

This completes the proof.

V. COMPARISONS

In this section, we provide a detailed comparison of some key parameters among the proposed

(n, k) MSR code C1 with repair degree d < n− 1, (n, k) MDS array code C2 with repair degree

d = n − 1, and existing ones. Table II provides the details of the comparison between the

proposed (n, k) MSR code C1 with repair degree d < n − 1 and existing ones. Meanwhile,

Figure 1 shows the sub-packetization levels and required field sizes of each code with a repair

degree of d = k + 2 when the code length ranges from 10 to 100.

From Table II and Figure 1, we see that the new MSR code C1 has the following advantages.

i) The new MSR code C1 has a significantly smaller sub-packetization level than the YB codes

1, 2 in [18], and the CB code in [20], and a smaller finite field than that of YB code 1.

ii) The new MSR code C1 works for any repair degree d ∈ [k + 1 : n), which is much more

flexible than that of the VBK code in [19], which is restricted to d = k + 1, k + 2, k + 3.

Additionally, C1 requires a much smaller finite field than the VBK code when w ∈ {2, 3, 4}.

Specifically, when w = 2, 3, and 4, C1 requires a finite field Fq with size q > 4⌈n
2
⌉, q > 3⌈n

2
⌉,
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TABLE II

A COMPARISON OF THE KEY PARAMETERS OF (n, k) MSR CODES WITH SUB-PACKETIZATION LEVEL N .

N Field size Repair degree References

YB code 1 wn q ≥ wn d = k + w − 1 ∈ [k + 1 : n) [18, Section IV]

YB code 2 wn q > n d = k + w − 1 ∈ [k + 1 : n) [18, Section VIII]

VBK code
w⌈ n

w
⌉

q ≥

6⌈n
2
⌉+ 2, w = 2

18⌈ n
w
⌉+ 2, w = 3, 4

d = k + 1, k + 2, k + 3 [19]
(w = 2, 3, 4)

CB code wn q > n+ w d = k + w − 1 ∈ [k + 1 : n) [20]

LLT code w⌈n
2
⌉ q > n+ ⌈n

2
⌉w d = k + w − 1 ∈ [k + 1 : n− 1) [21]

ZZ code w⌈n
2
⌉ q ≥ wn d = k + w − 1 ∈ [k + 1 : n) [32]

New code C1 w⌈n
2
⌉ q >


4⌈n

2
⌉, w = 2

⌈n
2
⌉(w + 1), w ∈ [3 : r)

⌈n
2
⌉w,w = r

d = k + w − 1 ∈ [k + 1 : n) Theorem 3
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Fig. 1. Comparision of the sub-packetization level and finite field size among the new (n, k) MSR code C1 and some known

ones with repair degree d = k + 2.
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and q > 4⌈n
2
⌉, respectively. In contrast, the VBK code requires a finite field Fq with size

q > 6⌈n
2
⌉ + 1, 18⌈n

3
⌉ + 1, and 18⌈n

4
⌉ + 1, respectively. However, it should be noted that

when d ∈ {k + 2, k + 3}, the VBK code has a smaller sub-packetization level than that of

the new code C1.

iii) C1 has the same sub-packetization level as that of the LLT code in [21] and ZZ code in

[32]. However, the (n, k) LLT code does not work for d = n−1 and requires a larger finite

field than C1, while the ZZ code requires a larger finite field than C1 when d > k + 1.

iv) The new MSR code C1 subsumes the YB code 1 in [18] and the CB code in [20] as

subcodes, i.e., YB code 1 and CB code can be obtained by shortening the new code C1.

Table III provides the details of the comparison between the proposed MDS array code C2

and existing ones with (1 + ϵ)-optimal repair bandwidth and repair degree d = n− 1. Figure 2

provides an additional example of the comparison of sub-packetization levels among the codes

listed in Table III, with the exception of RTGE code 2 in [26]. This code relies on the existence

of an error-correcting code with specific parameters, which may not always be available.

TABLE III

A COMPARISON OF THE KEY PARAMETERS AMONG THE NEW (n = sn′, k) MDS ARRAY CODE C2 AND EXISTING ONES WITH

(1 + ϵ)-OPTIMAL REPAIR BANDWIDTH AND REPAIR DEGREE d = n− 1, WHERE ϵ = (s−1)(r−1)
n−1

AND r = n− k.

Sub-packatization N Field size Repair bandwidth

RTGE code 1 in [26] r⌈
n′
r

⌉ q > n(r−1)N+1 (1 + ϵ)γoptimal

RTGE code 2 in [26] O(rrτ logn) O(n) ≤ (1 + 1
τ
)γoptimal

MDS code C1 in [29] rn
′

q > rn′⌈ s
r
⌉, r | (q − 1) (i.e., O(n)) (1 + ϵ)γoptimal

MDS code C2 in [29] rn
′−1 q > r⌈n′

r
⌉(s− 1) + n′ (i.e., O(n)) (1 + ϵ)γoptimal

MDS code C4 in [29] r⌈
n′
r+1

⌉ q > ⌈ 2n
3
⌉, if r = 2

q > N
(
n−1
r−1

)
+ 1, if r > 2

(1 + ϵ)γoptimal

MDS code C5 in [29] rn
′

q > rn′⌈ s
r
⌉ i.e., (O(n)) (1 + ϵ)γoptimal

New MDS code C2 r⌈
n′
2

⌉ q > sr⌈n′

2
⌉ (i.e., O(sn/2)) (1 + ϵ)γoptimal
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Fig. 2. Comparision of the sub-packetization level among the new (n, k) MSR code C1 and some known ones with r = 3.

From Table III and Figure 2, we can see that the proposed MDS array code C2 has the

following advantages compared to existing ones:

• Under the same repair bandwidth, the new MDS code C2 has a much smaller sub-packetization

level when compared to the MDS array codes C1, C2, and C5 in [29].

• By noting that the MDS array code C4 in [29] is implicit when r > 2, we have that among

all the explicit MDS array codes with (1 + ϵ)-optimal repair bandwidth and r > 2, the

new MDS code C2 has the smallest sub-packetization level under the same code parameters

except for the RTGE code 1 in [26], which requires a super large finite field.

VI. CONCLUSION

In this paper, we proposed a new (n, k) MSR code construction that works for any repair degree

d > k. The new MSR code has a smaller sub-packetization level or finite field than existing

ones. Additionally, we obtained a new (n, k) MDS array code with a small sub-packetization

level, (1+ ϵ)-optimal repair bandwidth, and repair degree d = n−1, which outperforms existing

ones in terms of the sub-packetization level or the field size. For (n, k) MDS array code with

small sub-packetization level, (1 + ϵ)-optimal repair bandwidth, and repair degree d < n − 1,
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few results have been reported in the literature. To the best of our knowledge, the only one is

the construction in [30], which only works for very large parameters n, k and requires a huge

finite field, thus it is infeasible to be implemented in practical systems. Constructions of (n, k)

MDS array code over small finite fields with small sub-packetization level, (1+ϵ)-optimal repair

bandwidth, and repair degree d < n− 1 will be left for our future research.

APPENDIX A

PROOF OF LEMMA 1

For i ∈ [0 : rN), let ei be row i of the identity matrix of order rN . Then define an rN × rN

permutation matrix Ψ as

Ψ = (e⊤0 , e
⊤
N , . . . , e

⊤
(r−1)N , e

⊤
1 , e

⊤
1+N , . . . , e

⊤
1+(r−1)N , . . . , e

⊤
N−1, e

⊤
N−1+N , . . . , e

⊤
N−1+(r−1)N)

⊤,

where ⊤ denotes the transpose operator.

Multiplying matrices Ψ and Ψ⊤ on the left and right sides of matrix B = (Bt,i)t∈[0:r),i∈[0:r),

respectively, we then have

ΨBΨ⊤ =



B′
0,0 B′

0,1 · · · B′
0,N−1

B′
1,0 B′

1,1 · · · B′
1,N−1

...
...

...
...

B′
N−1,0 B′

N−1,1 · · · B′
N−1,N−1


,

where

B′
a,b =



B0,0[a, b] B0,1[a, b] · · · B0,r−1[a, b]

B1,0[a, b] B1,1[a, b] · · · B1,r−1[a, b]

...
... . . . ...

Br−1,0[a, b] Br−1,1[a, b] · · · Br−1,r−1[a, b]


, a, b ∈ [0 : N).
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By (2), we have B′
a,b = 0 for 0 ≤ b < a < N . For a ∈ [0 : N), by i), we have

B′
a,a =



1 1 · · · 1

B1,0[a, a] B1,1[a, a] · · · B1,r−1[a, a]

...
... . . . ...

Br−1
1,0 [a, a] Br−1

1,1 [a, a] · · · Br−1
1,r−1[a, a]


, (32)

which is a Vandermonde matrix and is non-singular according to ii). Therefore,

|Ψ||B||Ψ⊤| = |ΨBΨ⊤| =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

B′
0,0 B′

0,1 · · · B′
0,N−1

B′
1,1 · · · B′

1,N−1

. . . ...

B′
N−1,N−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
=

N−1∏
a=0

|B′
a,a| ≠ 0,

which implies that B is non-singular.

APPENDIX B

PROOF OF LEMMA 2

Proof: Hereafter we only check the case of i ∈ [0 : m) since the other case can be proved

similarly. For any given a = (a0, a1, . . . , am−2) ∈ [0 : N/w), u ∈ [0 : w), and j ∈ [0 : n),

according to (12), we have

Vi,u[a, :]At,j=


egi,u(a)

(
N−1∑
b=0

λt
j,bj

e⊤b eb +
N−1∑

b=0,bj=0

w−1∑
v=1

(λt
j,0 − λt

j,v)e
⊤
b eb(j,v)

)
, if j ∈ [0 : m),

egi,u(a)

(
N−1∑
b=0

λt
j,bj−m

e⊤b eb

)
, if j ∈ [m : n),

=


λt
j,0egi,u(a) +

w−1∑
v=1

(λt
j,0 − λt

j,v)e(gi,u(a))(j,v), if j ∈ [0 : m) and (gi,u(a))j = 0,

λt
j,(gi,u(a))j

egi,u(a), if j ∈ [0 : m) and (gi,u(a))j ̸= 0,

λt
j,(gi,u(a))j−m

egi,u(a), if j ∈ [m : n).

(33)

where the two equalities follow from (11) and (4), respectively.
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By (8) and (9), we have (gi,u(a))i = u and egi,u(a)(i,v) = egi,v(a). Then by (11) and (33), when

j ≡ i mod m, i.e., j = i or j = i+m, we have

Vi,u[a, :]At,j =


λt
i,0Vi,0[a, :] +

w−1∑
v=1

(λt
i,0 − λt

i,v)Vi,v[a, :], if j = i, u = 0,

λt
j,uVi,u[a, :], if j = i, u ̸= 0 or j = i+m.

That is, for j ≡ i mod m and u ∈ [0 : w), we have

Vi,uAt,j =


λt
i,0Vi,0 ++

w−1∑
v=1

(λt
i,0 − λt

i,v)Vi,v, if j = i, u = 0,

λt
j,uVi,u, if j = i, u ̸= 0 or j = i+m.

which together with (13) implies

Si,tAt,i = Vi,0At,i = λt
i,0Vi,0 + (λt

i,0 − λt
i,1)Vi,1 + · · ·+ (λt

i,0 − λt
i,w−1)Vi,w−1

and Si,tAt,j = λt
j,0Ri,j for j = i +m, i.e., i) is true and ii) holds for i, j ∈ [0 : n) with j ̸= i

and j ≡ i mod m.

Next, we prove that ii) holds for j ̸≡ i mod m. Recall that we only check the case of

i ∈ [0 : m), which is discussed in the following four cases.

Case 1. If j ∈ [0 : i), by applying (8) and (9) to (33), we then have

Vi,u[a, :] · At,j

=


λt
j,0egi,u(a) +

w−1∑
v=1

(λt
j,0 − λt

j,v)egi,u(a(j,v)), if aj = 0,

λt
j,aj

egi,u(a), otherwise,

=


(
λt
j,0e

(N/w)
a +

w−1∑
v=1

(λt
j,0 − λt

j,v)e
(N/w)
a(j,v)

)
·
N/w−1∑
b=0

(e
(N/w)
b )⊤egi,u(b), if aj = 0,

λt
j,aj

e
(N/w)
a ·

N/w−1∑
b=0

(e
(N/w)
b )⊤egi,u(b), otherwise,

= e(N/w)
a

N/w−1∑
b=0

λt
j,bj

(e
(N/w)
b )⊤e

(N/w)
b +

N/w−1∑
b=0,bj=0

w−1∑
v=1

(λt
j,0 − λt

j,v)(e
(N/w)
b )⊤e

(N/w)
b(j,v)

Vi,u

= e(N/w)
a Bt,j,i · Vi,u

= Bt,j,i[a, :] · Vi,u (34)
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where the second, third, and fourth equalities follow from (4), (10), and (21), respectively.

Applying (13) to (34), we have Si,tAt,j = Bt,j,iRi,j , which finishes the proof of this case.

Case 2. If j ∈ [i+ 1 : m), similar to the proof of Case 1, we also have Si,tAt,j = Bt,j,iRi,j .

Case 3. If j ∈ [m : m+ i), then (gi,u(a))j−m = aj−m by (8). By (33), we have

Vi,u[a, :] · At,j = λt
j,aj−m

egi,u(a)

= λt
j,aj−m

e(N/w)
a ·

N/w−1∑
b=0

(e
(N/w)
b )⊤egi,u(b)

= e(N/w)
a (

N/w−1∑
b=0

λt
j,bj−m

(e
(N/w)
b )⊤e

(N/w)
b )Vi,u

= e(N/w)
a Bt,j,i · Vi,u

= Bt,j,i[a, :] · Vi,u (35)

where the second, third, and fourth equalities follow from (4), (10), and (21), respectively. Thus

we have Si,tAt,j = Bt,j,iRi,j by combining (13) and (35).

Case 4. If j ∈ [m+ i+1 : n), similar to the proof of Case 3, we also have Si,tAt,j = Bt,j,iRi,j .

Collecting the above four cases, we can derive that ii) holds for 0 ≤ i ̸= j < n with

i ̸≡ j mod m. While the proof of iii) is similar to the analysis in (19); thus, we omit it.
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