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Abstract

The reconfigurable intelligent surface (RIS) is useful to effectively improve the coverage and data rate

of end-to-end communications. In contrast to the well-studied coverage-extension use case, in this paper,

multiple RIS panels are introduced, aiming to enhance the data rate of multi-input multi-output (MIMO)

channels in presence of insufficient scattering. Specifically, via the operator-valued free probability theory,

the asymptotic mutual information of the large-dimensional RIS-assisted MIMO channel is obtained

under the Rician fading with Weichselberger’s correlation structure, in presence of both the direct and

the reflected links. Although the mutual information of Rician MIMO channels scales linearly as the

number of antennas and the signal-to-noise ratio (SNR) in decibels, numerical results show that it requires

sufficiently large SNR, proportional to the Rician factor, in order to obtain the theoretically guaranteed

linear improvement. This paper shows that the proposed multi-RIS deployment is especially effective to

improve the mutual information of MIMO channels under the large Rician factor conditions. When the

reflected links have similar arriving and departing angles across the RIS panels, a small number of RIS

panels are sufficient to harness the spatial degree of freedom of the multi-RIS assisted MIMO channels.
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Index Terms

Reconfigurable intelligent surface, MIMO, Rician channel, mutual information, operator-valued free

probability.

I. INTRODUCTION

In both the current and forthcoming generations of mobile communication systems, multi-input multi-

output (MIMO) is one of the mainstream physical-layer techniques to improve the spectral efficiency

and the reliability of the wireless communications [1]. In the favorable environments with rich scattering,

MIMO is able to increase the achievable data rate linearly with the number of antennas [2]. However,

when the wireless systems operate in higher frequencies with larger bandwidth, such as the millimeter

wave and terahertz bands, the radio signals are easily attenuated due to absorption and blockage. In this

case, the MIMO channels typically have only a few dominating propagation paths and/or limited angular

spread, which causes rank deficiency in the channel matrix that significantly degrades the MIMO channel

capacity [3].

Recently, reconfigurable intelligent surface (RIS) has attracted substantial attentions and is foreseen

to be an important component in the future communication systems [4]. A typical RIS consists of

a large number of low-power integrated electronic circuits, which can be programmed to modify the

electromagnetic properties of the incoming radio waves in the desired frequency band [5], such as the

phase and amplitude of the reflected signals from each programmable circuit. Therefore, by deploying

some RIS panels in the environment, the signal’s radiation pattern within the operating spectrum bands

of the communication systems can be reconfigured to increase the number of independent paths with

diversified angular spreads, thus increasing the rank of the MIMO channels. As an example, Fig. 1

illustrates the transmissions between a base station (BS) and a user equipment (UE) in an urban canyon.

In this scenario, without RIS deployment, the signals have to propagate through a scattering-limited area,

where the direct propagation link F0 dominates the end-to-end channel, while other scattered/reflected

components are severally attenuated by the building materials. In comparison, RIS panels are able to

actively and effectively reflect the signals to increase the number of independent specular components,
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Fig. 1. Multi-RIS assisted MIMO communications.

resulting in a total number of K+1 propagation links, including the direct link F0 and K reflected links

that consist of channels {Fk}1≤k≤K between BS and RIS panels and channels {Gk}1≤k≤K between RIS

panels and UE.

There exist a number of studies focusing on the performance evaluation of the end-to-end communi-

cations assisted by a single or multiple RIS panels. When both the transmitter and receiver are equipped

with a single antenna and a single RIS is deployed, the signal-to-noise-ratio (SNR) of such RIS-assisted

single-input single-output (SISO) channel is proportional to the squared amplitude of the end-to-end

effective channel. There are two typical theoretic frameworks to analyze the statistical properties of

the SNR: One is based on the Meijer’s G- and Fox’s H-function systems [6], which result in exact

but rather complicated expressions. The other is to match the moments of the effective channel with

classical random variables [7]–[10]. In particular, when the direct link is blocked, the SNR distribution and

the corresponding outage probability of the RIS-assisted communications are approximated by Gamma

random variables, when the component channels are independently Rayleigh-faded [7], independently

Rician-faded [8], correlated Rician-faded [9], and independently Nakagami-faded [10], respectively. When

both the direct and the reflected links exist, the Gamma-approximated SNR distribution and the finite

block-length rate of the RIS-assisted channel are obtained in [11], when all component channels are
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Rayleigh-faded.

When multiple RIS panels are deployed in the network, the RIS panels either work in exhaustive mode

to jointly assist the end-to-end communications [12], or work in opportunistic mode, where only the RIS

with maximum channel gains is selected [13]. In the former case, the end-to-end SNR is approximated

by a Gaussian random variable due to the central limit theorem. The SNR and the average symbol error

probability are derived for the phase shift keying signaling. In the latter case, the SNR of each reflected

link corresponding to one RIS panel is approximated as a Gaussian random variable and the order-statistics

is then obtained for the optimally selected RIS-assisting channel. In [14], a comprehensive performance

comparison of those two operation modes is provided, under the scenario of multi-RIS assisted SISO

channels assuming Nakagami-faded direct and reflected links.

In the case of MIMO systems, the available performance analysis of RIS-assisted communications is

rather limited due to the challenge of understanding the statistical distribution of matrix-valued prop-

agation channels, and results only exist for the single-RIS deployment. In [15], the authors consider

the RIS-assisted MIMO communications, where the direct link is blocked and the reflected link is the

concatenated Rayleigh-faded MIMO channels with single-sided correlation. The exact outage probability

of such channel is derived by using the Mellin transform [16]. The result is expressed as the integration

of product of multiple Meijer’s G-functions, which is difficult to solve in practice. When the reflected

link is the concatenated millimeter wave MIMO channels assuming Saleh-Valenzuela model [17], an

upper bound of the ergodic achievable rate is derived in [18] using majorization theory and Jensen’s

inequality. In the RIS-assisted uplink multiple access channel, the asymptotic ergodic sum rate of the

multi-user MIMO system is derived in [19] by using the replica method, assuming that the reflected links

are Rician-faded MIMO channels with Kronecker’s correlation. In the same channel model as [19], the

finite-SNR diversity-multiplexing tradeoff (DMT) of the RIS-assisted MIMO channel is analyzed in [20]

by the martingale method. When both the direct and the reflected links exist, the asymptotic achievable

rate of the single-RIS assisted MIMO channel is derived in [21] via replica method, assuming that all

the component channels are Rician fading with Kronecker’s correlation and all the channel dimensions

grow to infinity.
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Although the RIS-assisted MIMO communications have been investigated in [15], [18]–[21], the results

therein are obtained for the single-RIS deployment under certain MIMO channel configurations. In

contrast, this paper aims to provide the theoretic framework that analyzes the general multi-RIS assisted

MIMO communications under arbitrary Rician fading with Weichselberger’s correlation structure [22].

Such a model fits a wider range of realistic MIMO channels compared to the conventional Kronecker’s

correlation structure. Based on the above system settings, we first embed the component MIMO channel

matrices into a large block matrix. Then, an operator-valued probability space over the algebra of the

constructed block matrices is defined, where the operator-valued Cauchy transform is defined and is shown

to be closely related to the classic Cauchy transform of the channel Gram matrix. The operator-valued

Cauchy transform is then derived by leveraging the freeness over the defined probability space and the

additive free convolution machinery. Based on the obtained Cauchy transform, the probability distribution

of the eigenvalue of the channel Gram matrix as well as the mutual information of the multi-RIS assisted

MIMO channel can be calculated, which avoids time-consuming Monte Carlo simulations. Numerical

results show that in presence of strong line-of-sight conditions, although the mutual information could

scale linearly as the number of antennas and the SNRs (in decibels), the SNR has to be sufficiently large

in order to exhibit such linear scaling law. On the other hand, deploying additional RIS panels could

effectively improve the channel’s mutual information and thus, alleviate the SNR requirement.

The rest of this article is organized as follows. The signal model, the channel model, and the mutual

information of the MIMO channel under consideration are introduced in Section II. In Section III, the

operator-valued probability space is introduced and the main result of the Cauchy transform of the channel

Gram matrix is given. Numerical simulation results on the spectral distribution and the mutual information

of the MIMO channels are in Section IV. Section V concludes the main findings of this article.

Notations. Throughout the paper, vectors and matrices are represented by lower-case and upper-case

bold-face letters, respectively. The complex column vector with length n is denoted as Cn. We use

CN (0,A) to denote the zero-mean complex Gaussian vector with covariance matrix A and In is an

n × n identity matrix. The superscript (·)† denotes the matrix conjugate-transpose operation and (·)T

is matrix transpose. We denote Tr(A) as the trace of n × n matrix A. The notation E[·] denotes the
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expectation, and det(·) denotes the matrix determinant.

II. SYSTEM MODEL

A. Signal Model

Consider a MIMO communication channel between a transmitter equipped with T antennas and a

receiver equipped with R antennas. The transmissions are assisted by K RIS panels, which reflect the

impinging signals via their reflecting elements and each RIS panel is equipped with Lk reflecting elements,

1 ≤ k ≤ K. For notational simplicity, we define R = L0 and use these two symbols interchangeably.

Denote the transmitted signal as x ∈ CT and the additive noise at the receiver as n ∈ CR. The received

signal y ∈ CR is expressed as

y =

(
F0 +

K∑
k=1

√
ρkGkFk

)
x + n, (1)

where the R × T matrix F0 denotes the direct channel between transmitter and receiver, the Lk × T

matrix Fk denotes the channels between the transmitter and the k-th RIS panel, and 0 < ρk ≤ 1 denotes

the relative channel gain of the k-th reflected channel via the k-th RIS, compared to the direct channel.

The R × Lk matrix Gk denotes phase-shifted reflected channel between the k-th RIS and the receiver,

modeled as

Gk = RkΘk, (2)

where the R×Lk matrix Rk denotes the channel coefficients, and the diagonal matrix Θk = diag
(
eiφk,1 , . . . , eiφk,Lk

)
contains the phase-shifts of the reflecting elements, where 0 ≤ φk,l ≤ 2π denotes the phase-shift of the

l-th element of the k-th RIS.

We adopt the following assumptions on the signal and the channels:

(A1) The signal x is Gaussian distributed with uniform power allocation, i.e., x ∼ CN (0T , P IT ), where

P is the average power of the signals from each transmit antenna;

(A2) The noise n is assumed to be a white Gaussian random vector with i.i.d. zero-mean entries, i.e.,

n ∼ CN (0R, σ
2IR), where σ2 denotes the variance of the noise;
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(A3) The channel coefficients {Fk}0≤k≤K and {Rk}1≤k≤K are block-faded, which keeps constant within

the coherence time, while changing randomly and independently in the next coherence time. The

phase shifts {Θk}1≤k≤K are assumed to be fixed.

Note that without the direct link F0, channel models similar to (1) have been also studied in [3],

[23], [24] for the keyhole channel, the Rayleigh-product channel, and the double-scattering channel,

respectively, by using different theoretic techniques, which cannot be applied here.

B. Channel Model

In order to characterize the directivity and the spatial correlation of the channels between antenna

arrays, we adopt the non-central Weichselberger’s MIMO model for each component links [22], such

that

Fk = Fk + F̃k = Fk + Uk(Mk �Xk)V
†
k, 0 ≤ k ≤ K, (3)

Gk = Gk + G̃k = Gk +
1
√
rk

Wk(Nk �Yk)S
†
k, 1 ≤ k ≤ K, (4)

where Fk and Gk are the fixed specular components of Fk and Gk, respectively. The random scattering

components are captured by F̃k and G̃k, where Uk, Vk, Wk, and Sk are deterministic unitary matrices.

The deterministic matrices Mk and Nk represent the variance profiles of F̃k and G̃k, respectively, each

having non-negative real elements. The Lk × T random matrix Xk and the R × Lk random matrix Yk

are i.i.d. complex Gaussian distributed with entries having zero mean and variance 1/T , i.e., [Xk]i,j ∼

CN (0, 1/T ) and [Yk]i,j ∼ CN (0, 1/T ). We denote rk as the ratio between Lk and T , i.e., rk = Lk/T ,

1 ≤ k ≤ K. The operator � denotes the element-wise matrix multiplication. Note that the phase-shift

matrix Θk, 1 ≤ k ≤ K, is also unitary and can be absorbed into the deterministic matrices Gk and

Sk. The ratio between the power of fixed specular component and the random scattering component is

defined as the Rician factor of the MIMO channel, i.e.,

κ
(F )
k =

||Fk||2F
E[||F̃||2F]

, and κ
(G)
k =

||Gk||2F
E[||G̃||2F]

, (5)

where || · ||F denotes the Frobenius norm of a matrix.
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For the correlated MIMO channel Gk, the one-sided correlation function ηk(C̃) = E[G̃†kC̃G̃k] param-

eterized by an Hermitian matrix C̃ is given by [22, Thm. 1] as

ηk(C̃) = E[G̃†kC̃G̃k] =
1

Lk
SkΠk(C̃)S†k, 1 ≤ k ≤ K, (6)

where the Lk × Lk diagonal matrix Πk(C̃) contains the diagonal entries[
Πk(C̃)

]
i,i

=

R∑
j=1

([Nk]j,i)
2
[
W†

kC̃Wk

]
j,j
, 1 ≤ i ≤ Lk. (7)

The other one-sided correlation function η̃k(Ck) = E[G̃kCkG̃
†
k] parameterized by Ck is given by

η̃k(Ck) = E[G̃kCkG̃
†
k] =

1

Lk
WkΠ̃k(Ck)W

†
k, 1 ≤ k ≤ K, (8)

where the R×R diagonal matrix Π̃k(Ck) contains the diagonal entries[
Π̃k(Ck)

]
i,i

=

Lk∑
j=1

([Nk]i,j)
2
[
S†kCkSk

]
j,j
, 1 ≤ i ≤ R. (9)

Similarly, for 0 ≤ k ≤ K, the two parameterized one-sided correlation functions of the matrix F̃k are

given by:

ζk(Dk) = E[F̃†kDkF̃k] =
1

T
VkΣk(Dk)V

†
k, (10)

ζ̃k(D̃) = E[F̃kD̃F̃†k] =
1

T
UkΣ̃k(D̃)U†k, (11)

where the T ×T diagonal matrix Σk(Dk) and the Lk ×Lk diagonal matrix Σ̃k(D̃) respectively contain

the diagonal entries

[Σk(Dk)]i,i =

Lk∑
j=1

([Mk]j,i)
2
[
U†kDkUk

]
j,j
, 1 ≤ i ≤ T, (12)

[
Σ̃k(D̃)

]
i,i

=

T∑
j=1

([Mk]i,j)
2
[
V†kD̃Vk

]
j,j
, 1 ≤ i ≤ Lk. (13)

In addition, since the channels {Fk}0≤k≤K and {Gk}1≤k≤K are spatially separated, channels corre-

spond to different links are assumed to be independent.
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C. Mutual Information of Multi-RIS MIMO Channel

Due to the assumptions (A1)-(A3), the channel (1) is a Gaussian MIMO channel and its mutual

information is given by the well-known Telatar’s formula [2] as

I(γ) = log det
(
IR + γHH†

)
, (14)

where γ = P/σ2 is the average SNR, and the end-to-end channel H is given by

H = F0 +

K∑
k=1

√
ρkGkFk. (15)

The channel H can be factorized as the product of two matrices G and F as

H = GF =

[
IR
√
ρ1G1 . . .

√
ρKGK

]


F0

F1

...

FK


. (16)

Denoting L =
∑K

k=0 Lk, G =

[
IR
√
ρ1G1 . . .

√
ρKGK

]
is a R × L block matrix and F =[

FT
0 , . . . ,F

T
K

]T is a L× T block matrices.

Letting B = HH† = GFF†G†, the mutual information (14) can be rewritten as

I(γ) = R VB(γ) = R

ˆ ∞
0

log(1 + γt)fB(t)dt, (17)

where VB(x) is the Shannon transform of the matrix B [25], and fB(t) is the probability density function

(PDF) of the eigenvalue of B. Applying the relation between the Shannon transform and the corresponding

Cauchy transform [25], the mutual information (17) can be rewritten as

I(γ) = R

ˆ γ

0

(
1

t
+

1

t2
GB
(
−1

t

))
dt, (18)

where GB(z) is the Cauchy transform of B and is defined as

GB(z) =
ˆ ∞
0

1

z − t
fB(t)dt =

1

R
Tr ◦ E

[
(zI−B)−1

]
= τR

(
(zI−B)−1

)
. (19)

Here, τR(X) is the composite function 1
RTr◦E[X]. Note that the PDF fB(t) has an one-to-one mapping

with the Cauchy transform GB(z) via the inverse transform

fB(t) = −
1

π
lim
ε→0
=(GB(t+ iε)), (20)
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where =(·) denotes the imaginary part of the complex number. Therefore, the problem of finding the

mutual information I(γ) and the PDF fB(t) are amount to finding the Cauchy transform GB(z) of

product of matrices B = GFF†G†. In the next section, we will resort to a linearization trick and the

operator-valued free probability theory to derive the expression of GB(z).

III. ASYMPTOTIC EIGENVALUE DISTRIBUTION VIA OPERATOR-VALUED FREE PROBABILITY

THEORY

In the classic free probability theory, it is common to combine the Cauchy transform and the free

multiplicative convolution to obtain the limiting spectral distribution of product of random matrices. For

example, in [26], the limiting spectral distribution of the concatenated MIMO channels of the form(
K∏
k=1

Hk

)(
K∏
k=1

Hk

)†
(21)

is derived, where Hk is Nk ×Nk−1 random matrix and has i.i.d. zero-mean entries, unitarily invariant,

and independent of each other. Such assumptions, in the language of free probability theory, is equivalent

to requiring freeness among families of random variables as specified below.

Let A be a unital algebra and B ⊂ A be a unital subalgebra. For H ∈ A, a linear map EB[H] : A → B

is a B-valued conditional expectation, if EB[b] = b for all b ∈ B, and EB[b1Hb2] = b1EB[H]b2 for all

H ∈ A and b1, b2 ∈ B. Then, a B-valued probability space is denoted as (A,EB,B), consisting of B ⊂ A

and the linear functional EB. In addition, let A1, . . . ,AK be the subalgebras of A with B ⊂ Ak for all

1 ≤ k ≤ K. We also let {Hk ∈ Ak, 1 ≤ k ≤ K} denote a family of operator-valued random variables,

which are free with amalgamation over B according to the following definition.

Definition 1. Let n be an arbitrary integer. The families of random variables {H1, . . . ,HK} are free

with amalgamation over B, if for every family of index {k1, . . . , kn} ⊂ {1, . . . ,K} with k1 6= k2, . . . ,

kn−1 6= kn, and every family of polynomials {P1, . . . , Pn} satisfying EB[Pj(Hkj )] = 0, j ∈ {1, . . . , n},

we have EB
[∏n

j=1 Pj(Hkj )
]
= 0.

In order to observe the freeness among families of random matrices {Hk,H
†
k}1≤k≤K in (21), we

can construct the random variable Hk as Hk = HkH
†
k. Let C denote the algebra of complex random
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variables. We define Ak = MNk
(C) as the algebra of Nk ×Nk complex Hermitian matrices, B = C and

the linear functional EB as EB = 1
Nk

Tr ◦ E. Then, as specified in Definition 1, the asymptotic freeness

among {Hk}1≤k≤K over C has been established in some of the classic free probability theory, such as

in [28], which further enables one to apply free multiplicative convolution [26] to obtain the limiting

spectral distribution of the concatenated MIMO channels.

However, in the considered problem with B = GFF†G†, both G and F are non-central and with

non-trivial spatial correlations, and thus, are not free over C in the classic free probability aspect. More

precisely, GG† and FF† are not free with respect to the linear functional τR = 1
RTr ◦E. Yet, as will be

shown in the remaining of this section, via a linearization trick, the random matrix B of interest can be

embedded into a larger block matrix, which can be then separated as the sum of a deterministic matrix

and a random matrix. Instead of invoking the classic freeness over C, we are able to elevate them as the

operator-valued variables, which are shown to be asymptotically free in the operator-valued probability

space. The limiting spectral distribution of their sum can be then obtained by using the operator-valued

free additive convolution.

A. Linearization Trick and Operator-Valued Probability Space

Let n denote 2L + R + T and M = Mn(C) denote the algebra of n × n complex random matrices.

Although the original formulation of B is in the form of product of two random matrices that are not free

with respect to τR, we could instead construct a block matrix L ∈ M, whose operator-valued Cauchy

transform can be properly defined and is directly related to the conventional Cauchy transform of B.

By using the Anderson’s linearization trick as described in [30, Prop. 3.4], we can construct a block

matrix L ∈M as follows

L =

L(1,1) L(1,2)

L(2,1) L(2,2)

 =



0R×R 0R×L 0R×T G

0L×R 0L×L F −IL

0T×R F† −IT 0T×L

G† −IL 0L×T 0L×L


, (22)
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where the matrix blocks
{
L(i,j)

}
correspond to the partitions shown on the right-hand-side (RHS) of (22).

In addition, let us consider the sub-algebra D ⊂M as the n×n block diagonal matrix. For each K ∈ D,

it is defined as

K = blkdiag
(
C̃,D, D̃,C

)
, (23)

where C̃ is a R × R sub-matrix and D̃ is a T × T sub-matrix. The L × L block diagonal matrices C

and D are defined as C = blkdiag {C0, . . . ,CK} and D = blkdiag {D0, . . . ,DK}, respectively, where

Ck and Dk are Lk × Lk sub-matrices. In (23), all the involved sub-matrices C̃, D̃, {Ck}0≤k≤K , and

{Dk}0≤k≤K are Hermitian matrices.

For X ∈ M, we define XC̃, XD̃, {XCk
}0≤k≤K , and {XDk

}0≤k≤K as the sub-blocks of X, corre-

sponding to the same diagonal sub-blocks C̃, D̃, {Ck}0≤k≤K , and {Dk}0≤k≤K in the matrix K. Then,

we define the linear functional τD :M→D as

τD(X) = id ◦ ED [X] , (24)

where id denotes the identity operator on a Hilbert space and the expectation ED [X] is defined as

ED [X] =



E[XC̃]

E[XD]

E[XD̃]

E[XC]


, (25)

and E[XC] = blkdiag {E[XC0
], . . . ,E[XCK

]}, E[XD] = blkdiag {E[XD0
], . . . ,E[XDK

]}. Then, we

can define an operator-valued probability space (M, τD,D). For the M-valued random variable L ∈

(M, τD,D), its D-valued Cauchy transform is defined as

GDL (Λ(z)) = id ◦ ED
[
(Λ(z)− L)−1

]
= τD

(
(Λ(z)− L)−1

)
, (26)

where Λ(z) ∈M denotes the n× n diagonal matrix as

Λ(z) =

 zIR 0R×(2L+T )

0(2L+T )×R 0(2L+T )×(2L+T )

 . (27)
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By substituting (22) and (27) into (26) and invoking Lemma 2 in the Appendix A, we obtain

GDL (Λ(z)) = id ◦ ED


(
zIR + L(1,2)

(
L(2,2)

)−1
L(2,1)

)−1
−L(1,2)

(
zL(2,2) + L(2,1)L(1,2)

)−1
−
(
zL(2,2) + L(2,1)L(1,2)

)−1
L(2,1) −

(
L(2,2) + z−1L(2,1)L(1,2)

)−1
 . (28)

In particular, the upper-left block of (28) can be explicitly written as(
zIR + L(1,2)

(
L(2,2)

)−1
L(2,1)

)−1
=
(
zIR −GFF†G†

)−1
. (29)

Therefore, the Cauchy transform of B over C is related to the D-valued Cauchy transform of L as

GB(z) =
1

R
Tr
({
GDL (Λ(z))

}(1,1))
, (30)

where {·}(1,1) denotes the upper-left R×R matrix block.

B. Operator-Valued Free Additive Convolution

Let us introduce the following notations:

G =

[
IR
√
ρ1G1 . . .

√
ρKGK

]
, (31)

G̃ =

[
0R

√
ρ1G̃1 . . .

√
ρKG̃K

]
, (32)

F =

[
F
T
0 . . . F

T
K

]T
, (33)

F̃ =

[
F̃T
0 . . . F̃T

K

]T
. (34)

The linearization matrix L can be further expressed as

L = L + L̃, (35)

where L and L̃ contain the deterministic and the random parts of L, respectively, and are given as follows:

L =



G

F −IL

F
† −IT

G
† −IL


, (36)
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L̃ =



G̃

F̃

F̃†

G̃†


, (37)

where we omit the all-zero matrix blocks.

The advantage of working with L as well as its D-valued Cauchy transform GDL is that the elements

of L̃ are monomials of G̃, G̃†, F̃, and F̃†, which are decoupled from each other. This is in contrast

to the Cauchy transform of B over C, where the random variables are mixed together. Then, following

similar steps as in [32], L̃ is shown to be an operator-valued semicircular variable and is free from the

deterministic matrix L over D. Thus, the limiting spectral distribution of L can be determined by the

operator-valued free additive convolution of L and L̃, over the sub-algebra D, which are summarized in

the following propositions.

Proposition 1. The random variable L̃ is semicircular and is free from L over D.

Proof: The proof of Proposition 1 is given in Appendix B.

Due to Proposition 1, the operator-valued Cauchy transform of L in (30) can be calculated as the free

additive convolution between L̃ and L, by using a subordination formula [30] as follows:

GDL (Λ(z)) = GD
L

(
Λ(z)−RD

L̃

(
GDL (Λ(z))

))
= ED

[(
Λ(z)−RD

L̃

(
GDL (Λ(z))

)
− L

)−1]
, (38)

where RD
L̃
(·) denotes the operator-valued R-transform of L over D. Then, GB(z) can be determined by

the following proposition.

Proposition 2. The Cauchy transform of B, with z ∈ C+, is given by

GB(z) =
1

R
Tr

[(
Ψ̃(z)−GΞ(z)−1G

†
)−1]

, (39)

where

Ξ(z) = Ψ(z)−
(
Φ̃(z)− FΦ(z)−1F

†
)−1

. (40)
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The matrix-valued function Ψ̃(z), Ψ(z), Φ̃(z), Φ(z) satisfy the following fixed-point equations

Ψ̃(z) = zIR −
K∑
k=1

η̃k(GCk
(z)), (41)

Ψ(z) = blkdiag
{
0R, −η1(GC̃(z)), . . . , −ηK(GC̃(z))

}
, (42)

Φ̃(z) = blkdiag
{
−ζ̃0(GD̃(z)), −ζ̃1(GD̃(z)), . . . , −ζ̃K(GD̃(z))

}
, (43)

Φ(z) = IT −
K∑
k=0

ζk(GDk
(z)), (44)

where blkdiag {A1, . . . ,An} constructs a block diagonal matrix with square matrices A1, . . . ,An being

the diagonal blocks, and GC̃(z), GCk
(z), GD̃(z), GDk

(z) are given by

GC̃(z) =
(
Ψ̃(z)−GΞ(z)−1G

†
)−1

, (45)

GCk
(z) =

{(
Ψ(z)−G

†
Ψ̃(z)−1G−

(
Φ̃(z)− FΦ(z)−1F

†
)−1)−1}

k+1

, 1 ≤ k ≤ K, (46)

GD̃(z) =

(
Φ(z)− F

†
(

Φ̃(z)−
(
Ψ(z)−G

†
Ψ̃(z)−1G

)−1)−1
F

)−1
, (47)

GDk
(z) =

{(
Φ̃(z)− FΦ(z)−1F

† −
(
Ψ(z)−G

†
Ψ̃(z)−1G

)−1)−1}
k+1

, 0 ≤ k ≤ K. (48)

The notation {A}k+1 with n × n matrix A denotes the (k + 1)-th diagonal matrix block containing

entries from
∑k−1

i=0 Li + 1 to
∑k

i=0 Li rows and columns of A.

Proof: The proof of Proposition 2 is given in Appendix C.

As indicated by Proposition 2, the Cauchy transform GB(z) as well as the matrix-valued functions

Ψ̃(z), Ψ(z), Φ̃(z), Φ(z) can be determined by solving the fixed-point equations. The numerical value

of GB(z) can be obtained by iterating the set of equations (41)-(44) and (45)-(48).

IV. NUMERICAL RESULTS

In this section, numerical simulations are conducted to study the spectral distribution of the RIS-assisted

MIMO channel as well as its mutual information. In particular, we examine the impacts of the number of

RIS panels, the number of antennas at the transceivers, and the Rician factor of the propagation channels
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on the mutual information. The mutual information I(γ) and the eigenvalue PDF fB(t) are calculated

by (17) and (20), respectively, where the involved Cauchy transform GB(z) is given in Proposition 2. In

each simulation case, the MIMO system without RIS deployment is included for comparison, i.e., K = 0,

where the eigenvalue PDF and the Cauchy transform can be calculated by using existing result from [32,

Thm. 2]. Each simulation curve is obtained by averaging over 106 independent channel realizations.

In the simulations, the antenna elements of the transceivers and the reflecting elements of the RIS

panels are arranged as the uniform planar arrays (UPAs). Denote T = T (H) × T (V ), R = R(H) ×R(V ),

and Lk = L
(H)
k × L(V )

k , where the numbers with the superscripts H and V represent the numbers of

elements aligned in the horizontal and vertical dimensions, respectively. The specular component of each

channel is the line-of-sight propagation component between two uniform planar arrays (UPAs), i.e.,

Fk = a
(
ϕ
(F )
k , ν

(F )
k , L

(H)
k , L

(V )
k

)
a†
(
θ
(F )
k , φ

(F )
k , T (H), T (V )

)
, 0 ≤ k ≤ K, (49)

Gk = a
(
ϕ
(G)
k , ν

(G)
k , R(H), R(V )

)
a†
(
θ
(G)
k , φ

(G)
k , L

(H)
k , L

(V )
k

)
, 1 ≤ k ≤ K, (50)

where θ(i)k and φ(i)k are the azimuth and elevation angles of the k-th departing UPA, while ϕ(i)
k and ν(i)k

are the azimuth and elevation angles of the k-th arriving UPA, i ∈ {F,G}. The function a(·) denotes

the steering vector of an M ×N UPA and is defined as

a(α, β,M,N) =
[
1, . . . , eiπ(n sin(α) sin(β)+m cos(β)), . . . , eiπ((N−1) sin(α) sin(β)+(M−1) cos(β))

]T
, (51)

where 0 ≤ m ≤M − 1 and 0 ≤ n ≤ N − 1.

Fig. 2 shows the empirical and asymptotic eigenvalue PDF of the RIS-assisted MIMO channels HH†,

assuming the number of RIS panels is K = 0, 1, 2, and 4, respectively. In all the cases, the numbers of

transmit and receive antennas are set to T = R = 64, and the number of reflecting elements in each RIS

panel is set to 144. The channel statistics, such as Fk, Uk, Vk, Mk in (3), and Gk, Wk, Sk, Nk in

(4) are randomly generated but fix for the Monte Carlo simulations. The numerical results show that the

asymptotic PDF calculated by (20) provides an excellent approximation to the simulated PDF for all the

considered parameter configurations. By increasing the number of deployed RIS panels, it is possible to

increase the maximum eigenvalue, therefore, improve amplitude of the eigen-channels.
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Fig. 2. Comparisons of empirical and asymptotic eigenvalue PDFs of the RIS-assisted MIMO channels HH† with different

numbers of RIS panels. The numbers of transmit and receive antennas are set to T = R = 64, and the number of reflecting

elements of each RIS panel is set to 144.

In Fig. 3, we investigate the impacts of the SNR, the number of antennas, and the Rician factors

on the mutual information of the RIS-assisted MIMO channels. Equal number of antennas is set at the

transmitter and the receiver, where T = R = 4 in Fig. 3 (a) and T = R = 8 in Fig. 3 (b), respectively.

The MIMO communication is assisted by K = 6 RIS panels, and each RIS panel is composed of

16 reflecting elements. Compared to the direct link F0, the relative channel gains [ρ1, . . . , ρ6] in (15)

corresponding to the reflected links are configured as [0.9, 0.8, 0.7, 0.5, 0.3, 0.1]. All the Rician factors

are set equal as κ = κ
(F )
k = κ

(G)
k , where κ is set to 1, 10, or 100. In presence of non-degenerate random
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scattering components F̃k in (3) and G̃k in (4), the RIS-assisted MIMO channels are full-rank, and the

mutual information at large SNR linearly increases as min{T,R}/10 log10(e) nats/s/Hz for every 1 dB

SNR improvement, depicted as the dashed lines in Fig. 3. However, as the Rician factor becomes large,

although the mutual information has the same scaling law, it requires larger SNR levels to exhibit the

linear improvement. This is illustrated in the insets of Fig. 3. When the Rician factors are κ = 1, 10,

and 100, the asymptotic mutual information has at least 5% deviation from the high-SNR scaling law at

SNRs 20.8 dB, 27.5 dB, and 34.2 dB when T = R = 4, and at SNRs 23.7 dB, 29.8 dB, and 36.1 dB

when T = R = 8, respectively. This is due to the fact that as the Rician factor increases, the random

scattering components to maintain the rank of the channel have less contributions to the overall MIMO

channels.

To further investigate the impacts of the Rician factor on the mutual information of the MIMO channels,

we plot Fig. 4 to show the mutual information as a function of κ, with the numbers of RIS panels K

set to 0, 1, 2, and 4, respectively. The number of transmit and receive antennas are set to T = 16 and

R = 8, while the performance of the MIMO system is evaluated at SNR γ = 10 dB. It is observed that

when κ is less than 1, the mutual information can be improved as κ increases, while it monotonically

decreases for κ > 1 in all the considered cases. When the number of RIS panels is larger, the mutual

information degradation is less prominent as each RIS provides independent reflected link, which increases

the richness of the MIMO channels.

In Fig. 5, the impact of the numbers of RIS panels is investigated in more details, when the mutual

information is evaluated for different transmit antennas T = 8, 16, 32, and 64. The number of receive

antennas is fixed to R = 10, and each RIS panel has 8 reflecting elements. In this simulation setting, we

consider the urban canyon communication scenario as depicted in Fig. 1, where the specular components

of {Fk} channels and of {Gk} channels have relatively small angular variations. That is, in (49)

and (50), we assume that the departing angles
{
θ
(F )
k , φ

(F )
k

}
0≤k≤K

of the transmitter UPA and the

arriving angles
{
ϕ
(G)
k , ν

(G)
k

}
1≤k≤K

of the receiver UPA are uniformly and randomly generated in some

fixed intervals having length 0.05π. The departing angles
{
θ
(G)
k , φ

(G)
k

}
1≤k≤K

and the arriving angles
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Fig. 3. Mutual information of RIS-assisted MIMO channels at varying SNR γ, when the number of antennas at the transceivers

is T = R = 4 in (a) and T = R = 8 in (b), respectively. In each case, the Rician factor of the component channels is set equal

to κ = 1, 10, or 100. There are K = 6 deployed RIS panels, each of which has 16 reflecting elements. Insets show the 5%

deviations of the asymptotic mutual information from the high-SNR scaling law.
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Fig. 4. Mutual information of RIS-assisted MIMO channel for varying Rician factor κ. The number of antennas at the transmitter

and the receiver are T = 16 and R = 8, respectively, and each RIS panel has 8 reflecting elements. The SNR of the end-to-end

channel is set to γ = 10 dB.

{
ϕ
(F )
k , ν

(F )
k

}
1≤k≤K

of the RIS panels are randomly generated in some fixed intervals having length

0.1π. As K increases, Fig. 5 shows that the mutual information first improves at a larger rate between

0 ≤ K ≤ 5, and then becomes slower thereafter. This is due to the fact that the richness of the channels

can be improved more efficiently when the number of reflected links is small. Since the angular ranges

are restricted, the added RIS panels have similar reflected links that cannot provide additional richness.

Therefore, it is less effective to deploy more RIS panels to improve the mutual information. Finally, as

shown in Figs. 3-5, the mutual information calculated by (17) via the Cauchy transform (39) achieves a

good agreement with the simulation in all the considered simulation cases, and thus, can be applied to

evaluate the performance of the RIS-assisted MIMO channels.

V. CONCLUSIONS

This paper studies the information-theoretic data rate of the RIS-assisted MIMO systems, where

multiple RIS panels are deployed to improve the scattering-limited MIMO channels. By using the
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Fig. 5. Mutual information of RIS-assisted MIMO channel for varying numbers of RIS panels K. The number of receive

antennas is R = 8, the number of elements in each RIS panel is 8, and the SNR of the channel is γ = 10 dB.

operator-valued free probability theory, the Cauchy transform of the MIMO matrix is obtained using

the general Rician MIMO model with Weichselberger’s correlation structure. Based on this result, the

asymptotic eigenvalue distribution of the channel matrix as well as the mutual information of the MIMO

channel are calculated, which closely match the corresponding simulation results for practical system

configurations. Numerical results show that the additional reflected links created by the RIS panels can

increase the range of eigenvalues of the channel matrix, which can be leveraged to improve the amplitude

of the eigen-channels. In the MIMO communications, the negative impact of a large Rician factor on the

mutual information can be partly alleviated by deploying more RIS panels. However, the performance

improvement of the multi-RIS deployment slows down when the added reflected links have similar

arriving and departing angles.
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APPENDIX A

SOME USEFUL MATRIX INVERSION IDENTITIES

For the sake of completeness, the following matrix inversion identities are summarized in Lemmas 1-3,

which are repeatedly applied throughout this paper. For notational simplicity, in this appendix, we use

italic bold symbols to define matrices, which are different from those used in the main sections.

Lemma 1. (Woodbury matrix inversion identity [31, Eq. (0.7.4.1)].) Let A denote a m ×m invertible

matrix, D denote a k × k matrix, B and C denote m × k and k ×m matrices, respectively. Then the

following identity holds

(A+BDC)−1 = A−1 −A−1B
(
D−1 +CA−1B

)−1
CA−1. (52)

Lemma 2. (2× 2 block matrix inversion identity [31, Eq. (0.7.3.1)].) Let A, B, C, and D be defined

as in Lemma 1, the inversion identity of the following 2× 2 block matrix holdsA B

C D


−1

=

A−1 +A−1B(D −CA−1B)−1CA−1 −A−1B(D −CA−1B)−1

−(D −CA−1B)−1CA−1 (D −CA−1B)−1



=

 (A−BD−1C)−1 −A−1B(D −CA−1B)−1

−(D −CA−1B)−1CA−1 (D −CA−1B)−1

 , (53)

where the second equality holds when D is also invertible.

Lemma 3. (3× 3 block matrix inversion identity.) Let the matrices E, F , G, H , J , K, L, M , and N

be the conformable partitions of the following 3× 3 block matrix X

X =


E F G

H J K

L M N

 .
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When E is invertible, the inversion of X is given by

X−1 =


E−1 +E−1(FA−1H +US−1V )E−1 −E−1(F −US−1C)A−1 −E−1US−1

−A−1(H −BS−1V )E−1 A−1 +A−1BS−1CA−1 −A−1BS−1

−S−1V E−1 −S−1CA−1 S−1

 ,
where

A = J −HE−1F , B =K −HE−1G, C =M −LE−1F , D =N −LE−1G, (54)

U = G− FA−1B, V = L−CA−1H, (55)

S =D −CA−1B. (56)

Proof: Apply Lemma 2 to the inversion of X that is partitioned into a 2× 2 block matrix as

X−1 =


E F G

H J K

L M N


−1

=

P Q

R Z−1

 , (57)

where the matrix blocks P , Q, and R are given by

P = E−1 +E−1
[
F G

]
Z−1

H
L

E−1, (58)

Q = −E−1
[
F G

]
Z−1, (59)

R = −Z−1

H
L

E−1, (60)

and the matrix Z is a 2× 2 block matrix such that

Z =

 J K

M N

−
H
L

E−1 [F G

]
=

A B

C D

 , (61)

where A, B, C, and D are given in (54).

Applying again Lemma 2 to the inversion of Z, we obtain

Z−1 =

A−1 +A−1BS−1CA−1 −A−1BS−1

−S−1CA−1 S−1

 , (62)
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where S is given in (56). Substituting (62) into (58), P can be rewritten as

P = E−1 +E−1
[
FA−1 −US−1CA−1 US−1

]H
L

E−1
= E−1 +E−1

(
FA−1H +US−1V

)
E−1, (63)

where U and V are defined in (55). Similarly, Q and R can be obtained as

Q =

[
−E−1

(
F − (G− FA−1B)S−1C

)
A−1 −E−1

(
G− FA−1B

)
S−1

]
=

[
−E−1

(
F −US−1C

)
A−1 −E−1US−1

]
, (64)

R =

−A−1HE−1 +A−1BS−1(L−CA−1H)E−1

−S−1(L−CA−1H)E−1

 =

−A−1(H −BS−1V )E−1

−S−1V E−1

 . (65)

Finally, substituting (62)-(65) into (57) completes the proof of Lemma 3.

APPENDIX B

PROOF OF PROPOSITION 1

A random variable L̃ ∈M is said to be D-valued semicircular if the free cumulant

κDm(L̃b1, L̃b2, . . . , L̃bm−1, L̃) = 0, (66)

for all n 6= 2, and all b1, . . . , bn−1 ∈ D. The free cumulant κDm is a mapping from Mm to D and we

refer the reader to [29] for detailed explanations on this topic. The proof is followed by expanding L̃

into a sum of n× n matrices, such that

L̃ =

K∑
k=0

L̃
(F )
k +

K∑
k=1

L̃
(G)
k , (67)
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where the matrices L̃
(F )
k and L̃

(G)
k are given by

L̃
(F )
k =



0R×L

F̂k

F̂†k

0L×R


, (68)

L̃
(G)
k =



Ĝk

0L×T

0T×L

Ĝ†k


, (69)

where F̂k and Ĝk are L× T and R× L matrices, respectively, and are given by

F̂k =

[
0T×L0

. . . F̃†k . . . 0T×LK

]†
, 0 ≤ k ≤ K, (70)

Ĝk =

[
0R×R 0R×L1

. . .
√
ρkG̃k . . . 0R×LK

]
, 1 ≤ k ≤ K. (71)

Recalling the definitions of F̃k and G̃k in (3) and (4), we have

L̃
(F )
k = A(F )

k X̃ kA
(F )†
k , (72)

L̃
(G)
k = A(G)

k ỸkA
(G)†
k , (73)

where the matrix X̃ k has the same structure as the block matrix L̃
(F )
k in (68) while replacing F̃k in (70)

with X̃k = Mk �Xk, and Ỹk has the same structure as the block matrix L̃
(G)
k in (69) while replacing

G̃k in (71) with Ỹk =
1√
rk

Nk �Yk. The n× n matrices A(F )
k and A(G)

k are given by

A(F )
k =

 Ûk 0(R+L)×(T+L)

0(T+L)×(R+L) V̂k

 , (74)

A(G)
k =

 Ŵk 0(R+L)×(T+L)

0(T+L)×(R+L) Ŝk

 , (75)
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where Ûk, V̂k, Ŵk, Ŝk are deterministic diagonal block matrices and are given by

Ûk = blkdiag(0R,0L0
, . . . ,Uk, . . . ,0LK

), (76)

V̂k = blkdiag(Vk,0L), (77)

Ŵk = blkdiag(Wk,0L), (78)

Ŝk = blkdiag(0T ,0L0
, . . . ,Sk, . . . ,0LK

). (79)

Since {X̃ k}0≤k≤K , {Ỹk}1≤k≤K are Wigner matrices and independent from each other, they are semi-

circular and free over the sub-algebra Dn ⊂ M of n × n diagonal matrices. Then, following the same

arguments as in [32, Appendix B], {L̃(F )
k }0≤k≤K and {L̃(G)

k }1≤k≤K are semicircular and free over sub-

algebra of block diagonal matrices D. Therefore, the sum of L̃
(F )
k and L̃

(G)
k is also semicircular over D

and is free from any deterministic matrix from M.

APPENDIX C

PROOF OF PROPOSITION 2

Since L̃ is an operator-valued semicircular variable over D and L̃ are free from L over D, the

limiting spectral distribution of L is a free additive convolution of the limiting spectral distributions of

L̃ and L. Specifically, the operator-valued Cauchy transform GDL can be calculated via the subordination

formula (38). Recall that the R-transform RD
L̃
(·) is the free cumulant generating function of L̃ with the

following formal power series expansion:

RD
L̃
(K) = κD1 (K̃) + κD2 (L̃K, L̃) + κD3 (L̃K, L̃K, L̃) + · · · , (80)

where κDi denotes the i-th free cumulant of L̃ over D. In addition, since L̃ is semicircular over D, all

its cumulants in (80) except κD2 are zero. Therefore, the R-transform RD
L̃
(K) reduces to the covariance

DRAFT



27

function of L̃ over D parameterized by K, i.e.,

RD
L̃
(K) = ED

[
L̃KL̃

]

=



∑K
k=1 η̃k(Ck)

ζ̃(D̃) ∑K
k=0 ζk(Dk)

η(C̃)


, (81)

where ζ̃(D̃) = blkdiag
{
ζ̃0(D̃), . . . , ζ̃K(D̃)

}
and η(C̃) = blkdiag

{
0R, η1(C̃), . . . , ηK(C̃)

}
.

Since GDL (Λ(z)) ∈ D, by same matrix partitioning as in (23), GDL (Λ(z)) is partitioned into

GDL (Λ(z)) = blkdiag
{
GC̃(z),GD(z),GD̃(z),GC(z)

}
, (82)

where GD(z) = blkdiag {GD0
(z), . . . ,GDK

(z)} and GC(z) = blkdiag {0R,GC1
(z), . . . ,GCK

(z)}. Note

that the upper-left block
{
GDL (Λ(z))

}(1,1)
= GC̃(z), which is then used to compute GB(z) = 1

RTr(GC̃(z)).

By replacing K in (81) with GDL (Λ(z)) in (82), and substituting L and RD
L̃

with (36) and (81),

respectively, we obtain GDL (Λ(z)) as

GDL (Λ(z)) =



GC̃(z)

GD(z)

GD̃(z)

GC(z)


= ED



Ψ̃(z) 0 0 −G

0 Φ̃(z) −F IL

0 −F
†

Φ(z) 0

−G
†

IL 0 Ψ(z)



−1

, (83)

where Ψ̃(z), Ψ(z), Φ̃(z), and Φ(z) are given in (41)-(44). By invoking Lemma 2 to the RHS of (83)

and taking expectation over D, the matrix-valued function GC̃(z) = A−11 , and GD(z), GD̃(z), GC(z) are
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the diagonal blocks of the matrix A−12 , where A1 and A2 are given by

A1 = Ψ̃(z)−
[
0 0 G

]


Φ̃(z) −F IL

−F
†

Φ(z) 0

IL 0 Ψ(z)


−1 

0

0

G
†

 , (84)

A2 =


Φ̃(z) −F IL

−F
†

Φ(z) 0

IL 0 Ψ(z)

−


0

0

G
†

 Ψ̃(z)−1
[
0 0 G

]
. (85)

Applying Lemma 3, the RHS of (84) can be further derived as

A1 = Ψ̃(z)−GS−1G
†
, (86)

where S = Ξ(z) and is calculated in (56) as

S = Ξ(z) = Ψ(z)− Φ̃(z)−1 − Φ̃(z)−1F
(
Φ(z)− F

†
Φ̃(z)−1F

)−1
F
†
Φ̃(z)−1

= Ψ(z)−
(
Φ̃(z)− FΦ(z)−1F

†
)−1

. (87)

The second equality of (87) is obtained by applying Lemma 1. Then, (45) is established by combining

(86) and (87).

The inverse of A2 can be explicitly calculated via Lemma 3, where E = Φ̃(z), F = H† = −F,

G = L = IL, J = Φ(z), K = M = 0, and N = Ψ(z) − G
†
Ψ̃(z)−1G. We further let T =

Φ(z)−F
†
Φ̃(z)−1F and T̃ = Φ̃(z)−FΦ(z)−1F

†. Then, the matrix-valued functions GD(z), GD̃(z), and

GC(z), being the diagonal blocks of A−12 , are given by

GD(z) = Φ̃(z)−1 + Φ̃(z)−1FT−1F
†
Φ̃(z)−1 + T̃−1

(
N − T̃−1

)−1
T̃−1, (88)

GD̃(z) = T−1 + T−1F
†
Φ̃(z)−1

(
N − T̃−1

)−1
Φ̃(z)−1F T−1, (89)

GC(z) =
(
N −

(
Φ̃(z)−1 + Φ̃(z)−1FT−1F

†
Φ̃(z)−1

))−1
. (90)

Finally, applying Lemma 1 to (88)-(90), we obtain GD(z), GD̃(z), and GC(z) as in (46)-(48).
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