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Abstract—In this paper, rapidly converging low-complexity
iterative transmit precoding (TPC) techniques are pro-
posed for the massive multiple-input multiple-output (MIMO)
downlink. First of all, the proposed random block-based
iterative TPC (RBI-TPC) algorithm performs its iterations
by updating multiple rather than a single component at each
instant, where the updating order of each block containing
multiple components relies on the samples randomly sam-
pled from a discrete distribution. Based on the analytically
derived convergence rate, we demonstrate that improved
convergence is achieved by the block-based update mechanism
conceived since the correlation between multiple components
can be beneficially exploited. Then, the random sampling
that determines the updating order is studied. By applying
conditional random sampling, the updating order is optimized
based on the latest updates for attaining more rapid con-
vergence. We also demonstrate that the associated updating
order may become deterministic under specific conditions
so that a fixed but optimized updating order can be used
for facilitating the practical implementations, which paves
the way for conceiving the ordered block-based iterative
TPC (OBI-TPC) algorithm. Finally, the concept of successive
over-relaxation (SOR) is adopted for further convergence
improvement and simulations are presented to illustrate the
performance improvements of the proposed RBI and OBI
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I. INTRODUCTION

AS one of the core technologies of next-generation
wireless communications, massive multiple-input

multiple-output (MIMO) solutions substantially improve
the spectral efficiency and power efficiency trade-off [1]–
[5]. However, their performance is eroded by the multi-
user interference in the downlink [6]–[9]. As an efficient
technique of mitigating the interference, transmit precoding
(TPC) has been widely applied for targeting the trans-
mitted signal at the intended receiver, which mitigates
the interference imposed on other users [10]–[16]. It has
been demonstrated that capacity-approaching performance
can be achieved by linear TPC techniques including zero-
forcing (ZF) and regularized ZF (RZF) TPCs when the
number of antennas N used at base station (BS) is suffi-
ciently higher than that employed by the receiver (denoted
by K) [17], [18].

Unfortunately, due to the matrix inversion associated
with a complexity order of O(K3), both the ZF and RZF
TPCs tend to have excessive complexity cost. Hence, a
number of low-complexity TPC schemes have been pro-
posed for implementing the matrix inversion by polynomial
expansion or iterative methods [19]–[25]. Specifically, the
Neumann series (NS) and Kapteyn series (KS) based on
polynomial expansion are applied for linear TPC in [26],
[27]. Compared to polynomial expansion, approximating
the matrix inversion by iterative methods is more promising
as a benefit of its faster convergence. In [28], the Jacobi
iteration is employed for determining the linear TPC co-
efficients at a low complexity. However, the convergence
of Jacobi iteration is only guaranteed when N � K,
making it limited to various scenarios of interest. In [29],
the Richardson iteration is applied for linear TPC with
an introduced relaxation factor ω. To improve the TPC
performance, Gauss-Seidel (GS) iteration is applied in
[30], which results in a faster convergence than Jacobi
and Richardson iterations. Moreover, by incorporating a
relaxation factor into the GS iteration, it has been shown
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that successive over-relaxation (SOR) iteration converges
more rapid than GS iteration [31]. A range of other low-
complexity iterative TPC algorithms can be found in [32]–
[35].

In contrast to the Jacobi and Richardson iterations that
allow parallel updates during the iterations, the GS iteration
updates each element based on the latest update of all the
other elements [36], which leads to a sequential structure.
Therefore, to achieve an improved precoding performance
for massive MIMO systems, a pair of substantial improve-
ments are conceived in this paper with respect to the
iteration-based linear TPC. The first improvement is based
on updating multiple elements rather than single element at
each instant. By performing such a block-based update, the
correlation between multiple elements can be beneficially
exploited, which may lead to further convergence improve-
ment. The second one is concerned with the update order of
the iteration. In contrast to the forward or backward update
order by default [18], considerable convergence gains may
be attained by a tailor-made update order.

It has been shown in [37] that the convergence behaviour
of the iterative methods may be analyzed statistically
by means of random sampling. Indeed, random sampling
has emerged as a powerful mathematical tool capable of
addressing various challenging problems of interest [38]–
[44]. Inspired by this success, we carry out the associated
convergence analysis of the iteration by harnessing random
sampling from specifically a designed distribution. Then,
based on the convergence rate derived, the performance
gains attained by the block-based update and our be-
spoke update order can be clearly demonstrated. Moreover,
the relationship between the traditional and the random
sampling-based iteration is also revealed. In particular,
we show that the traditional iteration associated with a
certain fixed order can be approximated by random sam-
pling based iteration with the aid of multi-step conditional
sampling. Therefore, we can seamlessly incorporate the
mechanisms of the ordered and the block-based updates
into the traditional iterations, thus attaining an improved
TPC performance in downlink massive MIMO systems.

In a nutshell, we advance the research of low-complexity
iterative TPC on several fronts.
• Firstly, by carefully revisiting the traditional iterative

TPC schemes, the random block-based iterative TPC
(RBI-TPC) algorithm is proposed, which always con-
verges in an exponential way in terms of the mean
square error (MSE). Based on the derived convergence
rate, the convergence gain of the block-based update
can be confirmed but a meritorious choice of the
sampling distribution is also beneficial for improving
the iterative convergence.

• Secondly, by introducing the multi-step conditional
sampling technique into our RBI-TPC algorithm, a
deterministic-like TPC can be realized, where the
fixed update order is determined by the sampling
distribution applied. Inspired by this, the ordered

block-based iterative TPC (OBI-TPC) algorithm is
proposed and we show that OBI-TPC enjoys a faster
convergence than RBI-TPC. Meanwhile, because of
the fixed order in OBI-TPC, the operations of random
sampling can be avoided, so that considerable poten-
tial efficiency gains can also be attained by OBI-TPC.

• Thirdly, a relaxation factor is incorporated into the
proposed OBI-TPC scheme for achieving an improved
precoding performance, and this leads to the ordered
block-based iterative successive over-relaxation trans-
mit precoding (OBI-SOR-TPC).

To sum up, we boldly and explicitly contrast our new
contributions to the related literature in Table I, where k
denotes the iteration index and µ(A) is the spectral radius
of matrix A.

The rest of this paper is organized as follows. Section
II describes the traditional linear TPC conceived for the
downlink of massive MIMO systems and briefly reviews
the family of low-complexity iterative TPC schemes. In
Section III, the traditional iterative TPC schemes are
revisited in more detail and the RBI-TPC algorithm is
proposed. In Section IV, the convergence analysis of the
proposed RBI-TPC is presented to demonstrate its globally
exponential convergence, followed by the design options
for the sampling distribution. In Section V, by taking
advantage of conditional sampling, the RBI-TPC with
multi-step conditional sampling is illustrated for improving
convergence and efficiency. Based on this, the OBI-TPC
algorithm is proposed, which can be further enhanced by
introducing a relaxation factor. Finally, simulation results
characterizing the proposed RBI-TPC and OBI-TPC al-
gorithms in the downlink of massive MIMO systems are
presented in Section VI, and Section VII concludes the
paper.

Notation: Matrices and column vectors are indicated
by upper and lowercase boldface letters, and the conju-
gate transpose, inverse, pseudoinverse of a matrix B by
BH ,B−1, and B†, respectively. We adopt bi or B:,i for
the ith column of matrix B, bi,j for the entry in the ith
row and jth column of the matrix B. Let 〈X,Y〉F (W−1) ,
Tr(XHW−1YW−1) stand for the weighting Frobenius
inner product, where X,Y ∈ Cn×n and W ∈ Cn×n is
a symmetric positive definite matrix. Furthermore, ‖ · ‖F
denotes the standard Frobenius norm with the identity
matrix I and Tr(·) denotes the trace of the input matrix.
Finally, the computational complexity is measured by the
number of multiplication operations.

II. PRELIMINARIES

In this section, the classic linear TPC designed for the
downlink transmission in massive MIMO systems is briefly
introduced, followed by the background of the traditional
low-complexity iterative TPC schemes.
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TABLE I
A BRIEF COMPARISON OF THE RELATED LITERATURE OF LOW-COMPLEXITY ITERATIVE TPC SCHEMES.

TPC schemes Computational Complexity Convergence Block-based Update Ordered Update

ZF & RZF O(K3)

Polynomial Expansion [21] O(NK · k) if N � K

Neumann Series [45] O(K2 · k), k < 3 if N � K

Newton [34] O(K2 · k) if N � K

Jacobi [28] O(K2 · k) if N � K

Richardson [29] O(K2 · k) if 0 < ω < 2/µ(A)

Kaczmarz [46] O(K2 · k) always

Gauss Seidel [19] O(K2 · k) always

SOR [31] O(K2 · k) if 1 < ω < 2

RIPA [37] O(K2 · k) always X

OBI (This work) O(K2 · k) always X X

OBI-SOR (This work) O(K2 · k) if 1 < ω < 2 X X

A. Linear Transmit Precoding in Downlink

Consider a massive MIMO system having N downlink
transmit antennas at the base station (BS), which serves
K single-antenna user terminals (UTs) (N ≥ K). Fur-
thermore, let s ∈ CK indicate the source information
transmitted from the BS to the users. Then the received
multi-user signal y ∈ CK represented in a vectorial form
at the UTs is given by [18], [19]

y =
√
%HHGs + n. (1)

Here, H ∈ CN×K is the channel matrix, G ∈ CN×K
denotes the transmit precoding (TPC) matrix of the down-
link transmission, n ∈ CK is the additive white Gaussian
noise (AWGN) whose entries obey CN (0, σ2), % > 0
indicates the average transmit power at the BS. Due to the
power constraint, the source information s and the TPC
matrix G should be specifically selected by normalizing
‖s‖2 = 1 and tr(GGH) = 1. To be more specific, the
optimization problem for seeking the linear TPC matrix G
can be formulated as

min
G

En,s[‖y − s‖2]. (2)

With respect to the problem in (2), the linear ZF TPC
is designed to mitigate the interference in the downlink
transmission, i.e.,

Gzf = βH(HHH)−1, (3)

which conveys the transmitted signal to the target user by
nulling the signal in the directions of the other users. Here,
β is a scaling factor used for satisfying the power con-
straint. Moreover, as an improved TPC based on the mean-
square error criterion, the linear regularized ZF (RZF) TPC

is proposed, which is formulated as

Grzf = βH(HHH + ξI)−1. (4)

This is also known as the minimum mean-square error
(MMSE) TPC. Here, I stands for the identity matrix and ξ
is a coefficient used for scalar regularization. Theoretically,
the RZF TPC operates as the ZF TPC when ξ = 0, while
it degenerates to the traditional maximal ratio transmission
(MRT) scheme if ξ goes to infinity.

Intuitively, according to (3) and (4), both the TPC ma-
trices Gzf and Grzf are characterized by the channel matrix
H. More specifically, by letting A = HHH ∈ CK×K for
the ZF TPC (or A = HHH + ξI ∈ CK×K for the RZF
TPC), we have

G = βHA−1, (5)

and the computation of G heavily relies on the matrix in-
version of A, which has a computational complexity order
of O(K3). Clearly, the complexity escalates rapidly with
the system dimension. This imposes a pressing challenge
on the implementation of the linear TPC in practice.

On the other hand, given matrix A, computing its matrix
inversion can be replaced by solving the following linear
system

At = s (6)

as t = A−1s. Then, according to t = A−1s, the system
model in (1) becomes

y =
√
%HHGs + n =

√
%HHβHA−1s + n

=
√
%βHHHt + n, (7)

where the inversion of A is converted to finding t in
the linear system of (6) as they yield the same result
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by Gs = βHA−1s = βHt. As such, the optimization
problem based on (7) becomes

min
t
En,s[‖y − s‖2]. (8)

Clearly, after finding t, one can easily get βHt, which is
equivalent to obtaining Gs, thus completing the desired
precoding operation. Hence, a number of low-complexity
TPC algorithms based on the classic iterative methods have
been proposed to circumvent the matrix inversion [19]–
[25].

B. Traditional Low-Complexity Iterative Transmit Precod-
ing

Specifically, given the source information s and the
matrix A, the problem in (8) can be further refined as

min
t
‖At− s‖2, (9)

and the traditional low-complexity iterative methods can be
employed by linear TPC to solve it.

According to matrix splitting theory associated with a
matrix Q ∈ CK×K and a nonsingular matrix P ∈ CK×K
obeying A = P+Q, the iterations required for solving the
linear system in (6) can be expressed in the general form
of [47]

tk+1 = Btk + f , (10)

where k is the iteration index and B = −P−1Q = I −
P−1A ∈ CK×K is the iteration matrix associated with f =
P−1s ∈ CK . Theoretically, the above iteration converges
if [48]

lim
k→∞

Bk = 0, (11)

and tk will gradually converge to the target solution of
t∗ = A−1s after a certain number of iterations. Intuitively,
the iterative methods of (10) tend to depend on the se-
lections of P and Q in the matrix splitting operation of
A = P + Q, where the different choices of P and Q
naturally result in different convergence performance.

In particular, for P = D and Q = E+U, the iterations
of the Jacobi method obey [47]

Dtk+1 = −(U + E)tk + s, (12)

where the matrices D, E and U stand for the diagonal,
the lower triangular, and the upper triangular components
of the matrix A associated with A = D + E + U and
E = UH . To be more specific, the update of each element
of t in (12) can be expressed as

tk+1
i =

1

di,i

si − i−1∑
j=1

ei,jt
k
j −

K∑
j=i+1

ui,jt
k
j

 , (13)

where ui,j ∈ R, ei,j ∈ R and di,j ∈ R standard for the
element of the matrices U, E and D respectively. Similarly,
for the Richardson iteration, P and Q are set as P =
1
ω I and Q = A − 1

ω I respectively, where ω > 0 is the
relaxation factor [29]. However, due to the convergence

requirement in (11), the Jacobi iteration works when the
matrix A is strictly diagonally dominant (SDD)1 while the
Richardson iteration is convergent if 0 < ω < 2

λmax(A) ,
where λmax(·) denotes the largest eigenvalue of a matrix
[45].

To achieve a faster convergence, the Gauss-Seidel (GS)
iteration associated with P = D + U and Q = E can be
used [49]

(D + U)tk+1 = −Etk + s, (14)

where we have

tk+1
i =

1

di,i

si − i−1∑
j=1

ei,jt
k
j −

K∑
j=i+1

ui,jt
k+1
j

 . (15)

In sharp contrast to the Jacobi and Richardson iterations
and so on, the GS iterations always results in exponential
convergence, since the associated iteration matrix Bgs sat-
isfies λmax(Bgs) < 1 without any extra requirements. This
also implies the convergence condition in (11) is always
fulfilled, which is also known as global convergence [37].
Undoubtedly, global convergence is highly desired for the
iterative TPC schemes to make them sufficiently flexible
for the various massive MIMO scenarios of interest. As
for the computational complexity, it has been shown in
[18] that the complexities of these traditional iterative
methods are on the order of O(K2k), hence considerable
complexity reduction can be achieved by linear TPC.

III. RANDOM BLOCK-BASED ITERATIVE TRANSMIT
PRECODING ALGORITHM

In this section, we commence by discussing the essential
difference of these traditional iterative TPC schemes. Then,
both ordered and block-based updates are proposed, which
then leads to the random block-based iterative transmit
precoding (RBI-TPC) concept.

A. Revisiting Traditional Iterative Precoding

On one hand, the Jacobi iteration shown in (13) can be
rewritten as

tk+1
i = tki +

1

ai,i

si − i∑
j=1

ai,jt
k
j −

K∑
j=i+1

ai,jt
k
j

 , (16)

where H:,i denotes the i-th column of the matrix H and
ai,j = HH

:,iH:,j is an entry of the matrix A. Clearly, the
update of each element in tk+1 of (16) only depends on
the results of the previous iteration, which can be further
expressed as

tk+1
i = tki +

1

ai,i

(
si −AH

:,it
k
)

(17)

with tk = [tk1 , . . . , t
k
K ]H . Therefore, given tk, the Jacobi

iteration allows tk+1
i to be processed by a parallel structure,

1This actually corresponds to N � K with respect to the system
dimensions of H.
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which substantially simplifies the hardware implementation
in practice.

On the other hand, the GS iteration in (15) can be
expressed as

tk+1
i = tki +

1

ai,i

si − i∑
j=1

ai,jt
k
j −

K∑
j=i+1

ai,jt
k+1
j

 . (18)

In contrast to the Jacobi iteration of (16), in GS iter-
ation the updated elements [tk+1

i+1 , . . . , t
k+1
K ] rather than

[tki+1, . . . , t
k
K ] are used for updating tk+1

i , 1 ≤ i ≤ K,
which results in an improved convergence performance.
In other words, the GS iteration relies on a sequential
structure to update tk+1

i , where the latest updates of tk+1
j ,

(i+ 1) < j ≤ K at the current iteration are also taken into
account. For a more compact presentation, we reformulate
the update in (18) as

tk+1
i = tki +

1

ai,i

(
si −AH

:,it
k
)

(19)

with t
k

= [tk1 , . . . , t
k
i , t

k+1
i+1 , . . . , t

k+1
K ]H . Note that the

update of tk+1
i in the GS iteration of (15), (18), and (19)

are illustrated in a backward oriented order from i = K
to i = 1, where the forward oriented order from i = 1 to
i = K is straightforward based on commencing the GS
iteration with respect to

(D + E)tk+1 = −Utk + s. (20)

B. Algorithm Description

Different from Jacobi iteration that allows the parallel
updating tk+1

i at a time, we can see from the above
analysis that the update of tk+1

i in the GS iteration
partially depends on the most recently updated results,
which is essentially determined by the updating order of
the iterations. For example, tk+1

i is partially decided by
{tk+1
i+1 , . . . , t

k+1
K } in the backward oriented updating order

or by {tk+1
1 , . . . , tk+1

i−1 } in the forward oriented updating
order. However, the backward or forward oriented updating
order is only used for the ease of exposition. But the
natural question arising is, what is the best order in the
GS iteration?

To answer this question, we commence on the investi-
gation by firstly reexamining the GS iteration relying on
a random updating order. To be more specific, given the
iteration in (19), the coordinate i is randomly sampled from
a certain distribution using the sampling probability pi,
which is formulated as

tk+1
i = tki +

1

ai,i

(
si −AH

:,it
k
)

with i ∼ pi, (21)

where ΣKi=1pi = 1.
Another observation concerning the traditional iterative

TPC schemes is that all of them only update a single
component of t at each instant, which can be clearly seen in
(17), (19) and so on. Therefore, another natural question

arises: Is it possible to update multiple components of t
instead of a single component of t at each instant? If so, the
correlation among the components of t can be beneficially
exploited for expediting the convergence. Then, the original
single-component update of t can be viewed as a special
case of the multi-component update, and we term this
multi-component update as block-based update.

Therefore, motivated by the concept of block-based
update, we further upgrade the iteration in (21) as follows

tk+1
Qj

= tkQj
+ (HH

:,Qj
H:,Qj

)−1
(
sQj
−AH

:,Qj
t
k
)

(22)

with coordinates index set (i.e., block index) Qj obeying
the sampling probability pQj as

Qj ∼ pQj and ΣQjpQj = 1, (23)

which leads to the proposed random block-based iterative
transmit precoding (RBI-TPC) algorithm. Here, the set Qj ,
1 ≤ j ≤ r, contains multiple (i.e., |Qj | = qj) coordinates
from the set {1, . . . ,K}, e.g.,

{1, 3, 5}︸ ︷︷ ︸
Q1

∪ . . . ∪ {2, 6, 8}︸ ︷︷ ︸
Qr

= {1, . . . ,K} (24)

with Qa ∩Qb = ∅, 1 ≤ a 6= b ≤ r. In coordinate index set
Qj , I:,Qj

is a column-based partition of identity matrix I.
For example, for a 3×3 identity matrix I with Qj = {1, 3},
we have

I:,Qj =


1 0

0 0

0 1

 . (25)

Accordingly, given I:,Qj , we have H:,Qj = HI:,Qj ∈
CN×qj , A:,Qj = AI:,Qj ∈ CK×qj , tQj = IH:,Qj

t ∈ Cqj
and sQj

= IH:,Qj
s ∈ Cqj . Note that the coordinates in

each set Qj are fixed initially for simplicity. Furthermore,
for the sake of notational simplicity, the same block size
of q1 = . . . = qr = K/r = q is applied. Intuitively,
given block size of q = 1, the block-based iteration in
(22) reduces to the standard one as in (21).

To facilitate the following analysis, we rewrite the iter-
ation equation of (22) as

tl+1 = tl + I:,Qj (HH
:,Qj

H:,Qj )−1
(
sQj −AH

:,Qj
tl
)

= tl + I:,Qj (HH
:,Qj

H:,Qj )−1IH:,Qj

(
s−Atl

)
= tl + I:,Qj (IH:,Qj

AI:,Qj )−1IH:,Qj

(
s−Atl

)
(26)

with Qj ∼ pQj
, where q elements of the vector t ∈ CK

are updated at each time. Here we use l ≥ 0 to denote the
iteration index and tl = [tl1, . . . , t

l
K ]H . As for the initial

setup t0, we can use an arbitrary point and here we set
t0 = D−1s by default. The proposed RBI-TPC algorithm
constructed for the downlink of massive MIMO is outlined
in Algorithm 1 at a glance. In fact, the traditional GS
iteration can be viewed as a coordinate descent algorithm
since it only updates a single component at a time [50].
Therefore, as an extension of GS iterations with the up-
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Algorithm 1 Random Block-based Iterative Transmit Pre-
coding (RBI-TPC) Algorithm
Input: A = HHH + ξI, L, β, q
Output: Approximated RZF precoding solution Gs =

βHtL

1: for l = 0, . . . , L− 1 do
2: get the block set Qj by random sampling according

to pQj

3: update tl+1 based on (26)
4: end for
5: output Gs = βHtL

dated processing order and block operations, the proposed
RBI-TPC can be essentially viewed as a variant of the
randomized block coordinate descent algorithm [51].

Since the traditional GS iteration updates all the K
components of t in a single iteration indexed by k (i.e.,
performs K single component updates at each iteration),
for a fair comparison we define a full iteration for the pro-
posed RBI-TPC algorithm, which contains K/q iterations
in (26). In this way, the full iteration of RBI-TPC can be
calibrated by the index k. As for the associated complexity,
thanks to the special structure of I:,Qj

, the calculation
of (HH

:,Qj
H:,Qj

)−1 (i.e., (IH:,Qj
AI:,Qj

)−1) in (22) can be
realized at a computational complexity order of O(q3).
As for the complexity of (sQj

− AH
:,Qj

t
k
), it is O(Kq),

while multiplying it with (HH
:,Qj

H:,Qj )−1 is on the order
of O(q2). Therefore, the overall complexity of computing
(22) in terms of the number of complex multiplications
can be expressed by O(q3 + Kq). Then, based on these,
the complexity of a full iteration in the proposed RBI-TPC
algorithm turns out to be O(q2K +K2). As it transpires,
given the block size 1 ≤ q ≤

√
K, the complexity order

of RBI-TPC is O(K2), which is competitive compared to
the traditional iterative TPC schemes. For example, the full
iteration complexity of the modified randomized iterative
precoding algorithm (MRIPA) in [37] is O(q2K + 4K2).
Although it is still expressed by O(K2) for 1 ≤ q ≤

√
K,

the complexity of MRIPA is higher than that of RBI-
TPC. Moreover, we will demonstrate that considerable
convergence acceleration can be obtained by the block-
based update and the reasonable choice of the sampling
distribution pQj in the following.

IV. CONVERGENCE ANALYSIS AND OPTIMIZATION

In this section, the convergence behaviour of the pro-
posed RBI-TPC is analyzed in full detail. The globally
exponential convergence of RBI-TPC is demonstrated by
relying on the derived convergence rate, followed by the
discussion of determining the sampling distribution pQj

.

A. Globally Exponential Convergence

To start with, let t∗ = A−1s denote the solution of (6).
Then we can get the following result.

Lemma 1. In the proposed RBI-TPC algorithm, the vector
H(tl+1 − t∗) is perpendicular to the vector H(tl+1 − tl)
as

H(tl+1 − t∗)⊥H(tl+1 − tl). (27)

Proof. First of all, for notational simplicity, we define

rl = tl − t∗. (28)

Then, to prove the relationship in (27), one has to show
that

(tl+1 − tl)HHHHrl+1 = 0, (29)

which is demonstrated in the following

(tl+1−tl)HHHHrl+1 = (tl+1−tl)HArl+1

=(tl+1 − tl)HA(rl − I:,Qj (HH
:,Qj

H:,Qj )−1IH:,Qj
Arl)

=[I:,Qj(H
H
:,Qj

H:,Qj)
−1IH:,Qj

(s−Atl)]HA[rl−I:,Qj
(HH

:,Qj
H:,Qj

)−1IH:,Qj
Arl]

=(s−Atl)HI:,Qj
(HH

:,Qj
H:,Qj

)−HIH:,Qj
A[rl−I:,Qj

(HH
:,Qj

H:,Qj
)−1IH:,Qj

Arl]

=(s−Atl)HI:,Qj
(HH

:,Qj
H:,Qj

)−H[IH:,Qj
Arl−IH:,Qj

AI:,Qj
(HH

:,Qj
H:,Qj

)−1IH:,Qj
Arl]

=(s−Atl)HI:,Qj
(HH

:,Qj
H:,Qj

)−H(IH:,Qj
Arl − IH:,Qj

Arl)

= 0. (30)

Based on Lemma 1, one can readily show that

‖H(tl+1−t∗)‖2 = ‖H(tl−t∗)‖2−‖H(tl+1−tl)‖2 (31)

using the classic Pythagorean theorem. Moreover, accord-
ing to (31), the following result can be inferred to show
the globally exponential convergence of the proposed RBI-
TPC in terms of the mean squared error (MSE).

Theorem 1. For the downlink of massive MIMO systems,
the proposed RBI-TPC converges by

E[‖H(tl − t∗)‖2] ≤ ρl‖H(t0 − t∗)‖2 (32)

with the global convergence rate of

ρ = 1− λmin(E[Z]) < 1. (33)

Proof. First of all, according to (31), given tl, it follows
that

E[‖H(tl+1−t∗)‖2]=‖H(tl−t∗)‖2−E[‖H(tl+1−tl)‖2].
(34)

Then, let us focus on the term E[‖H(tl+1−tl)‖2] shown
above, yielding

E[‖H(tl+1−tl)‖2]=E[‖HI:,Qj(H
H
:,Qj

H:,Qj)
−1IH:,Qj

HHHrl‖2]

(a)
=E[‖ZHrl‖2]

= E[rHl HHZHZHrl]

(b)
= E[rHl HHZHHrl]

= rHl HHE[Z]Hrl, (35)

where the following definition of the symmetric matrix Z ∈
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CN×N is applied in (a)

Z , H:,Qj (HH
:,Qj

H:,Qj )−1HH
:,Qj

= ZH (36)

and equality (b) holds due to

ZHZ=H:,Qj(H
H
:,Qj

H:,Qj)
−1HH

:,Qj
H:,Qj(H

H
:,Qj

H:,Qj)
−1HH

:,Qj

= H:,Qj
(HH

:,Qj
H:,Qj

)−1HH
:,Qj

= Z. (37)

More specifically, the expectation of matrix Z is symmetric
positive definite due to its special structure

E[Z] =

r∑
j=1

pQj
H:,Qj

(HH
:,Qj

H:,Qj
)−1HH

:,Qj

=H

 r∑
j=1

p
1
2

Qj
I:,Qj

(HH
:,Qj

H:,Qj
)−

1
2(HH

:,Qj
H:,Qj

)−
1
2IH:,Qj

p
1
2

Qj

HH

= (HJ)(JHHH)

= VVH , (38)

where V = HJ ∈ CN×K and the matrix J ∈ CK×K is
invertible blocked diagonal as

J=diag(p
1
2

Q1
(HH

:,Q1
H:,Q1

)−
1
2,. . .,p

1
2

Qr
(HH

:,Qr
H:,Qr

)−
1
2). (39)

Based on (35) and (38), we have

E[‖H(tl+1 − tl)‖2] = rHl HHVVHHrl

= ‖VHHrl‖2
(c)

≥ λmin(VHV)‖Hrl‖2
(d)
= λmin(E[Z])‖H(tl − t∗)‖2. (40)

Here, the inequality in (c) holds due to the fact that

‖BHx‖2 ≥ λmin(BHB)‖x‖2 (41)

for any matrix B and vector x, and (d) follows

λmin(VHV) = λmin(VVH) = λmin(E[Z]). (42)

Next, according to (34) and (40), we can arrive at the
following result

E[‖H(tl+1 − t∗)‖2] ≤ (1− λmin(E[Z]))‖H(tl − t∗)‖2.
(43)

Meanwhile, since E[Z] is positive definite, all its eigenval-
ues are larger than 0 so that

ρ = 1− λmin(E[Z]) < 1. (44)

Consequently, it follows that

E[‖H(tl+1 − t∗)‖2] ≤ ρ‖H(tl − t∗)‖2

≤ ρ2‖H(tl−1 − t∗)‖2

≤ · · ·
≤ ρl+1‖H(t0 − t∗)‖2, (45)

which completes the proof.

B. The Choices of Sampling Distribution pQj

According to Theorem 1, the convergence of the RBI-
TPC algorithm chiefly depends on the expectation of the
matrix Z, which is partially determined by the sampling
probability pQj

. Therefore, we aim for specifying the
convergence rate given different choices of sampling prob-
abilities.

Intuitively, a natural choice for pQj is uniform distribu-
tion, which leads to the following result.

Corollary 1. With pQj
following the uniform sampling

probability

pQj =
1

r
, (46)

the proposed RBI-TPC converges by

E[‖H(tl − t∗)‖2] ≤ ρluniform‖H(t0 − t∗)‖2 (47)

with

ρuniform = 1− 1

r
· λmin(HHH)

λmax(HH
:,Qj

H:,Qj
)
. (48)

Proof. Specifically, according to (38), it follows that

λmin(E[Z]) = λmin(E[HJJHHH ])

(e)

≥ λmin(E[HHH])λmin(J2)

= λmin(HHH)λmin(J2) (49)

=
1

r
· λmin(HHH)

λmax(HH
:,Qj

H:,Qj
)
, (50)

where the inequality (e) comes from λmin(EF) ≥
λmin(E)λmin(F) for any positive definite matrices E and F.
Therefore, this completes the proof by simply substituting
(50) into (44).

From (48), it seems that the convergence rate ρuniform
is also related to the matrix partition of H (i.e., H:,Qj

).
However, a partition H:,Qj

designed according to a cer-
tain criterion seems unnecessary, since each block H:,Qj

is sampled uniformly based on (46). In addition to the
uniform sampling probability, its counterpart based on the
matrix Frobenius norm is also studied below.

Corollary 2. With pQj
following the sampling probability

pQj =
‖H:,Qj

‖2F
‖H‖2F

, (51)

the proposed RBI-TPC converges by

E[‖H(tl − t∗)‖2] ≤ ρlnorm‖H(t0 − t∗)‖2 (52)

with

ρnorm = 1− α · λmin(HHH)

Tr(HHH)
, (53)

where

α , min
j

{
Tr(HH

:,Qj
H:,Qj

)

λmax(HH
:,Qj

H:,Qj )

}
≥ 1. (54)
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Proof. Due to ‖B‖2F =
∑
i

∑
j |bi,j |2 = Tr(BHB), with

the sampling probability pQj
in (51), it follows that

λmin(J2) =
1

Tr(HHH)
min
j

{
Tr(HH

:,Qj
H:,Qj

)

λmax(HH
:,Qj

H:,Qj )

}
=

α

Tr(HHH)
, (55)

with α ≥ 1 due to

Tr(B) =
∑
i

λi(B) ≥ λmax(B) ≥ λmin(B) (56)

for any square matrix B.
Then, based on (49) and (55), the convergence rate ρ in

(44) becomes

ρnorm = 1− α · λmin(HHH)

Tr(HHH)
, (57)

completing the proof.

According to α in (53), given the block size q = K/r =
|Qj |, the convergence rate ρnorm depends on the specific
choices of the matrix partition H:,Qj , where finding the
optimal solution turns out to be computationally expensive.
For the sake of efficiency, here we propose to build the
partition H:,Qj

according to the descending order of ‖H:,i‖
(i.e., ‖hi‖), namely,

‖H:,i1‖ ≥ ‖H:,i2‖ ≥ · · · ≥ ‖H:,iK‖ (58)

with

{i1, i2, . . .}︸ ︷︷ ︸
Q1

∪ . . . ∪ {. . . , iK}︸ ︷︷ ︸
Qr

= {1, . . . ,K} (59)

Clearly, in this way, we can see that

‖H:,Q1
‖F ≥ · · · ≥ ‖H:,Qr

‖F . (60)

Here, we point out that the calculations of the Frobenius
norm of H:,j are only performed once at the beginning,
which can be readily carried out during the preprocessing
stage. Apart from the matrix partition H:,Qj , as shown in
(49), the condition number of the matrix HHH (i.e., κ =
λmax(HHH)/λmin(HHH)) also plays an important role in
determining the convergence rate ρnorm, where a smaller κ
- which also corresponds to a more orthogonal matrix H)
- is preferable for attaining more rapid convergence.

V. ORDERED BLOCK-BASED ITERATIVE TRANSMIT
PRECODING ALGORITHM

In this section, by adopting the concept of multi-step
conditional sampling, we extend the RBI-TPC to the
proposed ordered block-based iterative transmit precoding
(OBI-TPC) algorithm, where remarkable gains in the both
convergence and efficiency can be attained.

A. Extension by Multi-Step Conditional Sampling
In [37], the concept of multi-step conditional sampling

is applied for replacing the standard sampling for the

sake of the improved iteration convergence and efficiency.
Inspired by this, we now adopt the multi-step conditional
sampling to the proposed RBI-TPC to achieve improved
gains. Specifically, for the sake of notational simplicity, let
Ql denote the choice of the set Q at iteration l. Then we
define the multi-step conditional sampling probability in
RBI-TPC as

pfQj
, p(Ql = Qj |Ql−1, . . . ,Ql−f ) (61)

=
p(Qj)

1− p(Ql−1)− · · · − p(Ql−f )
(62)

with Qj /∈ {Ql−1, . . . ,Ql−f}, where 0 ≤ f ≤ (r − 1)
denotes the length of the multi-step conditional sampling.
By doing this, we can see that the previous sampling results
are taken into account in sampling the current set choice
of Ql, which leads to a reduced state space of Q. In other
words, the sampling probability pQj

may be viewed as a
special case of pfQj

associated with f = 0.
Based on the multi-step conditional sampling probability

in (61), we can see that the globally exponential conver-
gence of RBI-TPC still holds.

Theorem 2. For the downlink of massive MIMO systems,
let the set Qj be sampled from the multi-step conditional
sampling probability pfQj

in (61), the proposed RBI-TPC
converges by

E[‖H(tl − t∗)‖2] ≤ ρf‖H(tl−1 − t∗)‖2 (63)

with the global convergence rate

ρf = 1− λmin(E[Z|Ql−1, . . . ,Ql−f ]) < 1. (64)

Proof. The proof is similar to that of Theorem 1 but relies
on the conditional expectation of the matrix Z, which is
formulated as

E[Z|Ql−1, . . . ,Ql−f]=
r∑

j,Qj /∈Ql−1,...,Ql−f

pfQj
H:,Qj

(HH
:,Qj

H:,Qj
)−1HH

:,Qj

=

r∑
j,Qj /∈Ql−1,...,Ql−f

(
(pfQj

)
1
2H:,Qj

(HH
:,Qj

H:,Qj
)−

1
2(HH

:,Qj
H:,Qj

)−
1
2HH

:,Qj
(pfQj

)
1
2

)
= (HIJ)(J

H
I
H
HH). (65)

Here, the matrix I ∈ CK×(K−fq) is a partition
of the identity matrix I created by removing the
corresponding columns in the set {Ql−1, . . . ,Ql−f}.
Similarly, matrix J ∈ C(K−fq)×(K−fq) takes the
form of J = diag(p

1
2

Q1
(HH

:,Q1
H:,Q1

)−
1
2 , . . . , p

1
2

Qr
(HH

:,Qr

H:,Qr )−
1
2 ), where the related terms p

1
2

Qi
(HH

:,Qi
H:,Qi)

− 1
2

associated with Qi ∈ {Ql−1, . . . ,Ql−f} are removed from
the matrix J.

On the other hand, it is clear that E[Z|Ql−1, . . . ,Ql−f ]
is still symmetric positive definite, hence we have
λmin(E[Z|Ql−1, . . . ,Ql−f ]) > 0, which results in the
globally exponential convergence performance shown in
(64).
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Based on Theorem 2, we can get the following result
to confirm the convergence gain attained by the multi-step
conditional sampling.

Corollary 3. With the increment of 0 ≤ f ≤ (r − 1), the
proposed RBI-TPC with multi-step conditional sampling
probability pfQj

in (61) achieves a faster convergence
performance by a smaller ρf in (64).

Proof. According to (49), we have

λmin(E[Z|Ql−1, . . . ,Ql−f ]) ≥ λmin(HHH)λmin(J
2
)

=min
j

{
pfQj
· λmin(HHH)

λmax(HH
:,Qj

H:,Qj
|Qj /∈Ql−1,. . .,Ql−f)

}
. (66)

Clearly, the term in (66) increases monotonically with the
increment of f due to the monotonicity of both

pfQj
≥ pf−1Qj

(67)

and λmax(HH
:,Qj

H:,Qj
|Qj /∈ Ql−1) ≥ λmax(HH

:,Qj
H:,Qj

|Qj /∈Ql−1,Ql−2). Consequently, based on (64) and (66),
a smaller ρf can be obtained, which corresponds to a faster
convergence performance.

In theory, for iterative TPC schemes, the convergence
accuracy is directly coupled with the number of iterations.
For example, to achieve the same convergence accuracy, a
faster converging solution requires fewer iterations, which
results in a lower complexity. Therefore, although the
proposed TPC schemes have the same complexity order as
the traditional ones at each iteration, our solutions require
fewer iterations due to their faster convergence, which leads
to a lower complexity at specific target performance.

B. Ordered Block-based Iterative Transmit Precoding Al-
gorithm

It is plausible from Corollary 3 that the fastest conver-
gence is achieved for f = (r−1). More interestingly, when
f = (r−1) and l > (r−1), only a single sampling choice
is left for each iteration of RBI-TPC. In this condition, the
random iteration in RBI-TPC turns out to be deterministic,
yielding the convergence rate of

ρr−1Qj
≤ 1− λmin(HHH)

λmax(HH
:,Qj

H:,Qj
)
. (68)

Intuitively, having a deterministic version of RBI-TPC is
highly desired in practice, provided that the process of
random sampling can be avoided without performance loss.
This not only leads to the convergence enhancement but
also results in the efficiency improvement.

Although the proposed RBI-TPC with f = (r − 1)
step conditional sampling becomes deterministic when the
iteration index exceeds l > (r − 1), the updating order of
the components in t is actually determined by the sam-
pling probability pQj

. More specifically, according to the
sampling probability in (51), the multiple components of
t associated with the largest ‖H:,Qj‖F are the most likely

Algorithm 2 Ordered Block-based Iterative Transmit Pre-
coding (OBI-TPC) Algorithm
Input: A = HHH + ξI, L, β, q
Output: Approximated RZF precoding solution Gs =

βHtL

1: set the matrix partition according to (59)
2: for l = 0, . . . , L− 1 do
3: update tl+1 according to (26) with the order in (60)
4: end for
5: output Gs = βHtL

to be updated at the first iteration. Then, since the choice
in the last iteration is removed from the sampling list, the
multiple components with the second largest ‖H:,Qj‖F are
more likely to be updated at the second iteration and so on.

Therefore, based on the RBI-TPC using f = (r−1) step
conditional sampling, inspired by the sampling probability
in (51), we propose the ordered block-based iterative
transmit precoding (OBI-TPC) algorithm, which updates
the components of t by (26), but in a descending order
according to ‖H:,Qj‖2F /‖H‖2F in (51). In fact, this corre-
sponds to a descending order of ‖H:,Qj‖F shown in (60).
To make it more specific, the iteration in the proposed OBI-
TPC algorithm proceeds as follows

tl+1 = tl + I:,Qj
(HH

:,Qj
H:,Qj

)−1IH:,Qj

(
s−Atl

)
(69)

with the descending order and the matrix partition shown
in (60) and (59), respectively. In addition to the enhanced
convergence speed, based on Theorem 2 and Corollary 3,
the proposed OBI-TPC algorithm also enjoys global con-
vergence, which is important for its potential applications
in 5G NR. In a nutshell, the operations of OBI-TPC are
outlined in Algorithm 2.

Remark 1. The proposed OBI-TPC algorithm of (69) is an
approximation of the RBI-TPC algorithm using f = (r−1)
step conditional sampling probability pQj in (51).

On the other hand, since the traditional GS iteration
operates either in a forward or backward oriented order,
it can be viewed as a deterministic version of RBI-TPC
(with block size q = 1 and multiple-step f = (r − 1))
following the random sampling probability in (46). When
the iteration index goes l > (r − 1), the updating order of
ti becomes fixed without ordering, which is essentially the
same as the default forward or backward oriented order.

Remark 2. The traditional GS TPC in (19) can be approx-
imated by the RBI-TPC algorithm with block size q = 1
and f = (r−1) step conditional sampling probability pQj

in (46).

To make it more specific for a better understanding,
Fig. 1 is given to show our convergence comparisons for
the proposed RBI-TPC associated with different sampling
distributions in a 256 × 64 massive MIMO system. In
particular, RBI-TPC using the uniform sampling distribu-
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Fig. 1. Convergence comparison of RBI-TPC with different sampling
probabilities in a 256× 64 massive MIMO system.

tion pQj
in (46) as well as the sampling distribution pQj

calibrated by the matrix Frobenius norm in (51), and the
conditional sampling probability pfQj

in (61) using multiple
steps f = 1, 2, 3 are applied, where the corresponding con-
vergence rates are denoted by ρnorm, ρFrobenius, ρFrobenius,f=1,
ρFrobenius,f=2, ρFrobenius,f=3 respectively. Clearly, the con-
vergence gain of using the Frobenius norm-based sampling
distribution over the uniform sampling distribution can
be readily confirmed. Based on it, improved convergence
gains are attainted by the usage of multi-step conditional
sampling. Specifically, the convergence of RBI-TPC is
expedited gradually with the increment of f , which is in
accordance with the result of Corollary 3. On the other
hand, as expected, it is clear that the convergence rates of
all the schemes improve with the increase of the block size
q = 2, 4, 8, 16. More precisely, as shown in Remark 1, for
q = 16 the proposed OBI-TPC algorithm is actually an
approximation of RBI-TPC using pfQj

and f = 3, which
exhibits an improved convergence performance over the
others2.

The proposed RBI-TPC and OBI-TPC are developed
based on the traditional GS iterative methods, where the
block-based and the ordered updates have been adopted for
improving the convergence performance. Here, we point
out that the blocked update can also be incorporated into
the traditional Jacobi iteration in a similar way. Since the
component updates in the Jacobi iterations only rely on the
results of the previous iteration, there is no need to optimize
the updating order. To this end, the Jacobi iteration lends
itself to convenient parallel implementation over multiple
block updates at the same time. Nevertheless, because the
convergence of the Jacobi iterations is not as rapid as that

2Similarly, for K = 64 and q = 8, OBI-TPC is an approximation of
RBI-TPC using pfQj

and f = 7, which is not shown in Fig.1.

of the GS iterations, the related blocked update is omitted
here.

In contrast to the traditional gradient descent algo-
rithms, there is no need to find the optimized step size
during the iterations of the proposed RBI-TPC or OBI-
TPC. Moreover, in principle, the proposed TPC schemes
belong to the family of coordinate descent algorithms,
since they update some components but leave the other
components unchanged at the same time. More specifically,
stemming from GS-TPC, RBI-TPC operates as a variant
of randomized block coordinate descent algorithm [50-52],
which is designed for linear precoding transmission in the
downlink of massive MIMO systems. Different from RBI-
TPC, inspired by multi-step conditional sampling, OBI-
TPC behaves as a deterministic version of block coordinate
descent algorithm but with an optimized updating order.
As a result, the advantages of OBI-TPC over RBI-TPC in
terms of convergence and efficiency are confirmed by both
our theoretical and simulation results, making OBI-TPC
more appealing for implementation in practice.

C. Further Enhancement by SOR-Aided Iteration

To further enhance the convergence, based on GS itera-
tion, successive over-relaxation (SOR) iteration is proposed
by applying a relaxation factor of 1 < ω < 2 in the form
of [49]

(D + ωU)tk+1 = [(1− ω)D− ωE]tk + ωs. (70)

We note that GS iteration may also be viewed as a special
case of SOR iteration associated with ω = 1. It has
been shown in [52] that SOR iteration achieves a faster
convergence than GS iteration given a good choice of ω.

In both Jacobi and GS iterations, the result tki is not
considered in the update tk+1

i (this can be verified more
straightforward from (13) and (15)). By contrast, the SOR
iteration exploits tki in a beneficial way. In particular, the
update of tk+1

i in the SOR iteration obeys

tk+1
i = tki +

ω

ai,i

(
si −AH

:,it
k
)

= tki +
ω

ai,i

si − i∑
j=1

ai,jt
k
j −

K∑
j=i+1

ai,jt
k+1
j


= (1−ω)tki +

ω

ai,i

si − i−1∑
j=1

ai,jt
k
j −

K∑
j=i+1

ai,jt
k+1
j


= (1− ω)tki +

ω

ai,i

(
si −AH

:,it̂
k
)

(71)

in conjunction with t̂k = [tk1 , . . . , t
k
i−1,0, t

k+1
i+1 , . . . , t

k+1
K ]H ,

where the impact of tki upon updating tki+1 is flexibly
controlled by the relaxation factor of 1 < ω < 2. Again, for
ω = 1, the SOR iteration degenerates to the GS iteration,
hence the result of tki is ignored in updating tk+1

i .
As shown in (71), in addition to [tk1 , . . . , t

k
i ,

tk+1
i+1 , . . . , t

k+1
K ], the result tki is also employed in
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Fig. 2. BER versus average SNR for 128× 32 massive MIMO systems
with 16-QAM.

the SOR iteration to update the element tk+1
i , where again

the traditional GS iteration may be viewed as a special
case of SOR iteration using ω = 1. Motivated by this, we
can further upgrade the proposed RBI-TPC and OBI-TPC
to the related SOR versions as follows

tl+1 = tl + ωI:,Qj
(HH

:,Qj
H:,Qj

)−1IH:,Qj

(
s−Atl

)
(72)

with 1 < ω < 2. By doing this, the current block elements
tQj

will also be considered in the next update of tQj
,

thus attaining an improved convergence performance. As
for the choice of the relaxation parameter ω, the solution
ω = 2

1+
√

1−[µ(I−D−1A)]2
provided in [52] is only suited

to the case N � K while ω = 1.05 is recommended
experimentally.

VI. SIMULATIONS

In this section, the algorithms conceived for the massive
MIMO downlink are evaluated by simulations. Specifically,
the Gaussian fading environment having a perfectly known
channel matrix H ∈ CN×K at the base station is assumed.
For a fair comparison with other iterative TPC schemes, the
full iteration indexed by k is applied in both RBI-TPC and
OBI-TPC schemes with the initial setup of t0 = D−1s.

In Fig. 2, the performance of the proposed RBI-TPC and
OBI-TPC schemes is shown in terms of the bit error rate
(BER). In particular, a 128× 32 massive MIMO system is
applied using 16-QAM while the block size of q = 8 is
employed in both RBI-TPC and OBI-TPC. As it is clearly
seen, with the iteration index k, the BER of both RBI-TPC
and OBI-TPC improves gradually, which is accordance
with the reasons of Theorem 1 & 2. Meanwhile, given
a specific iteration index k, we can observe that OBI-
TPC has a better BER performance than RBI-TPC. This is
because OBI-TPC achieves a faster convergence than RBI-
TPC as a benefit of its r − 1 step conditional sampling.
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Fig. 3. BER versus average SNR for massive MIMO systems with 16-
QAM.

The related proof can be found in Corollary 3. On the
other hand, motivated by SOR iteration, by introducing
the relaxation parameter of ω = 1.05 into OBI-TPC, the
proposed OBI-SOR-TPC attains a better BER than OBI-
TPC. More specifically, with iteration index k = 3, near-
RZF TPC performance is realized by both OBI-TPC and
OBI-SOR-TPC schemes.

In Fig. 3, the impact of the block size q is investigated
in both 128 × 32 and 128 × 64 massive MIMO systems
using 16-QAM, where different choices of q are applied
in the proposed OBI-TPC for k = 2. Clearly, the BER
performance of OBI-TPC in 128×32 and 128×64 massive
MIMO systems improves gradually with the increase of
the block size q. This is because a higher q means that
more components of t will be updated at a time, thus
resulting in a faster convergence. Nevertheless, according
to the iteration in (69), a large size q also results in a
higher complexity. Therefore, the block size q controls the
TPC trade-off between performance and complexity in the
downlink of massive MIMO.

In Fig. 4, the BER of the proposed TPC schemes is
compared to that of the traditional iterative TPC schemes
for a 128× 16 massive MIMO system using 64-QAM. In
addition to RBI-TPC and OBI-TPC with q = 8, Neumann
series (NS), Jacobi iteration, Newton iteration, Richardson
iteration, Gauss-Seidel iteration, random Kaczmarz itera-
tions in [46] and randomized iteration precoding algorithm
(RIPA) in [37] are applied. Furthermore, the RZF TPC
serves as a performance benchmark. Since the number
of antennas at the base station is much higher than that
at the user side, i.e., N � K, the convergence of the
traditional iterative TPC schemes like NS series, Newton
iteration, and Jacobi iteration is readily ensured. As seen
in Fig. 4, under the same iteration index k = 3, OBI-
TPC achieves the best BER performance among these
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Fig. 4. BER versus average SNR for 128× 16 massive MIMO systems
with 64-QAM.
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Fig. 5. BER versus average SNR for 128× 32 massive MIMO systems
with 16-QAM.

TPC schemes, and the exact RZF TPC performance can
be approximated by it. Compared to the traditional GS
iteration, higher convergence gains can be exploited by
OBI-TPC as a benefit of its more sophisticated updates,
making OBI-TPC a better choice for downlink TPC.

In Fig. 5, the BER performance comparison of RBI-
TPC and OBI-TPC is shown for massive MIMO systems
associated with N = 128 and K = 32 using 16-QAM. In
this case, since the convergence requirement of N � K is
not fulfilled, the convergence of Neumann series, Newton
iteration, and Jacobi iteration can not be guaranteed, thus
resulting in poor BER performance. By contrary, due to the
global convergence transpiring from Theorem 1 & 2, both
RBI-TPC and OBI-TPC perform well despite the increase
of K. Clearly, as K increases from 16 to 32, more iterations
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Fig. 6. BER versus average SNR for 128× 32 massive MIMO systems
with 16-QAM under imperfect CSI.

are needed for all iterative TPC schemes due to the high
system dimension. Here, the BER performance of RBI-
TPC using k = 3, 5, 7 and OBI-TPC with k = 3 are given
respectively. We can observe that OBI-TPC outperforms all
the other iterative TPC schemes under k = 3, and near-RZF
TPC performance is achieved upon increasing the number
of iterations.

As a counterpart of Fig. 5, Fig. 6 shows the BER perfor-
mance of the proposed RBI-TPC and OBI-TPC schemes
for imperfect channel state information (CSI) in a 128×32
massive MIMO systems using 16-QAM. Explicitly, we
let Ĥ = H + ∆H represent the channel matrix for an
imperfect CSI. Here, ∆H represents the errors of channel
estimation while each of its elements obeys CN (0, σ2

e) with
σ2
e = 0.1 [53], [54]. For imperfect CSI, the BER of all the

TPC schemes degrades compared to the results of Fig. 4.
Nevertheless, compared to other iterative TPC schemes the
proposed OBI-TPC has the edge and near-RZF TPC perfor-
mance can be attained upon increasing k. More specifically,
according to (29) and (60) in Theorems 1 & 2, both the
proposed RBI-TPC and OBI-TPC schemes are capable of
global convergence. This means no extra requirements must
be satisfied to guarantee the convergence. Therefore, they
can work well in various cases of interest, which is not the
case for traditional iterative schemes.

Apart from the independent, identically distributed
(i.i.d.) Gaussian fading channels, here the impact of corre-
lated fading channels is also investigated to illustrate the
BER performance of the proposed RBI-TPC and OBI-TPC
schemes for q = 8. In particular, following the configura-
tions of the correlated fading channels in [55], [56], the
correlated fading channel matrix is set as R

1
2

b HR
1
2
u , where

Rb ∈ CN×N and Ru ∈ CK×K are the correlation matrices
at two sides of the transceiver. Briefly, the normalized
correlation coefficient 1 ≥ ψ ≥ 0 determines the degree



13

10 15 20 25 30

SNR(dB)

10-4

10-3

10-2

10-1

100
B

E
R

NS, k=3
Newton, k=3
Jacobi, k=3
Richardson, k=3
GS, k=3
Kaczmarz, k=3
Ripa, k=3
RBI, k=3
RBI, k=6
RBI, k=9
OBI, k=3
OBI, k=4
OBI, k=5
RZF

Fig. 7. BER versus average SNR for 128× 32 massive MIMO systems
with 16-QAM and correlation index ψ = 0.05.
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Fig. 8. BER versus average SNR for 128× 32 massive MIMO systems
with 16-QAM and correlation index ψ = 0.1.

of correlation in these fading channels, where ψ = 0
accounts for the uncorrelated channel matrix and ψ = 1
for a fully correlated one. Specifically, compared to i.i.d.
case in Fig. 5, the precoding performance of RZF is slightly
eroded for the normalized correlation index of ψ = 0.05 in
Fig. 7. However, the BER of the traditional iterative TPC
schemes relying on Neumann series, Newton iteration, Ja-
cobi iteration, Richardson iteration become poor since their
convergence suffers from the correlated fading channels.
Essentially, this is because a more correlated fading channel
generally has a higher condition number, which is harmful
to their convergence.

In contrast to the traditional iterative TPC schemes,
both the proposed RBI-TPC and OBI-TPC still perform
adequately but at a slower convergence. Specifically, their
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Fig. 9. MSE versus number of full iterations for 128×32 massive MIMO
systems with fixed SNR at 18 dB.

precoding performance gradually improve upon increasing
k, which is in line with the convergence results of Theorem
1 & 2. We claim that at the same k = 3, the proposed OBI-
TPC achieves the best BER performance. Similar results
can also be found in Fig. 8, where the channel fading
matrix turns out to be more correlated when the normalized
correlation index is set to ψ = 0.1. Given the ill-condition
of the channel fading matrix, the BER performance of the
RZF TPC also becomes worse than before. Note that in this
case the traditional iterative TPC schemes using Neumann
series, Jacobi, Newton, Richardson do not work any more
due to the poor convergence properties. In sharp contrast
to them, the convergence of RBI-TPC and OBI-TPC is
guaranteed, but more iterations are required for approach-
ing the near-RZF TPC performance. Clearly, considerable
performance gains can be obtained by the proposed OBI-
TPC, making it eminently suitable for massive MIMO
systems.

In Fig. 9, the convergence comparison among various
iterative TPC schemes is presented for a 128× 32 massive
MIMO system using 16-QAM at a fixed SNR of 18 dB,
where the mean square error (MSE) between the RZF TPC
(i.e., Grzfs) and other TPC schemes (i.e., βHtk) is used
as the convergence criterion. As shown in (5), the linear
precoding matrix Grzf can be equivalently acquired by
obtaining the vector t in the linear system. Specifically,
the MSE is gradually reduced upon increasing the number
of full iterations from k = 1 to k = 6. A lower MSE under
the same k implies a faster convergence, which naturally
leads to a better TPC performance. As clearly seen, the
proposed OBI-TPC achieves more rapid convergence than
the traditional iterative TPC schemes - such as the Jacobi,
Richardson, Kaczmarz and GS arrangements - where a
near-RZF performance can be obtained by OBI-TPC along
with k = 3. Based on this, a better convergence is



14

10 15 20 25 30

SNR(dB)

10-4

10-3

10-2

10-1

100
B

E
R

NS, k=3
Newton, k=3
Jacobi, k=3
Richardson, k=3
GS, k=3
Kaczmarz, k=3
Ripa, k=3
Mripa, k=3
RBI, k=3
OBI, k=3
OBI, k=5
OBI, k=7
OBI-SOR, k=3
OBI-SOR, k=5
OBI-SOR, k=7
RZF

Fig. 10. BER versus average SNR for 128×64 massive MIMO systems
with 16-QAM.

achieved by OBI-SOR-TPC, which results in an improved
TPC performance in massive MIMO systems. Overall, the
convergence performance of all the TPC schemes is in line
with the TPC performance shown in Fig. 4.

In Fig. 10, the precoding performance comparison of
128 × 64 massive MIMO systems using 16-QAM is pre-
sented. Compared to 128× 16 and 128× 32 scenarios, the
antenna ratio N/K between the two sides of the channel
becomes smaller. In this scenario, traditional Neumann
series, Jacobi iteration, Newton iteration, and Richard-
son iteration fail to meet the convergence requirement
of N � K. On the other hand, thanks to its global
convergence, the proposed OBI-TPC still works well, and
its BER performance improves gradually with the number
of iterations. In addition, we can observe that MRIPA in
[37] has comparable BER with OBI-TPC. Nevertheless,
as discussed before, the complexity of OBI-TPC (i.e.,
O(q2K + K2)) is much less than that of MRIDA (i.e.,
O(q2K + 4K2)). Here, the BER performance of the pro-
posed OBI-SOR-TPC is also shown, which outperforms the
standard OBI-TPC by adopting the relaxation parameter of
ω = 1.05. Therefore, compared to OBI-TPC, OBI-SOR-
TPC is preferable in practice.

In Fig. 11, the convergence comparison of various iter-
ative TPC schemes is illustrated for a 128 × 64 massive
MIMO system using 16-QAM with fixed SNR at 18 dB,
where the MSE between the RZF TPC (i.e., Grzfs) and
other TPC schemes (i.e., βHtk) is used as the convergence
criterion. Note that the Jacobi iteration fails to perform well
in this scenario, since its MSE does not converge as well
as that of the other TPC schemes. Except for the Jacobi
iterations, the MSE of the TPC schemes decays gradually
upon increasing the number of iterations from k = 1 to
k = 8. As expected, the proposed OBI-SOR-TPC scheme
has the best convergence performance for a given number
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Fig. 11. MSE versus number of full iterations for 128 × 64 massive
MIMO systems with fixed SNR at 18 dB.

TABLE II
ILLUSTRATION OF THE COMPLEXITY COMPARISON BY MEANS OF

FLOPS FOR 128×K MASSIVE MIMO.

K = 32 K = 40 K = 48 K = 56 K = 64

RZF 32768 64000 110592 175616 262144

NS 3040 4760 6864 9352 12224

Jacobi 960 1520 2208 3024 3968

Richardson 992 1560 2256 3080 4032

GS 1056 1640 2352 3192 4160

SOR 1088 1680 2400 3248 4224

OBI 1536 2240 3072 4032 5120

of iterations, followed by the proposed OBI-TPC scheme.
More specifically, near-RZF performance can be attained
by them for k = 8. Clearly, the convergence performance
directly determines the related TPC performance in massive
MIMO systems, and the convergence performance of all the
TPC schemes is in line with the TPC performance shown
in Fig. 10.

In Table II, the complexity comparison of various TPC
schemes for 128 × K massive MIMO is illustrated in
terms of the average number of flops per iteration. Specif-
ically, since the complexity of NS-based TPC increases
dramatically when k > 2, the flops of its iterations for
k ≤ 2 are considered. Meanwhile, the computational flops
of the traditional RZF TPC is also shown as a baseline.
Intuitively, with the increment of K, the complexities of all
the TPC schemes become higher accordingly. In contrast to
RZF having a rapid complexity growth, the iterative TPC
schemes have a slower complexity increment, which is on
the complexity order of O(K2). Here, the proposed OBI-
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TPC associated with q = 4 is applied, which has a slightly
higher complexity than the GS and SOR schemes. This
is straightforward to understand because only a few block
operations are incurred in OBI-TPC, which in turn leads to
a faster convergence. Clearly, there is a latent TPC trade-off
between performance and complexity in OBI-TPC based
on simply tuning q, making it flexible for different wireless
networks in practice. Exploiting this flexible trade-off for
the proposed OBI-TPC will be one of our future goals.

VII. CONCLUSION

In this paper, we conceived sophisticated updating mech-
anisms for the traditional low-complexity iterative TPC to
boost the convergence for improving the TPC performance
in the downlink of massive MIMO systems. After briefly
revisiting the traditional iterative methods, the RBI-TPC
algorithm was proposed, which can be viewed as a statis-
tically motivated version of the block-based iterative TPC
relying on a random updating order by sampling. Then,
according to our convergence analysis, the proposed RBI-
TPC algorithm was demonstrated to be globally and expo-
nentially convergent. Meanwhile, the convergence gain at-
tained by the block-based update over multiple components
was confirmed explicitly and a well-designed sampling
distribution was shown to expedite the convergence. Then
by applying the conditional sampling, the updating order
in RBI-TPC becomes deterministic, which was optimized
as a fixed but ordered update for a faster convergence rate.
Hence, as a further advance, the OBI-TPC algorithm was
proposed by seamlessly incorporating the mechanisms of
the ordered and the block-based updates into the iterations,
which can be further enhanced by taking advantage of a
relaxation factor.
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