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Abstract—The multi-antenna coded caching problem, where
the server having L transmit antennas communicating to K
users through a wireless broadcast link, is addressed. In the
problem setting, the server has a library of N files, and each
user is equipped with a dedicated cache of capacity M . The idea
of extended placement delivery array (EPDA), an array which
consists of a special symbol ? and integers in a set {1, 2, . . . , S}, is
proposed to obtain a novel solution for the aforementioned multi-
antenna coded caching problem. From a (K,L, F, Z, S) EPDA,
a multi-antenna coded caching scheme with K users, and the
server with L transmit antennas, can be obtained in which the
normalized memory M

N
= Z

F
, and the delivery time T = S

F
.

The placement delivery array (for single-antenna coded caching
scheme) is a special class of EPDAs with L = 1. For the multi-
antenna coded caching schemes constructed from EPDAs, it is
shown that the maximum possible Degree of Freedom (DoF) that
can be achieved is t+L, where t = KM

N
is an integer. Furthermore,

two constructions of EPDAs are proposed: a) K = t + L, and b)
K = nt + (n − 1)L, L ≥ t, where n ≥ 2 is an integer. In the
resulting multi-antenna schemes from those EPDAs achieve the full
DoF, while requiring a subpacketization number K

gcd(K,t,L)
. This

subpacketization number is less than that required by previously
known schemes in the literature.

I. INTRODUCTION

Coded caching, introduced in [1], is a promising technique
to reduce the peak hour network traffic in content delivery
networks by exploiting the caches at the user end. This tech-
nique involves two phases, namely the placement phase and the
delivery phase. During the placement phase, the central server
(having a library of N files) populates the caches at the user
end. There are K users, each having a cache of size M units,
where 0 ≤M ≤ N . In the delivery phase, each user requests a
single file from the server library. After knowing those requests,
the server transmits a message created by encoding across the
requested file contents. The setting in [1] considered an error-
free broadcast link between the server (with a single transmit
antenna) and the users. The normalized capacity of the link
was assumed to be one file per unit of time. The scheme in
[1] can meet all the user demands in a normalized delivery
time of T = K−t

t+1 , where t = KM
N is an integer. The term

t + 1 in the denominator shows the multiplicative reduction
obtained in the delivery time by the scheme in [1] compared to
the conventional uncoded caching. The term t + 1 is termed
as the global caching gain or the degree of freedom (DoF)
achieved by the scheme. The DoF achieved by a scheme is
defined as the number of users simultaneously served in unit
time. In the further discussions, we refer to the scheme proposed
in [1] as the MaN scheme. The MaN scheme achieves the DoF
t + 1 by splitting the finite-length files into

(
K
t

)
subfiles. The

exponentially increasing subpacketization issue was addressed
in [2] by constructing coded caching schemes from placement

delivery arrays (PDA). But the reduction in subpacketization
number was achieved at the cost of the DoF. Furthermore, in
[2], the authors showed that the MaN scheme could also be
obtained from a class of PDAs. We refer to that class of PDAs
as the MaN PDA.

The coded caching problem with multiple transmit antennas
(with the server) were explored in [3], [4], and proposed a
scheme that achieves a DoF of t + L, where t = KM

N is
an integer and L is the number of transmit antennas. Under
the assumption of uncoded cache placement and one-shot data
delivery, t+ L (where t+ L ≤ K) is proven to be the optimal
DoF [5]. For the schemes in [3], [4], to achieve this theoretical
DoF, a file has to be split into,

(
K
t

)(
K−t−1
L−1

)
subfiles. Even

though those schemes enabled to achieve the optimal DoF,
the subpacketization requirement was far more than the MaN
scheme. The multi-antenna coded caching scheme proposed in
[6] tackled the subpacketization bottleneck without paying in the
DoF. The presented scheme required only a subpacketization
number of

(
K/L
t/L

)
while achieving the full DoF of t + L.

But, the scheme is valid only when L|K (L divides K) and
L|t. The schemes in [7]–[9] address the multi-antenna coded
caching problem under the subpacketization constraint. The
scheme proposed in [8] achieves the DoF t + L with a linear
subpacketization number of K(t + L), when L ≥ t. In [9],
the authors proposed a scheme that achieves the DoF t + α,
where t ≤ α ≤ L. The subpacketization requirement is K(t+L)

γ2 ,
where γ = gcd(K, t, L), which is even less compared to the
subpacketization requirement in [8]. Other interesting works in
multi-antenna coded caching literature include [10], [11] that
consider optimized precoder design, [12], [13] that reduce the
complexity by limiting the number of messages received by the
users in every time slot.

A. Contributions

In this work, we study the coded caching problem where the
server has L transmit antennas. We provide an alternate solution
for the multi-antenna coded caching problem by designing
a special array termed as extended placement delivery array
(EPDA). The PDAs proposed in [2] is a special class of EPDAs
with L = 1. The technical contributions of this paper are
summarized:
• A novel solution for the multi-antenna coded caching

problem via EPDAs is provided. It is shown that for every
EPDA there exists a corresponding multi-antenna coded
caching scheme (Section III: Theorem 1).

• In [5], it is shown that for a multi-antenna coded caching
scheme with L transmit antennas, the optimal DoF is t+L
(under the assumption of uncoded cache placement and
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one-shot delivery). An alternate proof for the same is given
in the context of EPDAs. That is, for the multi-antenna
coded caching schemes constructed from regular EPDAs
(an EPDA is said to be regular if all the integers in the array
appear exactly the same number of times), it is shown that
the maximum possible DoF that can be achieved is t+ L
(Section III: Lemma 1).

• A class of EPDAs corresponding to the coded caching
scheme proposed in [6] is identified (Section IV: Remark
2).

• A class of EPDAs corresponding to the multi-antenna
coded caching scheme proposed in [6] is identified (Section
IV: Remark 2).

• Two constructions of EPDAs are proposed. The resulting
multi-antenna coded caching schemes are applicable

1) when K = t+ L, (Section IV: Construction I)
2) when K = nt + (n − 1)L, L ≥ t, where n ≥ 2 is an

integer (Section IV: Construction II).
• The multi-antenna coded caching schemes resulting from

Construction I and Construction II achieve full DoF t +
L, while requiring a subpacketization number K

gcd(K,t,L)
(Section IV: Theorem 2, Section IV: Theorem 3). The
subpacketization number for those schemes is less than that
required by previously known schemes in the literature.

Our primary focus is on the construction of multi-antenna
coded caching schemes from EPDAs. We are mainly interested
in DoF analysis (i.e., at higher SNR) rather than the design of
sophisticated beamformers.

Due to space constraints, the proofs of some of the results
stated in this paper are omitted. They are presented in detail
and available online in [14].

B. Notations

For a positive integer n, [n] denotes the set {1, 2, . . . , n}.
For two positive integers a, b such that a ≤ b, [a : b] = {a, a+
1, . . . , b}. For integers a, b ≤ K,

[a : b]K =

{
{a, a+ 1, . . . , b} if a ≤ b.
{a, a+ 1, . . . ,K, 1, . . . , b} if a > b.

For any two integers, i and K,

< i >K=

{
i (mod K) if i (mod K) 6= 0.
K if i (mod K) = 0.

For two vectors u and v, u ⊥ v means that vTu = 0, and
u 6⊥ v means that vTu 6= 0. All the vectors are assumed to be
column vectors by default. Finally, the symbol C represents a
complex number.

II. SYSTEM MODEL AND PROBLEM FORMULATION

The system model consists of a central server having a library
of N files, W[1:N ] , {Wn : n ∈ [N ]} each of size 1 unit.
We consider a multiple-input, single-output (MISO) broadcast
channel in which the server with L transmit antennas commu-
nicates to K users, each having a single receive antenna. The
wireless shared link is assumed to be of capacity 1 file per unit
of time. Furthermore, each node in the system (the server and
K users) has perfect channel state information (CSI). Each user
is equipped with a dedicated cache of capacity M units, where

0 ≤M ≤ N . The system operates in two phases: the placement
phase and the delivery phase. In the placement phase, the server
stores some of the file contents in the caches of the users without
knowing the future demands. In general, the placement can be
coded or uncoded. In this work, we concentrate only on schemes
with uncoded placement. The contents stored in cache k is
denoted as Zk. In the delivery phase, each user requests a single
file from the server. Let d = (d1, d2, . . . , dK) be the demand
vector, i.e., the kth user requests for the file Wdk , for every
k ∈ [K]. After knowing the demand vector, the server makes
transmission vectors {x(τ)}Tτ=1. That is, the server transmission
is for T time slots. During the time slot τ , the server transmits
x(τ), where x(τ) ∈ CL. At time slot τ , the kth user receives,

yk(τ) = hTk x(τ) + wk(τ) (1)

where hTk ∈ CL is the channel vector and wk(τ) ∼ CN (0, 1) is
the additive noise (complex normal distributed with zero mean
and unit variance) observed at user k at time slot τ . Define
the channel matrix H := [h1,h2, . . . ,hK ]. We assume that the
received signal to noise ratio (SNR) is high as in [3], [6]–[8],
and neglect the additive noise component during the analysis.
The correctness of the scheme implies that, using the local cache
content Zk and the received coded files {yk(τ)}Tτ=1, user k
should be able to decode the demanded file Wdk . The coded
caching system under the aforementioned setting is called the
(K,L,M,N) multi-antenna coded caching system.

The number of time slots T taken by the server to meet
the user demands is termed the delivery time. It is already
proven in the literature [5] that under the assumption of uncoded
placement and one-shot delivery, the optimal delivery time is
T ∗ = K−t

t+L , where t = KM
N is an integer. For any other value of

M (when KM
N is not an integer), the delivery time is the lower

convex envelope of adjacent corner points (connect the delivery
times at the adjacent integer t values with a straight line). The
term 1 − t

K = 1 − M
N denotes the local caching gain, which

is achieved simply from the caching. The extra multiplicative
reduction factor t+L is termed as the Degree of Freedom (DoF)
achieved. The ultimate goal of the coded caching problem is to
design the placement and the delivery phases jointly such that
the DoF is maximized (maximizing the DoF is the same as
minimizing the delivery time).

While designing coded caching schemes, one other important
parameter to be considered is the subpacketization number. The
subpacketization number is defined as the number of subfiles
into which a file is divided during the coded caching scheme.
It is always desired to have a low subpacketization number.

III. EXTENDED PLACEMENT DELIVERY ARRAY (EPDA)

In this section, we propose the idea of extended placement
delivery array to obtain multi-antenna coded caching schemes.

Definition 1. Let K,L(≤ K), F, Z, S be positive integers. An
array A = [aj,k], j ∈ [F ], k ∈ [K] consisting of the symbol ?
and positive integers in [S] is called a (K,L, F, Z, S) extended
placement delivery array (EPDA) if it satisfies the following
conditions:
C1. The symbol ? appears Z times in each column.
C2. Every integer in the set [S] occurs at least once in A.
C3. No integer appears more than once in any column.
C4. Consider the sub-array A(s) of A obtained by deleting all
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the rows and columns of A that do not contain the integer s.
Then for any s ∈ [S], no row of A(s) contains more than L
integers.

We present an example of an EPDA before discussing the
construction of multi-antenna coded caching scheme from EP-
DAs. A (K = 3, L = 2, F = 3, Z = 1, S = 2) EPDA is
given:

A =

? 1 1
1 ? 2
2 2 ?


It is easy to verify that A satisfies the conditions C1, C2 and
C3. To verify C4, consider the sub-arrays A(1) and A(2).

A(1) =

[
? 1 1
1 ? 2

]
, A(2) =

[
1 ? 2
2 2 ?

]
In both A(1) and A(2), all the rows contain two integers (which
is equal to L). Therefore, A satisfies the condition C4 as well.
Note that, in the sub-array corresponding to the integer 1,
integer 2 is also present. In general, a sub-array A(s) of a
(K,L, F, Z, S) EPDA may contain the integers in [S]\{s} as
well.

From a (K,L, F, Z, S) EPDA, A = [aj,k], j ∈ [F ] and
k ∈ [K], a multi-antenna coded caching scheme with the
server having L transmit antennas and the normalized cache
size M

N = Z
F , can be obtained as follows:

1. Placement phase: The server divides each file into F
subfiles of equal size. Thus, for every n ∈ [N ], we have,
Wn = {Wn,j |j ∈ [F ]}. The kth user’s cache is populated
as follows:

Zk = {Wn,j | aj,k = ?, ∀n ∈ [N ]} . (2)

For any k ∈ [K] if aj,k = ?, then it means that user k has
access to the jth subfile of all the files.

2. Delivery phase: Let d = (d1, d2, . . . , dK) be the demand
vector. Assume that the integer s appears gs times in A.
Let aj1,k1 = aj2,k2 = · · · = ajgs ,kgs = s. Then the server
transmits Vs · (Wdk1

,j1 ,Wdk2
,j2 , . . . ,Wdkgs

,jgs
)T , where

Vs = (vs1,v
s
2, . . . ,v

s
gs) is a precoding matrix of size L×

gs. For every i ∈ [gs], define Bi := {β : aji,β 6= ?, β ∈
{k1, . . . , ki−1, ki+1, . . . , kgs}}. Then the ith column of Vs

is vsi ⊥ hα for all α ∈ Bi, and vsi 6⊥ hki .
For the above placement and delivery strategies, we have the
following theorem.

Theorem 1. Corresponding to any (K,L, F, Z, S) EPDA, there
exists a (K,L,M,N) multi-antenna coded caching scheme with
M
N = Z

F and subpacketization number F . Furthermore, the
server can meet any user demand d with a delivery time T = S

F .

Proof: The server stores Z subfiles of every file in the kth

user’s cache (Eq:(2)) during the placement phase. Therefore,
the normalized memory of the cache is M

N = Z
F . In the delivery

phase, the server makes a transmission corresponding to every
integer present in the EPDA considered. Thus there are S

transmissions, each of size
(
1
F

)th
of a file. So, the normalized

delivery time is T = S
F .

Now, it remains to show the decodability of the demanded
files by the users. Consider user k which does not have the sub-
file Wdk,j from the placement phase. Assume that aj,k = s for

some s ∈ [S] (if aj,k = ?, then Wn,j would have been available
for user k from the placement phase itself). Then the claim is
that user k will receive the subfile Wdk,j from the transmission
corresponding to the integer s. Consider the sub-array A(s), and
assume that aj,k = aj2,k2 = · · · = ajgs ,kgs = s. Then the server
transmission is Vs.(Wdk,j ,Wdk2

,j2 , . . . ,Wdkgs
,jgs

)T . But, user
k receives (neglecting the additive noise by the high-SNR
assumption)

Yk = hTkV
s · (Wdk,j ,Wdk2

,j2 , . . . ,Wdkgs
,jgs

)T

= hTk (v
s
1,v

s
2, . . . ,v

s
gs) · (Wdk,j ,Wdk2

,j2 , . . . ,Wdkgs
,jgs

)T

= hTk v
s
1Wdk,j

+

gs∑
i=2

aji,k 6=?

(
hTk v

s
i

)
Wdki

,ji +

gs∑
i=2

aji,k=?

(
hTk v

s
i

)
Wdki

,ji .

From the design of the precoding vectors, we have, hTk v
s
i = 0

for all i ∈ [2 : gs] such that aji,k 6= ?. In other words, the
precoding vectors are designed such that whichever subfiles
(subfiles involved in the transmission corresponding to the
integer s) are not cached in the kth cache will be nulled out
from Yk (except the subfile required for user k). Therefore, Yk
will be a linear combination of required subfile (for user k) and
some other subfiles that are available in cache k. All the users
know all the channel coefficients H completely, hence users k
can decode Wdk,j . Since k and j are arbitrary, all the users can
decode their demanded files.

This completes the proof of Theorem 1.

Example 1. Consider the (K = 4, L = 2, F = 4, Z = 1, S =
4) EPDA given below:

A =


? 1 1 4
1 ? 2 2
3 2 ? 3
4 4 3 ?


Consider a coded caching scheme with K = 4 users and the

server having L = 2 transmit antennas. The server has N files
Wn, n ∈ [N ]. The placement and delivery is in accordance with
A. In the placement phase, the server divides each file into 4
subfiles, Wn = {Wn,1,Wn,2,Wn,3,Wn,4} for all n ∈ [N ]. The
contents stored in each user’s cache are:

Z1 = {Wn,1 : n ∈ [N ]} , Z2 = {Wn,2 : n ∈ [N ]} ,
Z3 = {Wn,3 : n ∈ [N ]} , Z4 = {Wn,4 : n ∈ [N ]} .

Let d = (1, 2, 3, 4) be the demand vector. Then the server
makes the transmissions summarized in TABLE I.

TABLE I: Transmissions in the delivery Phase: Example 1

Time Slot Transmission

1 V1 · (W1,2,W2,1,W3,1)T

2 V2 · (W2,3,W3,2,W4,2)T

3 V3 · (W1,3,W3,4,W4,3)T

4 V4 · (W1,4,W2,4,W4,1)T

To design the precoding matrix V1 = (v1
1,v

1
2,v

1
3), consider

the sub-array corresponding to the integer 1,

A(1) =

[
? 1 1
1 ? 2

]
.
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To design the precoding vector v1
1, consider the row in which

the integer 1 is present in the first column of A(1), that is the
second row of A(1). Find out all the columns (excluding the
first column) in which an integer is present in the second row
of A(1). The integer 2 is present in the third column. Therefore,
v11 ⊥ h3. Similarly, we can see that v12 ⊥ h3 and v13 ⊥ h2. By
considering A(2), A(3) and A(4), we can design the rest of the
precoding matrices.

User 1, user 2 and user 3 benefit from the transmission
corresponding to integer 1, since integer 1 is present in column
1, column 2 and column 3 of A. Let us see how user 2 is
benefiting from that transmission. User 2 receives,

Y2 = hT2 V
1 · (W1,2,W2,1,W3,1)

T

= (hT2 v
1
1,h

T
2 v

1
2,h

T
2 v

1
3) · (W1,2,W2,1,W3,1)

T

= (hT2 v
1
1,h

T
2 v

1
2, 0) · (W1,2,W2,1,W3,1)

T

= hT2 v
1
1W1,2 + hT2 v

1
2W2,1.

Since, user 2 has access to the subfile W1,2, the user can decode
the desired subfile W2,1. More details are given in [14].

Remark 1. If L = 1, no row of A(s) should contain more than
one integer. That is, every row in A(s) will be consisting of one
integer and rest all ?’s. That one integer will be s, since A(s)

is obtained by deleting all the rows and columns that do not
contain the integer s. Therefore, A(s) will have the form,

s ? . . . ?
? s . . . ?
...

...
. . .

...
? ? . . . s


up to row and column permutation. That means, a
(K,L, F, Z, S) EPDA becomes a (K,F,Z, S) PDA introduced
in [2], when L = 1.

In a (K,L, F, Z, S) EPDA, if g1 = g2 = . . . , gS = g, then
the EPDA is said to be g-regular.

Definition 2. An array A is said to be a g-regular
(K,L, F, Z, S) EPDA if A satisfies the condition C2’, in ad-
dition to C1, C3 and C4.
C2’: Each integer in [S] should appear exactly g times in A.

In a multi-antenna coded caching scheme obtained from a g-
regular (K,L, F, Z, S) EPDA, the positive integer g represents
the number of users benefited from a transmission in any given
time slot. In other words, g is the DoF achieved by the scheme.
By C2, the regularity of an EPDA g is upper bounded by the
number of columns K in the EPDA.

Lemma 1. For a multi-antenna coded caching scheme obtained
from a g-regular (K,L, F, Z, S) EPDA, the delivery time,

T =
K

g

(
1− Z

F

)
. (3)

Furthermore, we have,

g ≤ L+
KZ

F
. (4)

Proof: Lemma 1, Eq: (3) can be proved by counting the
number of integers in the array in different ways. Similarly, Eq:
4 can be proved by counting the number of stars in the array
column-wise and row-wise. When Z

F = M
N = t

K for some

integer t, we have, g ≤ L + t. The detailed proof is given in
the extended version [14].

IV. NEW CONSTRUCTIONS

In this section, we introduce two constructions of EPDAs for
certain values of K,L, F, Z, S. Using those EPDAs, we obtain
the corresponding multi-antenna coded caching schemes. Before
dealing with the constructions, we present the definition of u-
row concatenation of arrays.

Definition 3. The process of obtaining an array AF×uK by
concatenating another array ÂF×K , row-wise, u times is re-
ferred to as u-row concatenation of Â. This can be expressed
as,

A = [Â|Â| . . . |Â︸ ︷︷ ︸
u times

].

Lemma 2. The u-row concatenation of a (K,L, F, Z, S) EPDA
results in a (uK, uL, F, Z, S) EPDA.

Proof: Consider a (K,L, F, Z, S) EPDA A1. Let A be the
array obtained by u-row concatenation of A1. It is easy to see
that the array A satisfies C1, C2 and C3, since A1 satisfies C1,
C2 and C3. Now to show A satisfies C4, consider an integer
s ∈ [S] present in A1. Then, the sub-array A(s) is obtained by
the u-row concatenation of A(s)

1 . In any row of A(s)
1 , there will

be L integers at the maximum. It means that, no row of A(s)

will be containing more than uL integers. This is true for every
s ∈ [S]. Therefore, A is a (uK, uL, F, Z, S) EPDA.

This completes the proof of Lemma 2.

Corollary 1. The u-row concatenation of a (K,F,Z, S) PDA
results in a (uK, u, F, Z, S) EPDA.

Proof: The result follows from Lemma 2 since a
(K,F,Z, S) PDA is a (K,L = 1, F, Z, S) EPDA.

Remark 2. The multi-antenna coded caching scheme presented
in [6] can also be obtained from EPDA. The proposed scheme
works with subpacketization number

(
K/L
t/L

)
if L|K and L|t,

where t is a positive integer such that MN = t
K . To see the corre-

sponding EPDA representation, first consider the (K ′, F ′, Z ′S′)
MaN PDA (given in [2]) with K ′ = K/L,F ′ =

(
K/L
t/L

)
, Z ′ =(

(K/L)−1
(t/L)−1

)
and S′ =

(
K/L

(t/L)+1

)
. The L-row concatenation of

this (K ′, F ′, Z ′, S′) PDA will give our desired (K,L, F ′, Z ′S′)
EPDA (follows from Corollary 1). Note that, in the result-
ing (K,L,M,N) multi-antenna coded caching scheme, the
subpacketization number is

(
K/L
t/L

)
, and the delivery time is

S′

F ′ =
K−t
t+L (DoF achieved is t+ L).

Now, we see two constructions of EPDAs with the maximum
possible regularity L+ KZ

F .
a) Construction I: A (K,K − Z,K,Z,K − Z) EPDA.
In this construction, F = K, L = K − Z and S = K − Z.

We denote the EPDA with A = [aj,k]. Then, the ?’s appear in
A as follows,

aj,k = ?, ∀(j, k) ∈ [K]× [K] : (j − k) (mod K) < Z. (5)

That is, in the kth column of A, ak,k = a<k+1>K ,k = · · · =
a<k+Z−1>K ,k = ?. Now, consider an integer s ∈ [K − Z].
Then s occurs in A as,

aj,k = s, such that j = (Z + s+ k − 1) (modK). (6)
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The array A obtained by the above construction is, in fact, a
K-regular (K,K − Z,K,Z,K − Z) EPDA (the proof that A
is an EPDA is provided in [14]).

Theorem 2. For a (K,L,M,N) multi-antenna coded caching
scheme with M

N = t
K and L = K − t, where t is an integer,

the delivery time T ∗ = K−t
t+L = L

K is achievable with a
subpacketization number K

gcd(K,t,L) .

Proof: Let t = KM
N be an integer, and let L = K − t.

Define γ , gcd(K, t, L). Let K̃ = K
γ , L̃ = L

γ and t̃ = t
γ . Since

K = t+L, we have, K̃ = t̃+L̃. Now construct a (K̃, L̃, K̃, t̃, L̃)
EPDA A1 using Construction I. The γ-row concatenation of A1

results in a (K,L, K̃, t̃, L̃) EPDA A. Now, in the multi-antenna
coded caching scheme corresponding to A, M

N = t̃
K̃

= t
K .

Using Theorem 1, in the resulting scheme, we have, the delivery
time, T = L̃

K̃
= K−t

t+L , and the subpacketization number is K
γ .

This completes the proof of Theorem 2.
b) Construction II: A

(
K, K−nZn−1 ,K, Z, (n− 1)K

)
EPDA

with K ≥ (2n− 1)Z, where n is an integer greater than 1.
We construct an EPDA B = [bj,k] with parameters F =

K,L = K−nZ
n−1 , S = (n − 1)K and K ≥ (2n − 1)Z, where n

is an integer greater than 1. The ?’s appear in B as follows,

bj,k = ?, ∀(j, k) ∈ [K]× [K] : (j − k) (mod K) < Z. (7)

That is, in the kth column of B, bk,k = b<k+1>K ,k = · · · =
b<k+Z−1>K ,k = ?. Now, consider an integer s ∈ [(n − 1)K].
Let s = pK+q, where p ∈ [0 : n−2], q ∈ [1 : K]. If p is even,
then s occurs in B as follows:

bq,< p
2 (Z+L)+q+i>K

= s ∀i ∈ [L], (8)

b< p
2 (Z+L)+Z+q>K ,<q−Z+i>K

= s ∀i ∈ [Z]. (9)

If p is odd, then s occurs in B as follows:
bq,<( p−1

2 )(Z+L)+L+q+i>K
= s ∀i ∈ [Z], (10)

b<( p+1
2 )(Z+L)+q>K ,<q−Z+i>K

= s ∀i ∈ [L]. (11)

The array B obtained by the above construction is a (Z + L)-
regular (K,L,K,Z, (n−1)K) EPDA with L = K−nZ

n−1 if K ≥
(2n− 1)Z (the proof that B is an EPDA is provided in [14]).

Theorem 3. For a (K,L,M,N) multi-antenna coded caching
scheme with M

N = t
K and K = nt+ (n− 1)L; L ≥ t, where t

and n ≥ 2 are integers, the delivery time T ∗ = K−t
t+L = n − 1

is achievable with a subpacketization number K
gcd(K,t,L) .

Proof: Let t = KM
N be an integer, and let n ≥ 2 be an inte-

ger such that K = nt+(n−1)L. Define γ , gcd(K, t, L). Let
K̃ = K

γ , L̃ = L
γ and t̃ = t

γ . Since K = nt+(n−1)L, we have,

K̃ = nt̃+(n−1)L̃. Now construct a (K̃, K̃−nt̃n−1 , K̃, t̃, (n−1)K̃)
EPDA B1 using Construction II. The γ-row concatenation of
B1 results in a (K, K−ntn−1 , K̃, t̃, L̃) EPDA B. Now, in the multi-
antenna coded caching scheme corresponding to B, MN = t̃

K̃
=

t
K . Using Theorem 1, the delivery time obtained in the resulting
scheme, T = (n−1)K̃

K̃
= n−1 = K−t

t+L , and the subpacketization
number is K

γ . This completes the proof of Theorem 3.

Example 2. The array A is a 4-regular (4, 3, 4, 1, 3) EPDA
obtained using Construction I. The array B is a 3-regular

(4, 2, 4, 1, 4) EPDA obtained using Construction II, where K =
nZ + (n− 1)L with n = 2.

A =


? 3 2 1
1 ? 3 2
2 1 ? 3
3 2 1 ?

 , B =


? 1 1 4
1 ? 2 2
3 2 ? 3
4 4 3 ?


V. COMPARISON

In this section, we compare the multi-antenna coded caching
schemes resulting from Construction I and Construction II to
different multi-antenna coded caching schemes in the literature
[3], [6], [8], [9]. All these schemes achieve the optimal DoF of
t+L. Therefore, the comparison is in terms of subpacketization
number.

Consider the multi-antenna coded caching scheme obtained
from Construction I. The scheme requires a file to be split into

K
gcd(K,t,L) subfiles. When K = t+L, the multi-antenna scheme
proposed in [3] has a subpacketization number

(
K
t

)(
K−t−1
L−1

)
=(

K
t

)
. For any t ∈ [2 : K − 2], the subpacketization number for

our proposed scheme is strictly less than that for the scheme
proposed in [3]. The scheme in [6] is applicable only when
L|K and t|K. When both those conditions are valid, along with
K = t + L, then t = iL and K = (i + 1)L for some positive
integer i. In that case, the subpacketization number required for
the scheme from Construction I and for the scheme in [6] is K

L
(because gcd(K, t, L) = L). The multi-antenna coded caching
schemes in [8] and [9] are applicable when L ≥ t. If K = t+L,
then the subpacketization number required for the scheme in [8]
is, K(t+ L) = K2, and that required for the scheme in [9] is(
K
γ

)2
, where γ = gcd(K, t, L). Both these subpacketization

requirements are high compared to our proposed scheme.
Now, we compare the multi-antenna coded caching scheme

obtained from Construction II with the schemes in [3], [6], [8],
[9] in terms of subpacketization number. The comparison is
for the case K = nt + (n − 1)L; L ≥ t, where n ≥ 2 is an
integer. The scheme from Construction II has a subpacketization
number K

gcd(K,t,L) . When K = nt + (n − 1)L, the multi-
antenna scheme proposed in [3] has a subpacketization num-
ber of

(
K
t

)(
K−t−1
L−1

)
=
(
K
t

)(
(n−1)L−1

L−1
)
. The subpacketization

number is increasing exponentially with K in the case of [3].
Meaningful comparison with the scheme in [6] is when L = t,
since our proposed scheme works if L ≥ t, and the scheme in
[6] works if L|t. When t = L, and K = nt + (n − 1)L, our
proposed scheme and the scheme in [6] require a subpacketiza-
tion number K

L (because gcd(K, t, L) = L). The multi-antenna
coded caching scheme in [8] requires a subpacketization number
of K(t+L) which is strictly greater than the subpacketization
number required for our proposed scheme. Similarly, the scheme
in [9] requires a subpacketization number K(t+L)

γ2 which is also
strictly greater than K

γ , since t+L > γ, where γ = gcd(K, t, L).
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