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Abstract

Age of information (AoI) is an effective performance metric measuring the freshness of information

and is particularly suitable for applications involving status update. In this paper, using the age violation

probability as the metric, scheduling for heterogeneous multi-source systems is studied. Two queueing

disciplines, namely the infinite packet queueing discipline and the single packet queueing discipline,

are considered for scheduling packets within each source. A generalized round-robin (GRR) scheduling

policy is then proposed to schedule the sources. Bounds on the exponential decay rate of the age violation

probability for the proposed GRR scheduling policy under each queueing discipline are rigorously

analyzed. Simulation results are provided, which show that the proposed GRR scheduling policy can

efficiently serve many sources with heterogeneous arrivals and that our bounds can capture the true decay

rate quite accurately. When specialized to the homogeneous source setting, the analysis concretizes the

common belief that the single packet queueing discipline has a better AoI performance than the infinite

packet queueing discipline. Moreover, simulations on this special case reveals that under the proposed

scheduling policy, the two disciplines would have similar asymptotic performance when the inter-arrival

time is much larger than the total transmission time.

I. INTRODUCTION

The success of many new applications in the Internet of Things (IoT) hinges greatly on the

timeliness of information. An outstanding example is the industry 4.0 where stringent constraints

on latency are usually required in order to maintain the sophisticated collaboration among

distributed devices and factories. To address timeliness of information, the age of information

(AoI) was introduced in [1] as a new performance metric to measure the freshness of information.

AoI measures the amount of time elapsed since the generation of the latest updated packet until
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the present, which is fundamentally different from the notion of delay and is arguably a better

performance metric than throughput and delay considering timeliness of information [2]. It has

also been demonstrated in [3] that optimal design based on delay or throughput criteria does

not necessarily minimize the AoI. For example, to increase the throughput, one may want to

backlog the packets in the queue, which inevitably updates stale information more often. On the

other hand, to decrease the delay, one may reduce the update rate, which in turn generates fresh

data less frequently.

Despite many successes in the AoI literature thus far, most of them focused solely on using

the average AoI as the metric. This includes an intensive study on analyzing the AoI of a signle

source network for a various queueing disciplines such as the last come first serve (LCFS)

queue [4], the G/G/1 queue with the first come first serve (FCFS) and LCFS in [5], and M/M/1,

M/M/2, and M/M/∞ systems in [6]. Although minimizing average AoI more or less implies

reducing the probability of violating the AoI threshold, it cannot be directly converted to strict

performance guarantees such as the age violation probability. Therefore, these results are not

directly applicable to applications that have strict age requirements. To cope with this, there

were a series of works [7]–[12] analyzing the distribution of AoI. In [7], the authors provided

the age violation distribution of the single source single server system under D/GI/1 and M/GI/1

queuing systems. In [8], Champati et al. provided a upper bound of age violation probability

under multi-hop systems. In [9], the age violation probability for the M/M/1 and M/D/1 one

source-server pair systems was analyzed. Since these systems considered by the above works

have only one queue, the transmission schedule is fully determined by the underlying queueing

discipline and there does not require extra scheduling among sources.1 Inoue et al. in [10] derived

the stationary distribution of AoI in terms of the stationary distribution of delay and peak AoI

for various queueing disciplines. In [11], Seo and Choi provided the performance guarantee for

the single source system with FCFS queueing discipline by analyzing an upper bound of the age

violation probability as the threshold goes to infinity. The authors of [12] discussed the benefit

of retransmission and provided the closed-form expression of age violation probability in single

source-destination pair. However, these works focused solely on the single source system and

the analysis therein again are not directly applicable to the multi-source scenario.

1In this work, we use the term “queueing discipline” to describe how packets are scheduled within the same source and the

term “scheduling” to specify how packets of different sources are scheduled among the sources.
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For multi-source/multi-user networks with homogeneous applications/devices, scheduling among

sources has been studied. With average AoI as the metric, scheduling has been investigated

in [13]–[19]. In [13], it was shown that the optimal scheduling algorithm is stationary and

deterministic; also the asymptotically optimal scheduling policy for multi-user systems with

stochastic arrival was provided. In [14], a structural Markov decision process (MDP) scheduling

algorithm and an index scheduling algorithm were proposed and fully analyzed. In [15], three

low-complexity scheduling policies were considered and analyzed, namely the randomized policy,

the Max-Weight policy and the Whittle’s index policy. In [16], the Whittle’s index policy was

further proved to minimize the average AoI in the multi-source regime. In [17], the round robin

(RR) policy was investigated under the queueing discipline that only keeps the latest packet

and it was shown that such the simple policy is in fact optimal among all arrival-independent

policies. In [18], Moltafet et al. analyzed the average AoI for the multi-soruce network with

M/M/1 (respectively M/G/1) system under FCFS queueing discipline. In [19], the same setting

was considered with exception that the server may break down in order to study the effect of

service disruptions.

Another important feature of IoT is that there are typically a number of heterogeneous

applications/devices inhabiting the system. For such a scenario, scheduling among sources needs

to be carefully designed in order to keep information fresh for each user [20]. In this work,

we consider a multi-source system with heterogeneous source types, where packets of different

source types arrive periodically with different periods. This assumption is not merely for easing

the analysis, but also to address a practical scenario where resource is pre-allocated in a periodic

fashion (see semi-persistent scheduling in NB-IoT systems [21], [22] for example) and appli-

cations with higher AoI requirements tend to sample more frequently. On the other hand, the

transmission time is stochastic and i.i.d. that can have any distribution as long as the moment

generating function is finite. Moreover, two frequently encountered queueing disciplines, namely

the infinite packet queueing (IPQ) with FCFS discipline and the single packet queueing (SPQ)

discipline, are considered. We propose a novel scheduling policy based on the RR algorithm,2

called the generalized round-robin (GRR) policy. To provide a strong performance guarantee for

our proposed GRR policy, its age violation probability that the peak AoI exceeds the prescribed

threshold is rigorously analyzed. Given the existing literature reviewed above, to the best of our

2Due to their simplicity and effectiveness demonstrated in [17], RR-type policies are considered solely in this paper.
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knowledge, the present work is the first to provide a closed-form solution/approximation of the

distribution of AoI in the multi-source system.3

The main contributions of this paper are summarized as follows:

1) For a multi-source system with heterogeneous periodic arrivals, we propose a low-complexity

scheduling policy called GRR that generalizes the famous RR policy to accommodate

the heterogeneity. To provide performance guarantees, the age violation probability of the

proposed policy that the prescribed peak AoI threshold is violated is then analyzed under

the two considered queuing disciplines.

2) For GRR under the IPQ, an upper bound and a lower bound on the age violation probability

for any given threshold are derived. Based on the derived bounds, the asymptotic decay

rate when the number of sources tends to infinity is approximated. Simulation results show

that our analytical results accurately capture the scaling of the age violation performance.

Moreover, an approximation based on our bounds is provided, which indicates that the

proposed GRR policy enjoys a desired property that the age violation probability decays

faster for sources whose packets arrive more frequently (i.e., have higher AoI requirement).

3) For GRR under the SPQ, we derive an upper bound on the age violation probability.

Although a tight lower bound is lacking, simulation results indicate that the derived upper

bound again captures the true scaling quite accurately when the number of sources becomes

large. They also indicate that the SPQ can handle some situations where the IPQ would

have been overflowed. Moreover, an approximation based on the bound again reveals that

the proposed GRR policy has the desired property that the age violation probability decays

faster for sources whose packet arrive more frequently. Another implication of our results

is that as the total number of sources grows, scaling the arrival period linearly with the

number of sources is sufficient to drive the age violation probability vanishing.

4) The derived bounds are specialized to the homogeneous system, where two conclusions can

be drawn: 1) the common belief that the SPQ has a better AoI performance than the IPQ

is concretized; and 2) the two queueing disciplines result in the same asymptotic scaling

when the inter-arrival time is much larger than the total transmission time.

The rest of the paper is organized as follows. In Section II, we illustrate the network model,

3A similar problem has been studied in [23], where a multi-source probabilistically preemptive bufferless M/PH/1/1 queueing

system with packet errors is considered. Therein, the distribution of AoI in multi-source system was solved only numerically.
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the age model, and the problem we study. In Section III, we provide the analysis of the age

violation probability for the IPQ. Our analysis for the SPQ is then provided in Section IV. In

Section V, we validate our analysis with simulations and compare the proposed GRR under the

two queueing disciplines. Finally, in Section VI, we conclude the paper.

A. Notation

Throughout the paper, constants and random variables are written in lowercase and uppercase,

respectively, for example, x and X . Sets are written in calligraphic letters, for example A. For a

real constant x, we use (x)+ to denote max{0, x}. For a positive integer n, [n] is an abbreviation

of the set {1, 2, . . . , n}. We use 1{·} to represent the indicator function for the event inside the

curly brackets.

TABLE I: Notations

Notation Description

n total number of sources

η total number of groups

ng number of sources in group g

αg fraction of sources in group g

nb fundamental arrival period

dg multiple number of frequency of group g

d̃ number of rounds in an iteration

(g, i) source index for source i in group g

(g, i, k) packet index for the k-th updated packet of source (g, i)

Ug,i(t) generation time of the latest packet of source (g, i) transmitted to the

destination by time t

Sg,i(k) arrival time of the packet (g, i, k)

Wg,i(k) waiting time of the packet (g, i, k)

Dg,i(k) departure time of packet (g, i, k)

Vg,i(k) transmission time of packet (g, i, k)

Tg,i(k) total transmission time since transmitting the packet (g, i, k − 1) to the

beginning of the transmission of packet (g, i, k)

∆g,i(t) AoI for source (g, i) at time t

Ag,i(k) peak AoI for packet (g, i, k)

Λv(θ) log moment generating function of transmission time with parameter θ



6

II. SYSTEM MODEL AND PROBLEM FORMULATION

In this section, we describe the network model in Section II-A, followed by the notion of AoI

and a description of the problem we attempt to solve in Section II-B. In Table I, we summarize

the notations we use in this section for describling the considered problem.

A. Network model

We consider an information update system as shown in Fig. 1, where n sources update their

respective status of information (in terms of packets) to a destination through a base station

(BS).4 These n sources are categorized into η groups of heterogeneous sources, where group

1 contains the most frequently sampled sources, group 2 contains the second most frequently

sampled sources, and so on. We use the pair (g, i) to denote the source i of group g. Also, we

use αg and ng = αgn for g ∈ [η] to represent the fraction and the number of sources in group g,

respectively, with the convention α0 = 0. Periodic sampling is considered, where the sources in

the same group have the same arrival period. Precisely, let dg ∈ N with 1 = d1 < d2 < . . . < dη.

For b ∈ R a constant, the arrival period of a source in group g is dgnb, scaled linearly with

n.5 That is, sources with the same sample period arrive in bulk in a deterministic and periodic

fashion. We denote by Sg,i(k) the arrival time of the k-th updated packet of source (g, i).

The BS maintains a queue for each source, where (some of the) unserved packets of source

i ∈ [n] are stored in queue i. In this paper, two types of queueing disciplines are considered,

namely the IPQ and the SPQ. For the IPQ, the queue size is infinity and all arriving packets are

stored and served with FCFS. For the SPQ, to prevent BS from sending stale information, the

latest packet is queued and others are preempted.

For each source, the transmission time is random and we use Vg,i(k) to denote the transmission

time of packet (g, i, k), the k-th updated packet of source (g, i). Vg,i(k) is assumed to be

independent and identically distributed (i.i.d) that has a finite log-moment generating function

Λv(θ) = logE
[
eθVg,i(k)

]
. We stress that Vg,i(k) can be discrete or continuous random variable;

thereby, our model and analysis apply to both the discrete-time and continuous-time systems.

Remark 1. We can safely assume that d1 = 1. If otherwise, we can always add a virtual group

with d1 = 1 and V1,i(k) = 0 ∀i, k. This will not alter the derivation and analysis in the sequel.

4The model is equivalent to having n destinations where each source is requested by a destination.
5This is in fact a typical way of analyzing the asymptotic performance in the large-source regime [24].
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Fig. 1: An illustration of the network model.

B. Age of information and problem formulation

We now describe the definition of AoI. Under scheduling policy π, let Dπ
g,i(k) be the departure

time of the packet (g, i, k) and let Uπ
g,i(t) be the generation time of the latest packet transmitted

to the destination by time t. (i.e. Uπ
g,i(t) = Sg,i(k) where k = arg maxk D

π
g,i(k) ≤ t) Then, AoI

for source (g, i) at time t is defined by ∆π
g,i(t) = t−Uπ

g,i(t) and is depicted in Fig. 3. The peak

age of the packet (g, i, k) is defined as

Aπ
g,i(k) = Dπ

g,i(k)− Sg,i(k − 1), (1)

which captures the time from the generation of the (k−1)-th updated packet of the source (g, i)

to the successful departure of the k-th updated packet from the same source.

Note that we have used the superscript π to emphasize that those random variables depend

on the underlying scheduling policy. In this paper, since we focus solely on the generalized

round-robin scheduling policy introduced in Section III-A, we drop the superscript π from this

point onward. Unlike most of the work in the AoI literature analyzing the long-term average of

the peak AoI, to provide performance guarantee and to have a better understanding of the AoI

distribution, we aim to analyze the age violation probability defined as follows.

Definition 1 (Age violation probability). We define the age violation probability for the packet

(g, i, k) as the probability that the packet’s peak AoI exceeds a given threshold nx. It is expressed

as Pr(Ag,i(k) ≥ nx).

Having defined the age violation probability, we then define the asymptotic decay rate, which

provides a guarantee on the decay rate of the age violation probability in a large-user system.
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Definition 2 (Asymptotic decay rate). The asymptotic decay rate under the threshold nx is the

rate at which the peak age decays as the number of sources n grows to infinity. That is,

lim
n→∞

1

n
logPr(Ag,i(k) ≥ nx). (2)

In this work, we also aim to analyze the asymptotic age violation probability characterization

for our proposed scheduling policy when the number n of sources is large.

III. GRR UNDER THE IPQ

In this section, we focus on the IPQ. We first propose the GRR scheduling algorithm in

Section III-A. Next, we analyze the age evolution under GRR together with some insights and

explanations in Section III-B. Based on the age evolution, we then derive an upper bound and

a lower bound on the age violation probability, which allow us to approximate the asymptotic

decay rate for the large-system scenario in Section III-C. To gain intuition, we study asymptotic

decay rate with a specific distribution for the transmission time in Section III-D. Moreover, we

specialize our results to the homogeneous case where there is only one single group in III-E

A. Proposed GRR under the IPQ

Before introducing the proposed GRR scheduling policy, we first present the RR scheduling

policy as follows and then define the proposed GRR policy.

Definition 3 (Round-robin policy). Let us define the idle time of source (g, i) at the time t

be the time duration since the last time this source was updated to t. Then, at the time t′ that

the previous packet was successfully delivered, the RR policy schedules the source that has the

maximum idle time at t′. If there is no packet in the queue of this source, the BS waits until

the next arrival of that source.

Definition 4 (Generalized round robin). Let d̃ be the least common multiple of d1, d2, ..., dη.

GRR operates iteratively with d̃ rounds in an iteration. In round r such that r mod dg = 0, the

sources in group g are served according to the RR policy defined in Definition 3.

An example is provided in the following.

Example 1. Consider η = 3 and d1 = 1, d2 = 2, d3 = 3. There are d̃ = 6 rounds in an iteration.

GRR schedules as follows:
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Fig. 2: An example of packet transmission under GRR policy. In this example, we have I2,1(1) =

{(2, 1, 1), (3, 1, 1), (1, 1, 3)} and I2,1(2) = {(2, 1, 2), (1, 1, 4), (3, 1, 2), (1, 1, 5)}

Round 0: G1 → G2 → G3

Round 1: G1

Round 2: G1 → G2

Round 3: G1 → G3

Round 4: G1 → G2

Round 5: G1

Round 6: G1 → G2 → G3

Round 7: G1

...
...

Remark 2. For a homogeneous system where there is only one group, the proposed GRR policy

reduces to the RR policy, justifying the name. Also, the proposed GRR policy inherits the extreme

low-complexity from the RR policy.

B. Age analysis under the IPQ

To analyze the age evolution under the proposed GRR policy, we denote by Tg,i(k−1) the total

transmission time since transmitting the packet (g, i, k− 1) to the beginning of the transmission

of packet (g, i, k). Tg,i(k − 1) includes the transmission time of the (k − 1)-th update packet

of source i but does not include that of the k-th updated packet of this source. And it can be

expressed as follows:

Tg,i(k − 1) =
∑

(g′,i′,j)∈Ig,i(k−1)

Vg′,i′(j), (3)

where Ig,i(k − 1) is the set containing all the indices (g′, i′, j) for which the source (g′, i′) is

scheduled to transmit its j-th update during the (k − 1)-th update to the beginning of the k-th

update of source (g, i).
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Example 2. Let us take Example 1 with only one source in each group for example. An

illustration of the total transmission time and corresponding index set for this example can

be found in Fig. 2. For the source 1 in group 2, one observes that

T2,1(1) = V2,1(1) + V3,1(1) + V1,1(2) + V1,1(3), (4)

T2,1(2) = V2,1(2) + V1,1(4) + V3,1(2) + V1,1(5), (5)

T2,1(3) = V2,1(3) + V1,1(6) + V1,1(7). (6)

Since the transmission time is i.i.d., both T2,1(1) and T2,1(2) are composed of four i.i.d trans-

mission times and T2,1(3) is composed of three i.i.d transmission times, they are statistically not

the same, highlighting the difference on Tg,i(k − 1) for different k.

We are now ready to study the expression of peak AoI. The departure time Dg,i(k) of the

packet (g, i, k) can be described by

Dg,i(k) = Sg,i(k) +Wg,i(k) + Vg,i(k), (7)

where Wg,i(k) is the waiting time of the packet (g, i, k). Now, plugging (7) into (1) leads to

Ag,i(k) = Sg,i(k) +Wg,i(k) + Vg,i(k)− Sg,i(k − 1) (8)

= Wg,i(k) + Vg,i(k) + dgnb. (9)

Hence, to analyze AoI, it suffices to trace the evolution of the waiting time, which we provide

a recursive formula in the sequel.

Lemma 1. The waiting time of the packet (1, 1, k) can be expressed recursively as follows,

W1,1(k) = (W1,1(k − 1) + V (k − 1)− nb)+ , (10)

where V (k − 1) = T1,1(k − 1) is the total transmission time between the (k − 1)-th and k-th

updates of source (1, 1).

Proof: Since the packet (1, 1, k) can be served after all scheduled packets in round k − 1

are served, W1,1(k) depends on Dg∗,ng∗ (kg∗) where we use the notations g∗ , ng∗ , and kg∗ to

denote that the last updated packet before (1, 1, k) is the kg∗-th update of source (g∗, ng∗). If
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Dg∗,ng∗ (kg∗) > S1,1(k), the BS will serve the packet (1, 1, k) immediately after the successful

departure of the packet (g∗, ng∗ , kg∗). Thus, we have

W1,1(k) = Dg∗,ng∗ (kg∗)− S1,1(k)

(a)
= Sg∗,ng∗ (kg∗) +Wg∗,ng∗ (kg∗) + Vg∗,ng∗ (kg∗)− S1,1(k)

(b)
= Wg∗,ng∗ (kg∗) + Vg∗,ng∗ (kg∗)− nb

(c)
= W1,1(k − 1) +

∑
(g′,i′,j)∈I1,1(k)\(g∗,ng∗ ,kg∗ )

Vg′,i′(j) + Vg∗,ng∗ (kg∗)− nb

(d)
= W1,1(k − 1) + V (k − 1)− nb, (11)

where (a) follows from (7), (b) is because of Sg∗,ng∗ (kg∗) = S1,1(k − 1) caused by batch

arrival. Recall that the packets arrive in batch at time S1,1(k − 1) so that all the packets are

stored in the queue waiting to be transmitted. (c) intends to express Wg∗,ng∗ (kg∗) in terms of

W1,1(k−1)+
∑

(g′,i′,j)∈I1,1(k)\(g∗,ng∗ ,kg∗ )
Vg′,i′(j), where the term

∑
(g′,i′,j)∈I1,1(k)\(g∗,ng∗ ,kg∗ )

Vg′,i′(j)

represents the overall transmission time of the packets scheduled between packets (1, 1, k − 1)

and (g∗, ng∗ , kg∗). (d) follows from the definition of T1,1(k−1) in (3) and V (k−1) = T1,1(k−1).

If Dg∗,ng∗ (kg∗) ≤ S1,1(k), the BS is idle after transmitting the packet (g∗, ng∗ , kg∗) and we can

immediately transmit the packet (1,1,k) at the packet’s arrival. Therefore, the waiting time is

zero, which again fulfills (10) as W1,1(k− 1) + V (k− 1)− nb = Dg∗,ng∗ (kg∗)− S1,1(k) ≤ 0.

Next, we derive the peak age of the packet (g, i, k) by applying Lemma 1.

Lemma 2. The peak age of the packet (g, i, k) is

Ag,i(k) = max
1≤ℓ≤k̃


k̃−1∑
r=ℓ

V (r)− (k̃ − ℓ)nb

+
∑

(g′,i′,j)∈J−
g,i(k)

Vg′,i′(j) + dgnb, (12)

where k̃ = dg(k− 1) + 1 and J −
g,i(k) is the set containing all the indices (g′, i′, j) for which the

source (g′, i′) is scheduled to transmit its j-th update between the dg(k− 1)-th update of source

(1, 1) to the beginning of the k-th update of source (g, i).

Proof: See Appendix A.

Intuitively, the AoI evolution above can be reasoned as follows. Let ℓ∗ be the maximizer of

the first term of (12). When ℓ∗ = k̃, the first term of (12) becomes zero, corresponding to the

case that all the scheduled packets in the rounds before the one containing the k-th update of

source (g, i) has been cleared, making the inter-arrival time and transmission time of all the
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Fig. 3: Age evolution in a multi-source system.

sources preceding (g, i) in the same round the sole contribution of Ag,i(k). On the other hand,

for 1 ≤ ℓ∗ ≤ k̃− 1, the first term of (12) corresponds to the extra time the k-th update of source

(g, i) has to wait caused by unfinished updates of previous rounds.

C. Age violation probability analysis under the IPQ

Based on the AoI evolution in Lemma 2, an upper and a lower bounds on the age violation

probability are derived. We first present the upper bound in the following theorem.

Theorem 1. For any x > 0, k > 0, θ > 0, and c′ > 0, if
∑η

j=1
d̃
dj
αjΛv(θ) − d̃θb < 0, then the

age violation probability of source (g, i) under the IPQ, is upper bounded as follows,

Pr (Ag,i(k) ≥ nx) ≤ (d̃c′ + 1) exp

{
−n · min

0≤ℓ′≤k′
γ
(U,ℓ′)
g,i (x, k, n)

}
, (13)

where

γ
(U,ℓ′)
g,i (x, k, n) =

I
(U,0)
g,i (x− dgb, k, n) , for ℓ′ = 0,

ℓ′I
(U,ℓ′)
g,i

(
x
ℓ′
+ (ℓ′−1)d̃−dg

ℓ′
b, k, n

)
, for 1 ≤ ℓ′ ≤ k′,

(14)

and

I
(U,0)
g,i (x, k, n) = sup

θ

θx−mg,i(k)Λv(θ)

 , for ℓ′ = 0, (15)

I
(U,ℓ′)
g,i (x, k, n) = sup

θ

{
θx−

η∑
j=1

d̃

dj
αjΛv(θ)−

mg,i(k)

ℓ′
Λv(θ)

}
, for 1 ≤ ℓ′ ≤ k′. (16)

Here ℓ′ = ⌈ k̃−ℓ
d̃
⌉, k′ = ⌈ k̃−1

d̃
⌉, and mg,i(k) = |J −

g,i(k)|/n is the ratio of the number of transmitted

packet in the set J −
g,i(k) to the total number of sources n in the system.
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Proof: See Appendix B.

The lower bound is presented in the following theorem.

Theorem 2. For any x > 0, k > 0, θ > 0, and ϵ > 0, let ℓ′ = ⌈ k̃−ℓ
d̃
⌉ and k′ = ⌈ k̃−1

d̃
⌉, the age

violation probability of source (g, i) under the IPQ is lower bounded as follows,

Pr (Ag,i(k) ≥ nx) ≥ exp

{
−n

(
min

0≤ℓ′≤k′
γ
(L,ℓ′)
g,i (x, k, n) + ϵ

)}
, (17)

where

γ
(L,ℓ′)
g,i (x, k, n) =

I
(L,0)
g,i (x− dgb, k, n) , for ℓ′ = 0

ℓ′I
(L,ℓ)
g,i

(
x
ℓ′
+ ℓ′d̃−dg

ℓ′
b, k, n

)
, for 1 ≤ ℓ′ ≤ k′,

(18)

and

I
(L,0)
g,i (x, k, n) = sup

θ
{θx−mg,i(k)Λv(θ)} , for ℓ′ = 0,

(19)

I
(L,ℓ′)
g,i (x, k, n) = sup

θ

θx−
(ℓ′ − 1)

∑η
j=1

d̃
dj
αj

ℓ′
Λv(θ)−

mg,i(k)

ℓ′
Λv(θ)

 , for 1 ≤ ℓ′ ≤ k′.

(20)

Proof: See Appendix C.

To characterize the asymptotic behavior of the proposed GRR scheduling policy in the large

system regime, the following two corollaries are derived from the above theorems.

Corollary 1. For any x > 0, k > 0, and ℓ′ and k′ as defined in Theorem 1, the asymptotic decay

rate of source (g, i) under the IPQ is upper and lower bounded by

− lim
n→∞

1

n
log Pr (Ag,i(k) ≥ nx) ≤ min

0≤ℓ′≤k′
γ
(L,ℓ′)
g,i (x, k,∞), (21)

and

− lim
n→∞

1

n
log Pr (Ag,i(k) ≥ nx) ≥ min

0≤ℓ′≤k′
γ
(U,ℓ′)
g,i (x, k,∞), (22)

respectively.

So far, we have focused on the age violation probability and its asymptotic decay rate for a

particular update k. Next, we want to analyze the long-run fraction of violation probability of

source (g, i) limκ→∞
1
κ

∑κ
k=1 E

[
1{Ag,i(k)≥nx}

]
. Re-grouping the summation according to ζ = k

mod d̃/dg and apply the upper bound of violation probability, we have
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Corollary 2. The long-run fraction of age violation probability of source (g, i) is upper bounded

as follow:

lim
κ→∞

1

κ

κ∑
k=1

E
[
1{Ag,i(k)≥nx}

]
≤

d̃/dg∑
ζ=1

dg

d̃
(d̃c′ + 1)e−nminℓ′≥0 γ

(U,ℓ′)
g,i (x,ζ,∞). (23)

Moreover, the asymptotic decay rate of the long-run fraction of age violation probability for

source (g, i) is given by

− lim
n→∞

1

n
log lim

κ→∞

1

κ

κ∑
k=1

E
[
1{Ag,i(k)≥nx}

]
≥

d̃/dg∑
ζ=1

min
ℓ′≥0

γ
(U,ℓ′)
g,i (x, ζ,∞), (24)

where γ
(U,ℓ′)
g,i (x, ζ,∞) is defined in (14).

Proof: The proof of (23) is relegated to Appendix D. To prove (24), we note that from (23)

− lim
n→∞

1

n
log lim

κ→∞

1

κ

κ∑
k=1

E
[
1{Ag,i(k)≥nx}

]
≥ − lim

n→∞

1

n
log

d̃/dg∑
ζ=1

dg

d̃
(d̃c′ + 1)e−nminℓ′≥0 γ

(U,ℓ′)
g,i (x,ζ,∞)


(a)

≥ lim
n→∞

1

n

− log

(
dg

d̃
(d̃c′ + 1)

)
+ n

d̃/dg∑
ζ=1

min
ℓ′≥0

γ
(U,ℓ′)
g,i (x, ζ,∞)

 =

d̃/dg∑
ζ=1

min
ℓ′≥0

γ
(U,ℓ′)
g,i (x, ζ,∞).

(25)

where (a) follows from the Jensen’s inequality.

D. Approximation of the asymptotic decay rate under the IPQ

To gain further insight, we specialize our results to a specific distribution for Vg,i(k) ∼ Exp(λ)

whose optimal θ can be solved in closed-form. This choice of distribution is not merely for

mathematical convenience but also for its connection to transmission over packet erasure channel

(PEC), which will be elaborated in Section V. Moreover, we consider x > dgb; otherwise, the

age violation probability would be 1 and the discussion would become meaningless.

Note that it is not difficult to see that the rate functions are convex in θ. Thus, we differentiate

the rate functions in (15) and (16) to obtain

θ
∗(U,0)
g,i (x, k,∞) = λ− mg,i(k)

x
, (26)

and

θ
∗(U,ℓ)
g,i (x, k,∞) = λ−

ℓ′
∑η

j=1
d̃
dg
αj +mg,i(k)

x
, (27)
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respectively. The θ
∗(U,ℓ)
g,i (x, k,∞) is then plugged into γ

(U,ℓ)
g,i (x, k,∞), leading to

γ
(U,0)
g,i (x, k,∞) = λx− dg

(
λb− mg,i(k)

x
b

)
−mg,i(k)−mg,i(k) log

(
λx

mg,i(k)

)
, (28)

and

γ
(U,ℓ)
g,i (x, k,∞) = λx− dg

[
λb−

(
ℓ′

η∑
j=1

d̃

dj
αj +mg,i(k)

)
b

x

]
− d̃(ℓ′ − 1)

(
ℓ′

η∑
j=1

d̃

dj
αj +mg,i(k)

)
b

x

−

(
ℓ′

η∑
j=1

d̃

dj
αj +mg,i(k)

)1 + log

 λx

ℓ′
∑η

j=1
d̃
dj
αj +mg,i(k)

+ (ℓ′ − 1)d̃λb. (29)

In what follows, we separately discuss the large transmission rate and the small transmission

rate cases.

Case 1 (Large transmission rate):

In this case, we assume b ≫ 1
λ

. Under this assumption, the packets stored in queues are very

likely to be cleared before the arrival of the next batch. From (28) and (29), using the assumption

b ≫ 1
λ

, we have

γ
(U,0)
g,i (x, k,∞) ≈ λ(x− dgb), (30)

and

γ
(U,ℓ)
g,i (x, k,∞) ≈λx− dgλb− d̃(ℓ′ − 1)

(
ℓ′

η∑
j=1

d̃

dj
αj +mg,i(k)

)
b

x
+ (ℓ′ − 1)d̃

−

(
ℓ′

η∑
j=1

d̃

dj
αj +mg,i(k)

)1 + log

 λx

ℓ′
∑η

j=1
d̃
dj
αj +mg,i(k)

 , (31)

respectively. The approximations in (30) and (31) allow us to draw the conclusion for this case

that the exponents of the age violation probability are larger for sources with smaller dg.

Case 2 (Small transmission rate):

We assume b ≈ 1
λ

and b− 1
λ
> ϵ where ϵ > 0 is a small value to ensure that the queue is stable

and we are in the large buffer regime. In this case, every packet has to wait in the queue for a

long period of time with high probability. We then approximate (28) and (29) to get

γ
(U,0)
g,i (x, k,∞) ≈ λx− dg

(
1− mg,i(k)

x
b

)
−mg,i(k)−mg,i(k) log

(
λx

mg,i(k)

)
≤ λx− dg

(
1− mg,i(k)

x
b

)
, (32)
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and

γ
(U,ℓ)
g,i (x, k,∞) ≈λx− dg

[
1−

(
ℓ′

η∑
j=1

d̃

dj
αj +mg,i(k)

)
b

x

]
− d̃(ℓ′ − 1)

(
ℓ′

η∑
j=1

d̃

dj
αj +mg,i(k)

)
b

x

−

(
ℓ′

η∑
j=1

d̃

dj
αj +mg,i(k)

)1 + log

 λx

ℓ′
∑η

j=1
d̃
dj
αj

+mg,i(k)

 , (33)

respectively. From (32) and (33), same conclusion can be drawn that the age violation probability

decays faster for the source with smaller dg.

E. Homogeneous case under the IPQ

We now specialize our results to the homogeneous system in which all sources’ arrival periods

are the same. That is, dg = 1 for all g ∈ [G]. i.e., all the sources can be regarded as in the same

group. We thus drop the subscript g in all random variables in this subsection.

The waiting time in homogeneous system can be directly obtained from Lemma 1,

W1(k) = (W1(k − 1) + V (k − 1)− nb)+ , (34)

where V (k − 1) =
∑n

i=1 Vi(k − 1) in this case. Iteratively plugging (34) into (9) shows the

expression of the peak age for the k-th updated packet of source i as

Ai(k) = max
1≤ℓ≤k

{
k−1∑
r=ℓ

V (r)− (k − ℓ)nb

}
+

∑
(i,j)∈J−

i (k)

Vi(j) + nb, (35)

coinciding with the peak age can be deduced from Lemma 2. Upper and lower bounds on the

age violation probability for the homogeneous case can then be obtained from Theorems 1 and

2, which are summarized in the following corollary.

Corollary 3. For any x > 0, k > 0, and ℓ as defined in Theorem 1, the age violation probability

of source i under the IPQ in the homogeneous case is upper and lower bounded by

Pr (Ai(k) ≥ nx) ≤ c · exp
[
−n min

0≤ℓ′≤k−1
γ
(ℓ′)
i (x, k, n)

]
, (36)

and

Pr (Ai(k) ≥ nx) ≥ exp

[
−n

(
min

0≤ℓ′≤k−1
γ
(ℓ′)
i (x, k, n) + ϵ

)]
, (37)

respectively, where c > 0 is a constant, ϵ > 0 can be arbitrarily small, and

γ
(ℓ′)
i (x, k, n) =

Î
(0)
i (x− b, k, n) , for ℓ′ = 0,

ℓ′Î
(ℓ′)
i

(
x
ℓ′
+ (ℓ′−1)

ℓ′
b, k, n

)
, for 1 ≤ ℓ′ ≤ k′,

(38)



17

with Î
(ℓ′)
i (x, k, n) = supθ:Λv(θ)−θb<0

[
θx− ℓ′+i/n

ℓ′
Λv(θ)

]
.

The asymptotic scaling of the age violation probability for the homogeneous case can be

exactly characterized as follows.

Corollary 4. For any x > 0, the asymptotic decay rate of source i under the IPQ in homogeneous

case is given by

− lim
n→∞

1

n
log Pr(Ai(k) ≥ nx) = min

0≤ℓ′≤k−1
γ
(ℓ′)
i (x, k,∞). (39)

IV. PROPOSED GRR WITH PREEMPTION UNDER THE SPQ

In this section, we turn our attention to the SPQ case. We first propose the GRR scheduling

policy for SPQ in Section IV-A and analyze the evolution of AoI under GRR in Section IV-B.

An upper bound on the age violation probability are derived in Section IV-C followed by its

approximation in Section IV-D. The homogeneous case is then consider in Section IV-E.

A. Proposed GRR under the SPQ

We employ the same GRR scheduling policy in Definition 4 to decide the schedule among

sources. However, unlike the the infinite packet queueing discipline, we store the latest packet

only and preempt all the old packets for each source. Intuitively, this prevents the BS from

updating stale information, resulting in a smaller AoI as compared to the infinite packet queueing

discipline. Our analysis in Section IV-B makes this intuition precise.

B. Age analysis under the SPQ

We first recall that the peak age of the packet (g, i, k) is defined in (1) and the departure time

is given in (7). Plugging (7) into (1) shows the age expression in (8), making the derivation of

waiting time the main challenge. To proceed, we define two new random variables Ng,i(k − 1)

and pg,i(k− 1), where Ng,i(k− 1) is the idle time occurring after serving the (k− 1)-th update

from source (g, i) and pg,i(k − 1) is the number of source i’s packets preempted between the

(k − 1)-th and the k-th updates.

An example with three sources in one group is illustrated in Fig. 4 in which the variables

Ng,i(k−1) and pg,i(k−1) are explained. In Fig. 4a, the first round has a fairly long transmission

time of V1,1(1) + V1,2(1) + V1,3(1) > 2nb; hence, N1,1(1) = 0 and p1,1(1) = 1. On the contrary,
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(a) Idle time N1,1(2) occurs after serving the third

source.

(b) Idle time N1,1(2) occurs after serving the first

source.

(c) Idle time N1,1(2) occurs after serving the

second source.

Fig. 4: An example of AoI under the SPQ.

the second round has a short overall transmission time; hence, the BS has to wait N1,1(2) until

the arrival of the next batch to start the service of source 1 in the third round. In this case,

p1,1(2) = 0. Another realization is shown in Fig. 4b. In this figure, we see that V1,1(1) is fairly

large, which results in the preemption of one packet from the source 2 and 3. After V1,2(1),

V1,3(1), and V1,1(2), the packets arrived at 2nb are all served and the BS again becomes idle.

This shows that the idle time N1,i(k−1) does not necessarily occur after serving an entire round.

Fig. 4c shows another case that the BS becomes idle after serving a packet from source 2.

With the introduction of the two new random variables, we obtain the expression of waiting

time under the SPQ in the following lemma:

Lemma 3. The waiting time of the packet (g, i, k) can be expressed as follows

Wg,i(k) = Wg,i(k − 1) + Tg,i(k − 1) +Ng,i(k − 1)− (pg,i(k − 1) + 1) dgnb. (40)

Proof: We first note that without preemption, the waiting time of the k-th updated packet
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from source i would be the sum of Wg,i(k−1) the waiting time in the previous round, Tg,i(k−1)

the total transmission time since transmitting the packet (g, i, k − 1) to the beginning of the

transmission of packet (g, i, k), and Ng,i(k − 1) the idle time to fill the gap (if exists) in the

procedure of Tg,i(k − 1). i.e., it would be

Wg,i(k − 1) + Tg,i(k − 1) +Ng,i(k − 1)− dgnb. (41)

Now, if (41) ≥ dgnb, the pg,i(k− 1) stale packets will be preempted, which leads us to (40) and

completes the proof.

Next, we provide the formulation of the peak age of the packet (g, i, k).

Lemma 4. The peak age of the packet (g, i, k) under the SPQ is

Ag,i(k) = max

Wg,i(k − 1) +
∑

g′,i′,j∈J+
g,i(k−1)

Vg′,i′(j) +

dg(k−1)∑
r=dg(k−2)+2

V (r),

max
2≤ℓ≤dg+1

 dg(k−1)∑
r=dg(k−2)+2

V (r) + (ℓ− 1)nb

+
∑

(g′,i′,j)∈J−
g,i(k)

Vg′,i′(j). (42)

where J +
g,i(k) contains all the indexes (g′, i′, j) such that transmitting the packet (g, i, k) to

the end of that round.

Proof: See Appendix E.

C. Age violation probability analysis under the SPQ

With the evolution of AoI above, we are now ready to present an upper bound on the age

violation probability of peak age.

Theorem 3. The age violation probability of the packet (g, i, k) under the SPQ is upper bounded

by

Pr(Ag,i(k) ≥ nx) ≤ exp
{
−nĨg,i (x− dgb, k, n)

}
, (43)

where

Ĩg,i(x, k, n) = sup
θ

{
θx−

(
tg,i(k − 1) +

1

n

)
Λv(θ)

}
, (44)

with tg,i(k − 1) = |Ig,i(k − 1)|/n being the ratio of the number of transmissions between

transmitting the packet (g, i, k − 1) and the packet (g, i, k) to the total number of sources n in

the system.
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Proof: The proof is relegated to Appendix F.

Remark 3. With (42), it is possible to use techniques similar to that in Section III-C to obtain

lower bounds. However, we are unable to find a good lower bound on Wg,i(k− 1) that result in

a tight lower bound. We leave it as a future work.

Two corollaries are in place whose proofs are omitted:

Corollary 5. Assume Λv(θ) is bounded. The asymptotic decay rate of the packet (g, i, k) under

the SPQ is bounded by

− lim
n→∞

1

n
log Pr(Ag,i(k) ≥ nx) ≥ Ĩg,i(x− dgb, k,∞), (45)

where

Ĩg,i(x, k,∞) = sup
θ

{θx− tg,i(k − 1)Λv(θ)} . (46)

Corollary 6. The asymptotic decay rate of source (g, i) under the SPQ is bounded as follows,

− lim
n→∞

1

n
log lim

κ→∞

1

κ

κ∑
k=1

1{Ag,i(k)≥nx} ≥
d̃/dg∑
ζ=1

Ĩg,i (x− dgb, ζ,∞) , (47)

D. Approximation of the asymptotic decay rate under the SPQ

To gain insights, we again specialize our results to the case Vg,i(k) ∼ Exp(λ). Differentiating

the rate function in (46) results in

θ∗g,i(x, k,∞) = λ− tg,i(k − 1)

x
. (48)

Then plugging this θ∗g,i(x, k,∞) into (45) leads to

Ĩg,i(x− dgb, k,∞) = λx− dg

(
λb− tg,i(k − 1)

x
b

)
− tg,i(k− 1)− tg,i(k− 1) log

(
λx

tg,i(k − 1)

)
.

(49)

In what follows, the large transmission rate and the small transmission rate cases are discussed.

Case 1 (Large transmission rate):

In this case, we assume b ≫ 1
λ

. (49) then leads to

Ĩg,i(x− dgb, k,∞) ≈ λx− dgλb− tg,i(k − 1)− tg,i(k − 1) log

(
λx

tg,i(k − 1)

)
. (50)

The approximation indicates that for this case the age violation probability decays faster for

sources with smaller dg.
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Case 2 (Small transmission rate):

We assume b ≈ 1
λ

and b− 1
λ
> ϵ where ϵ > 0 is a small value. We have

Ĩg,i(x−dgb, k,∞) ≈ λx−dg

(
1− tg,i(k − 1)

x
b

)
−tg,i(k−1)−tg,i(k−1) log

(
λx

tg,i(k − 1)

)
, (51)

which allows us to draw the same conclusion as case 1.

E. Homogeneous case under the SPQ

Here, we again focus on the homogeneous case, where the GRR policy reduces to the RR

policy in Definition 3 and we drop the first subscript g for all random variables in this subsection.

Applying dg = 1 to (42) results in

Ai(k) = max

{
Wi(k − 1) +

n∑
i′=i

Vi′(k − 1), nb

}
+

i∑
i′=1

Vi′(k). (52)

In what follows, a bound on the age violation probability is derived. The proof of these results

closely follows the steps in Section IV-C and is thus omitted.

Corollary 7. The age violation probability of source i under the SPQ in homogeneous system

is bounded by

Pr (Ai(k) ≥ nx) ≤ exp
{
−nĪi (x− b, k, n)

}
, (53)

where Īi(x, k, n) = supθ

{
θx−

(
n+1
n

)
Λv(θ)

}
. Moreover, the asymptotic decay rate of source i

under the SPQ in homogeneous system is bounded by

− lim
n→∞

1

n
log Pr (Ai(k) ≥ nx) ≥ Īi(x− b, k,∞), (54)

where

Īi(x, k,∞) = sup
θ>0

{θx− Λv(θ)} . (55)

V. DISCUSSION AND SIMULATION RESULTS

In this section, we use computer simulation to verify our analysis. We assume that the system

consists of three heterogeneous groups of sources. Each group has the same number of sources

n. The arrival period of group g ∈ {1, 2, 3} scales linearly with n, given by dgnb with b = 5

and (d1, d2, d3) = (1, 2, 4). Each transmission time follows the exponential distribution with

parameter λ, i.e., Exp(λ). Here, λ can be understood as the service rate, which makes 1/λ the

average transmission time. We also consider a more practical setting in which time is discretized
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Fig. 5: Age violation probability against the n under the IPQ with (x1,x2,x3)=(8,14,25).
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Fig. 6: Age violation probability against the arrival period under the IPQ with (x1, x2, x3) =

(8, 14, 25) and n = 30.

into slots and each scheduled packet is transmitted at the begining of a slot to the destination

through a PEC with erasure probability ε = 0.7165. If the packet is successfully received at

the destination, an ACK signal is fedback at the end of the slot. Otherwise, the BS retransmits

the packet in the next slot. This gives rise to the geometrically distributed transmission time

with successful probability 1− ε = 0.2835. It is quite well-known that exponential distribution

is the limiting distribution of geometric distribution. Moreover, if V ∼ Exp(λ), then ⌊V ⌋ is

geometrically distributed with successful probability 1− ε = 1− e−λ. Since 1− e−1/3 ≈ 0.2835,

we expect the results from the two settings to be close to each other.

In Figs. 5-7, we use computer simulation to verify the analytic results in IPQ. We set 1/λ = 3

and the threshold of group g to be nxg with (x1, x2, x3) = (8, 14, 25). In Fig. 5, the age violation

probability of each group’s last transmitted source against n is plotted, where the upper bound

(13) with only exponential term is also plotted. In this case, the lower bound in (17) with ϵ = 0

matches the upper bound. One observes that the simulation and the numerical results exhibit the

same slope when n is large for both continuous-time and discrete-time settings, demonstrating
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Fig. 7: Age violation probability against the average transmission time under the IPQ with

(x1, x2, x3) = (7, 13, 24) and n = 30.

5 10 15 20 25 30 35 40 45 50

Total number of sources n

10
-8

10
-6

10
-4

10
-2

10
0

A
g
e
 v

io
la

ti
o
n
 p

ro
b
a
b
ili

ty
 o

f 
g
ro

u
p
 1

UB with Exp.

simulation with Exp.

simulation RR with Exp.

UB with floored Exp.

simulation PEC

simulation RR PEC

5 10 15 20 25 30 35 40 45 50

Total number of sources n

10
-8

10
-6

10
-4

10
-2

10
0

A
g
e
 v

io
la

ti
o
n
 p

ro
b
a
b
ili

ty
 o

f 
g
ro

u
p
 2

UB with Exp.

simulation with Exp.

simulation RR with Exp.

UB with floored Exp.

simulation PEC

simulation RR PEC

5 10 15 20 25 30 35 40 45 50

Total number of sources n

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

A
g
e
 v

io
la

ti
o
n
 p

ro
b
a
b
ili

ty
 o

f 
g
ro

u
p
 3

UB with Exp.

simulation with Exp.

simulation RR with Exp.

UB with floored Exp.

simulation PEC

simulation RR PEC

Fig. 8: Age violation probability against the n under the SPQ with (x1, x2, x3) = (13.5, 21, 36).

the accuracy of our analysis. The results also confirm that as the total number of sources n

grows, scaling the arrival period and threshold linearly with n is sufficient to drive the age

violation probability vanishing. Furthermore, the comparison with the conventional RR policy is

also provided, indicating that by incorporating the underlying heterogeneity into the design, the

proposed GRR policy is significantly superior to RR, except for the last group of users whom the

RR favors the most. In Fig. 6, we plot the age violation probability versus the arrival period by

setting (x1, x2, x3) = (8, 14, 25) and n = 30 with different nb ∈ [135, 165]. The results show that

the peak AoI violation probability increases as the arrival periods increase. In Fig. 7, we consider

(x1, x2, x3) = (7, 13, 24) and n = 30 with different 1/λ ∈ [2, 4] and validate the theoretical results

under different transmission rates. We observe that the age violation probability increases as the

average transmission time increases. Moreover, both Figs. 6 and 7 again demonstrate that our

analysis well predicts the simulation results.

We next consider SPQ in Figs. 8-10, we set (x1, x2, x3) = (13.5, 21, 36), and 1/λ = 5 and plot

the simulation results and analytic results in (47). Firstly, the results show that the simulation and

the analytic results share the same slope as n becomes large, which again verify the effectiveness
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Fig. 9: Age violation probability against the arrival period under the SPQ with (x1, x2, x3) =

(13.5, 21, 36) and n = 30.

of our analysis in both exponentially distributed and geometrically distributed (PEC channel)

cases. Secondly, same conclusion regarding the linear scaling of arrival period as that in IPQ

can be drawn here. Thirdly, in this case, the age violation probability under IPQ would always

be 1 due to severe queue overflow caused by 1/λ = b = 5. This result shows that the SPQ can

handle situations even when the IPQ is overflowed. Last, similar to the IPQ case, the proposed

GRR significantly outperforms the conventional RR, except for the last group of sources. In Fig.

9, the age violation probability of peak age versus nb for n = 30, (d1, d2, d3) = (1, 2, 4), and

(x1, x2, x3) = (13.5, 21, 36) is plotted. The results demonstrate that the age violation probability

increases as the arrival period increases, whose slope is captured by our analysis. In Fig. 10,

we plot the age violation probability of peak age against 1/λ for the fixed n = 30. We set

(d1, d2, d3) = (1, 2, 4) and (x1, x2, x3) = (13, 20, 37) and consider 1/λ ∈ [5, 7]. Similar to IPQ,

the age violation probability increaes as 1/λ increaes. It is worth noting that the large gap when

1/λ is small is due to the bounding technique we used in Appendix F. Finding a tighter bound

to bridge the gap for small 1/λ is left for future investigation.

In Fig. 11a, we consider the homogeneous case with b = 5, 1/λ = 3 and x = 10. The

simulation results and the analytical results (36) display the same slope when n is large. The

gap between the two curves is due to the fact that the precise constant term is ignored in the

analysis. For SPQ case, in Fig. 11b under the same setting as Fig. 11a, it is again shown that

the two curves have the same slope when n is large. These results confirm the effectiveness and

accuracy of our analysis.

Last but not the least, we compare the performance between two different queuing disciplines

in the homogeneous source system. We first focus on the large transmission rate case. In this
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Fig. 10: Age violation probability against the average transmission time under the SPQ with

(x1, x2, x3) = (13, 20, 37) and n = 30.
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Fig. 11: Age violation probability against the n for b = 5, x = 10, and Vi(k) ∼ Exp(1/3).

case, the asymptotic decay rate in IPQ can be expressed as (39) with ℓ′ = 0, which is given by

− lim
n→∞

1

n
Pr(Ai(k) ≥ nx) = sup

θ
{θx− θb− Λv(θ)} . (56)

For SPQ, by plugging (55) into (54), we arrive at the same expression as (56). This hints that the

two queueing disciplines would achieve the same asymptotic age violation performance under

this condition. This is precisely what can be observed in Figs. 11a and 11b, where the age

violation probabilities for the two different queuing systems are almost the same. On the other

hand, for a general case, since the minimizer in (39) may not be ℓ′ = 0, our analysis concretizes

the intuition that SPQ would result in better performance than IPQ.

VI. CONCLUSION

In this work, we considered status update in the heterogeneous multi-source system where

multiple groups of sources wish to maintain the freshness of their information. The GRR

scheduling policy was proposed and its AoI performance guarantee under the IPQ and that under
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the SPQ were investigated, which have enabled us to derive the asymptotic decay rate in the

multi-source regime to capture the AoI behavior in the many-source regime. The results indicated

that the proposed GRR policy is capable of handling many source types with heterogeneous

arrivals and leads to larger age violation probability decay rates for types of sources whose

packets arrive more frequently. Moreover, we showed that with the proposed GRR policy, when

the total number of sources n grows, scaling the arrival period linearly with n suffices to drive

the age violation probability vanishing. Extensive simulations were conducted to validate our

analytic results. The results showed that the proposed GRR policy significantly outperforms

the conventional RR policy. The simulation results also confirmed that with GRR the SPQ

outperforms the IPQ in terms of the age violation probability even in situations that IPQ is

overflowed. When specialized to the homogeneous case, our analysis unveiled a surprising fact

that the two disciplines lead to the same asymptotic decay rate when the inter-arrival time is

much larger than the total transmission time. A potential future research direction is to extend

the proposed policy and analytical framework to systems that enable parallel transmissions.

APPENDIX A

PROOF OF LEMMA 2

Proof: Substituting W1,1(k̃) in (9) with (10) yields

Ag,i(k) = max

W1,1(k̃ − 1) + V (k̃ − 1)− nb, 0

+
∑

(g′,i′,j)∈J−
g,i(k)

Vg′,i′(j) + dgnb

(a)
= max


W1,1(k̃ − 2) + V (k̃ − 2)− nb

+

+ V (k̃ − 1)− nb, 0

+
∑

(g′,i′,j)∈J−
g,i(k)

Vg′,i′(j) + dgnb

= max

W1,1(k̃ − 2) +
k̃−1∑

r=k̃−2

V (r)− 2nb, V (k̃ − 1)− nb, 0

+
∑

(g′,i′,j)∈J−
g,i(k)

Vg′,i′(j) + dgnb

= max

W1,1(k̃ − 3) +
k̃−1∑

r=k̃−3

V (r)− 3nb,
k̃−1∑

r=k̃−2

V (r)− 2nb, V (k̃ − 1)− nb, 0


+

∑
(g′,i′,j)∈J−

g,i(k)

Vg′,i′(j) + dgnb

= · · · = max
1≤ℓ≤k̃


k̃−1∑
r=ℓ

V (r)− (k̃ − ℓ)nb

+
∑

(g′,i′,j)∈J−
g,i(k)

Vg′,i′(j) + dgnb. (57)
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This complete the proof.

APPENDIX B

PROOF OF THEOREM 1

Proof: From the age evolution derived in (12), we have

Pr

(
Ag,i(k) ≥ nx

)
= Pr

max
1≤ℓ≤k̃

 k̃−1∑
r=ℓ

V (r)− (k̃ − ℓ)nb

+
∑

(g′,i′,j)∈J−
g,i(k)

Vg′,i′(j) + dgnb ≥ nx


(a)

≤
k̃∑

ℓ=1

Pr

 k̃−1∑
r=ℓ

V (r)− (k̃ − ℓ)nb+
∑

(g′,i′,j)∈J−
g,i(k)

Vg′,i′(j) + dgnb ≥ nx


(b)

≤
k̃∑

ℓ=1

E

[
e
θ

(∑k̃−1
r=ℓ V (r)+

∑
(g′,i′,j)∈J−

g,i
(k)

Vg′,i′ (j)

)]
e−(k̃−ℓ−dg)nθbe−nθx, (58)

where (a) follows from the union bound, and (b) uses the Chernoff bound along for a constant

θ > 0. Note that the expectation term in (58) can be further bounded as

E

[
e
θ

(∑k̃−1
r=ℓ V (r)+

∑
(g′,i′,j)∈J−

g,i
(k)

Vg′,i′ (j)

)]
(c)
=

k̃−1∏
r=ℓ

E
[
eθV (r)

] ∏
(g′,i′,j)∈J−

g,i(k)

E
[
eθVg′,i′ (j)

]
(d)
= e

∑k̃−1
r=ℓ |J−

g∗,ng∗
(r)|Λv(θ)

enmg,i(k)Λv(θ)
(e)

≤ e
ℓ′
∑η

j=1
d̃
dj

njΛv(θ)
enmg,i(k)Λv(θ), (59)

where (c) is due to the fact that Vg,i(k)s are independent, (d) follows from that Vg,i(k)s are

identically distributed and source (g∗, ng∗) is the last transmitted source in round r. (e) is because∑k̃−1
r=ℓ |J

−
g∗,ng∗

(r)| is the total number of transmission packets of any sources from round r to

round k̃ − 1 is no larger than ℓ′
∑η

j=1
d̃
dj
nj the number of updates in ℓ′ = ⌈ k̃−ℓ

d̃
⌉ iterations.

Plugging (59) into (58) shows that

(58) ≤
k̃∑

ℓ=1

e
ℓ′
∑η

j=1
d̃
dj

njΛv(θ)
e−(ℓ′−1)d̃nθbenmg,i(k)Λv(θ)edgnθbe−nθx

(f)

≤ d̃

⌈ k̃−1

d̃
⌉∑

ℓ′=1

e
−nℓ′

(
d̃θb−

∑η
j=1

d̃
dj

αjΛv(θ)

)
en(d̃+dg)θbenmg,i(k)Λv(θ)e−nθx + endgθbenmg,i(k)Λv(θ)e−nθx

≤ d̃

∞∑
ℓ′=1

e
−nℓ′

(
d̃θb−

∑η
j=1

d̃
dj

αjΛv(θ)

)
en(d̃+dg)θbenmg,i(k)Λv(θ)e−nθx + endgθbenmg,i(k)Λv(θ)e−nθx

(g)

≤ d̃
c′−1∑
ℓ′=1

e
−nθx−((ℓ′−1)d̃−dg)nθb−

(
ℓ′
∑η

j=1
d̃
dj

αj+mg,i(k)

)
Λv(θ)



28

+ d̃

∞∑
ℓ′=c′

e
−nℓ′

(
d̃θb−

∑η
j=1

d̃
dj

αjΛv(θ)

)
en(d̃+dg)θbenmg,i(k)Λv(θ)e−nθx + endgθbenmg,i(k)Λv(θ)e−nθx, (60)

where in (f) we sum over ℓ′ instead of ℓ and get the upper bound because there are at most d̃

different ℓ matching to the same ℓ′. In (g), we split the infinite series into two terms with ℓ′ < c′

and ℓ′ ≥ c′, respectively.6 Since (60) holds for every θ > 0, we take the best one for the first

term in what follows:

Pr(Ag,i(k) ≥ nx) ≤ d̃
c′−1∑
ℓ′=1

e
−nℓ′I

(U,ℓ′)
g,i

(
x
ℓ′+

(ℓ′−1)−dg
ℓ′ b,k,n

)

+ d̃
e
−nc′

(
d̃θb−

∑η
j=1

d̃
dj

αjΛv(θ)

)

1− e
−n

(
d̃θb−

∑η
j=1

d̃
dj

αjΛv(θ)

) enmg,i(k)Λv(θ)en(d̃+dg)θbe−nθx + enI
(U,k)
g,i (x−dgb,k,n)

≤ d̃
c′−1∑
ℓ′=1

e
−nℓ′I

(U,ℓ′)
g,i

(
x
ℓ′+

(ℓ′−1)d̃−dg
ℓ′ b,k,n

)

+ d̃e
−nc′

(
d̃θb−

∑η
j=1

d̃
dj

αjΛv(θ)

)
enmg,i(k)Λv(θ)en(d̃+dg)θbe−nθx + enI

(U,k)
g,i (x−dgb,k,n)

≤ (d̃c′ + 1) · e−nmin0≤ℓ′≤k′ γ
(U,ℓ′)
g,i (x,k,n), (61)

which completes the proof.

APPENDIX C

PROOF OF THEOREM 2

We note analyzing (12) with any particular ℓ would lead to a lower bound on the age violation

probability of peak age. One can then choose the ℓ that results in the largest lower bound. In

this appendix, we split the proof into two cases, namely ℓ ̸= k̃ and ℓ = k̃.

Proof:

6Note that the infimum of supθ{−nℓ′
(
d̃θb−

∑η
j=1

d̃
dj
αjΛv(θ)

)
} is achieved for some finite ℓ′, we pick a c′ so that it is

achieved at ℓ′ < c′.



29

Case 1 (1 ≤ ℓ ≤ k̃ − 1 or equivalently 1 ≤ ℓ′ ≤ k′):

Pr

(
Ag,i(k) ≥ nx

)
= Pr

max
1≤ℓ≤k̃

 k̃−1∑
r=ℓ

V (r)− (k̃ − ℓ)nb

+
∑

(g′,i′,j)∈J−
g,i(k)

Vg′,i′(j) + dgnb ≥ nx


(a)

≥ Pr

 k̃−1∑
r=ℓ

V (r)− (k̃ − ℓ)nb+
∑

(g′,i′,j)∈J−
g,i(k)

Vg′,i′(j) + dgnb ≥ nx


(b)

≥ E
[
e
θ
(∑k̃−1

r=ℓ V (r)+
∑

(g′,i′,j)∈Jg,i(k)
Vg′,i′ (j)

)]
e−n(k̃−ℓ)θbendgθbe−nθxe−nϵ

(c)

≥ e

(
ℓ′−1

)∑η
j=1

d̃
dj

njΛv(θ)
enmg,i(k)Λv(θ)e−n(ℓ′d̃−dg)θbe−nθxe−nϵ

≥ e
−n

{
ℓ′I

(L,ℓ′)
g,i

(
x
ℓ′+

ℓ′d̃−dg
ℓ′ b,k,n

)
+ϵ

}
= e

−n

(
γ
(L,ℓ′)
g,i (x,k,n)+ϵ

)
, (62)

where (a) is obtained by choosing an arbitray 1 ≤ ℓ ≤ k̃ − 1, (b) follows from the Cramer-

Chernoff theorem which holds for any θ > 0 and ϵ > 0, and (c) can be obtained by a lower

bound on the expectation term derived in a similar fashion as (59) but with only the ℓ′ − 1

iterations.

Case 2 (ℓ = k̃ or equivalently ℓ′ = 0):

Pr (Ag,i(k) ≥ nx)
(a)
= Pr

 ∑
(g′,i′,j)∈J−

g,i(k)

Vg′,i′(j) + dgnb ≥ nx


(b)

≥ E
[
e
θ
∑

(g′,i′,j)∈J−
g,i

(k)
Vg′,i′ (j)

]
endgθbe−nθxe−nϵ = e

−n

(
γ
(L,ℓ′=0)
g,i (x,k,n)+ϵ

)
, (63)

where (a) holds because ℓ = k̃ and (b) again applies the Cramer-Chernoff bound for some ϵ > 0.

Combining the two cases completes the proof.

APPENDIX D

PROOF OF COROLLARY 2

Proof: For any k, define ζ = (k mod d̃/dg) + 1. The long-run fraction of violation proba-

bility is given by

lim
κ→∞

1

κ

κ∑
k=1

E
[
1{Ag,i(k)≥nx}

]
= lim

κ→∞

1

κ

κ∑
k=1

Pr(Ag,i(k) ≥ nx)

= lim
κ→∞

1

κ


κ∑

k=1,ζ=1

Pr(Ag,i(k) ≥ nx) + ...+
κ∑

k=d̃/dg ,ζ=d̃/dg

Pr(Ag,i(k) ≥ nx)


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(a)

≤ lim
κ→∞

1

κ
κ
dg

d̃
(d̃c′ + 1)e−nminℓ′≥0 γ

(U,ℓ′)
g,i (x,ζ=1,∞) + lim

κ→∞

1

κ
κ
dg

d̃
(d̃c′ + 1)e−nminℓ′≥0 γ

(U,ℓ′)
g,i (x,ζ=2,∞)

+ ...+ lim
κ→∞

1

κ
κ
dg

d̃
(d̃c′ + 1)e−nminℓ′≥0 γ

(U,ℓ′)
g,i (x,ζ=d̃/dg ,∞)

=

d̃/dg∑
ζ=1

dg

d̃
(d̃c′ + 1)e−nminℓ′≥0 γ

(U,ℓ′)
g,i (x,ζ,∞),

where (a) follows from (13) and includes all nature number into the minimization.

APPENDIX E

PROOF OF LEMMA 4

We start from (1) and lay out the recursion as follows:

Ag,i(k)
(a)
= max

Wg,i(k − 1) +
∑

(g′,i′,j)∈J+
g,i(k−1)

Vg′,i′(j), nb

+ V (dg(k − 2) + 2) +N1,1(dg(k − 2) + 2)

+ · · ·+ V (dg(k − 1)) +N1,1(dg(k − 1)) +
∑

(g′,i′,j)∈J−
g,i(k)

Vg′,i′(j)

= max

Wg,i(k − 1) +
∑

(g′,i′,j)∈J+
g,i(k−1)

Vg′,i′(j) + V (dg(k − 2) + 2), nb+ V (dg(k − 2) + 2), 2nb


+ · · ·+ V (dg(k − 1)) +N1,1(dg(k − 1)) +

∑
(g′,i′,j)∈J−

g,i(k)

Vg′,i′(j)

= · · · = max

Wg,i(k − 1) +
∑

(g′,i′,j)∈J+
g,i(k−1)

Vg′,i′(j) +

dg(k−1)∑
r=dg(k−2)+2

V (r),

max
2≤ℓ≤dg+1

 dg(k−1)∑
r=dg(k−2)+ℓ

V (r) + (ℓ− 1)nb

+
∑

(g′,i′,j)∈J−
g,i(k)

Vg′,i′(j), (64)

where the maximization in (a) is due to the possible idle time before transmitting the (dg(k −

2) + 2)-th update of source (1, 1).

APPENDIX F

PROOF OF THEOREM 3

Proof: Following from Lemma 4, we have

Ag,i(k)
(a)
< max

dgnb+
∑

(g′,i′,j)∈J+
g,i(k−1)

Vg′,i′(j) +

dg(k−1)∑
r=dg(k−2)+2

V (r),
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max
2≤ℓ≤dg+1

 dg(k−1)∑
r=dg(k−2)+ℓ

V (r) + (ℓ− 1)nb

+
∑

(g′,i′,j)∈J−
g,i(k)

Vg′,i′(j)

(b)
= max

dgnb+ Tg,i(k − 1) + Vg,i(k), max
2≤ℓ≤dg+1

 dg(k−1)∑
r=dg(k−2)+ℓ

V (r) + (ℓ− 1)nb

+
∑

(g′,i′,j)∈J−
g,i(k)

Vg′,i′(j)


(c)

≤ dgnb+ Tg,i(k − 1) + Vg,i(k), (65)

where (a) uses Wg,i(k−1) < dgnb and (b) follows from the definition of Tg,i(k−1). For (c), note

that the first term of the maximization in (b) must be larger than the second term because for any

ℓ′, we have
∑dg(k−1)

r=dg(k−2)+ℓ′ V (r) +
∑

(g′,i′,j)∈J−
g,i(k)

Vg′,i′(j) < Tg,i(k − 1) and (ℓ′ − 1)nb < dgnb.

With (65), we thus have

Pr (Ag,i(k) ≥ nx) ≤ Pr (dgnb+ Tg,i(k − 1) + Vg,i(k) ≥ nx)

(d)

≤ E

[
eθTg,i(k−1)+θVg,i(k)

]
endgθbe−nθx = e−n(θx−dgθb−(tg,i(k)+ 1

n)Λv(θ)), (66)

where (d) follows from Chernoff bound. Since (66) holds for every θ > 0, picking the best θ

completes the proof.

REFERENCES

[1] S. Kaul, R. Yates, and M. Gruteser, “Real-time status: How often should one update?” in 2012 Proceedings IEEE

INFOCOM, 2012, pp. 2731–2735.

[2] Y. Sun, I. Kadota, R. Talak, and E. Modiano, “Age of information: A new metric for information freshness,” Synthesis

Lectures on Communication Networks, vol. 12, no. 2, pp. 1–224, 2019.

[3] R. D. Yates, Y. Sun, D. R. Brown, S. K. Kaul, E. Modiano, and S. Ulukus, “Age of information: An introduction and

survey,” IEEE Journal on Selected Areas in Communications, vol. 39, no. 5, pp. 1183–1210, 2021.

[4] S. K. Kaul, R. D. Yates, and M. Gruteser, “Status updates through queues,” in 2012 46th Annual Conference on Information

Sciences and Systems (CISS), 2012, pp. 1–6.

[5] A. Soysal and S. Ulukus, “Age of information in G/G/1/1 systems: Age expressions, bounds, special cases, and

optimization,” IEEE Transactions on Information Theory, vol. 67, no. 11, pp. 7477–7489, 2021.

[6] C. Kam, S. Kompella, G. D. Nguyen, and A. Ephremides, “Effect of message transmission path diversity on status age,”

IEEE Transactions on Information Theory, vol. 62, no. 3, pp. 1360–1374, 2016.

[7] J. P. Champati, H. Al-Zubaidy, and J. Gross, “On the distribution of AoI for the GI/GI/1/1 and GI/GI/1/2 systems: Exact

expressions and bounds,” in IEEE INFOCOM 2019 - IEEE Conference on Computer Communications, 2019, pp. 37–45.

[8] J. Champati and J. Al-Zubaidy, Hussein and Gross, “Statistical guarantee optimization for AoI in single-hop and two-hop

FCFS systems with periodic arrivals,” IEEE Transactions on Communications, vol. 69, no. 1, pp. 365–381, 2021.

[9] L. Hu, Z. Chen, Y. Dong, Y. Jia, L. Liang, and M. Wang, “Status update in IoT networks: Age-of-information violation

probability and optimal update rate,” IEEE Internet of Things Journal, vol. 8, no. 14, pp. 11 329–11 344, 2021.



32

[10] Y. Inoue, H. Masuyama, T. Takine, and T. Tanaka, “A general formula for the stationary distribution of the age of information

and its application to single-server queues,” IEEE Transactions on Information Theory, vol. 65, no. 12, pp. 8305–8324,

2019.

[11] J.-B. Seo and J. Choi, “On the outage probability of peak age-of-information for D/G/1 queuing systems,” IEEE

Communications Letters, vol. 23, no. 6, pp. 1021–1024, 2019.

[12] M. Song, H. H. Yang, H. Shan, J. Lee, H. Lin, and T. Q. S. Quek, “Analysis of AoI violation probability in wireless

networks,” in 2021 17th International Symposium on Wireless Communication Systems (ISWCS), 2021, pp. 1–6.

[13] Y.-P. Hsu, E. Modiano, and L. Duan, “Scheduling algorithms for minimizing age of information in wireless broadcast

networks with random arrivals,” IEEE Transactions on Mobile Computing, vol. 19, no. 12, pp. 2903–2915, 2020.

[14] Y.-P. Hsu, “Age of information: Whittle index for scheduling stochastic arrivals,” in 2018 IEEE International Symposium

on Information Theory (ISIT), 2018, pp. 2634–2638.

[15] I. Kadota, A. Sinha, E. Uysal-Biyikoglu, R. Singh, and E. Modiano, “Scheduling policies for minimizing age of information

in broadcast wireless networks,” IEEE/ACM Transactions on Networking, vol. 26, no. 6, pp. 2637–2650, 2018.

[16] A. Maatouk, S. Kriouile, M. Assad, and A. Ephremides, “On the optimality of the Whittle’s index policy for minimizing

the age of information,” IEEE Transactions on Wireless Communications, vol. 20, no. 2, pp. 1263–1277, 2021.

[17] Z. Jiang, B. Krishnamachari, X. Zheng, S. Zhou, and Z. Niu, “Timely status update in wireless uplinks: Analytical solutions

with asymptotic optimality,” IEEE Internet of Things Journal, vol. 6, no. 2, pp. 3885–3898, 2019.

[18] M. Moltafet, M. Leinonen, and M. Codreanu, “On the age of information in multi-source queueing models,” IEEE

Transactions on Communications, vol. 68, no. 8, pp. 5003–5017, 2020.

[19] M. S. Kumar, A. Dadlani, M. Moradian, A. Khonsari, and T. A. Tsiftsis, “On the age of status updates in unreliable

multi-source M/G/1 queueing systems,” IEEE Communications Letters, vol. 27, no. 2, pp. 751–755, 2023.

[20] A. Chowdhury and S. A. Raut, “A survey study on internet of things resource management,” Journal of Network and

Computer Applications, vol. 120, pp. 42–60, 2018.

[21] S. N. Stepanov, M. S. Stepanov, A. Tsogbadrakh, J. Ndayikunda, and U. M. Andrabi, “Resource allocation and sharing for

transmission of batched NB IoT traffic over 3GPP LTE,” 2019 24th Conference of Open Innovations Association (FRUCT),

pp. 422–429, 2019.

[22] Y.-P. E. Wang, X. Lin, A. Adhikary, A. Grovlen, Y. Sui, Y. Blankenship, J. Bergman, and H. S. Razaghi, “A primer on

3GPP narrowband internet of things,” IEEE Communications Magazine, vol. 55, no. 3, pp. 117–123, 2017.
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