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Abstract—Integrated sensing and communication (ISAC) is
regarded as the enabling technology in the future 5th-Generation-
Advanced (5G-A) and 6th-Generation (6G) mobile communica-
tion system. ISAC waveform design is critical in ISAC system.
However, the difference of the performance metrics between
sensing and communication brings challenges for the ISAC
waveform design. This paper applies the unified performance
metrics in information theory, namely mutual information (MI),
to measure the communication and sensing performance in mul-
ticarrier ISAC system. In multi-input multi-output orthogonal
frequency division multiplexing (MIMO-OFDM) ISAC system,
we first derive the sensing and communication MI with subcarrier
correlation and spatial correlation. Then, we propose optimal
waveform designs for maximizing the sensing MI, communication
MI and the weighted sum of sensing and communication MI, re-
spectively. The optimization results are validated by Monte Carlo
simulations. Our work provides effective closed-form expressions
for waveform design, enabling the realization of MIMO-OFDM
ISAC system with balanced performance in communication and
sensing.

Index Terms—Integrated Sensing and Communication; Mutual
Information; Information Theory; Waveform Design; MIMO-
OFDM

I. INTRODUCTION

Driven by emerging intelligent applications such as smart
city, autonomous driving, etc., which require both high-
quality wireless connections and high-accurate sensing capa-
bility [1], the sensing function is integrating into the future 5th-
Generation-Advanced (5G-A) and 6th-Generation (6G) mobile
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communication networks. Integrated sensing and communica-
tion (ISAC) [2], which realizes sensing and communication
functions with the same hardware and wireless resources [3],
has great potential in supporting the intelligent applications in
5G-A and 6G [4].

The ISAC waveform design is fundamental for the ISAC
system [5], which has a crucial influence on the sensing and
communication performance. However, the ISAC waveform
design faces the challenge of the difference in performance
metrics between sensing and communication [6]. The per-
formance metrics of communication are mainly spectrum
efficiency, bit error rate, delay, etc. While the performance
metrics of sensing are mainly detection performance met-
ric, including false alarm probability and detection probabil-
ity, and estimation performance metric, including Minimum
Mean Square Error (MMSE) and Cramer-Rao Lower Bound
(CRLB), etc. [7]. The difference of the performance metrics
between sensing and communication makes it difficult to be
applied to form a unified performance indicator to measure
the overall performance of the ISAC system [6], which brings
challenges for the ISAC waveform design.

The unified performance metrics of the ISAC system have
been studied in recent years, including estimation information
rate [8], equivalent Mean Square Error (MSE) [9], capacity
distortion [10] [11], mutual information (MI) [12]–[15], etc.,
which are introduced as follows.

• Estimation information rate is an approximate MI be-
tween observation and parameter. Chiriyath et al. [8]
regarded the jointly received signals as multiple access
channels and adopted estimation information rates to
predict time delays. With the communication information
rate characterizing the performance of communication,
the tradeoff between communication and sensing was
studied.

• Equivalent MSE is an MSE metric that reveals the
tradeoff between estimation MSE and communication
MSE by considering the MMSE of estimating input from
the output in a Gaussian channel. In [9], an effective
communication MMSE based on rate-distortion theory
was proposed, which is combined with CRLB to provide
the performance metrics for the ISAC system.

• Capacity distortion is the maximum rate at which trans-
mission rate and state estimation distortion are achievable
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[10], which measures the tradeoff between sensing and
communication. The capacity distortion tradeoff for the
memoryless channel has been studied in [11] to maximize
the probability distribution of the channel input symbols.

• MI has been applied to evaluate the performance of com-
munication and sensing in the ISAC system recently [12].
Sensing MI is the conditional MI between the sensing
channel and echo signal [13]. While communication MI is
defined as the conditional MI between the transmitted and
received signals. Bell [13] first derived the conditional MI
between the target response and the echo signal. Yang
et al. [14] proved that the minimization of MMSE is
equivalent to the maximization of MI. Hence, sensing MI
is widely adopted as the performance metric of sensing
[14] [15]. Both sensing MI and communication MI char-
acterize the limit of information acquisition. Compared
to other performance metrics, MI provides the similar
physical significance, and mathematical expressions for
sensing and communication [12], as well as the same
unit of measurement and similar optimization techniques
[12]. Additionally, MI is not limited to perfect scenario
assumptions (e.g., CSI imperfectness [16] and environ-
mental clutter [17]), specific algorithms, etc. Therefore,
MI is widely used as a unified performance metric for
the ISAC system, allowing tractability and robustness for
the performance evaluation.

As a unified ISAC performance metric, MI is adopted in
ISAC waveform design, including ISAC waveform design in
the time-frequency domain and space domain [16], [18]–[20].
For ISAC waveform design in the time-frequency domain,
Zhu et al. [18] proposed an OFDM radar-communication
waveform optimization method. The objective function is the
interception probability, and the constraints are sensing MI and
data information rate. Ahmed et al. [19] maximized the overall
and worst-case communication MI under the constraint of
transmit power or sensing MI to realize power and subcarriers
allocation of OFDM signals. In [20], the sensing MI and Data
Information Rate (DIR) are jointly maximized for OFDM
ISAC waveform under the constraint of the total transmit
power. For the ISAC waveform design in the space domain,
most studies focused on MIMO technologies. Yuan et al. [16]
proposed a joint space-time optimization scheme to maximize
the weighted sum of sensing and communication MIs with
spatial correlation MIMO considering channel estimation er-
rors. However, existing studies did not provide the analysis of
sensing and communication MI in the space-time-frequency
domains, which is the theme of this paper.

This paper derives the closed-form sensing and communi-
cation MI expressions for the MIMO-OFDM ISAC downlink
system in the perceptive mobile networks [5], where the base
station (BS) utilizes the echo of the downlink communication
signal for radar sensing. For communication, the instantaneous
communication MI is derived with the assumption that both the
transmitter and communication receiver have perfect knowl-
edge of the communication channels. For sensing, the instan-
taneous sensing MI is derived with the assumption that both
the transmitter and sensing receiver possess perfect knowledge

TABLE I
KEY NOTATIONS AND DEFINITIONS

Notations Definitions
Nc Number of subcarriers
Nt Number of transmit antenna elements
Nr Number of receive antenna elements
Nx Number of OFDM symbols
Lc Number of paths
Lr Number of targets
Hµν(p) Communication channel coefficient for p-th subcarrier

from µ-th transmit antenna to ν-th receive antenna
Gµν(p) Sensing channel coefficient for p-th subcarrier from µ-th

transmit antenna to ν-th receive antenna
E Average transmit power
ωr Sensing weighting coefficient
ωc Communication weighting coefficient
Fr Maximum sensing MI
Fc Maximum communication MI
Fω Maximum weighted MI
σ2
n Noise variance

of the transmitted signals. The ISAC waveform design is pro-
vided based on the derived sensing and communication MIs.
It should be noted that although the waveform is optimized in
this paper, the actual transmitted information is not changed,
since the designed waveforms with the desired correlation
can be realized by the techniques, such as precoding and
signal modulations. The main contributions of this paper are
summarized as follows.

• Based on the MIMO-OFDM multi-target sensing model,
the correlation between the subcarriers in the sensing
channel is modeled and analyzed, and the closed-form
sensing MI of the MIMO-OFDM system with subcarrier
correlation is derived.

• Based on the frequency-selective fading MIMO-OFDM
communication model, the analytical and closed-form
communication MIs for the MIMO-OFDM system under
perfect channel state information (CSI) are derived.

• Based on the derived sensing and communication MIs,
and the correlation matrices between the subcarriers in
the sensing channel, the expression for the optimized
waveform is derived based on the flexible weighted sum
of the sensing and communication MIs. The tradeoff
between sensing and communication MIs is revealed.

The rest of this paper is organized as follows. In Sec. II,
the communication and sensing models are described. In Sec.
III, we derive the closed-form expressions of communication
MI and sensing MI. Sec. IV discusses three power allocation
schemes using the derived MI. The simulation results are
provided in Sec. V. The key notations used in this paper are
listed in Table I.

Notation: X denotes matrix and xi denotes i-th column
of X. (·)T , (·)H and (·)−1 denotes transposition, conjugate
transportation and inverse, respectively. Besides, I is the
identity matrix. E[·] denotes the expectation operator. det(·)
and tr(·) are the determinant and trace of matrix, respec-
tively. diag{x1, x2, · · · , xn} is diagonal matrix with diagonal
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Fig. 1. MIMO-OFDM ISAC system.

elements x1, x2, · · · , xn and diag{X1,X2, · · · ,Xn} is block
diagonal matrix with diagonal matrices X1,X2, · · · ,Xn.

II. SYSTEM MODEL

A MIMO-OFDM ISAC system comprising multiple radar
targets is considered. Node A (i.e., transmitter) communicates
with node B (i.e., receiver) and senses the environment simul-
taneously via Nc subcarriers, as shown in Fig. 1. Specifically,
node A transmits data to node B for communication, while
receiving the echo signals for sensing the environment. Each
of node A and B has two spatially separated antenna arrays,
i.e., Nt transmit antenna elements and Nr receive antenna
elements. We assume that both nodes A and B have perfect
communication CSI, while only the correlation matrix of the
sensing channel is known at the transmitter [21], which is
practical to obtain through field measurements, or by some
feedback mechanism [14]. If the ISAC system has imperfect
CSI, the communication channel will be affected by the chan-
nel estimation error σe

2 and the derivation of communication
and sensing MIs will be affected by the approach of allocating
training and data payload signals, channel estimation error,
etc., which will be investigated in the future work.

The data on the µ-th transmit antenna element during the
n-th symbol interval time on the p-th subcarrier is xµ

n(p), p =
0, 1, · · · , Nc−1. {xµ

n(p), p = 0, 1, · · · , Nc−1} are transmitted
in parallel on Nc subcarriers through the fading channel with
undergoing Inverse Fast Fourier Transform (IFFT) and adding
a cyclic prefix.

A. Communication Models
It is assumed that the MIMO-OFDM channel is frequency-

selective and time-flat with a channel order Lc, where Lc is
the number of paths. The impulse response of the wireless
channel is [22]

h(t, τ) =

Lc∑
l=0

hl(t)δ(τ − τl), (1)

where hl(t) is the impulse response for the l-th path, which
is independent of other (Lc − 1) paths. The channel gains of
the l-th MIMO path from Nt transmit antenna elements to
Nr receive antenna elements are expressed as the following
discrete baseband equivalent impulse response matrix.

Hl =

 h11(l) . . . h1Nr (l)
...

. . .
...

hNt1(l) · · · hNtNr
(l)

 ∈ CNt×Nr , (2)

where hµν(l) is the channel time domain coefficient between
the µ-th transmit antenna element and the ν-th receive antenna
element on the l-th path, including the influence of the transmit
and receive filter and the relative delay between the antennas.

It is supposed that the receiver antenna elements are spa-
tially uncorrelated due to the presence of multiple local
scatters around the receiver or widely separated placement
[23]. In contrast, the spatial correlation of the transmit antenna
elements still needs to be considered. As the channel matrix
of different paths is independent, the l-th path of the random
MIMO channel response can be decomposed into [24]

Hl = R
1
2

l Hω,l, (3)

where Rl = E{hν(l)h
H
ν (l)} (l = 0, · · · , Lc; ν = 1, · · · , Nr)

represents the correlation coefficient matrix of the antenna
on the l-th path and hν(l) stands for the column vector of
Hl. The elements in Hω,l ∈ CNt×Nr follow independent and
identically distributed (i.i.d.) zero-mean circularly symmetric
complex Gaussian (CSCG) distribution with variance one, i.e.,
CN (0, 1) [24].

The communication receivers are assumed to have perfect
carrier synchronization, timing, and sampling of the symbol
rate. Once the cyclic prefix has been removed and the Fast
Fourier Transform (FFT) has been completed, the received
data on the ν-th receive antenna element are given by

yνcom,n(p) =

Nt∑
µ=1

Hµν(p)x
µ
n(p) + wν

com,n(p), (4)

where Hµν(p) =
∑Lc

l=0 hµν(l)e
−j(2π/Nc)lp, and wν

com,n(p)
follows the i.i.d. zero-mean CSCG distribution with variance
σ2
n, i.e., CN (0, σ2

n).
For the convenience of subsequent derivation, the subscripts

of the antenna are omitted. With OFDM symbols, the received
signal at the p-th subcarrier, denoted by Ycom(p), is

Ycom(p) = X(p)H(p) +Wcom(p), (5)

where H(p) ∈ CNt×Nr is the frequency domain channel
coefficient matrix of the channel at p-th subcarrier, X(p) is the
transmit data at p-th subcarrier, and Wcom(p) is the additive
white Gaussian noise (AWGN) at the p-th subcarrier, as given
by

H(p) =
∑Lc

l=0
Hle

−j(2π/Nc)lp ∈ CNt×Nr , (6)

X(p) =

 x1
0(p) . . . xNt

0 (p)
...

...
x1
Nx−1(p) . . . xNt

Nx−1(p)

 ∈ CNx×Nt , (7)

Ycom(p) =

 y1com,0(p) . . . yNr
com,0(p)

...
...

y1com,Nx−1(p) . . . yNr

com,Nx−1(p)

 ∈ CNx×Nr ,

(8)

Wcom(p)=

 w1
com,0(p) . . . wNr

com,0(p)
...

...
w1

com,Nx−1(p) . . . wNr

com,Nx−1(p)

∈CNx×Nr .

(9)
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Thus, the received signal in matrix form is

Ycom = XH+Wcom, (10)

where the communication channel matrix is

H = [HT (0), · · · ,HT (Nc − 1)]
T ∈ CNcNt×Nr , (11)

the transmit data matrix is

X = diag{X(0), · · · ,X(Nc − 1)} ∈ CNcNx×NcNt , (12)

the received communication signal matrix is

Ycom = [YT
com(0), · · · ,YT

com(Nc − 1)]
T ∈ CNcNx×Nr , (13)

and the noise matrix is

Wcom = [WT
com(0), · · · ,WT

com(Nc − 1)]
T ∈ CNcNx×Nr.

(14)

B. Sensing Models

Since radar detects the target through the line-of-sight (LoS)
path and the non-LoS (NLoS) path will cause false alarms.
Hence, the LoS path is considered in the sensing channel
model of this paper. Assuming that there are (Lr + 1) point
targets, the location of the l-th target is revealed by the
time delay τl and the velocity information of the l-th target
is revealed by the Doppler frequency shift vl. The sensing
channel impulse response is defined as

g(t, τ) =

Lr∑
l=0

gl(t)δ(τ − τl)e
j2πvlt, (15)

where gl(t) is the impulse response for the l-th path, which is
independent of other (Lr − 1) paths. The l-th sensing channel
is the discrete baseband equivalent impulse response matrix,
as given by

Gl =

 g11(l) . . . g1Nr
(l)

...
. . .

...
gNt1(l) · · · gNtNr (l)

 ∈ CNt×Nr , (16)

where gµν(l) is the sensing channel time domain coefficient
between the µ-th transmit and the ν-th receive antennas on
the l-th path, including path loss, Doppler frequency shift,
direction of departure (DoD), direction of arrival (DoA) and
radar cross section (RCS).

The radar receiver receives a frequency-dependent signal
reflected by the target. The clocks of the transmitter (node A)
and the radar receiver (node A) are the same and are regarded
as synchronized. Besides, it is generally assumed that the echo

delay does not exceed the CP length. Hence, it is reasonable
to sample the received signal according to the clock of the
transmitter with the time delay unknown, which is shown in
Fig. 2. After removing the cyclic prefix and completing FFT
processing at the radar receiver, the received echo data on the
ν-th receive antenna are obtained as

yνrad,n(p) =

Nt∑
µ=1

Gn
µν(p)x

µ
n(p) + wν

rad,n(p), (17)

where Gn
µν(p) =

∑Lr

l=0 g
n
µν(l)e

−j(2π/Nc)lp (n = 1, · · · , Nx),
and wν

rad,n(p) follows the i.i.d. zero-mean CSCG distribution
with variance σ2

n, i.e., CN (0, σ2
n).

As the sensing duration is extremely short, we assume that
the sensing channel is time-invariant during the sensing period,
indicating that the radar and the target remain relatively static,
so that the expression of the echo signal is

yνrad,n(p) =
∑Nt

µ=1
Gµν(p)x

µ
n(p) + wν

rad,n(p). (18)

Although the time-invariant sensing channel is assumed
during the sensing period, the results can also be applied to
the case of the time-variant sensing channel in (17). The echo
signal at the p-th subcarrier is

Yrad(p) = X(p)G(p) +Wrad(p), (19)

where G(p) =
∑Lr

l=0 Gle
−j(2π/Nc)lp ∈ CNt×Nr is the sens-

ing channel coefficient matrix at p-th subcarrier. The received
echo signal including Nc subcarriers is

Yrad = XG+Wrad, (20)

where the sensing channel matrix is

G = [GT (0), · · · ,GT (Nc − 1)]
T ∈ CNcNt×Nr , (21)

the received echo signal matrix is

Yrad = [YT
rad(0), · · · ,YT

rad(Nc − 1)]
T ∈ CNcNx×Nr , (22)

and the noise matrix is

Wrad = [WT
rad(0), · · · ,WT

rad(Nc − 1)]
T ∈ CNcNx×Nr . (23)

The channel correlation matrix of the sensing channel G is

E
[
GGH

]
=E


 G(0)

...
G(Nc − 1)

[GH(0), · · · ,GH(Nc − 1)
]

=

 E[G(0)GH(0)] . . . E[G(0)GH(Nc − 1)]
...

. . .
...

E[G(Nc − 1)GH(0)] . . . E[G(Nc − 1)GH(Nc − 1)]

.
(24)

Note that the sensing channel correlation matrix is dependent
on the subcarrier correlation due to the frequency response
of the frequency-selective fading channel [25]. Therefore, the
correlation matrix between the different subcarriers is derived
as

E
[
G(p1)G

H(p2)
]

= E

[∑Lr

l=0
Gle

−j(2π/Nc)lp1

∑Lr

l=0
GH

l ej(2π/Nc)lp2

]
.

(25)
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According to (15), the fading is independent of different
paths and follows CSCG distribution, i.e., E[gµν(l)gµν(l

′)] =
0 (l ̸= l′). When expanding (25), we have [25] [26]

E
[
G(p1)G

H(p2)
]
=E

[∑Lr

l=0
GlG

H
l e−j(2π/Nc)l(p1−p2)

]
,

(26)
which shows that the influence of subcarrier correlation using
the sensing model in (20) cannot be ignored. The subcarrier
correlation decreases with the increase of subcarrier spacing.

III. MUTUAL INFORMATION

Based on the system model in Sec. II, the sensing and
communication MI for the MIMO-OFDM ISAC system are
derived in this section. Firstly, we derive the sensing MI
considering the correlation of subcarriers. Then, we derive
the closed-form communication MI. The expressions in this
section provide a basis for the ISAC waveform design.

A. Sensing MI
Sensing MI is defined as the MI between the radar echo sig-

nal and the sensing channel given the prior knowledge of the
transmitted signal, from which the mathematical expression of
sensing MI can be written as

I(G;Yrad|X) = h(Yrad|X)− h(Wrad). (27)

Theorem 1. According to the MIMO-OFDM signal model
in (20), the sensing MI of the MIMO-OFDM ISAC system is
expressed as

I(G;Yrad|X)

= Nrlog2

[
(σ2

n)
−NxNc

det(XΣGXH + σ2
nINxNc

)
]
.

(28)

Proof. With the knowledge of transmitted symbols, the prob-
ability density function (PDF) of received data Yrad is

p(Yrad|X) =

Nr∏
j=1

p(yj
rad|X)

=

Nr∏
j=1

1

πNxNc |Λ|
exp

(
−(yj

rad)
H
Λ−1yj

rad

)
.

(29)

In (29), the data received on each antenna are independent
of each other, so that the PDF of Yrad is the product of the PDF
of yj

rad on each receive antenna. Note that E{GGH}/Nr =

E{Gj(Gj)
H} = ΣG. Since yj

rad is a complex Gaussian
vector, its covariance matrix is Λ=XΣGXH +σ2

nINxNc .
Since we have

(yj
rad)

H
(XΣGXH + σ2

nINxNc
)
−1

yj
rad

= tr
(
(XΣGXH + σ2

nINxNc
)
−1

yj
rad(y

j
rad)

H
)
,

(30)

(29) can be further transformed to

p(Yrad|X)

=
1

πNxNcNrdetNr (XΣGXH + σ2
nINxNc

)

× exp

−tr

 Nr∑
j=1

(XΣGXH + σ2
nINxNc

)
−1

yj
rad(y

j
rad)

H

,

(31)

The correlation matrix of yj
rad is

E{yj
rad(y

j
rad)

H
} = XE{Gj(Gj)

H}XH + σ2
nINxNc

. (32)

By substituting (32) into (31), h(Yrad|X) is obtained as

h(Yrad|X) =NxNrNclog2π +NxNrNclog2e

+Nrlog2
[
det(XΣGXH + σ2

nINxNc
)
]
.

(33)

Similarly, the noise entropy can be obtained as

h(Wrad) =NxNcNrlog2π +NxNcNrlog2e

+Nrlog2
[
det(σ2

nINxNc)
]
.

(34)

Finally, the sensing MI in (28) is obtained by substituting (33)
and (34) into (27).

The sensing MI derived above can be utilized for perfor-
mance analysis and waveform design, revealing how much
reflection from unknown targets can be captured for sensing.
Note that the result in (28) considers correlation in frequency
doimain. Thus, we discuss the effect of subcarrier correlation
as follows.

Corollary 1. If the sensing channel correlation of different
subcarriers is not considered in (28), the sensing MI of the
MIMO-OFDM ISAC system is

I(G′;Yrad|X)

= Nrlog2

[
(σ2

n)
−NxNc

det(XΣG′XH + σ2
nINxNc)

]
,

(35)

where G′ is the sensing channel without considering the
correlation of different subcarriers, and the covariance matrix
of G′ is

ΣG′ =

E[G(0)GH(0)] . . . 0
...

. . .
...

0 . . . E[G(Nc − 1)GH(Nc − 1)]

.
(36)

Proof. According to (24), if the sensing channel correlation of
different subcarriers is not considered, E

[
G(p1)G

H(p2)
]
=

0, if p1 ̸= p2. Thus, the channel correlation matrix is (36) and
the sensing MI without considering the channel correlation of
different subcarriers is obtained as (35).

According to the above theoretical analysis, it can be found
that ignoring the subcarrier correlation of the sensing channel
will affect the performance of sensing, since the actual sensing
channel still has the subcarrier correlation.

Corollary 2. If the sensing channel is independent in both the
spatial and frequency domains, the sensing MI of the MIMO-
OFDM system is

I(G′′;Yrad|X)

= Nrlog2

[
(σ2

n)
−NxNc

det(XXH + σ2
nINxNc)

]
,

(37)

where G′′ is the sensing channel without considering the
correlation in both the spatial and frequency domains.

Proof. According to (26), if the spatial correlation is not con-
sidered, the sensing channel correlation matrix is an identity
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matrix. (37) is obtained by substituting the identity matrix into
(35).

The result in (37) shows that without considering correlation
in spatial and frequency domains, the sensing MI has nothing
to do with the exact MIMO-OFDM channel and degenerates
into the problem of single-carrier and single-antenna.

B. Communication MI

Communication MI is defined as the MI between the
transmitted signal and the received signal given the knowledge
of CSI, as given by

I(X;Ycom|H) = h(Ycom|H)− h(Wcom). (38)

Theorem 2. According to the signal model in (10), the com-
munication MI of the MIMO-OFDM ISAC system is obtained
as

I(X;Ycom|H)

= Nxlog2

[
(σ2

n)
−NrNc

det(HHΣXH+ σ2
nINrNc)

]
.

(39)

Proof. With perfect CSI, the PDF of received data Ycom is

p(Ycom|H) =

NxNc∏
j=1

p(yj
com|H)

=

NxNc∏
j=1

1

πNrdet(HHE{(Xj)HXj}H+ σ2
nINr )

×exp

(
−
(
(HHE{(Xj)

H
Xj}H+σ2

nINr )
−1

yj
com(y

j
com)

H
))
.

(40)

Since X is a block diagonal matrix, (40) can be transformed
into the product of the PDF at different subcarriers, which is
rewritten as

p(Ycom|H)

=

Nc∏
j=1

1

πNxNrdetNx(H(p)ΣX(p)HH(p) + σ2
nINr )

×exp

(
−tr

(
Nx∑
j=1

(HH(p)ΣX(p)H(p)+σ2
nINr )

−1
yj

com,p(y
j
com,p)

H

))
,

(41)
where

E{XH(p)X(p)}/Nx = E{(X(p)
j
)
H
X(p)

j} = ΣX(p).
(42)

In (41), it is proved that the received data at each subcarrier
is independent of each other with the knowledge of perfect
CSI. The correlation matrix of yj

com,p is derived as

E{yj
com,p(y

j
com,p)

H} = H(p)
H
E{ΣX(p)}H(p) + σ2

nINr
.

(43)

The entropy matrix h(Ycom|H) is obtained as

h(Ycom|H) =

Nc−1∑
p=0

{NxNrlog2π +NxNrlog2e

+Nxlog2
[
det(HH(p)ΣX(p)H(p) + σ2

nINr
)
]}

.
(44)

The noise entropy can be obtained as

h(Wcom) =NxNrNclog2π +NxNrNclog2e

+NxNclog2
[
det(σ2

nINr )
]
.

(45)

Substituting (44) and (45) into (38), the communication MI
is obtained as

I(X;Ycom|H)

=Nx

Nc−1∑
p=0

log2

[
(σ2

n)
−Nr

det(HH(p)ΣX(p)H(p) + σ2
nINr

)
]
.

(46)

Due to the summation, the communication MI (46) cannot
directly represent the communication model in (10). Since
the determinant value of the block diagonal matrix can be
transformed into ∣∣∣∣A 0

0 B

∣∣∣∣ = det(A) det(B), (47)

which can also be extended to a multi-block diagonal matrix,
so that we have

I(X;Ycom|H)

=Nxlog2

[
(σ2

n)
−NrNc

∏Nc−1

p=0
det(HH(p)ΣX(p)H(p) + σ2

nINr )
]

= Nxlog2

[
(σ2

n)
−NrNc

det(HHdiag{ΣX(p)}H+ σ2
nINrNc)

]
,

(48)
where

H = diag{H(0), · · · ,H(Nc − 1)} ∈ CNtNc×NrNc (49)

is the transformation of H in (11).
Since X = diag{X(0), · · · ,X(Nc − 1)} ∈ CNcNx×NcNt

is a block diagonal matrix, the symbols of each subcarrier
are distributed independently, such that diag{ΣX(p)} = ΣX,
where E{XHX}/Nx = ΣX. Finally, the communication MI
is obtained as (39).

Note that different from the sensing MI, the correlation of
subcarriers in communication MI is not considered, since the
communication channel matrix can be transformed into block
diagonal form. As the sensing channel needs to be sensed and
the derivation is based on the known transmitted signals, the
sensing MI can’t be transformed into the sum of the MI at
different subcarriers.

IV. MIMO-OFDM ISAC WAVEFORM DESIGN

In this section, the waveform of the MIMO-OFDM ISAC
system is optimized. Since the channel is frequency-selective,
the optimization according to the channel characteristics af-
fects the sensing and communication MI. We propose an op-
timization scheme based on the weighted sum of communica-
tion and sensing MIs, and provide two special cases, including
maximizing sensing MI and maximizing communication MI.
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A. Weighted Sum of Sensing and Communication

In the MIMO-OFDM ISAC system, maximizing the per-
formance of sensing and communication is essential for the
ISAC waveform design. Since the MIs of communication and
sensing are different in the orders of magnitude, in order to
comprehensively optimize both sensing and communication
performance, the weighted sum of the normalized sensing and
communication MIs is applied in the optimization, as given
by

max
X

Fω =
ωr

Fr
I(G;Yrad|X) +

ωc

Fc
I(X;Ycom|H),

s.t. tr
(
XXH

)
≤ E,

(50)

where ωr and ωc are the weighting coefficients of sensing
and communication, respectively. Fr and Fc are the maximum
sensing MI and communication MI, respectively. E represents
the average transmit power constraint.

Since ΣG is a Hermitian matrix, we use the singular
value decomposition (SVD) to decompose ΣG as ΣG =
UGΛGUH

G, where UG is a unitary matrix, and ΛG is a
diagonal matrix satisfying

ΛG = diag{λ11, · · · , λNtNc
}. (51)

Note that ΣG can also be described in the time-domain as

ΣG = ΩrΣgΩr
H , (52)

where Σg = E[ggH ]/Nr, satisfying G = Ωrg, and Ωr =

[Ωr
T (0),Ωr

T (1), . . . ,Ωr
T (Nc − 1)]

T ∈ CNcNt×Nt(L+1),
Ωr(p) = INt ⊗ωr(p). (52) indicates that the channel correla-
tion matrix comprises both spatial correlation and subcarrier
correlation.

The SVD of the communication channel correlation matrix
is different from that of the sensing channel correlation ma-
trix because of the perfect CSI, so that we have HHH =
UHΛHUH

H, where ΛH is a diagonal matrix satisfying

ΛH = diag{µ11, · · · , µNtNc
}. (53)

We further extend the expression of HHH to the time domain,
as given by

HHH = diag
{
Ωc(p)ΣhΩ

H
c (p)

}
, (54)

where Σh = hhH , satisfying H(p) = Ωc(p)h with Ωc(p) =

INt ⊗ωc(p) and ωc(p) =
[
1, e−j2πp/Nc , . . . , e−j2πpLc/Nc

]T
.

Given that power allocation is a fundamental aspect of
waveform design, the optimal waveform in this paper refers
to the optimal power allocation [27] [28]. Through the
above derivation, the waveform optimization in this section
is transformed into the power allocation with respect to the
eigenvalues of the signal correlation matrix [29]. The optimal
ISAC waveform design maximizing the weighted sum of
communication and sensing MIs is revealed in Theorem 3.

Theorem 3. Define Ξ = UH
GXHXUG = UH

HΣXUH
∆
=

[ξij ], the optimization problem of the MIMO-OFDM ISAC
waveform design in (50) can be transformed into

max
Ξ

Fω(Ξ) =

NtNc∑
i=1

{
ωr

Fr
Nrlog2(λiiξii/σ

2
n + 1)

+
1− ωr

Fc
Nxlog2(µiiξii/σ

2
n + 1)

}
,

s.t. tr(Ξ) ≤ E, ξii ≥ 0, 1 ≤ i ≤ NcNt.

(55)

The optimal allocation scheme is

ξii=



1

2

[
1

ζ
(ε+ η)−(

1

νi
+

1

φi
)+√

[(
1

νi
− 1

φi
)+

1

γ
(η−ε)]

2

+4
εη

γ2

+

, νi ̸= 0, φi ̸= 0

0, νi = 0, φi = 0

,

(56)
NtNc∑
i=1

ξii = E, (57)

where vi =
λii

σ2
n

, φi =
µii

σ2
n

, ε = ωrNr

Fr ln 2 , η = (1−ωr)Nx

Fc ln 2 .

Proof. According to the Sylvester’s determinant equation
det(AB + σ2

nIN ) = (σ2
n)

n−m
det(BA + σ2

nIM ) [30], (38)
and (51) can be transformed into

I(G;Yrad|X) = Nrlog2

[
(σ2

n)
−NtNc

det(ΛGΞ+ σ2
nINtNc)

]
.

(58)
I(X;Ycom|H) = Nxlog2

[
(σ2

n)
−NtNc

det(ΞΛH + σ2
nINtNc

)
]
.

(59)
According to the Hadamard’s inequality, det(Ξ) ≤∏NtNc

i=1 ξii. The rest part is bounded by

det(ΛG + σ2
nΞ

−1) ≤
∏NtNc

i=1
(λii + σ2

n/ξii). (60)

det(ΛH + σ2
nΞ

−1) ≤
∏NtNc

i=1
(µii + σ2

n/ξii). (61)

As UG and UH are unitary matrices, we have

tr(Ξ) = tr(UH
HΣXUH) = tr(UH

GXHXUG) = tr(ΣX) ≤ E.
(62)

Through the above derivation, the optimization problem can
be simplified to (55). Obviously, the objective is the weighted
sum of two concave functions, and the concave function
maximization problem can be converted into a convex function
minimization problem. Thus, the problem is resolved by
using the KKT condition [31], which achieves the maximum
weighted MI.

The Lagrange function is

L(Ξ) = −
NtNc∑
i=1

{
ωr

Fr
Nrlog2(λiiξii/σ

2
n + 1)

+
1− ωr

Fc
Nxlog2(µiiξii/σ

2
n + 1)

}
+ γ(

NtNc∑
i=1

ξii − E) +

NtNc∑
i=1

γi(−ξii).

(63)
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Setting the partial derivative ∇ξiiL(Ξ) of ξii to zero, and
supplementing the relaxation complementarity condition, the
inequality constraint and the KKT multiplier constraint, we
have

γ − γi =
ωrNr

Fr ln 2

λii

σ2
n + λiiξii

+
(1− ωr)Nx

Fc ln 2

µii

σ2
n + µiiξii

= ε
νi

1 + νiξii
+ η

φi

1 + φiξii
, (64)

γ

(
NtNc∑
i=1

ξii − E

)
= 0, (65)

γiξii = 0, (66)

γ ≥ 0, γi ≥ 0, 1 ≤ i ≤ NtNc. (67)

Solving (64)–(66), if ξii ̸= 0, γi is zero and the optimal
solution can be obtained as (56) and (57).

Through the binary search method, the optimal γ can be
searched in 0 < 1/γ < 1/min{ε/(1/νi+E)+η/(1/φi+E)},
so that the optimal solution can be found.

Finally, the sensing MI and communication MI are obtained
as

I(G;Yrad|X)=Nrlog2

[
(σ2

n)
−NtNc

det(ΛGΞ+ σ2
nINtNc

)
]
,

(68)

I(X;Ycom|H)=Nxlog2

[
(σ2

n)
−NtNc

det(ΞΛH + σ2
nINtNc

)
]
.

(69)
Therefore, the weighted MI is also obtained as

Fω=

NtNc∑
i=1

{
Nrlog2(λiiξii/σ

2
n + 1)

Fr
+
Nxlog2(µiiξii/σ

2
n + 1)

Fc

}
.

(70)

Remark 1. If the channel correlation between different sub-
carriers is not considered, similar to (68), the sensing MI is
obtained as

I(G′;Yrad|X)=Nrlog2

[
(σ2

n)
−NtNc

det(ΛG′Ξ+ σ2
nINtNc

)
]
,

(71)
and the communication MI is (69). The weighted MI is

F ′
ω=

NtNc∑
i=1

{
Nrlog2(λ

′
iiξ

′
ii/σ

2
n + 1)

Fr
+
Nxlog2(µiiξ

′
ii/σ

2
n + 1)

Fc

}
.

(72)
Due to the channel independence between different subcarri-
ers, we have I(G′;Yrad|X) > I(G;Yrad|X). Thus, F ′

ω > Fω .
Although the results show a bigger upper bound without
considering the channel correlation between different subcar-
riers, it is not practical to ignore the channel correlation,
which may lose the characteristics of the channel, so that the
optimal result is not obtained from the real channel and the
performance of ISAC system is not the best.

B. Special Case 1: Maximizing sensing MI

For sensing MI maximization, the transmitted signal should
be adapted to the sensing channel, satisfying the average
transmit power constraint. The optimization is formulated as

max
X

I(G;Yrad|X),

s.t. tr
(
XXH

)
≤ E.

(73)

The ISAC waveform design maximizing the sensing MI is
revealed in Corollary 3.

Corollary 3. Define matrix Q = UH
GXHXUG

∆
= [qij ]. Then

the optimization maximizing sensing MI can be transformed
into

max
Q

Fr(Q) = Nr

∑NtNc

i=1
log2(λiiqii/σ

2
n + 1),

s.t. tr(Q) ≤ E, qii ≥ 0, 1 ≤ i ≤ NcNt.
(74)

The optimal allocation scheme is

qii =

(− 1

α ln 2
− σ2

n

λii
)
+

λii ̸= 0

0 λii = 0

, i = 1, · · · , NcNt,

(75)
NtNc∑
i=1

qii − E = 0, (76)

where [x]
+
= max{x, 0}.

Proof. To solve (74), the Lagrange multiplier method is ap-
plied. The Lagrange function is

L(Q) =

NtNc∑
i=1

log2(λiiqii/σ
2
n + 1)+α(

NtNc∑
i=1

qii − E), (77)

which transforms the problem (74) into a Lagrange function
extremum problem. Here, α is related to qii. By setting the
partial derivatives ∇qiiL(Q) of qii and the partial derivative
∇αL(Q) of α to zero, the final closed-form solutions are
obtained, i.e., (75) and (76).

The diagonal elements of Q are non-negative real numbers,
so that Q1/2 exists. Meanwhile, we define Z = XUG, which
satisfies tr(Q) = tr(UH

GXHXUG) = tr(ZHZ). For any
matrix Φ(p) ∈ CNx×Nt with orthogonal columns, which
satisfies Φ = diag{Φ(p)}, we have Z = ΦQ1/2. Through the
above derivation, the transmitted symbol can be obtained as
X = ΦQ1/2UH

G. The optimal transmitted signal obtained by
maximizing the sensing MI is substituted into (39), then the
communication MI is

I(X;Ycom|H)

= Nxlog2

[
(σ2

n)
−NrNc

det(HHUGQUH
GH+ σ2

nINrNc)
]
.

(78)
The matrix in (78) cannot be transformed into a diagonal

form, so that (78) is not the maximum communication MI.
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C. Special Case 2: Maximizing Communication MI

For communication MI maximization, the optimization is
formulated as

max
X

I(X;Ycom|H),

s.t. tr
(
XXH

)
≤ E.

(79)

The ISAC waveform design maximizing the communication
MI is revealed in Corollary 4.

Corollary 4. By defining S = UH
HΣXUH

∆
= [sij ], the opti-

mization maximizing communication MI can be transformed
into

max
S

Fr(S) = Nx

∑NtNc

i=1
log2(µiisii/σ

2
n + 1),

s.t. tr(S) ≤ E, sii ≥ 0, 1 ≤ i ≤ NcNt.
(80)

The optimal allocation scheme is

sii =

(− 1

β ln 2
− σ2

n

µii
)
+

µii ̸= 0

0 µii = 0

, i = 1, · · · , NcNt,

(81)
NtNc∑
i=1

sii − E = 0, (82)

where [x]
+
= max{x, 0}.

Proof. The closed-form solutions can be obtained as (81) and
(82) from the extreme value conditions, and β is the Lagrange
multiplier in the following Lagrange function

L(S) =
∑NtNc

i=1
log2(µiisii/σ

2
n + 1)+β(

∑NtNc

i=1
sii − E).

The diagonal elements of S are non-negative real numbers,
so that S1/2 exists. Define Υ= XUH satisfying tr(S) =
tr(UH

HΣXUH) = tr(ΥHΥ). For any Ψ(p) ∈ CNx×Nt

with orthogonal columns satisfying Ψ = diag{Ψ(p)}, we
have Υ = ΨS1/2. Through the above derivation, we have
X = ΨS1/2UH

H. The optimal transmitted waveform obtained
by maximizing communication MI is substituted into (28), and
the sensing MI is

I(G;Yrad|X)

= Nrlog2

[
(σ2

n)
−NtNc

det(ΣGUHSUH
H + σ2

nINtNc
)
]
.

(83)
Since the matrix in (83) cannot be transformed into a

diagonal form, (83) is obviously not the maximum sensing
MI.

V. SIMULATION RESULTS

In this section, the above three waveform design meth-
ods are verified via extensive simulations. In the considered
MIMO-OFDM system, we set Nt = Nr = 4. The transmit
antennas transmit OFDM signals with 32 IFFT points, and
all subcarriers are used for communication and sensing, i.e.,
Nc = 32. The sensing channel and the communication channel
are assumed to be frequency-selective MIMO channels, and
the channels remain unchanged in Nx = 10 symbol durations.
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Fig. 3. Spectral efficiency vs. SNR for different schemes.
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Fig. 4. Sensing rate vs. SNR for different schemes.

The sensing channel and the communication channel are
spatially correlated, and the correlation channel is generated
using the Kronecker model [32]. The maximum correlation
coefficient of the sensing channel and the communication
channel are 0.5. We assumed that there are four paths and
four radar targets in total.

The communication performance is characterized by spec-
tral efficiency (bit/s/Hz), which is the communication MI (bit)
on the unit frequency of unit time. The sensing performance is
measured by the sensing rate (bit/s/Hz), which is the sensing
MI (bit) on the unit frequency of unit time.

In this section, the comparison schemes are the following
four optimization schemes.

• OPC: The optimization scheme that maximizes the com-
munication MI based on the communication channel.

• OPS: The optimization scheme that maximizes sensing
MI based on sensing channels.

• ISAC: The optimization scheme that maximizes the
weighted sum of sensing MI and communication MI.

• EA: The equal allocation of power.

Through the analysis in Section IV, the results obtained
by the proposed scheme are the optimal solutions. As rare
optimization algorithms are studied in ISAC MIMO-OFDM
system, the comparison in this paper is mainly based on the
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TABLE II
SIMULATION PARAMETERS

Symbol Description Value
Nc Number of subcarriers 32
Nt Number of transmit antenna elements 4
Nr Number of receive antenna elements 4
Nx Number of OFDM symbols 10
Lc Number of paths 4
Lr Number of targets 4
B Bandwidth 100 MHz
fc Carrier frequency 3 GHz
σ2
n Noise variance 1

σ2
h Mean path loss of communication channel (0.25,0.25,0.25,0.25)

σ2
g Mean path loss of sensing channel (0.25,0.25,0.25,0.25)

EA (RA), OPC and OPS. The simulation results are obtained
under the average of 4000 Monte Carlo simulations.

Fig. 3 plots the spectral efficiency of the six schemes versus
the SNR, where the sensing weighting coefficient of the ISAC
scheme is 0.5. It is revealed that the spectral efficiency of the
six schemes gradually increases with the growth of SNR. In
comparison to other schemes, the communication performance
of the OPC scheme generally performs much better. In low
SNR regimes, the communication performance of the ISAC
scheme is slightly worse than the OPC scheme, while the
OPS scheme is between ISAC and EA. In high SNR regimes,
the EA scheme gradually approaches the OPC scheme and
tends to be consistent when the SNR is infinite. The reason
is that when the SNR is infinite, their MI expressions tend to
be consistent. Besides, the effect of imperfect CSI is shown
with the variance of channel estimation error to be 0.01, i.e.,
σe

2 = 0.01. The communication performance of ISAC scheme
decreases due to the imperfect CSI. In general, as the SNR
increases, the performance difference between OPC and OPS
gradually increases.

Fig. 4 reveals the sensing rate of the six schemes versus
the SNR, where the sensing weighting coefficient of the
ISAC scheme is 0.5. In general, the sensing rate of the six
schemes gradually increases with the increase of SNR. The
OPS scheme has considerably superior sensing performance
than other schemes, while the ISAC scheme has greater
sensing performance than the OPC, EA, and RA schemes.
As the SNR increases, the performance difference between
different schemes gradually increases. Although the ISAC
scheme reduces the sensing MI, it is still better than the OPC
scheme. The sensing performance of the ISAC scheme also
decreases slightly due to the imperfect CSI. As the ISAC
scheme comprehensively considers the channel condition of
sensing and communication, the optimal solution is affected
which causes the sensing rate changing. Through the analysis
of Fig. 3 and Fig. 4, it is revealed that the communication
and sensing performance of the ISAC scheme are close to
the communication performance of the OPC scheme and the
sensing performance of the OPS scheme, respectively.

Furthermore, we evaluate the impact of the sensing weight-
ing coefficient on the performance of sensing and communi-
cation, which is illustrated in Figs. 5 and 6.

Fig. 5 plots the spectral efficiency of the ISAC scheme
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Fig. 5. Spectral efficiency vs. SNR for different weighting coefficients of
sensing.
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Fig. 6. Sensing rate vs. SNR for different weighting coefficients of sensing.

with different weighting coefficients versus the SNR. When
ωr = 0.2, the OPC scheme and the ISAC scheme nearly have
identical communication performance. When ωr = 0.8, the
communication performance of the ISAC scheme is almost
the same as that of the OPS scheme, especially in the case
of low SNR regimes. The performance difference between
different schemes gradually increases with the growth of SNR.
The performance when ωr = 0.5 is in the middle. If only
the communication performance is considered, the different
weighting coefficients of ISAC have a great influence on the
communication performance.

Fig. 6 shows the sensing rate of ISAC with different
weighting coefficients versus the SNR. When ωr = 0.8, the
sensing performance of ISAC is close to that of OPS with low
SNR. As the SNR increases, the difference gets larger. When
ωr = 0.2, the sensing performance of ISAC is close to that
of the OPC scheme, and the performance difference grows
with the SNR. If only the sensing performance is considered,
the different weighting coefficients of ISAC affect the sensing
performance a lot. Figs. 5 and 6 also show that if ωr = 0 or
ωc = 0, the performance curve of ISAC scheme will coincide
with those of OPC and OPS.

In the ISAC waveform design, the overall performance of
the ISAC waveform is optimized. According to Figs. 3 and 4,
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Fig. 7. Weighted MI vs. weighting coefficient for different waveform optimization schemes
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Fig. 8. Trade-off curve.

the sensing performance and the communication performance
are not simultaneously optimal in the ISAC scheme. The
weighted MI is used to represent the overall performance.
According to (70), the weighted MI of five schemes versus
different weighting coefficients is simulated.

Fig. 7(a) shows the weighted MI versus the weighting
coefficient of sensing under different schemes with SNR=1
dB. According to Fig. 7(a), it can be found that with the
weighting coefficient increasing, the weighted MI of the ISAC
scheme increases at first and then decreases. When ωr = 0 or
ωr = 1, the weighted MI of the ISAC scheme coincides with
that of OPC or OPS schemes. As the weighting coefficient
increases, the overall performance of the OPC, OPS, and EA
schemes is almost unchanged. In general, the weighted MI of
ISAC is better than that of OPC, OPS, and EA, indicating
that the application of weighted MI is reasonable in the ISAC
waveform design. Besides, the impact of the imperfect channel
estimation is shown in Fig. 7(a) with σe

2 = 0.01. It is
found that the performance of the ISAC scheme decreases
significantly due to the channel estimation error, since the
optimization is based on the non-practical channel gains.

Fig. 7(b) shows the same change curve as Fig. 7(a) with
SNR=10 dB. The communication performance and sensing
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Fig. 9. Spectral efficiency vs. the number of subcarriers for different
waveform optimization schemes.

performance of each scheme are different from those in the
low SNR regimes. When the sensing weighting coefficient is
close to 1, the weighted MI of the OPS scheme decreases
significantly in the high SNR regimes, and so does the
performance of the ISAC scheme, even far lower than that of
the OPC scheme. Thus, the ISAC scheme with imperfect CSI
also decreases, lower than the OPS scheme when ωr is small
or large enough. The communication performance of OPS and
OPC shows a huge difference in the high SNR regimes, much
larger than the difference of the sensing performance between
OPC and OPS.

Fig. 8 shows the trade-off between the sensing and com-
munication for the OPC, OPS and ISAC schemes under
different SNRs. The ISAC scheme has a sensing weighting
coefficient from 0 to 1 in the direction of the arrow. With the
increase of SNR, the sensing performance and communication
performance are improved, and the difference in the weighting
coefficient causes the ISAC scheme to change between the
OPC scheme and the OPS scheme. It is noted that there is no
comparison among the weighted sum with different weighting
factors. An appropriate weighting coefficient can be selected
through Fig. 8 to meet the certain performance requirement
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Fig. 10. Sensing rate vs. the number of subcarriers for different waveform
optimization schemes.
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Fig. 11. Spectral efficiency vs. correlation coefficient for different waveform
optimization schemes.
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Fig. 12. Sensing rate vs. correlation coefficient for different waveform
optimization schemes.

of communication and sensing. Fig. 8 also reveals that it
is impossible to attain optimal communication and sensing
performance simultaneously, only possible to make a trade-
off between communication and sensing.

With OFDM signal, the bandwidth B (Hz) is divided into
Nc subcarriers, which satisfies B = Nc∆f , where ∆f is the
subcarrier spacing. In Sec. II, we prove that the subcarrier
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Fig. 13. Spectral efficiency vs. SNR for ISAC scheme of different number
of antennas.
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Fig. 14. Sensing rate vs. SNR for ISAC scheme of different number of
antennas.

spacing is related to the subcarrier correlation, so that the
number of subcarriers is used to represent the subcarrier
correlation coefficient.

Fig. 9 shows the spectral efficiency of different schemes
versus the number of subcarriers, where SNR=1 dB and the
number of subcarriers ranges from 5 to 50. It is revealed
from Fig. 8 that with the increasing number of subcarriers, the
spectral efficiency of OPC, ISAC, and EA schemes is basically
unchanged, while the spectral efficiency of the OPS scheme
is decreasing. This is due to the fact that the communication
channel correlation of different subcarriers has been omitted
in Sec. II.

Fig. 10 shows the sensing rate of different schemes versus
the number of subcarriers, where the parameters are identical
to those in Fig. 8. As the number of subcarriers grows, the
sensing rates of OPS and ISAC schemes decrease, which is
related to the correlation of subcarriers in the sensing channel.
Meanwhile, the sensing rates of the OPC and EA schemes
first decrease with an increase in the number of subcarriers,
and then gradually remain unchanged when the number of
subcarriers is large.

Finally, the spectral efficiency and sensing rate of differ-
ent schemes versus different spatial correlation coefficients
are simulated. The correlation coefficient increases with the
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decrease of the angle spread and the increase of antenna
spacing [24]. The simulation is conducted using the maxi-
mum correlation coefficient of the changing communication
channel.

Fig. 11 illustrates the spectral efficiency of different schemes
versus the spatial correlation coefficient. Except for the OPS
scheme which remains basically unchanged with the increase
of the correlation coefficient, the spectral efficiency of the
other schemes decreases slightly with the increasing corre-
lation coefficient. This is due to the fact that, in the high
SNR regimes, the OPC scheme and the EA scheme tend to be
consistent.

Fig. 12 shows the sensing rate of different schemes versus
the spatial correlation coefficient. It can be found that different
from Fig. 11, with the increase of the spatial correlation
coefficient, the sensing rates of all the schemes fluctuate
slightly. This is due to the fact that only the maximum
correlation coefficient of the communication channel changes
in the simulation, merely changing the OPC scheme slightly. In
addition, the maximum correlation coefficient of the communi-
cation channel has a limited effect on the sensing performance
of the ISAC scheme.

Fig. 13 shows the spectral efficiency of the ISAC scheme
versus the SNR, where ωr = 0.5. The number of antennas
refers to the number of sub-channels (Nt×Nr). It is found that
the communication performance improves with the increase
of the number of antennas, and the performance difference
enlarges with the increase of SNR.

Fig. 14 shows the sensing rate of the ISAC scheme versus
the SNR, where ωr = 0.5. It is found that the results are
similar to those in Fig. 13. The difference is that the sensing
performance improves significantly with the increase of the
number of receive antennas, as the ISAC scheme proposed in
this paper is based on the spatial uncorrelation of each receive
antenna.

VI. CONCLUSION

In this paper, the sensing and communication MI for
MIMO-OFDM ISAC system with subcarrier correlation and
spatial correlation were studied. More specifically, the ISAC
waveform optimization schemes were investigated for max-
imizing sensing MI, communication MI, and their weighted
sum, respectively. The derived MI optimization solutions are
validated by the simulation results. We disclose the trade-off
in performance between communication and sensing, showing
how balanced performance can be achieved with carefully
designed MIMO-OFDM ISAC waveform. Our work can be
further extended by considering more practical scenarios with
imperfect CSI and the resource allocation between training
and data payload signals.
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