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Abstract—In high-resolution Earth observation imagery, Low
Earth Orbit (LEO) satellites capture and transmit images to
ground to create an updated map of an area of interest.
Such maps provide valuable information for meteorology and
environmental monitoring, but can also be employed for real-
time disaster detection and management. However, the amount
of data generated by these applications can easily exceed the com-
munication capabilities of LEO satellites, leading to congestion
and packet dropping. To avoid these problems, the Inter-Satellite
Links (ISLs) can be used to distribute the data among multiple
satellites and speed up processing. In this paper, we formulate a
satellite mobile edge computing (SMEC) framework for real-time
and very-high resolution Earth observation and optimize the im-
age distribution and compression parameters to minimize energy
consumption. Our results show that our approach increases the
amount of images that the system can support by a factor of 12×
and 2× when compared to directly downloading the data and
to local SMEC, respectively. Furthermore, energy consumption
was reduced by 11% in a real-life scenario of imaging a volcanic
island, while a sensitivity analysis of the image acquisition process
demonstrates that energy consumption can be reduced by up to
90%.

Index Terms—Earth observation, Low Earth Orbit (LEO)
satellite communications, satellite imagery, satellite mobile edge
computing (SMEC).

I. INTRODUCTION

Satellites in Low Earth Orbit (LEO) are widely used
for Earth observation purposes as they can construct high-
resolution maps of large areas by capturing images from
space as they orbit the Earth. These maps can be used in
in various applications, as in meteorology, agriculture, or
environmental monitoring [1]. They are also very valuable
in near-real time applications, such as disaster detection and
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identification, supporting the coordination of the emergency
response. Due to the limited storage in the individual LEO
satellites, the images must be 1) captured, 2) processed for
compression and/or optical correction, and 3) transmitted to
ground for storage and/or distribution across the terrestrial
infrastructure.

The area covered by each individual satellite image depends
on numerous factors. Namely, the field of view (FoV) of the
instrument/camera is the angle that determines the observable
space of the camera sensor. The FoV together with the altitude
of deployment of the satellite determine the swath, which is
the width of the observable area on the surface of the Earth.
Then, the swath and the resolution of the instrument/camera
determine the ground sample distance (GSD), which is the
distance covered by each single pixel. As an example, the
European Space Agency (ESA) Sentinel-2 mission is located
at an altitude of 748 km and captures images in the visible
spectrum with a GSD of 1.5 m [2]. In total, the swath for
Sentinel-2’s visible spectrum instrument is only 60 km. Other
common values for the GSD are in the range between 0.3 and
3 meters [3], [4].

To achieve a high image resolution, the GSD must be small
and, in turn, so does the area covered by a single image.
For example, the area covered by an image in high-definition
(HD) format with a GSD of 3 m is around 18 km2, which
is smaller than several European airports. Therefore, high-
resolution maps of large areas must be created by capturing
and organizing a large number of images. These images
must be captured with a sufficiently high frequency to avoid
coverage holes in the map.

Traditionally, Earth observation satellites would commu-
nicate directly with a ground station (GS) to download the
collected data. However, this greatly limits the amount of data
that can be collected. In contrast, modern Earth observation
missions possess numerous satellites with advanced com-
munications and processing capabilities. For instance, recent
advances in free-space optical (FSO) communications tech-
nology [5], in combination with the stable relative positions
of satellites in the same orbital plane, make it possible to
establish intra-plane Inter-Satellite Links (ISLs) to connect
neighboring satellites in the same orbital plane using high-data
rate FSO links. Such links can be used to distribute the images
across the neighboring satellites, forming a satellite mobile
edge computing (SMEC) cluster with distributed processing
capabilities.

Fig. 1 illustrates an Earth observation mission relying on
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Fig. 1. Earth observation application where the source satellite scans the area
of interest. (a) The FoV and the altitude of the satellites determine the area
covered by each image. The raw images captured by the source satellite, in
the middle of the figure, can be shared with the nearby satellites to process
them in a distributed manner and, then, send them to the GS. (b) The source
satellite captures a frame, consisting of Wk images, at slot k as indicated by
the yellow area. The value of Wk may be different for each k depending on
the dimensions of the area of interest.

a SMEC cluster to distribute the data to be processed and
compressed by multiple satellites before being downloaded
to the GS. As it can be seen, the orbital velocity of the
satellite creates the need to capture images frequently to avoid
coverage holes and the frequency is determined by the FoV
and the altitude of the satellite. Specifically, the maximum
period at which the images must be captured to avoid coverage
holes is called the ground track frame period (GTFP), which
imposes the timing constraints in the satellite processing
and communication subsystems. In such setup, illustrated in
Fig. 1b, the system operation can be divided into time slots.
At each time slot, the satellite scans the area of interest by
capturing a set of side-by-side images called a frame. Then,
to maintain the stability in the processing and communication
subsystems at the satellites, the time needed for processing
and for communication at each link must be lower than that
of the duration of a time slot. This is the scenario of interest
for the present paper.

The generation of enormous amounts of data in Earth obser-
vation applications is a common concern, especially regarding
the downlink capacity (i.e., satellite-to-ground link). Moreover,
as satellites rely on solar panels and rechargeable batteries
for energy supply, minimizing the energy consumption of

the communication and processing task at the satellites is of
utmost importance. Nevertheless, the research on SMEC to
reduce the amount of data transmission and energy consump-
tion in Earth observation applications is still in its infancy.
Specifically, most of the literature on SMEC, with a few
clear exceptions [3], [4] that include our previous work [6],
deals with tasks generated at the mobile users and, hence,
mimics the traditional functionality of a terrestrial mobile edge
computing (MEC) but substituting the terrestrial edge nodes
with satellites [7]. Currently, SMEC approaches for Earth
observation can be divided into: early discard [3], [4] and
compression [6]. Early discard of images with relatively low
information content (e.g., cloud coverage) effectively reduces
the amount of data transmitted to ground [3], [4]. Note that
the efficiency of early discard is mostly based on autonomous
decisions at the satellites, which determine which images to
transmit to ground and which ones to discard. Even though
this inference process can be enhanced with techniques such
as image-chain simulation (ICS) to evaluate the quality of
the captured images [8], it may be problematic for mission-
critical applications, for example, emergency scenarios, where
partially obstructed images can still be valuable for the GS. To
avoid these problems, the satellites might instead execute an
algorithm to compress the collected data. For example, new
video coding implementations for satellite Earth observation
focus on achieving a sufficiently high encoding rate and
compression ratio so the video frames can be compressed
and transmitted to the GS based on the limitations of the
downlink and processing modules [9]. The authors in [9]
focus on the algorithmic implementations in a scenario with
a single satellite and fixed downlink data rate and do not
optimize the coding process for energy efficiency. Even though
the proposed algorithm improved the execution time of the
video coding process, it might still be restrictive for video
applications requiring a high frame rate video. Thus, this
scenario presents a good candidate for the distribution and
parallel processing of the video frames at multiple satellites
as proposed in the present paper.

While the literature on SMEC for Earth observation focuses
on local processing of the data, there are numerous examples
of terrestrial MEC and SMEC that consider the optimization
of distributed processing, which is a generalization of local
processing. For example, lossless compression was considered
to occur both at the source mobile device and at the edge
server in a terrestrial MEC to reach a combined compression
ratio [10]. In a similar fashion, the benefits of offloading com-
putation tasks from mobile users in remote areas to a SMEC
network were studied in [11], which builds on recent literature
on SMEC architectures [12]–[15]. In [11], authors propose
a three-tier scheme where the tasks with low computational
complexity are directly processed at the mobile users and
the rest are distributed either to a ground cloud or to the
satellite edge. The complex allocation problem is solved with
the alternating direction method of multipliers (ADMM).

In our previous work [6], we focused on an Earth observa-
tion scenario with power allocation for communication and
where the source satellite chooses between directly down-
loading the data or compressing it locally. The present paper
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Fig. 2. Illustration of the different options for data delivery in high-resolution
Earth observation: direct download, local processing, and distributed process-
ing.

represents a major extension of our previous work and a major
deviation with respect to the SMEC literature described above
by considering real-time high-resolution Earth observation
applications where the real-time requirements are defined by
the dynamics of the system. In the considered scenario, we
consider a general SMEC framework for real-time and very-
high resolution Earth observation that involves five phases:
1) segmentation of the imaging data, 2) allocation of the
processing tasks, 3) distribution of the image segments (i.e,
scatter), 4) processing of the image segments, and 5) delivery
of the processed images to the ground station (i.e., gather).

Fig. 2 illustrates the diverse options for executing a task
with the GTFP as real-time constraint. The data can be directly
downloaded to the GS. However, this might may cause backlog
in the satellite-to-GS and ISL links due to their limited data
rate for communication. On the other hand, the data can be
processed locally at the source satellite. However, this might
cause backlog at the CPU of the source satellite due to the
limited processing power. Finally, the data can be distributed
across 4 satellites, which alleviates the load in both the
communication links and at the individual CPUs by reducing
the amount of data to be transmitted at each individual link
and to be processed at each CPU. By doing so, the real-time
constraint defined by the GTFP is fulfilled, which guarantees
the stability of the communication and processing subsystems.

The main contributions of this paper are described in the
following.

1) We define a novel and general model for high-resolution
Earth observation imagery, along with its real-time con-
straints imposed by the physical (i.e., orbital) parameters
of LEO constellations and of the imaging instruments.

2) We formulate and solve a global optimization prob-
lem for the segmentation, allocation, and processing
phases of our general SMEC framework. Given that the
satellites have a limited battery supply, the objective
of distributing the tasks across the satellites in the
constellation is to minimize the overall energy consump-
tion while fulfilling the limitations of the processing
frequency at the satellites’ CPU, and the rates at the

ISLs and satellite-to-ground link. The present work is
a major extension of our previous study [6], where
we only considered local edge computing and cloud
computing, a single and homogeneous task at the satel-
lites, a fixed CPU frequency, and a fixed compression
ratio. In the present paper, we consider the optimization
with distributed processing, where the set of satellites
participating in the processing, the CPU frequency, and
the compression ratio are optimization variables. Hence,
the optimization problem considered in this paper is
a generalization of the one considered in our previous
work [6].

3) We consider a realistic imaging data size and perform
both 1) a sensitivity analysis of the impact of the
data generation process on the optimal solution of the
problem and 2) a case study that validates our approach
and illustrates of the potential gains of the global optimal
solution in a real-life scenario.

In the baseline scenarios, our results show that the num-
ber of images that can be transmitted to the GS with our
SMEC approach is up to 12× larger when compared to
direct download without processing and up to 2× larger when
compared to processing at the source satellite. Furthermore,
the energy consumption of our SMEC approach is up to 10×
lower than with direct download. Finally, when compared
to optimizing each frame independently, jointly optimizing
the task parameters for the whole task with K frames leads
to energy savings of up to 90% in the baseline scenarios
with a relatively low number of images per frame. In the
real-life scenario, where a satellite scans the island of La
Palma, our results show that the energy consumption can be
reduced at up to 11% by optimizing the task parameters for the
K = 82 frames when compared to optimizing for each frame
independently This scenario is only feasible with distributed
SMEC, as both direct download without processing and local
processing approaches would lead to buffer overflows in the
communication and/or processing buffers of the satellites.

The rest of the paper is organized as follows. Section II
describes the system model. Next, the optimization problem
is formulated in Section III, numerical results are presented in
Section IV, and concluding remarks are given in Section V.

II. SYSTEM MODEL

A. Framing

We consider an orbital plane (i.e., ring) in a LEO satellite
constellation and a GS g. The orbital ring is comprised of N
satellites uniformly spaced along the orbit and deployed at an
altitude h km above the Earth’s surface. The satellites possess,
among other subsystems, a camera, a processing payload, and
communication modules to establish a radio frequency link
towards the GS as well as high-data rate FSO ISLs with the
two neighboring satellites. Hence, the satellites in the orbital
plane form a ring topology.

The satellites in the orbital plane serve an Earth observation
application with pre-planned tasks. Each task involves captur-
ing images to scan a specific area of interest, which must be
transmitted to the GS. The camera is used to capture images
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TABLE I
PARAMETERS DEFINED IN THE SYSTEM MODEL

Symbol Description

Scenario
N Number of satellites in the orbital plane
h Altitude of deployment of the satellites [m]

hpx Height of each image [pixels]

wpx Width of each image [pixels]

qpx Amount of bits per pixel
Dimg Size of each image [bits]

Wk Number of side-by-side images in frame k

dgsd Average ground sampling distance [m]

TGTF(hpx, dgsd, h) Ground track frame period (GTFP) [s]
Processing

fCPU Highest CPU frequency [Hz]

f
(n)
k CPU frequency [Hz] for processing at satellite

n and frame k

NCPU Number of available processing cores per
satellite

ρk Compression ratio for frame k

ϵ Parameter that determines the complexity of
the compression algorithm

C(ρk, ϵ) Number of CPU cycles to compress one bit of
data

Communication
Rk Data rate to transmit frame k to the GS [bps]

P tx
RF Transmission power for RF satellite-to-ground

links [W]

RISL Fixed data rate at the ISLs [bps]

PISL Power consumption of the ISLs during trans-
mission [W]

η Fraction of PISL consumed due to data trans-
mission

Segment allocation
X ∈ ZK,N Segment allocation matrix [bits]

xk ∈ {0, 1, . . . , Dk}N Segment allocation vector for frame k [bits]

x
(n)
k ∈ {0, 1, . . . , Dk} Segment allocation for satellite n and frame k

[bits]

of a fixed size

Dimg = wpx hpx qpx bits, (1)

where wpx and hpx are the width and height in pixels and qpx
is the number of bits to represent each pixel. Throughout this
article, we assume that hpx < wpx is aligned with the velocity
vector of the satellite (i.e., the roll axis). The satellites capture
images by pointing directly towards the Earth and by rotating
the camera perpendicularly to the velocity vector as illustrated
in Fig. 1b. Therefore, the satellite itself must enter the area of
interest to start capturing the images.

The average distance between adjacent pixel centers dgsd
taken when pointing directly at the nadir point is called the
GSD, which is a function of wpx, the FoV, and the satellite
altitude h [3]. The area covered by a single image is

A ≈ wpxhpxd
2
gsd (2)

and the vertical distance–aligned with the roll axis of the
satellite–covered is hpxdgsd m.

The task and, similarly, the operation of the system are
divided into K time slots of duration equal to the GTFP.

At each time slot k, the source satellite v0 captures a frame
comprised of Wk ∈ N+ side-by-side images by rotating the
camera perpendicularly to its velocity vector to cover the area
of interest as it moves. The number of images Wk can be
different for each frame in a task as exemplified in Fig. 1b,
where frame W0 = W1 = 3 images and W2 = 2.

We assume that the time to capture the Wk images in a
frame and to make them available for the processing algorithm
and the communication modules (i.e., to write the data in
memory) does not impact the real-time constraints of the sys-
tem. The resulting size of the k-th frame is Dk = WkDimg bits
and the frame is approximately Wkwpxdgsd meters wide.

Capturing frames at exactly the GTFP ensures that there are
no coverage gaps, but also that there are no two pixels that
cover the same area in two consecutive frames taken by the
same satellite. To calculate the GTFP, let To(h) be the orbital
period of a satellite deployed at altitude h. Then, To(h) can
be closely approximated as

To(h) ≈

√(
4π2

GME

)
(RE + h)

3
, (3)

where G is the universal gravitational constant; ME and RE

are the mass and radius of the Earth, respectively. The GTFP,
denoted as TGTF, is given as

TGTF(hpx, dgsd, h) =
hpxdgsdTo(h)

2πRE
. (4)

We define tk = kTGTF as the time when frame k is captured
by the satellite and, hence, t0 = 0.

The frames may be processed before they are sent to ground,
which involves, for example, correction of optical anomalies,
compression, and encoding. Specifically, a frame captured
by the source satellite v0, can be processed either locally or
in a distributed manner to reduce its size by a compression
factor ρ > 1, such that the resulting size of the frame is Dk/ρ.

B. SMEC framework

In the following, we describe a general SMEC framework
for real-time and very-high resolution Earth observation where
the task instructs a source satellite v0 to capture K consecutive
frames. The frameworks is based on classical communication
models for distributed processing architectures, but considers
the distinctive characteristics of LEO satellite communications,
such as limited bandwidth and links with heterogeneous ca-
pacity.

1) Segmentation: At each time slot k ∈ {1, 2, . . . ,K},
where K is the total number of frames in the task, the
source satellite v0 captures a frame k with Wk images
for a total size Dk bits and divides it into segments.

2) Allocation: Each of the satellites in the SMEC cluster
for frame k, namely n ∈ Nk, will receive a segment,
which is a fraction x

(n)
k of the total amount of data in

the frame. The GS might also indicate a fraction of the
frame x

(g)
k that will not be processed by the satellites

but downloaded directly without processing.
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3) Scatter: The source satellite distributes the segments to
all the satellites in the SMEC cluster n ∈ Nk using high-
data rate ISLs. The rest of the data are routed directly
to the GS without processing.

4) Distributed processing: The segments are processed at
the satellites, with a consequent reduction in the size of
the data by a factor ρk, called the compression ratio.
Hence, the resulting size of the segment processed by
satellite n is x

(n)
k /ρk. The CPU frequency selected to

process the k-th frame at satellite n is denoted as f
(n)
k .

5) Gather: Once processing is completed, the satellites in
the SMEC cluster Nk send the processed segments to
the GS through the destination satellite vd.

C. Compression
Let C(ρk, ϵ) be the complexity of the compression algo-

rithm, defined as the number of CPU cycles to compress one
bit of data by a compression ratio ρk, being ϵ a positive
constant that depends on the compression algorithm. In tra-
ditional and pure JPEG compression, the complexity can be
considered as constant w.r.t. the compression ratio ρk since
the latter is only determined by the entries of the quantization
matrix, which does not affect the number of operations to
be performed. Nevertheless, setting a constant compression
complexity might only represent a small subset of possible
compression algorithms.

Instead, we adopt a model where the complexity of the
compression algorithm increases exponentially with the com-
pression ratio as C(ρk, ϵ) = eϵρk − eϵ [16]. This latter
model covers several popular compression techniques, such
as Zlib, Zstandard, and XZ compression and makes our opti-
mization framework more general. Consequently, by selecting
the exponential model for the complexity of the compression
algorithm, our framework is applicable to a much wider range
of compression algorithms than the constant complexity model
for JPEG. Furthermore, as it will be seen in Section III,
adoption of the exponential model creates a trade-off between
the energy used for processing and for communication. In
contrast, selecting the optimal compression ratio under a
constant complexity model for the formulated optimization
problem would be trivial.

To process and compress the images, the processing payload
of the satellites consists of a CPU with NCPU cores and a
maximum clock frequency fCPU. The satellites are able to
adapt the CPU clock frequency for each frame k ∈ K in the
task through Dynamic Voltage and Frequency Scaling (DVFS),
which allows to reduce the energy consumption of tasks with
relaxed latency requirements. Therefore, we define f

(n)
k as the

CPU clock frequency selected by satellite n ∈ N to process
the data belonging to frame k.

Let T proc
k be the execution time of the image processing

algorithm for a frame in task k, which is given, for satellite
n, as

T proc
k (n,Dk, ρ, fk; ϵ,NCPU) =

Dk C(ρ, ϵ)

NCPUf
(n)
k

. (5)

The processing of the data received by the satellites is
managed by a scheduler that operates in a first-in first-out

fashion. Hence, it may need to queue the processing of a
segment until the processing of the previous one is completed
and the CPU is available. Specifically, we denote the queueing
time to process the data received at time t at satellite n as
Qproc

t (n) ∈ R+ seconds. In other words, the data received
at time t must wait in the queue of satellite n until time
t+Qproc

t (n) before it can be processed. Throughout this paper,
we focus on maintaining the stability of the processing queues
rather than on their impact on the overall latency.

D. Communication

After processing, the resulting data must be transmitted to
the GS g. The communication modules are used to establish
communication with the satellites in the same orbital plane
via the intra-plane ISLs, and with g. Specifically, intra-plane
ISLs are established with the two neighboring satellites in
the same orbital plane and a downlink satellite-to-ground
link is established between g and the closest satellite. Let
Gk = (V, Ek) be the directed graph that represents the system
at time tk, where V = N ∪ {g} is the vertex set and Ek is
the edge set at time tk. As mentioned above, we consider a
time-slotted system and, hence, update graph Gk along with
its parameters by taking a snapshot at the beginning of each
time slot.

Without loss of generality, we denote the source satellite as
v0 and the destination satellite, which has a direct connection
to the GS, as vd. The directed edges (u, v) ∈ Ek represent the
full-duplex communication links, which are assumed to remain
fixed within the interval [tk, tk+1]. A path from vertex v0 to
vertex vd is called a v0−vd path and denoted as Pk(v0, vd) =
(v0, v1, . . . , vd), where v0, v1, . . . , vd ∈ V and ℓ (Pk(u, v)) is
the length of the path.

High-data rate FSO links are considered for the intra-plane
ISLs since the relative distances and positions among these
satellites are maintained, which minimizes pointing errors [5].
As a consequence, the intra-plane ISLs are fixed throughout
the operation of the network and also possess a fixed data
rate RISL and consume a fixed amount of power during
transmission PISL.

Point-to-point satellite-to-ground links are established dy-
namically between the GS and the closest available satellite.
Therefore, we define the edge set at time k as

Ek =

{
(u, v) ∪ (vd, g) : u, v ∈ N , vd = argmin

v∈N
dtk(v, g)

}
,

(6)
where dtk(v, g) is the Euclidean distance between satellite v
and g at time tk. The latter can be accurately calculated based
on the ephemeris of the satellites for any tk ∈ R and, hence,
our model operates with snapshots of the edge set taken at
each tk.

Differently from the intra-plane ISLs, the beams and data
rate must be adapted continuously at the downlink due to the
rapid movement of the satellites. Traditional RF technology is
less prone to outages due to pointing errors and atmospheric
conditions than FSO and, hence, it is used to achieve reliable
communication to the GS.



6

We consider an interference-free additive-white Gaussian
noise (AWGN) channel with free-space path loss and with
noise power σ2. Hence, the signal-to-noise ratio (SNR) for
the satellite-to-ground link (i.e., downlink) at time t is given
as

γt = Gtx Grx P
tx
RF

(
c

4π dt(vd, g) fc σ

)2

,

where vd = argmin
v

dt(v, g) (7)

where fc is the carrier frequency, c = 2.998 · 108 m/s is
the speed of light, Gd and Gg are the transmitter and receiver
antenna gains, and P tx

RF is the transmission power.
Once the SNR is known, a proper modulation and coding

scheme can be selected as follows. Let RDVB = {R′} be
the set of available rates R′ in b/s/Hz defined in the DVB-
S2X system. Next, let γmin(R

′) ≥ 2R
′ − 1 be the minimum

required SNR to achieve a block error rate < 10−5 with rate
R′. Then, the modulation and coding scheme for downlink
communication is selected to achieve the data rate

Rk = Bmax {R′ ∈ RDVB-S2 : min{γt} ≥ γmin(R
′),

t ∈ [tk, tk +∆t]}. (8)

That is, the rate is selected using the thresholds defined in the
DVB-S2X system [17] and R′ is a valid rate for downlink
communication at time slot k if and only if the SNR for this
link is greater than γmin(R

′) throughout the whole time slot.
Similarly as for processing, we denote the queueing time at

the communication module to transmit the data from u to v
as Qtrans

t (u, v) ∈ R+ seconds, where t is the time at which the
data is received by u. Furthermore, we define the transmission
time for a packet of size Dk as

Ltrans
k (Dk, u, v) =

Dk

Rk(u, v)
, (9)

where Rk(u, v) = RISL for all the ISLs and Rk(vd, g) = Rk

for the downlink.

E. Energy consumption

In the considered problem, there are two contributors of in-
terest to the energy consumption at the satellite: the processing
and compression of the images, and the communications.

We consider a model for the energy consumption of the
satellites due to the processing of the task that captures the
most relevant CPU parameters [18]–[20]. In this model, the
energy consumption of the CPU per clock cycle is proportional
to the square of its clock frequency f

(n)
k times a constant

ν, which is the effective capacitance coefficient [19], [20].
Specifically,

Eproc
cycle

(
f
(n)
k

)
= ν

(
f
(n)
k

)2
=

Pproc(fCPU)

f3
CPU

(
f
(n)
k

)2
, (10)

where Pproc (fCPU) is the power consumption during process-
ing at the maximum CPU frequency. Building on this, and
assuming that the supplied power is linear with the number of

processor cores NCPU, the energy consumption to process an
image of size Dk bits is modeled as

Eproc
k

(
ρk, f

(n)
k ;Dk, ϵ

)
= Dk C(ρk, ϵ)E

proc
cycle

(
f
(n)
k

)
. (11)

Regarding the energy consumption during communication,
we consider a model that includes the energy due to data
transmission, the inefficiency of the power amplifiers, and the
static power consumption of the communication modules [21].
Consequently, the power consumption for the RF downlink
during communication PRF is modeled as a function of the
power consumption due to data transmission P tx

RF, inefficiency
of the power amplifier µamp

RF , and the static power consumption
P static

RF , as
PRF = µamp

RF P tx
RF + P static

RF . (12)

We assume that the RF link of the destination satellite vd
consumes P static

RF at all times and, hence, is not considered to
evaluate the energy consumption of the SMEC framework.
Then, during data transmission, the vd consumes an extra
µamp

RF P tx
RF W and the energy consumption due to transmit

Dk bits of data in the downlink is

Etrans
RF (Dk) =

µamp
RF P tx

RF Dk

Rk
(13)

Similarly, the power consumption for the FSO ISLs during
communication can be divided into the power consumption
due to data transmission P tx

ISL, the inefficiency of the power
amplifier µamp, and the static power consumption P static

ISL , and
is given as [21]

PISL = µamp
ISL P tx

ISL + P static
ISL . (14)

In our model for the FSO links, we consider that PISL is fixed
and define the parameter

η =
µamp

ISL P tx
ISL

µamp
ISL P tx

ISL + P static
ISL

∈ [0, 1] . (15)

Therefore, we consider that η PISL = µamp
ISL P tx

ISL is consumed
during data transmission [21]. The remaining (1 − η)PISL =
P static

ISL is the static power consumption of the FSO ISLs. Hence,
the energy consumption to transmit Dk bits of data through
an FSO ISL is

Etrans
ISL (Dk) =

η PISL Dk

RISL
. (16)

III. PROBLEM FORMULATION

A task might consist of one or multiple frames, namely K,
that are captured continuously by a source satellite v0. Each
of the k frames contains Wk ∈ {0, 1, . . . , } images. The GS
schedules the segmentation, processing, and transmission of
the segments in a task jointly using its knowledge about the
communication and processing capabilities of the satellites,
along with the value of Wk for all k ∈ K. For this, the GS
builds an allocation matrix X ∈ NK×N+1, whose (k, n)-th
element is x

(n)
k , indicating the amount of data from frame k

that satellite n must process. Moreover, we denote the k-th
row of X as

xk =
[
x
(1)
k , x

(2)
k , . . . , x

(N)
k , x

(g)
k

]
, (17)
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which is the allocation vector for frame k. Naturally,

xk1 =

N∑
n=1

x
(n)
k + x

(g)
k = Dk (18)

and the number of segments for frame k is the number of
non-zero elements in vector xk.

The segment allocation is accompanied by matrix F ∈
RK×N

+ , whose (k, n)-th element is f
(n)
k and defines the

CPU frequency that must be selected by the satellite n for
processing the segment from frame k. Finally, the GS must
define the compression factor for each frame, defined by the
vector ρ = [ρ1, ρ2, . . . , ρK ].

We follow a resource slicing approach to ensure the stability
of the processing and communication queues in the orbital
plane. In such approach, the task is allocated an amount of
processing and communication resources that is proportional
to its duration KTGTF. Therefore, the processing and com-
munication parameters for the task values must be selected
to ensure that the average processing and transmission time
of each segment, at each satellite and each link does not
exceed the GTFP. Building on this, we formulate the following
constraints.

Processing constraint: To ensure the stability of the process-
ing queues at the satellite CPUs, the average time to process
all the segments allocated to a given satellite n ∈ N , of size∑K

k=0 x
(n)
k , must be shorter than the duration of the task.

Therefore, a proper CPU frequency must be selected for the
processing of each segment at each satellite, denoted as f

(n)
k .

From (5) we derive the processing constraint:
K∑

k=1

x
(n)
k C(ρk, ϵ)

NCPU f
(n)
k

≤ K TGTF, ∀n ∈ N . (19)

Downlink and ISL rate constraints: The average data rate for
the satellite-to-ground link and the ISLs must be sufficiently
high to transmit the generated data within the considered
period of time of K TGTF seconds. Hence, we formulate the
downlink constraint as follows.

K∑
k=1

(
x
(g)
k +

1

ρk

N∑
n=1

x
(n)
k

)
≤ TGTF(hpx, dgsd, h)

K∑
k=1

Rk (20)

For the ISLs, the total amount of traffic depends on the scatter
algorithm and the location of the processing satellites n ∈
Nk w.r.t. the source satellite v0 and g for all the K frames.
Specifically, to calculate the amount of traffic assigned to each
ISL (u, v) ∈ Ek, let Pk(u, v) be the shortest path between u
and v at time slot k. Next, we define the indicator variable
y
(e)
k (u, v), which takes the value of 1 if the edge e ∈ Ek is in

the path Pk(u, v) and 0 otherwise. That is,

y
(e)
k (u, v) ≜

{
1, if e ∈ Pk(u, v)

0 otherwise.
(21)

Based on the latter, we define the constraint for the data rate
at the ISLs as

K∑
k=1

x
(g)
k y

(e)
k (v0, g) +

N∑
n=1

x
(n)
k

(
y
(e)
k (v0, n) +

y
(e)
k (n, g)

ρk

)
≤ KTGTFRISL, ∀e ∈ Ek. (22)

Nevertheless, in most practical scatter algorithms, the ISLs that
communicate the source satellite v0 with its neighbors will be
subject to the heaviest traffic. Therefore, the latter constraint
can be simplified by limiting it to the ISLs E0 = {(v0, n) ∈
E : n ∈ N (n)

k }
Further, recall that ℓ (Pk(u, v)) is defined as the length of

the u − v path. Then, we define the energy devoted for the
scatter phase as

Escatter
k (v0,xk; η) =

µamp
RF P tx

RF x
(g)
k

Rk
+

ηPISL

RISL

×

(
N∑

n=1

ℓ (Pk(v0, n))x
(n)
k +(ℓ (Pk(v0, g))− 1)x

(g)
k

)
, (23)

where the first addend corresponds to energy needed to reach
the GS and the second one for the distribution among satellites.
The parenthesis accounts for the amount of data that reaches
each node, weighted by the number of steps (i.e., links).
Likewise, the consumed energy for the gather phase is defined
as

Egather
k (ρk,xk; η) =

1

ρk

N∑
n=1

x
(n)
k

(
µamp

RF P tx
RF

Rk
+

η PISL

RISL
(ℓ (Pk(n, g))− 1)

)
, (24)

where each compressed segment, i.e., x(n)
k /ρk, is weighted by

the energy per bit it takes to reach the GS from each satellite
n through ISL and RF links. The overall energy consumption,
due to distribution and processing of the data, is defined as the
sum of the energy at the scatter, processing, and gather phases.
Hence, we formulate the energy minimization problem as

P1 : minimize
X,F,ρ

K∑
k=1

Escatter
k (v0,xk; η) + Egather

k (ρk,xk; η)

+

N∑
n=1

Eproc
k

(
x
(n)
k , ρk, f

(n)
k ; ϵ

)
(25)

subject to (19), (20), (22)

0 ≤ x
(n)
k ≤ Dk, ∀n ∈ N , k ∈ K (25a)

xk1 = Dk, ∀k ∈ K (25b)
1 < ρk ≤ ρmax, ∀k ∈ K (25c)

0 < f
(n)
k ≤ fCPU, ∀k ∈ K, n ∈ N . (25d)

where the parameter ρmax is a pre-defined maximum accept-
able compression ratio.

That is, for each frame k ∈ K, the GS must determine the
compression ratio ρk, the allocation vector xk, and the CPU
frequency f

(n)
k to minimize energy while fulfilling the process-

ing and communication constraints. Note that constraint (25c)
is defined to avoid the value of ρk = 1, as this represents
no processing at the satellites and is an equivalent solution to
setting x

(g)
k = 1.

Naturally, the routing algorithm, which determines the paths
to be followed by the segments, has an impact on the links
used during the scatter and gather phases by determining
the variables ℓ (Pk(v0, n)), ℓ (Pk(n, g)), and y

(e)
k (v0, n) and

y
(e)
k (n, g). Consequently, the routing algorithm has an impact
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on the ISL constraint and on the energy consumption. Nev-
ertheless, investigating the optimal routing algorithm for each
phase is out of the scope of the paper and, hence, we consider
a typical hop-count shortest-path routing algorithm and treat
these variables as parameters in (25).

For the case with C(ρk, ϵ) = eρkϵ − eϵ, neither the
energy consumption for processing Eproc

k

(
ρk, f

(n)
k ;Dk, ϵ

)
,

defined in (11), nor for communication in the gather phase
Egather

k (ρk,Xk; η), defined in (24), are jointly convex in X and
ρ. Consequently, the objective function (25) is not jointly con-
vex in X, ρ, and F. Furthermore, constraints (19), (20), (22)
are not jointly convex in X and ρ. Thus, P1 is a non-
convex optimization problem. Nevertheless, we exploit the
fact that the problem is convex when only considering one
optimization variable at a time. In particular, a closed-form
expression can be obtained for the CPU frequency of the
satellites F. Furthermore, Escatter

k (v0,xk; η) is linear in X.
Therefore, we follow a variable decomposition approach and
decompose the general optimization problem (25) into three
sub-problems, which are solved iteratively following the Block
Coordinate Descent (BCD) algorithm to reach a near-optimal
solution [22]. Specifically, we begin by obtaining the closed-
form solution for the optimal CPU frequency F∗. The optimal
CPU frequency is then used to optimize X and ρ iteratively.

Conversely, for the case with the JPEG compression algo-
rithm C(ρk, ϵ) = ϵ, the optimal solution for the compression
ratio is ρk = ρmax, which is treated as a parameter and the
optimization problem (25) simplifies to only optimizing X
and F jointly.

A. Optimizing the CPU frequency

As starting point, we consider the problem of optimizing the
CPU frequency F for a given ρ and X in P1. We formulate
the optimization problem for this case as

PF : minimize
F

N∑
n=1

K∑
k=1

Eproc
k

(
x
(n)
k , ρk, f

(n)
k ; ϵ

)
(26)

subject to
K∑

k=1

x
(n)
k C(ρk, ϵ)

KNCPU f
(n)
k

≤ TGTF ∀n ∈ N

0 ≤ f
(n)
k ≤ fCPU, ∀k ∈ K, n ∈ N .

Theorem 1 (Optimal CPU frequency). If the problem is
feasible for the given X and ρ, the optimal CPU frequency is
constant and equals the minimum required to satisfy the pro-
cessing constraint (19). Therefore, the optimal CPU frequency
for satellite n given X and ρ is given by

f
(n)∗
k = f (n) =

∑K
k=1 x

(n)
k C(ρk, ϵ)

KNCPU TGTF
,

∀n ∈ N :

K∑
k=1

x
(n)
k C(ρk, ϵ)− TGTFKNCPU fCPU ≤ 0.

(27)

The proof is based on the complementary slackness condition
and is presented in the Appendix A.

In all the cases where the processing constraint cannot be
fulfilled, the CPU frequency is set momentarily to f (n) = fCPU
to proceed with the iterative optimization.

B. Optimizing the task allocation

Next, we define problem PX: optimizing X for a given F∗

and ρ. Based on the previous result for F∗, we transform the
constraint (19) and define the problem as

PX : minimize
X

K∑
k=1

(
Escatter

k (v0,xk; η) + Egather
k (ρk,xk; η)

)
+

N∑
n=1

Eproc
k

(
x
(n)
k , ρk, f

(n); ϵ
)

(28)

subject to
K∑

k=1

x
(n)
k C(ρk, ϵ)−K TGTF NCPU f (n) ≤ 0,

∀n ∈ N , (28a)
(20), (22)

0 ≤ x
(n)
k ≤ Dk, ∀n ∈ N , k ∈ K (28b)

xk1 = Dk, ∀k ∈ K (28c)

Note that PX is linear in X with affine constraints and,
since F∗ can be calculated in closed-form, we solve the
problem using an iterative convex optimization approach with
the augmented Lagrangian of (28), where constraint (28a) is
moved to the objective and used as penalty [23]. Specifically,

PL(X,F∗;α) :

minimize
X

K∑
k=1

(
Escatter

k (v0,xk; η) + Egather
k (ρk,xk; η)

)
+

N∑
n=1

[
Eproc

k

(
x
(n)
k , ρk, f

(n); ϵ
)

+λ(n)

(
K∑

k=1

x
(n)
k C(ρk, ϵ)

K TGTF NCPU
− f (n) + s(n)

)

+
α

2

(
K∑

k=1

x
(n)
k C(ρk, ϵ)

K TGTF NCPU
− f (n) + s(n)

)2 ]
(29)

subject to (20), (22)

0 ≤ x
(n)
k ≤ Dk, ∀n ∈ N , k ∈ K (29a)

xk1 = Dk, ∀k ∈ K. (29b)

We solve problem (29) following the Increasing Penalty Dual
Decomposition (IPDD) method [24] by first solving for X
for a given F. Then, the values of F∗ are updated after each
iteration with the update rule in (27). Finally, as F∗ has been
already updated, the slack variables s(n) become 0. Then,
following the IPDD method, the Lagrange multipliers λ(n) and
the penalty terms α(n) are updated according to a pre-defined
threshold τproc and increase factor β ∈ (0, 1). Namely, if the
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processing constraint is below a pre-defined threshold τproc,
the update rule for λ(n) with inequality constraints becomes

λ(n) = max

(
0, λ(n) + α(n)

×

(
K∑

k=1

x
(n)
k C(ρk, ϵ)− TGTF KNCPU f (n)

))
. (30)

Otherwise, if the processing constraint is above τproc, the
penalty parameter is increased as α(n) ← α(n)/β.

C. Optimizing the compression ratio

Finally, we proceed to optimize the compression factor ρ for
a given X and F∗ for the case where C(ρk, ϵ) increases with
ρk. The optimization problem for ρ is formulated from (25)
by removing the constant term Escatter

k (v0,xk; η) and the
constraints on X, which give

Pρ : minimize
ρ

K∑
k=1

Egather
k (ρk,xk; η)

+

N∑
n=1

Eproc
k

(
x
(n)
k , ρk, f

(n); ϵ
)

(31)

subject to
K∑

k=1

x
(n)
k C(ρk, ϵ)−K TGTF NCPU f (n) ≤ 0,

∀n ∈ N , (31a)
(20), (22)
1 < ρk ≤ ρmax for all k ∈ K (31b)

Let s be the vector of slack variables, which includes
those for the downlink constraint s(g), for the ISL constraints
s(e), and for the values of ρk, namely s

(ρ)
k . Further, we

define the Lagrange multiplier and penalty terms for these
constraints as λ(g) and α(g), λ(e) and α(e), and λ

(ρ)
k and α

(ρ)
k ,

respectively. Building on these, the augmented Lagrangian for
Pρ is given by (32) on top of Page 10. Note that neither
the slack variables for the downlink constraint nor for the
ISL constraints depend on k as the limiting factors are the
average rates throughout the execution of the task. Therefore,
the problem becomes

minimize
ρ≥1, s≥0

maximize
λ≥0, λ(n), λk

L(X,ρ,λ, s;α), (33)

which we solve using the method of projected gradient descent
by applying the following update rules for λ after updating F
according to (27) and λ(n) according to (30).

λ(g) = max

(
0, λ(g) + α(g)

×

[
s(g) +

K∑
k=1

1

TGTF

(
x
(g)
k +

N∑
n=1

x
(n)
k

ρk

)
−Rk

])
(34)

λ
(ρ)
k = max

(
0, λ

(ρ)
k + α

(ρ)
k

(
ρk − ρmax − s

(ρ)
k

))
(35)

λ(e) = max

(
0, λ(e) + α(e)

[
s(e) +

K∑
k=1

x
(g)
k y

(e)
k (v0, g)

K TGTF RISL

+

N∑
n=1

x
(n)
k

K TGTF RISL

(
y
(e)
k (v0, n) +

y
(e)
k (n, g)

ρk

)])
(36)

D. Global optimization algorithm and practical considera-
tions

Algorithm 1 illustrates the iterative procedure for global
optimization for the case where C(ρk, ϵ) = eρkϵ − eϵ. Note
that a feasible value for each ρk must be selected during
initialization. For instance, we initialize each ρk with the value

ρinit
k = min

{
max

(
1,

Dk

TGTF Rk

)
, ρmax

}
. (37)

As with traditional penalty methods, the convergence of the
IPDD method and of projected gradient descent depend on
the initial value of the penalty terms and the termination
condition. While these methods can achieve convergence with
finite penalty terms and finite number of iterations, the number
of iterations to fulfill the termination conditions vary widely
depending on the characteristics of the objective function and
the problem constraints. In our study, the termination condition
for the optimization of the task allocation X is ∥X−X′∥2 ≤ δ
and of the compression ratio ρ is ∥ρ−ρ′∥2 ≤ δ. These termi-
nation conditions are defined in lines 5 and 10 of Algorithm 1.
If Algorithm 1 were to be implemented in a real system where
the solution must be obtained within a specific deadline, the
termination conditions can be modified to limit the number
of iterations so the deadline can be met. This will result in
a sub-optimal solution, but the execution time can be easily
characterized for the specific computing platform.

IV. RESULTS

We consider an orbital plane with N = 20 satellites
capturing images in an HD format with 1920 × 1080 pixels
under the following two scenarios.

• Per-frame optimization: Optimizing one frame indepen-
dently is optimal if the task is relatively long (i.e.,
K → ∞) and the frame size is constant Wk = Wk′

for all k, k′ ∈ K and, naturally, if K = 1.
• Multi-frame optimization: In all cases, optimizing across

the K frames of the task is the optimal approach. We
illustrate the gains of this approach with respect to per-
frame optimization in a synthetic scenario that leads to the
upper bound in energy savings and in a realistic scenario
that leads to the lower bound in energy savings.

Without loss of generality, the source satellite is denoted as
v0. The destination satellite vd is assumed to be located at
the edge of coverage at the first frame of the task and moves
towards the center of coverage. The default parameters for
the performance analysis are listed in Table II. With these
parameters, the downlink data rate at the edge of coverage
area is 2.16Gbps. The GSD is set to dgsd = 0.5m, which
results in a GTFP of 78ms.
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L(ρ,λ, s;X,α) =

K∑
k=1

Egather
k (ρk,xk; η) +

N∑
n=1

Eproc
k

(
x
(n)
k , ρk, f

(n); ϵ
)

+

N∑
n=1

[
λ(n)

(
K∑

k=1

x
(n)
k C(ρk, ϵ)

KNCPU TGTF
− f (n)+ s(n)

)
+

α(n)

2

(
K∑

k=1

x
(n)
k C(ρk, ϵ)

KNCPU TGTF
− f (n)+ s(n)

)2 ]

+λ(g)

s(g) + K∑
k=1

x
(g)
k +

∑N
n=1

x
(n)
k

ρk

TGTF
−Rk

+
α(g)

2

s(g) + K∑
k=1

x
(g)
k +

∑N
n=1

x
(n)
k

ρk

TGTF
−Rk

2

+
∑
e∈Es

λ(e)

s(e) + K∑
k=1

x
(g)
k y

(e)
k (v0, g)

K TGTF RISL
+

N∑
n=1

x
(n)
k

(
y
(e)
k (v0, n) +

y
(e)
k (n,g)

ρk

)
K TGTF RISL



+
∑
e∈Es

α(e)

2

s(e) + K∑
k=1

x
(g)
k y

(e)
k (v0, g)

K TGTF RISL
+

N∑
n=1

x
(n)
k

(
y
(e)
k (v0, n) +

y
(e)
k (n,g)

ρk

)
K TGTF RISL


2

+

K∑
k=1

λ
(ρ)
k

(
ρk − ρmax + s

(ρ)
k

)
+

K∑
k=1

α
(ρ)
k

2

(
ρk − ρmax + s

(ρ)
k

)2
(32)

Algorithm 1 BCD algorithm for iterative non-convex opti-
mization.
Input: K, RISL Wk, Gk, Rk for all k ∈ K and tolerance δ

1: Calculate Pk(v0, n), y
(e)
k (v0, n), Pk(n, g) and y

(e)
k (n, g)

for all n ∈ N and k ∈ K
2: Initialize x

(v0)
k ← Dk, x(n)

k = x
(g)
k ← 0 for all n ̸= v0,

and ρk ← ρinit
k for all k ∈ K, and f (n) ← fCPU for all n

3: X′ ← 0 and ρ′ ← 0
4: while ∥X−X′∥2 + ∥ρ− ρ′∥2 > δ do
5: while ∥X−X′∥2 > δ do
6: X′ ← X
7: Optimize X given F∗ and ρ with IPDD (29)
8: Update F∗ given X and ρ as in (27)
9: end while

10: while ∥ρ− ρ′∥2 > δ do
11: ρ′ ← ρ
12: Optimize ρ given F∗ and X with projected gradient

descent as in (32)
13: Update F∗ given X and ρ as in (27)
14: end while
15: end while
16: return X∗ ← X, ρ∗ ← ρ, and F∗

The results were obtained using a simulator coded in Python
to replicate the orbital dynamics of the satellites and to
calculate the data rates at each time slot. The optimization
problems were solved using the CVXPY package [25] using
MOSEK ApS as solver.

A. Per-frame optimization

Fig. 3 shows the energy consumption per image for the fea-
sible values of Wk for direct download, local processing, and
the global optimal solution. Two topologies are considered: 1)

TABLE II
PARAMETER SETTINGS FOR PERFORMANCE EVALUATION.

Parameter Symbol Setting

Altitude of deployment [km] h 600
Number of satellites N 20
Processor frequency [GHz] fCPU 1.8
Number of processor cores Ncores 4
Power consumption for processing [W] Pproc(fCPU) 10
Data rate of the ISLs [Gbps] RISL 10
Transmission power of the ISLs [W] PISL 60
Downlink transmission power [W] P tx

RF 10
Inefficiency of the downlink RF power am-
plifier

µ
amp
RF 1

Downlink carrier frequency [GHz] fc 20
Downlink bandwidth [MHz] B 500
Downlink antenna gain [dBi] Gd 32.13
Antenna gain of the GS [dBi] Gg 34.20
Noise power [dBW] σ2

dB −119.32
Width of the k-th frame [images] Wk {0, 1, 2, . . . }
Size of HD image [MB] Dimg 5.93
Ground sample distance (GSD) [m/pixel] dgsd 0.5
Maximum compression factor ρmax 20
Complexity of the image processing algo-
rithm

ϵ 0.1

Fraction of PISL consumed during data trans-
mission

η {0.1, 1}

in Fig. 3b the destination satellite is the same as the source
satellite vd = v0 and 2) in Fig. 3d the destination satellite is
vd = v5, namely, it’s five hops away from the source satellite.
Besides, two values are considered for parameter η = {0.1, 1}.

As it can be seen in Fig. 3, the energy consumption with
direct download is much higher when compared to local
processing and to the global optimal. Furthermore, direct
download is only feasible with Wk ≤ 3 images. In contrast,
local processing achieves a similar energy consumption as the
global optimal for most of the cases within its feasible region
Wk ≤ 18 images. This behavior means that local processing
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Fig. 3. Energy consumption per image for dgsd = 0.5m with per-frame optimization for the cases where the destination satellite is vd = v0 (a) with η = 0.1
and (b) with η = 1 and where the destination satellite is vd = v5 (c) with η = 0.1 and (d) with η = 1 considering the three approaches: direct download,
local processing, and global optimal. The energy consumption is set to ∞ outside the feasible region.

is the optimal solution with relatively small frames sizes Wk.
Finally, the global optimal solution leads to the minimum
energy consumption in all cases and also increases the feasible
region to Wk ≤ 37 for vd = v0 (see Fig. 3a and Fig. 3b) and
to Wk ≤ 36 for vd = v5 (see Fig. 3c and Fig. 3d). Thus, the
global optimal solution increases the number of images per
frame that are supported by the system by a factor of 12×
when compared to direct download and by a factor of 2×
when compared to local processing.

In addition, the energy consumption per image is consider-
ably lower for vd = v0 in Fig. 3b than for vd = v5 in Fig. 3d
due to the increased distance between the source satellite and
the destination, which increases the energy consumption at the
gather phase. Naturally, the energy consumption with η = 0.1
(see Fig. 3a and Fig. 3c) is considerably lower than that with
η = 1 (see Fig. 3b and Fig. 3d).

Next, Fig. 4 shows the selected value of ρ as a function
of Wk. Clearly, the same value of ρk = ρ∗k is selected by
both the global optimal and the local processing approaches.
Specifically, ρ∗k decreases as Wk increases up to Wk = 9
for vd = v0 and up to Wk = 14 for vd = v5. As Wk

increases beyond these values, the optimal compression ratio
is ρ∗k = Dk/Rk, which is the lowest value that ensures that the
downlink constraint is fulfilled, which can be easily calculated
in closed form.

We conclude the analyses of the per-frame optimization
scenario by illustrating the values of x

(n)∗
k in Fig. 5 for

vd = v0 and vd = v5 with η = {0.1, 1} and the source
satellite being n = 5. Clearly, Fig. 5 shows that the data to
process at satellites close to the source n = 5 increases as Wk

increases. Specifically, as shown in Fig. 5a and Fig. 5b, the
data is distributed symmetrically across neighbouring satellites
in the SMEC cluster when vd = v0 as the source satellite has
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Fig. 4. Optimal compression ratio with per-frame optimization considering
local processing and global optimal for (a) vd = v0 and (b) vd = v5.

direct connection to the GS. Conversely, for the case with
vd = v5 shown in Fig. 5c and Fig. 5d, a larger amount
of the data is distributed to satellites in the SMEC cluster
that are in the shortest path towards the destination n = 10.
Furthermore, more satellites are used for processing for the
case with η = 0.1 (see Fig. 5a and Fig. 5c) when compared to
the case with η = 1 (see Fig. 5b and Fig. 5d). This is because
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Fig. 5. Amount of data processed at the SMEC cluster for each satellite n for
Wk = {10, 20, 30} with the source satellite v0 being n = 5. The destination
satellite vd is also n = 5 in (a) η = 0.1 and (b) η = 1 and the destination
satellite vd is n = 10 in (c) η = 0.1 and (d) η = 1.

the case with η = 1 results in a higher transmission power
in the FSO links, which serves as a penalty for inter-satellite
communication. In all the illustrated cases, the amount of data
downloaded without processing is zero.

B. Multi-frame optimization

Next, we evaluate the energy consumption that can be
achieved by performing multi-frame optimization. First, we
consider a scenario where the amount of tasks per GTFP is
relatively low and the scheduler can dedicate an extended
duration per task to reduce energy consumption. This is
modeled by defining an initial frame of width W0 images
followed by K−1 empty frames (i.e., with Wk = 0 for k > 0).
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Fig. 6. Global optimal energy consumption for a task with K frames for
η = 1, where the first frame contains W0 ∈ {5, 10, 15, 20} images and the
remaining K − 1 frames are empty, i.e., Wk = 0 for k > 0. (a) vd = v0
and (b) vd = v5.

The energy consumption for W0 = {10, 20, 30} with
K = {1, 2, 3, 4, 5} is shown in Fig. 6 considering vd = v0 in
Fig. 6a and vd = v5 in Fig. 6b. As it can be seen, the energy
consumption increases drastically with the width of the frame
W0 for the case with K = 1, which has zero empty frames.
On the other hand, it is clear that the energy consumption
per image decreases as K increases. Specifically, the energy
consumption with K = 5, which contains 4 empty frames, is
90% lower than with K = 1 for the case with vd = v0 and
56% lower than with K = 1 for the case with vd = v5.

We conclude our analyses by evaluating the energy savings
for the case of a realistic task of scanning the island of La
Palma with vd = v5. Such task comprises K = 82 frames with
different widths Wk ∈ [1, 29] as shown in Fig. 7a. The total
duration of the task is equal to the duration of the pass of the
satellite over La Palma takes 6.4 s, occurs from top to bottom
of the area shown in Fig. 7a. Due to the large number of
images per frame, neither direct download nor local processing
are feasible in this scenario.

Fig. 7b shows the energy consumption per image with per-
frame optimization and with global optimization for η =
{0.1, 1} for scanning the island of La Palma. Naturally, the
energy consumption with η = 0.1 is much lower than with
η = 1 as the energy consumption for transmission at the ISLs
is 10× greater for the latter case. Most importantly, Fig. 7b
shows that the global optimization across all the K = 82
frames results in saving 9% and 11% of the energy when
compared to per-frame optimization for η = 0.1 and η = 1,
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Fig. 7. (a) Task characteristics, (b) energy consumption, (c) task allocation
where the source satellite v0 is n = 5, and (d) optimal value of ρk for
scanning La Palma island with a GSD of dgsd = 0.5m.

respectively. Even though these energy savings are lesser than
for the case with K − 1 empty frames, they still represent an
important reduction in energy consumption.

Next, Fig. 7c shows the amount of data allocated to each
satellite throughout the K = 82 frames

∑K
k=1 x

(n)
k given that

the source satellite is n = 5. Clearly, the data is more evenly
distributed across 4 satellites with η = 0.1 than with η = 1,
where the source satellite n = 5 processes more than 78% of
the total amount of data.

Finally, Fig. 7d shows that the optimal compression ratio
for each frame ρ∗k is not uniform across the task and, in
general, increases with the number of images in the frame.
Furthermore, the values of ρ∗k are widely different for the
two considered values of η, which illustrates the need for the
careful selection of ρ∗k based on the task allocation and the
transmission power.

V. CONCLUSIONS

In this paper, we considered a scenario where the physical
characteristics of the system, dictated by the orbital param-
eters of the satellites and the area covered by their camera,
determine the real-time requirements, which are necessary to
maintain stability in the communication links and in the CPUs
of the satellites. Moreover, we presented a general framework

and an iterative optimization method for distributed SMEC.
Our results show that distributed SMEC allows to capture,
process, and download up to 6× more images than with
direct download and up to 2× more images than with local
SMEC. Furthermore, up to 90% of the energy can be saved
by carefully selecting the allocation of data, the compression
ratio, and the processing frequency at the satellites. Finally,
we considered a real-life task and observed that 1) it is only
feasible to complete the task with distributed SMEC and
2) optimizing the task parameters jointly leads to additional
energy savings when compared to optimizing each frame
independently. These benefits set the basis for achieving very-
high resolution Earth observation missions.

APPENDIX

To obtain the closed-form expression for the optimal CPU
frequency, observe that the energy for processing increases
monotonically with f

(n)
k . Furthermore, the problem is feasible

with a given X and ρ if and only if ∃F : 0 ≤ f
(n)
k ≤ fCPU

for all n and k that satisfies (19).
To find the closed-form expression for the optimal CPU

frequency, we define the Lagrangian of PF , defined in (26) as

L(F,λ) =
N∑

n=1

[
K∑

k=1

ν C(ρk, ϵ)x
(n)
k

(
f
(n)
k

)2
+λ(n)

(
K∑

k=1

x
(n)
k C(ρk, ϵ)

KNCPUf
(n)
k

− TGTF

)

+

K∑
k=1

λ
(n)
k

(
f
(n)
k − fCPU

)]
(38)

From complementary slackness [26], we have that an optimal
solution to the primal and dual problem satisfies the following
two conditions.

λ(n)

(
K∑

k=1

x
(n)
k C(ρk, ϵ)

KNCPUf
(n)
k

− TGTF

)
= 0, (39)

N∑
n=1

K∑
k=1

λ
(n)∗
k

(
f
(n)∗
k − fCPU

)
= 0. (40)

Thus, we express the first complementary slackness condi-
tion (39) as

K∑
k=1

x
(n)
k C(ρk, ϵ)

f
(n)
k

< TGTFKNCPU =⇒ λ(n) = 0, (41)

otherwise

λ(n) > 0 =⇒
K∑

k=1

x
(n)
k C(ρk, ϵ)

f
(n)
k

= TGTFKNCPU. (42)

For condition (40) we have that

f
(n)∗
k < fCPU =⇒ λ

(n)∗
k = 0. (43)

Otherwise,

λ
(n)∗
k > 0 =⇒ f

(n)∗
k = fCPU. (44)
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Next, by taking the gradient of the Lagrangian L(F,λ) w.r.t.
f
(n)
k we have

∇
f
(n)
k

L(F,λ) = 2νC(ρk, ϵ)x
(n)
k f

(n)
k

−
λ(n)x

(n)
k C(ρk, ϵ)

KNCPU

(
f
(n)
k

)2 + λ
(n)
k

= 0. (45)

In the following, we consider the solution of problem PF for
the cases where C(ρk, ϵ)x

(n)
k > 0.

Case 1: To fulfill condition (43), the optimal value of the
multiplier obtained from (45) is

λ(n)∗ = 2νKNCPU

(
f
(n)∗
k

)3
,

s.t. f (n)∗
k < fCPU and λ

(n)∗
k = 0 for all k ∈ K, (46)

Therefore, we conclude that an equal solution f (n) = f
(n)∗
k <

fCPU is obtained for all k ∈ K. That is, for any given satellite
n ∈ N , the optimal CPU frequency is equal for all the frames
in a task. Furthermore, this implies that, if ∃λ(n)

k = 0 for
k ∈ K, then λ

(n)
k = 0 for all k ∈ K.

Specifically, by substituting f
(n)∗
k with f (n) in (42), we

obtain

f (n) =
1

KNCPUTGTF

K∑
k=1

x
(n)
k C(ρk, ϵ) (47)

Furthermore, note that from (42) and (46), the following
condition must hold

f (n) ∈ (0, fCPU) =⇒ λ(n)∗ > 0. (48)

Nevertheless, the latter does not prevent the case where f (n) =
fCPU and λ(n)∗ = 0 and, therefore (47) is the optimal solution
for all cases where λ

(n)
k = 0.

Case 2: To fulfill condition (41), the optimal value of the
multiplier obtained from (45) is

λ
(n)∗
k = −2νC(ρk, ϵ)x

(n)
k f

(n)∗
k (49)

Since all the terms on the right-hand side of (49) are either
positive or zero and it is required that λ(n)∗ ≥ 0, then the only
solutions to fulfill (49) lead to λ(n)∗ = λ

(n)∗
k = 0 and are as

follows.
If there is no data to process at satellite n, any CPU

frequency can be selected, namely,

C(ρk, ϵ)x
(n)
k = 0 =⇒ f

(n)∗
k ∈ [0, fCPU] , (50)

which means that the value of f (n)
k is irrelevant.

The other option is when the satellite n has data to process

C(ρk, ϵ)x
(n)
k > 0 =⇒ f

(n)∗
k = 0, (51)

but the latter option makes the processing time to be infinite,
so it should be excluded from the set of possible solutions.
Consequently, conditions (41) and (43) can only be fulfilled
jointly if the satellite has no data to process. In other words,
there is no optimal solution where f

(n)∗
k < fCPU and that leads

to a processing time lesser than TGTF.
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de Telecomunicacions de Catalunya, Spain. Her re-
search is in signal processing for communications,
focused on satellite communications. She has more
than 70 journal papers and 400 conference papers.
She is co-author of 7 books. She has leaded more
than 20 projects and holds 8 patents. She is the

coordinator of the Networks of Excellence on satellite communications,
financed by the European Space Agency: SatnexIV-V. She has been associate
editor of the IEEE TSP and EURASIP SP and ASP. She has been senior
area editor of IEEE OJSP. She is member of the BoG (2019-2023) of the
IEEE SPS and Vice-President for conferences (2021-23). She has been IEEE
SPS Director-at-large for Region 8 (2017-2018). She is EURASIP Fellow and
member of the Real Academy of Science and Arts of Barcelona (RACAB).
She is recipient for the 2018 EURASIP Society Award and she has been the
general chair of IEEE ICASSP’20. In 2020, she has been awarded the ICREA
Academia distinction by the Catalan government.
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