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Abstract

Low-rate and short-packet transmissions are important for ultra-reliable low-latency communications

(URLLC). In this paper, we put forth a new family of sparse superposition codes for URLLC, called

block orthogonal sparse superposition (BOSS) codes. We first present a code construction method for

the efficient encoding of BOSS codes. The key idea is to construct codewords by the superposition of the

orthogonal columns of a dictionary matrix with a sequential bit mapping strategy. We also propose an

approximate maximum a posteriori probability (MAP) decoder with two stages. The approximate MAP

decoder reduces the decoding latency significantly via a parallel decoding structure while maintaining

a comparable decoding complexity to the successive cancellation list (SCL) decoder of polar codes.

Furthermore, to gauge the code performance in the finite-blocklength regime, we derive an exact

analytical expression for block-error rates (BLERs) for single-layered BOSS codes in terms of relevant

code parameters. Lastly, we present a cyclic redundancy check aided-BOSS (CA-BOSS) code with

simple list decoding to boost the code performance. Our experiments verify that CA-BOSS with the

simple list decoder outperforms CA-polar codes with SCL decoding in the low-rate and finite-blocklength
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regimes while achieving the finite-blocklength capacity upper bound within one dB of signal-to-noise

ratio.

I. INTRODUCTION

A. Motivation

The aspiration for ultra-reliable low-latency communications (URLLC) is unrelenting for next

generation wireless systems. URLLC is envisioned to ensure that a data packet is delivered within

a very short time duration (e.g., within 1 ms) while satisfying very high reliability (e.g., the packet

error rate is less than 10−6) [2]–[6]. These stringent requirements of the latency and reliability

are indispensable to support various mission-critical applications that demand prompt responses

with ultra-high accuracy, including automated driving, industrial automation, and telesurgery

[7], [8]. To deliver a data packet with extremely low-latency and high-reliability, it is essential

to design a novel low-rate coded modulation technique that is fast decodable while achieving

near-optimal performance in the finite-blocklength regime [9], [10]. The standard approach to

designing low-rate codes at a short-blocklength is to concatenate standard codes (e.g., turbo

[11] and low-density parity-check (LDPC) codes [12], [13]) with a simple repetition code. For

instance, the narrow-band internet-of-things standard allows up to 2048 repetitions of a turbo

code with rate 1/3 to meet the maximum coverage requirement [14]. This simple construction,

however, is very far from optimal when the blocklength is short.

Significant progress has been made on finite-blocklength information theory, which charac-

terizes achievability and converse bounds for the highest channel code rate achievable at a

given blocklength and error probability [15]. Notwithstanding, designing the optimal code in

finite-blocklength is very challenging because of the non-asymptotic behavior of codes in a

finite-dimensional space. Recently, Arıkan, the inventor of polar codes [16], presented a novel

family of polar codes called polarization-adjusted convolutional (PAC) codes [17]. Unlike the

polar code serially concatenated with a cyclic redundancy check (CRC) code used in 5G NR

[18], PAC codes take the convolutional transform with proper rate-profiling. PAC codes with a

tree-search based sequential decoder were shown to achieve the finite-length converse bound very

tightly, i.e., the Gaussian dispersion bound [15]. However, these tree-search sequential decoders

(e.g., Fano or stack decoders) are implemented with prohibitively high computational complexity

at low signal-to-noise ratio (SNR). More importantly, decoding latency is unpredictable by the
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inherent nature of the tree-search based sequential decoding, which are not suitable for low-

latency communication applications.

In this paper, we take a different direction toward designing low-rate codes in finite-blocklength.

Harnessing the power of sparsity in low-rate code design, we introduce a new class of low-rate

codes for URLLC called block orthogonal sparse superposition (BOSS) codes. Through the

paper, we show that our BOSS code can achieve the Gaussian dispersion bound within one dB

in the short-blocklength regime with a fast low-complexity decoder.

B. Related Work

Sparse regression codes (SPARCs) are a joint modulation and coding technique introduced by

Joseph and Barron [19]. Unlike traditional coded modulation techniques [20], [21], a codeword of

SPARCs is constructed by the direct multiplication of a dictionary matrix and a sparse message

vector under a block sparsity constraint. Using the Gaussian random dictionary matrix with

independent and identically distributed (IID) entries for encoding and the optimal maximum

likelihood (ML) decoding. SPARCs have been shown to achieve any fixed rate smaller than the

capacity of Gaussian channels as the code length goes to infinity [19].

Designing low-complexity decoding algorithms for SPARCs is of great interest to make the

codes feasible in practice [22]–[26]. The adaptive successive decoding method and its variations

have made significant progress in this direction [22], [23]. By interpreting the decoding problem

of a SPARC with L sections as a multi-user detection problem in the Gaussian multiple-access

channel with L users under a total sum-power constraint, the idea of adaptive successive decoding

is to exploit both the successive interference cancellation at the decoder with a proper power

allocation strategy at the encoder. Decoding algorithms using compressed sensing have also

received significant attention as computationally-efficient alternatives owing to a deep connection

between SPARCs and compressed sensing [27]. In principle, the decoding problem of SPARCs

can be interpreted through the lens of sparse signal recovery from noisy measurements under

a certain sparsity structure. Exploiting this connection, approximate message passing (AMP)

[28], successfully used in the sparse recovery problem, has been proposed as a computationally-

efficient decoding method of SPARCs [25], [26]. One key feature of the AMP decoder is that the

decoding performance per iteration can be analyzed by the state evolution property [28]. Although

both low-complexity decoders can decrease the error probability with a near-exponential order in

the code length as long as a fixed code rate is below the capacity, the finite length performance
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of the AMP decoder is much better than that of the adaptive successive hard-decision decoder.

However, the performance of SPARCs with such low-complexity decoders is limited in the

regime of both very low rate and short-blocklength, in which a transmitter sends a few tens of

information bits to a receiver using a few hundreds of the channel uses.

The performances of SPARCs in the low-rate and short-length regime can be improved by

carefully designing their dictionary matrices of a finite size [29], [30]. However, finding the

optimal dictionary matrix for given code rates and blocklengths is a very challenging task. To

avoid this difficulty, the common approach in designing the dictionary matrix is to exploit well-

known orthogonal matrices. For instance, the use of the Hadamard-based dictionary matrix is

shown to provide better performances than that of the IID Gaussian random dictionary matrices

in the finite-blocklength regime [24]. The quasi-orthogonal sparse superposition code [31] is

another example, in which Zadoff-Chu sequences are harnessed to construct a dictionary matrix,

ensuring the near-orthogonal property. Interestingly, it performs better than polar codes in some

short-blocklength regimes. However, constructing such a near-orthogonal dictionary matrix per

code rate and blocklength requires a high computational complexity. In addition, the decoding

complexity and latency of the iterative decoder, called belief propagation successive interference

cancellation, cannot meet the stringent requirements of no-error-floor performance in URLLC.

C. Contributions

The major contributions of this paper are summarized as follows:

• Our main contribution is to introduce a new class of sparse superposition codes, referred

to as BOSS codes. Unlike a SPARC using a random dictionary matrix for encoding,

the BOSS encoder exploits a structured dictionary matrix formed by the concatenation

of G unitary matrices of size M by M . The chosen G unitary matrices (e.g., Fourier,

Walsh-Hadamard, Haar, and discrete cosine matrices) can take a fast unitary transform for

efficient encoding and decoding. The encoder constructs a codeword with this structured

matrix by multiplying the dictionary matrix with a sparse message vector. A sequential

bit mapping strategy generates the sparse message vector. The key idea of the sequential

bit mapping is to successively map the fractions of information bits into the positions and

the coefficients of sparse sub-message vectors using the non-selected column indices in

the previously generated sub-message vectors. The remarkable property of our construction

is that all codewords are mutually orthogonal, i.e., this is a class of orthogonal codes. In
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addition, it allows preserving the norms of sparse message vectors after multiplying them

by the dictionary matrix. This implies that our code construction achieves the zero restricted

isometry property (RIP) value from a compressive sensing viewpoint [27], [29]. In addition,

our encoding requires linear complexity in blocklength, and it is flexible to generate various

code rates for a given blocklength by adjusting the code parameters.

• We present a fast and low-complexity decoder for BOSS codes while achieving a near

maximum likelihood (ML) decoding performance. We refer to this as two-stage MAP

decoder. In the first stage, the decoder takes G unitary transforms of the received signal

in parallel, which requires a complexity of O(GM log(M)). Then, with each transformed

signal, the decoder independently performs element-wise MAP decoding with successive

support set cancellation as in [32] to recover the K-sparse message vectors, which requires a

complexity order of O(KM). In the second stage, using the decoded sparse message vectors

in the prior stage, the decoder finds the unitary matrix index using the minimum distance

detection, which requires linear complexity with the number of sub-unitary matrices, i.e.,

O(G). For a two-layered BOSS code, which is the most practically relevant case for a

low-rate code design, it turns out that a simple ordered statistics (OS) decoder with linear

complexity in the blocklength, O(K log(M)), can be optimal for the first stage decoding.

The key feature of our two-stage decoder can be implemented in parallel; thereby, fast

and low-complexity decoding is possible, which is paramount for extremely low-latency

communications.

• We derive an exact expression for block error rates (BLERs) of a single-layered BOSS

code with the two-stage decoding in terms of relevant code parameters, including code

blocklength, code rates, and the the SNR. Our analytical expression elucidates how the

code performance changes according to these code design parameters. Specifically, we

confirm that the BLER performance improves as the blocklength and SNR increase, while

it deteriorates with the number of unitary matrices, G. We also verify that the BLER

performance highly depends on the first stage decoding error. This implies that increasing

the code rate by using more unitary matrices is preferable in the code design at the cost

of decoding complexity. Our analytical expression for BLER is also particularly useful for

predicting the minimum required SNR to achieve an extremely low target BLER below

10−6, which is very hard to obtain even with computer simulations. Using this, we verify

that no error-floor occurs for our decoding method as the SNR increases.
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• To enhance coding performance, we also put forth a CRC-aided BOSS code, called a CA-

BOSS code, which is constructed by serially concatenating a CRC code with a BOSS code as

an outer code. For efficient decoding of CA-BOSS codes, we propose a list decoding method.

The key distinction with the two-stage MAP decoder is that the list decoder finds a set of

codewords with high reliabilities and validates whether they satisfy the CRC constraints.

Then, in the second stage, it performs minimum distance detection for partial codewords

that were successful in the validation. The decoding complexity of the list decoder does not

scale up the total decoding complexity order as it only slightly increases the OS decoder

complexity by a linear factor Q in linear, O(QK log(M)). The remarkable observation is

that our CA-BOSS code outperforms the CA-polar code with SC list (SCL) decoding when

the block length is short, and the code rate is low. More importantly, from simulations,

we verify that our code can achieve the finite-blocklength capacity within one dB using

efficient encoding and decoding with the complexity order of O(GM log(M)).

The rest of this paper is structured as follows. Section II presents an encoding method for

BOSS codes. Section III explains the approximate MAP decoder for fast decoding. Section IV

provides an analytical expression for the BLER of single-layered BOSS codes when the proposed

decoder is applied. Section V provides numerical results. Finally, Section VI concludes the paper

with possible extensions.

II. BLOCK ORTHOGONAL SPARSE SUPERPOSITION CODING

In this section, we present a novel encoding strategy called successive orthogonal encoding.

To augment understanding of BOSS coding, we introduce some useful properties and remarks.

A. Preliminaries

Before describing the code construction process, we introduce some notations and definitions

used in this paper.

Additive white Gaussian noise (AWGN) channel: We mainly investigate a transmission of

codewords over the AWGN channel. We restrict our attention to the real AWGN channel, but

the extension to the complex system is straightforward. Let M ∈ Z+ be the blocklength and

R ∈ R+ be the rate of a code. In the AWGN channel, when sending a codeword c ∈ RM , the

received vector y ∈ RM is obtained as

y = c + v, (1)
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where v is an M -dimensional zero-mean Gaussian noise vector of variance σ2
v , i.e., v ∼

N (0M , σ
2
vIM).

Dictionary and sparse message vector: A BOSS code is defined by a dictionary matrix A

of dimension M ×N , where N ∈ Z+ is the length of a sparse message vector. The dictionary

matrix A is constructed as a concatenation of G ∈ Z+ unitary matrices Ug ∈ RM×M :

A =
[
U1 U2 · · · UG

]
. (2)

It is worthwhile to note that any random unitary matrices can be used for encoding; yet a set

of special unitary matrices are preferred for efficient encoding and decoding. For instance, the

encoder uses a Walsh-Hadard matrix for U1. By taking a row permutation to U1, it is possible

to construct other unitary matrices as

Ug = PgU1, (3)

where Pg ∈ {0, 1}M×M is the gth permutation matrix. To make the sub-matrices distinguishable,

the encoder should choose G − 1 distinct permutation matrices, i.e., Pg 6= Pg′ for g, g′ ∈

{2, 3, . . . , G}.

A BOSS codeword c is represented as a matrix-vector multiplication of the dictionary matrix

and a sparse message vector x ∈ RN , i.e., c = Ax. The sparse message vector is generated as

a superposition of L layered sparse message vectors:

x =
L∑
`=1

x(`), (4)

where x(`) ∈ RN denotes the `th layered sparse message vector with K`(� N) non-zero

coefficients, i.e., ‖x(`)‖0 = |supp
(
x(`)
)
| = K`. The encoder assigns different signal levels for

the non-zero elements in x(`). Let J` be a non-zero alphabet size of x(`). Then, the constellation

for the `th sub-message vector is A` = {α`,1, α`,2, . . . , α`,J`} such as an amplitude modulation

(PAM) signal set. For simplicity in the decoding process, the signal level sets for distinct message

vectors are made to be disjoint, i.e., Aj ∩ Ak = ∅ for j 6= k ∈ [L], where [L] , {1, 2, . . . , L}.

B. Sequential Bit Mapping

The proposed encoding takes two stages as illustrated in Fig. 1. In the first stage, the encoder

selects a sub-dictionary matrix index g; B0 = blog2(G)c data bits are mapped into this block-

August 16, 2022 DRAFT



8

Index

Selection

Index

Selection

Index

Selection

Modulation 1

Modulation 2

Modulation L

Bit

Splitter

Sub-dictionary

matrix selection

Fig. 1: Proposed sequential encoder structure for the BOSS code construction.

index selection. Let us denote by xg ∈ RM a segment of x ∈ RN that corresponds to the selected

unitary matrix Ug, i.e.,

x =
[
xT
1 · · · xT

g · · · xT
G

]T
. (5)

Among G segments of x, only xg has K =
∑L

`=1K` non-zero elements, i.e., ‖x‖0 = ‖xg‖0 = K.

The second stage consists of L successive steps. Let u1 ∈ FB1
2 be a binary information string

of length B1. In the first layer, the encoder maps u1 into x(1) ∈ {0∪A1}N by uniformly selecting

K1 columns of Ug; hence, the permissible set is M(1) = [M ]. The encoder, then, assigns values

of A1 to the corresponding entries of the gth segment of x(1), i.e., x(1)
g . We define the support

of x
(1)
g , i.e., a set of non-zero index locations, as I(1) = {m ∈ M(1)|x(1)g,m ∈ A1}. The first

sub-codeword c(1) = Ax(1) conveys B1 =
⌊
log2

((|M(1)|
K1

))⌋
+ bK1 log2(|A1|)c information bits.

Previously chosen indices are excluded to avoid duplicate uses of locations. Utilizing the

support information of x
(1)
g , I(1), the encoder defines a candidate set for the second layer as

M(2) ⊆ [M ]\I(1). This guarantees that I(1) ∩ I(2) = ∅. The encoder then selects K2 positions

in M(2) and generates x(2) by allocating elements of A2 into the chosen positions of x
(2)
g .

The resultant sub-codeword c(2) = Ax(2) contains B2 =
⌊
log2

((|M(2)|
K2

))⌋
+ bK2 log2(|A2|)c
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information bits.

The encoder successively maps original bits in the same fashion until the Lth layer, where

the last candidate set is given by M(L) ⊆ [M ]\ ∪L−1j=1 I(j). uL ∈ FBL2 is encoded into x(L) such

that KL non-zero indices of x(L)
g ∈ {0∪AL}M form a subset of M(L). Thanks to the orthogonal

construction, the support of x
(L)
g , I(L), is mutually exclusive with the union of the supports of

x
(j)
g for j ∈ {1, 2, . . . , L− 1}, i.e., I(L) ∩

(
∪L−1j=1 I(j)

)
= ∅.

Given that index support sets of distinct layers are non-overlapping, a BOSS codeword can be

represented as a superposition of L sub-codeword vectors, each of which is a linear combination

of a subset of column vectors of Ug:

c =
L∑
`=1

c(`) =
L∑
`=1

Ax(`) =
L∑
`=1

Ugx
(`)
g . (6)

C. Properties

To shed further light on the significance of our code construction method, we provide some

properties.

Orthogonality: The most prominent property of the BOSS code is orthogonality between

sub-codewords, i.e., 〈c(j), c(k)〉 = 0 for j 6= k ∈ [L]. This inherent orthogonal property helps

develop a computationally efficient yet powerful decoder, which will be explained in Section III.

Zero-RIP codebook: In the sparse recovery literature, RIP constants measure change in the

`2 norm of sparse vectors induced by the dictionary matrix and therefore are a popular metric to

analyze the quality of sparse recovery algorithms [29], [33]. Let us denote by X a set of possible

sparse message vectors

X =

{
x|x ∈ AN , ‖x‖0 =

L∑
`=1

K`,

G∑
g=1

1{‖xg‖0 6=0} = 1

}
, (7)

where A = {0}
⋃(
∪L`=1A`

)
. Entailed by the proposed code construction method, BOSS code-

words constitute a zero-RIP codebook over X:

C = {c|c = Ax}, (8)

where x ∈ X, and ‖c‖2 = ‖Ax‖2 = 0. This property elucidates the difference with SPARCs.

For encoding of SPARCs, the Gaussian random dictionary matrix is used with a random sparse
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message vector. Therefore, in SPARCs, the norm of codewords guarantees (1 − δ)‖c‖2 ≤

‖Ax‖2 ≤ (1 + δ)‖c‖2 with RIP constant δ [29].

Decodability: In the absence of noise, a single-block, i.e., G = 1, BOSS code is uniquely

decodable since Aj ∩ Ak = ∅ for j 6= k ∈ [L]. Suppose A = IM , i.e., c = x. This is true

because a decoder is able to disnguish the `th sub-codeword x(`) from x =
∑L

j=1 x
(j), provided

x
(`)
m /∈ ∪j 6=`Aj, ∀m ∈ [M ]. The decoder, then, performs de-mapping from x(`) to u`, a stream

of B` information bits.

Code rate: At the `th layer, the encoder is allowed the leeway to choose K` indices from

M(`); thereby, it maps B` =
⌊
log2

((|M(`)|
K`

))⌋
+bK` log2(|A`|)c information bits. Taking account

of B0 bits mapped in the first encoding stage, the rate of the BOSS code is

R =
blog2(G)c+

∑L
`=1

(⌊
log2

((|M(`)|
K`

))⌋
+ bK` log2(|A`|)c

)
M

. (9)

For a symmetric case in which |M(`)| = M(< M), K` = K, and J` = 1 for all ` ∈ [L], the

code rate is simplified to R =
blog2(G)c+Lblog2((MK ))c

M
. For a fixed blocklength M , the proposed

encoding scheme can construct codes of various rates by appropriately tuning multiple design

parameters: the number of blocks G, the layer depth L, the number of non-zeros per layer K`,

and the size of non-zero alphabets J`. This flexibility in coding rate is a salient feature of BOSS

coding and attests to its applicability to URLLC use-cases.

Average transmit power: One intriguing property of the BOSS code is that its average trans-

mit power is tiny, thanks to the sparsity in the code construction. Without loss of generality, we

assume that the encoder has chosen the very first sub-dictionary matrix, i.e., ‖x‖0 = ‖x1‖0 = K.

The `th layer’s vector x
(`)
1 has K` elements drawn from A`, and the signal energy associated

with few non-zero entries is distributed by U1. Since the norm is preserved under unitary

transformation, the average power of a sub-codeword c(`) is given by

E{‖c(`)‖22} = E{‖U1x
(`)
1 ‖22} = E{‖x(`)

1 ‖22} =
K`

∑J`
j=1 α

2
`,j

J`

M
. (10)

Since all sub-codeword vectors are orthogonal, the average transmit power becomes

Es = E{‖Ax‖22} =
L∑
`=1

E{‖x(`)
1 ‖22} =

L∑
`=1

K`

∑J`
j=1 α

2
`,j

J`M
. (11)

Example: For ease of exposition, let us consider a BOSS code with [G,M,L] = [8, 64, 2],
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K1 = K2 = 1, and singleton PAM alphabets A1 = {1} and A2 = {−1}. The first B0 =

blog2(8)c = 3 bits are encoded into a block index g ∈ [8]. The encoder maps the following

B1 = blog2

((
64
1

))
c = 6 bits into choosing a column index i1 ∈ [64]. Without loss of generality,

suppose g = 1 and i1 = 1. Then, x
(1)
1 has a single non-zero coefficient, i.e., x(1)1 = 1. The

encoder chooses a second position i2 from M(2) = [M ]\{i1} = {2, 3, . . . , 64} represented by

the last B2 =
⌊
log2

((
63
1

))⌋
= 5 bits based on the predefined mapping table, and assigns −1 to

the selected entry. The codeword is then a linear combination of the selected columns of U1, i.e.,

c = U1

(
x
(1)
1 + x

(2)
1

)
= u1,i1 − u1,i2 , where u1,j is a jth column vector of U1 for j ∈ [M ]. A

codeword delivers a total of 14 = (3+6+5) bits with 64 channels uses, i.e., R = 14
64

= 0.21875.

The normalized average transmit power per channel use becomes Es = 1
64

+ 1
64

= 1
32

.

D. Remarks

We provide some remarks to offer further insights into BOSS coding and highlight the

difference with the existing coding and modulation methods.

Remark 1 (Joint encoding): The block-index selection and first-layer bit-mapping can be

combined into a single process. The encoder chooses a single column index from a fat dictionary

matrix, i.e.,
(
N
1

)
=
(
G
1

)(
M
1

)
, and the remaining K1−1 indices are selected from a corresponding

block. That is, putting the alphabet allocation aside,

log2(G) + log2

((
M

K1

))
= log2(N) + log2

((
M − 1

K1 − 1

)
· 1

K1

)
. (12)

Remark 2 (Orthogonal multiplexing for multi-layer index modulation signals): The

proposed coding scheme also generalizes the existing index modulation methods [34]. Consider

BOSS encoding with G = 1 and L = 1. The resulting code is identical to the index modulation.

Therefore, our coding scheme can be interpreted as an efficient orthogonal multiplexing method

of multi-layer index (spatial) modulated signals [34]–[36].

III. APPROXIMATE MAP DECODER

This section presents an approximate MAP decoder featuring low decoding latency and

complexity. We first explain the motivation of the approximate MAP decoder and present the

two-stage decoding algorithm in the sequel.
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Stage 1 Stage II

Hypothesis

Testing

Element-wise

MAP Decoder

Element-wise

MAP Decoder

Element-wise

MAP Decoder

Fig. 2: Two-stage MAP decoder for BOSS codes in the AWGN channel.

A. Two-stage MAP Approximation

Under the premise that a codeword c is generated using the gth sub-dictionary matrix in A,

the codeword can be written as

c = Ax = Ugxg, (13)

where the sub-message vector xg =
∑L

`=1 x
(`)
g is a member of the set

Xg =

{
xg|xg ∈ AM , ‖xg‖0 =

L∑
`=1

K`

}
. (14)

Let Hg be a hypothesis that the transmitted codeword is constructed with a sub-dictionary matrix

Ug:

Hg : c = Ugxg. (15)

Then, the MAP decoding problem can be decomposed into two different sub-MAP tasks, i.e.,

x̂MAP = arg max
x∈X

P(x|y)

= arg max
xg∈Xg ,g∈[G]

P(xg,Hg|y)

= arg max
xg∈Xg ,g∈[G]

P(xg|y,Hg)P(Hg|y). (16)
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Solving this MAP decoding problem requires the complexity order of O(|X|), which is pro-

hibitively high as the number of information bits increases. To diminish the decoding complexity,

we present a two-stage MAP decoder. The key idea of the two-stage MAP decoder is to solve

the MAP decoding problem in (16) independently for xg ∈ Xg and g ∈ [G], respectively. To be

specific, in the first stage, the decoder first identifies x̂g under Hg

x̂g = arg max
xg∈Xg

P(xg|y,Hg). (17)

Then, in the second stage, using the decoded x̂g, it finds the block index ĝ:

ĝ = arg max
g∈[G]

P(Hg|y). (18)

B. Two-stage MAP Decoder

We explain our two-stage MAP decoding algorithm.

Sparse message vector recovery: As illustrated in Fig. 2, in the first stage, the decoder aims

at identifying xg under each hypothesis Hg in parallel. To this end, the decoder simply takes

a fast unitary transform to the received signal vector y and produces G transformed receive

vectors as

yg = UT
g y = xg + ṽg, (19)

for g ∈ [G], and ṽg = UT
g v follows the identical distribution as v because the Gaussian

distribution is invariant under the unitary transform. The complexity order to obtain yg for

g ∈ [G] is O(GM logM) thanks to the fast transform for UT
g = U>1 P

>
g .

Now, the decoder solves the first sub-MAP decoding problem using yg:

x̂g = arg max
xg∈Xg

P (xg|y,Hg) = arg max
xg∈Xg

P (xg|yg) . (20)

Exploiting the fact that the support of xg is a union of mutual-exclusive index sets from L layers,

we compute the log of joint a posteriori probability (APP) in (20) and factorizing:

logP(xg|yg) =
L∑
`=1

logP(x(`)
g |yg,x(`−1)

g , . . . ,x(2)
g ,x(1)

g )

=
L∑
`=1

logP(x(`)
g |yg, I(`−1)g , . . . , I(2)g , I(1)g ), (21)

August 16, 2022 DRAFT



14

where the second equality follows from that previous non-zero supports, I(`−1)g , . . . , I(2)g , I(1)g ,

provide sufficient information to decode x
(`)
g . Hence, the decoder shall leverage side information

obtained in the preceding layers to recover x
(`)
g and update the conditional likelihoods accord-

ingly. This motivates to design a decoding algorithm based on successive support set cancellation.

From the Bayes’s rule as in [32], [37], the `th layer’s log likelihood in (21) is reformulated as

logP(x(`)
g |yg, Î(`−1)g , . . . , Î(2)g , Î(1)g ) =

1

C

∑
m∈M̂(`)

g

log
P(yg,m|x(`)g,m)P(x

(`)
g,m)

P(yg,m)
1{‖x(`)

g ‖0=K`}
, (22)

where C ∈ R+ is a normalizing constant, and a candidate set estimate M̂
(`)
g is defined as

M̂(`)
g = [M ]\ ∪`−1j=1 Î(j)g . (23)

Here and hereinafter, we omit support estimates obtained beforehand for notational simplicity

in (22), as they are already manifested in M̂
(`)
g . The permissible set in (23) is updated at each

iteration so that prior information on previous guesses is properly incorporated into subsequent

decoding processes. Note that estimates in (23) may differ by hypothesis Hg, but they all feature

the same cardinality predefined in encoding:

|M̂(`)
g | = 2B` ≤

(
M −

`−1∑
j=1

Kj

)
, ∀g ∈ [G]. (24)

The element-wise conditional likelihood function in (22) is given by

P
(
yg,m|x(`)g,m

)
=


1
J`

∑J`
j=1

1√
2πσ2

v

e
−
|yg,m−α`,j |

2

2σ2v if x(`)g,m ∈ A`

1√
2πσ2

v

e
− |yg,m|

2

2σ2v else.
(25)

As values of A` are uniformly allocated to non-zero entries of x(`)
g , a prior distribution of x(`)g,m

is given by

P(x(`)g,m) =

p
(`)
g,m, if x(`)g,m ∈ A`

1− p(`)g,m, if x(`)g,m = 0,
(26)

where p(`)g,m is the probability of x(`)g,m being a non-zero element given by

p(`)g,m =
K`

|M(`)|
=

K`

M −
∑`−1

j=1Kj

. (27)
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Invoking (25) and (26), we have the marginal distribution of yg,m:

P(yg,m) = P(yg,m|x(`)g,m ∈ A`)P(x(`)g,m ∈ A`) + P(yg,m|x(`)g,m = 0)P(x(`)g,m = 0)

=
1

J`

J∑̀
j=1

1√
2πσ2

v

e
−
|yg,m−α`,j |

2

2σ2v p(`)g,m +
1√

2πσ2
v

e
− |yg,m|

2

2σ2v (1− p(`)g,m). (28)

Note that recovery of a sparse vector x(`)
g is equivalent to identification of its non-zero element

locations such that paired columns of Ug constitute a sub-codeword c(`). For every index m ∈

M̂
(`)
g , the decoder computes its probability of being an element of I(`), i.e. a likelihood of x(`)g,m

taking on value from A` conditioned on yg,m:

logP(m ∈ I(`)|yg,m) = log
P(yg,m|x(`)g,m ∈ A`)P(x

(`)
g,m ∈ A`)

P(yg,m)

= log

1
J`

∑J`
j=1

1√
2πσ2

v

e
−
|yg,m−α`,j |

2

2σ2v p
(`)
g,m

1
J`

∑J`
j=1

1√
2πσ2

v

e
−
|yg,m−α`,j |2

2σ2v p
(`)
g,m + 1√

2πσ2
v

e
− |yg,m|

2

2σ2v (1− p(`)g,m)

. (29)

The decoder sorts M̂
(`)
g by the MAP metric in (29), which is monotone increasing with respect

to yg,m. To satisfy the sparsity requirement 1{‖x(`)
g ‖0=K`}

in (22), the decoder selects K` indices

that have the highest likelihoods and generates an ordered support estimate Î(`)g :

Î(`)g =
{
î
(`)
g,1, î

(`)
g,2, . . . , î

(`)
g,K`

}
, (30)

where P(̂i
(`)
g,j ∈ I(`)|yg,j) ≥ P(̂i

(`)
g,k ∈ I(`)|yg,k) for j < k. Once the layer support estimate is

determined, the decoder performs another MAP estimation to identify the signal levels of x(`)g,m

for m ∈ Î(`)g . In particular, this simplifies to the minimum Euclidean distance decoding:

x̂(`)g,m = arg min
α`,j∈A`

|yg,m − α`,j|. (31)

After L iterations, we obtain x̂g whose support is Îg =
⋃L
`=1 Î

(`)
g . Fig. 3 describes the first stage

under hypothesis Hg.

The block index recovery: Using x̂g for g ∈ [G], in the second stage, the decoder performs

the hypothesis testing to identify a true block index g. For every x̂g, the decoder generates a

tentative codeword as ĉg = Ugx̂g. Since v is the Gaussian white noise vector, and the encoder

has selected the block index uniformly from [G], the second sub-MAP decoding problem is
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Fig. 3: Recovery of a sparse message vector under hypothesis Hg.

reduced to seeking ĉg that is closest to y:

ĝ = arg max
g∈[G]

P(Hg|y) = arg min
g∈[G]

‖y − ĉg‖2. (32)

As a result, the decoder obtains the estimate of a sparse message vector of dimension N with

K =
∑L

`=1K` non-zero entries, all located in the ĝth segment, as

x̂MAP =
[
0T
M · · · x̂T

ĝ · · · 0T
M

]T
. (33)

Remark 3 (Decoding complexity): The decoding complexity order of the proposed two-stage

MAP decoder is sub-quadratic in the blocklength, i.e., O(GM logM). Specifically, under the

hypothesis of Hg, the decoder first computes yg. To accomplish this, the decoder first takes the

permutation using Pg and then performs the fast transform with U1, i.e., U>g = U>1 P
>
g . This

procedure requires the complexity of O(GM logM). The decoder, then, calculates |M(`)| ≤

M −
∑`−1

j=1Kj APPs in (29) and selects K` indices with the largest APP values to estimate the

support. Hence, Î(`)g can be obtained with the complexity order O
((
M −

∑`−1
j=1Kj

)
log2(K`)

)
.

After Î(`)g is found, the decoder performs element-wise maximum likelihood signal level detection

for the `th layer, which takes J`K` computations. The G sub-message estimates x̂g are obtained

by repeatedly performing the identical procedures. In the last stage, the decoder generates G code-

word candidates and compares their Euclidean distance from y. This re-encoding task, however,

makes a negligible contribution to the overall decoding complexity, as each candidate is a linear

combination of columns of Ug. As a result, the total decoding complexity is O (GM log(M)),

which is sub-quadratic in the blocklength.

August 16, 2022 DRAFT



17

Remark 4 (Optimality of a simple ordered statistics decoder): We consider a two-layered

BOSS code with uniform sparsity K1 = K2; A1 = {1} and A2 = {−1}; and an arbitrary block

size G. In this case, we show that the first procedure of the proposed two-stage MAP decoding

algorithm is equivalent to a simple ordered statistics (OS) decoder. By plugging

P(yg,m|m ∈ I(1)) =
1√

2πσ2
v

exp

(
−(yg,m − 1)2

2σ2
v

)
(34)

and

P(yg,m|m /∈ I(1))

= P(yg,m|m ∈ I(2))P(m ∈ I(2)) + P
(
yg,m|m /∈ (I(1) ∪ I(2))

)
P(m /∈ (I(1) ∪ I(2)))

=
1√

2πσ2
v

exp

(
−(yg,m + 1)2

2σ2
v

)
K1

N −K1

+
1√

2πσ2
v

exp

(
−
−y2g,m
2σ2

v

)
N − 2K1

N
(35)

into (25), we obtain the log APP of an event m ∈ I(1):

logP(m ∈ I(1)|yg,m) =
1

1 + exp
(
−2yg,m

σ2
v

)
N

N−K1
+ exp

(
−2yg,m−1

2σ2
v

)
(N−2K1)

K1

. (36)

logP(m ∈ I(1)|yg,m) is a monotonically increasing function of yg,m, so we conclude that the

support estimate Î(1)g is determined by the K1 largest values in yg. Similarly, Î(2)g is equivalent

to a set of K2 smallest entries in yg, except yg,j for j ∈ Î(1)g .

This OS decoder is particularly useful for the fast decoding because the sorting algorithm

requiring a complexity of O(log(K1 + K2)M) is sufficient to decode x̂g from yg. In our

simulations, we shall use this OS decoder for implementation efficiency.

IV. PERFORMANCE ANALYSIS

In this section, we derive an exact analytical expression for the BLERs of single-layered BOSS

codes with the proposed two-stage MAP decoding. Our analysis provides an insight into how

the BLER changes according to blocklength M , the number of unitary matrices G, and Eb

N0
. The

following theorem is the main result of this section.

Theorem 1. Let E1 and E2 be the error events for the first and second stage decoding. The

BLER of a single-layered BOSS code with A = {1} and rate R = blog2(M)c+blog2(G)c
M

is given by

PBLER(M,G, σ2
v) = P(E1) + P(E2|Ec1)P(Ec1), (37)
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where

P(E1) = 1− (M − 1)√
2πσ2

v

∫ ∞
−∞

Q

(
y − 1

σv

)[
1−Q

(
y

σv

)]M−2
e
− y2

2σ2v dy, (38)

and

P(E2|Ec1) = 1−

[
Γ
(
M
2

)
√
πΓ
(
M−1
2

) ∫ 1

−1
Q

(
w − 1√

2σ2
v

)
(1− w2)

M−3
2 dw

]M(G−1)

. (39)

Proof. See Appendix A.

Although the BLER expression in Theorem 1 is integral form, it illuminates how the decoding

performance of BOSS codes is affected by code parameters. Note that the noise power σ2
v is

related to Eb

N0
and code rate R = blog2(M)c+blog2(G)c

M
as

σ2
v =

1

M

1

2REb

N0

=
1

2(blog2(M)c+ blog2(G)c)Eb

N0

. (40)

First, for fixed Eb

N0
and G, it is evident that both P(E1) and P(E2) decrease as blocklength

M increases because the effective noise power σ2
v is inversely proportional to M , and P(E1)

and P(E2) are decreasing functions with respect to M . This confirms our intuition that the

BOSS code with a large blocklength can improve the BLER performance. Second, for fixed

M , increasing the number of unitary blocks G impacts the BLERs differently depending on

the noise power σ2
v . When Eb

N0
is sufficiently high, the second stage decoding error can vanish,

i.e., limσ2
v→0 P(E2|Ec1) → 0. This is somewhat surprising because increasing the code rate by

using more G unitary blocks does not occur any second stage decoding error, provided that Eb

N0

is high enough. In this case, the resultant BLER is bounded by the first stage decoding error.

However, when Eb

N0
is not sufficiently high, increasing G deteriorates the second stage decoding

performance. Lastly, for fixed G, and M , it is apparent that the decoding error approaches zero as

increasing Eb

N0
. This also confirms that our BOSS code with the two-stage decoder does not have

error-floor effects, which is particularly useful for URLLC applications such as telesurgery and

augmented reality wherein accurate, haptic feedback is required, so a target BLER is extremely

low (e.g., 10−6).

V. CA-BOSS CODES

In this section, we present a serially concatenated scheme of BOSS codes with short CRC

as the outer code. This new family of BOSS codes, namely CA-BOSS codes, further improves
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the decoding performance with a simple list decoder, while increasing the decoding complexity

very marginally.

A. Concatenated Encoding

Fig. 4: Concatenated encoding of CA-BOSS codes.

In the proposed MAP-based decoding algorithm, wrong decisions made in the early phases

of the first stage cannot be fixed and result in incorrect candidate sets for the remaining layers.

We adopt CRC precoding to help the decoder determine the non-zero support. BCRC CRC bits

are added to the data block u ∈ FB2 . The appended block u′ ∈ FB+BCRC
2 is then fed into the

original BOSS encoder, and its fractions are sequentially mapped into a dictionary block index

and non-zero elements. The CA-BOSS encoder is illustrated in Fig. 4 with a block newly added

to the original BOSS encoder colored red.

B. List Decoder

Element-wise

MAP Decoder
CRC Test

Element-wise

MAP Decoder

Element-wise

MAP Decoder

CRC Test

CRC Test

Minimum Distance 

Decoding

Fig. 5: The MAP-List decoder design of CA-BOSS codes.
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We introduce a list decoding algorithm based on the two-stage MAP decoder to take advantage

of CRC error-detection. Under each Hg, the decoder finds Q sub-message vector estimates, i.e.,

{x̂g,1, x̂g,2, . . . , x̂g,Q}. The list can be generated in various ways. For example, when a two-

layered BOSS code with K1 = K2 = 1 is evaluated, the decoder can select the two most likely

indices at each layer and obtain a list of Q = 4, using their combinations. The decoder inverse-

maps each provisional support {Îg,q}q∈[Q] and g to a bit sequence and performs a CRC test to

identify a valid combination of the block and non-zero indices. Only surviving message vector

estimates are transferred to the next decoding stage and re-encoded into tentative codewords.

Finally, the decoder determines the block index and most probable valid support by choosing

the codeword candidate closest to y. The proposed MAP-List decoding is described in Fig. 5.

VI. NUMERICAL RESULTS

In this section, we provide simulation results to validate the error-correcting performance of

proposed BOSS codes under the two-stage MAP decoding algorithm. We then investigate how

CRC concatenation affects the performance of BOSS codes.

A. BLER Comparison in the AWGN Channel

We adopt BLER versus Eb/N0 as an assessment of the two-stage MAP decoder in the AWGN

channel to take into consideration low code rates and non-standard modulation techniques of

BOSS codes.

BOSS codes: We simulated two-layered BOSS codes with blocklength M = 128; symmetric

sparsity K1 = K2 = 1; singleton PAM alphabets A1 = {1} and A2 = {−1}; and various block

sizes. For G = 16, the code rate is 17
128
≈ 0.13.

Polar codes: We considered a 1/2 rate polar code of length 128, using the binary phase-shift

keying (BPSK) modulation. The code construction is based on the 2× 2 Arıkan kernel, and the

3GPP 5G NR frozen set, i.e., pre-computed SNR-independent channel reliability order, [38] is

adopted. SC and SCL decoding algorithm with search width L = 16 were employed.

Convolutional codes: A convolutional code of length 128 with BPSK modulation was

evaluated under the soft Viterbi algorithm. The generator polynomials are g = [171 133] in

octal notation, so the constraint length is 7. Taking account of rate loss entailed by termination

bits, the effective code rate is 58
128
≈ 0.45.
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(128, 8) Bi-Orthogonal Code
(128, 16) BOSS Code + Two-stage MAP (G = 8)
(128, 17) BOSS Code + Two-stage MAP (G = 16)
(128, 18) BOSS Code + Two-stage MAP (G = 32)
(128, 19) BOSS Code + Two-stage MAP (G = 64)
(128, 20) BOSS Code + Two-stage MAP (G = 128)
(128, 21) BOSS Code + Two-stage MAP (G = 256)

G 2 f8; 16; 32; 64; 128; 256g

Fig. 6: BLER comparison with existing codes.

SPARC codes: We used a fat random Gaussian dictionary matrix A consisted of 8 sections

to generate a SPARC of length 128. Each section contains 256 columns, i.e., A ∈ R128×2048, so

the code rate is 8 log2 256
128

= 1
2
.

Bi-orthogonal codes: We considered a bi-orthogonal code of length 128 with a dictionary

matrix A = [H27 ,−H27 ], where H2k is a Hadamard matrix of order 2k. Each codeword conveys

log2(2× 128) = 8 bits in 128 channel uses.

Fig. 6 shows that BOSS codes outperform polar codes under SCL decoding by a considerable

margin: the proposed decoder results in approximately 0.4 coding gains at BLER of 10−4

even for G = 8. The results in Fig. 6 also illustrate a prominent feature of BOSS codes:

enlarging the dictionary matrix improves decoding performance at the cost of computational

complexity. This trend can be ascribed to an increase in the code rate caused by concatenating

the dictionary matrix with more blocks, whereas the average transmit energy Es is preserved.

Therefore, the block number parameter G can be appropriately tuned to achieve a desired trade-

off between performance and complexity. Surprisingly, no performance saturation was observed

when increasing G up to 256. A bi-orthogonal code shows comparable performance to that of
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our BOSS codes with a few blocks. Therefore, it can be thought as a special case of BOSS

codes when G = 2 and K = 1.

B. Decoding Performance of CA-BOSS codes

0 0.5 1 1.5 2 2.5 3 3.5
Eb=N0 (dB)

10-5

10-4

10-3

10-2

10-1

100
B

LE
R

(128, 64) Polar Code + SCL (L = 16)
(128, 58) CA-Polar Code + SCL (CRC-6, L = 4)
(128, 58) CA-Polar Code + SCL (CRC-6, L = 8)
(128, 58) CA-Polar Code + SCL (CRC-6, L = 16)
(128, 20) BOSS Code + MAP-List Decoding (G = 128, Q = 4)
(128, 20) CA-BOSS Code + MAP-List Decoding (G = 128, CRC-3, Q = 4)
(128, 21) BOSS Code + MAP-List Decoding (G = 256, Q = 4)

3.25 3.3 3.35 3.4 3.45 3.5

10-4

Fig. 7: BLER performance comparison between CA-BOSS and CA-polar codes.

Fig. 7 compares CA-BOSS codes to the state-of-the-art CA-polar codes under SCL decoding

with different search width. It can be seen that CA-BOSS codes outperform ordinary BOSS

codes of the same rate by a meaningful margin. Moreover, at high SNR, the CA-BOSS code

with G = 128 even shows superior decoding performance to the BOSS code with G = 256.

We observed from the AWGN simulation result that the performance-complexity trade-off of

BOSS coding is controlled by G. This favorable trait, however, does not lend itself to CA-BOSS

codes, since the effective code rate remains the same. If the list decoding is adopted without

CRC concatenation, the decoder at the second stage will generate Q codeword candidates per

hypothesis, and incorrect estimates happen to be closer to the observation. The CRC test is

capable of ruling out error events caused by invalid support estimates under the true hypothesis.

Consequetly, CA-BOSS codes enjoy two gains in reducing decoding complexity by the codeword

pruning and enhancing the decoding performance by error detection.
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In the low SNR regime, CA-BOSS codes show excellent decoding performance; however, as

the SNR increases, BLER of CA-polar codes drops with a precipitous slope, beating CA-BOSS

codes.

-10 -8 -6 -4 -2 0 2
SNR (dB)

10-6
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10-1

100

B
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R

(64, 16) CA-Polar Code + SCL (CRC-6, L = 16)
(128, 16) CA-Polar Code + SCL (CRC-6, L = 16)
(256, 16) CA-Polar code + SCL (CRC-6, L = 16)
(64, 16) CA-BOSS Code + MAP-List (CRC-3, Q = 4)
(128, 16) CA-BOSS Code + MAP-List (CRC-3, Q = 4)
(256, 16) CA-BOSS Code + MAP-List (CRC-3, Q = 4)
Meta-converse Dispersion Bound (Saddlepoint Approximation)

R = 1
4

R = 1
16

R = 1
8

5 1 dB

Fig. 8: BLER performance comparison for BOSS and polar codes when R ∈ {1/4, 1/8, 1/16}.

Fig. 8 compares CA-BOSS codes with CA-polar codes of the same rate. It turns out that

CA-BOSS codes outperform the polar counterparts at every blocklength under consideration,

even when attached with the shorter, i.e., weaker, CRC outer code. This remarkable result attests

to the error-correction capability of our codes. When transmitting the same information block

size, adding CRC bits causes the polar encoder to use additional non-extremal (having mediocre

reliability) virtual bit-channels. As a result, the receiver is more prone to errors in the early

phase of sequential decoding. This fact, however, is not a concern of CA-BOSS coding.

Fig. 8 also plots the saddlepoint approximation [39] to the meta-converse bound [15]:

η(n,M)
4
= min

Pn
max
Qn
{α 1

M
(P n ×W n, P n ×Qn)}, (41)

where M is the number of symbols transmitted over a length-n W n(·|·) channel, and αβ(P,Q) is

the smallest type-I error probability across all tests between an input distribution P and auxiliary
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output distribution Q, with a type-II error probability of at most β. It can be seen that our CA-

BOSS codes perform within one dB away from the finite-length channel capacity bounds in all

SNRs and rates.

C. Validation of BLER Analysis
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M = 256, G = 64 (Simulation)

(a)
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M = 512, G = 16 (Analytic)
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Fig. 9: BLER comparison between analytical and simulation results for M ∈ {256, 512} and
G ∈ {2, 16, 64}.

Fig. 9 compares the analytical BLER derived in Theorem 1 with the simulations for M =

{256, 512}, A = {1}, and G = {2, 16, 64}. As can be seen, our analytical expression tightly

matches with the simulation results for various code parameters, which confirms the exactness

of our analysis. In the low Eb/N0 regime, our analytical results show a small discrepancy with

simulations. This gap arises from the numerical precision errors in computing M(G−1) power in

(39), and it becomes pronounced as M(G− 1) increases. Nonetheless, this gap readily vanishes

as Eb/N0 increases.

VII. CONCLUSION

From the point of view of coded modulation techniques, this work has provided a new type

of joint coded modulation method called BOSS codes for URLLC. In particular, we have

presented a novel successive encoding technique to generate zero-RIP codewords that are a
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sparse linear combination of orthogonal columns of a dictionary matrix. A very fast yet noise-

tolerant MAP-based decoding algorithm has been proposed for BOSS codes. This two-stage

MAP decoder exploits the orthogonality and performs element-wise MAP decoding to identify

non-zero coefficients in a parallel structure, thereby achieving near-ML decoding performance

with low decoding latency. We then provide the exact BLER expression for single-layered BOSS

codes. This analytical formula is useful in understanding on how crucial code parameters affect

the performance of BOSS codes. We have further improved the performance of BOSS codes

through concatenation with a CRC outer code and shown that CA-BOSS codes achieve the

meta-converse bound within one dB in the low code-rate regime.

In recent follow-up work, a robust decoding algorithm for BOSS codes was studied in multi-

path fading environments, and the real-time demonstration using NI-PXI according to IEEE

802.11 standards was shown to considerably outperform CA-polar codes with SCL decoding

when a codeword transmission experiences multiple fading states [40], [41]. A promising direc-

tion for future work is to develop a joint equalizer and decoder that is robust for the multi-fading

states. It is also an interesting direction to expand BOSS codes by incorporating phase shift keying

modulation in complex AWGN channels to deliver more information bits in an energy-efficient

manner.

APPENDIX

A. Proof of Theorem 1

Before providing the proof, we first introduce two lemmas, which are necessary for our proof.

The first lemma provides probability distribution of the maximum and minimum of M IID

random variables.

Lemma 1. Let {Xm}Mm=1 be a sequence of M IID random variables, each with probability

density function (PDF) fX(x) and cumulative density function (CDF) FX(x). We also denote

the maximum and minimum of the sequence by Xmax = max
1≤m≤M

Xm and Xmin = min
1≤m≤M

Xm ,

respectively. Then, the PDF’s of Xmax and Xmin are

fXmax(x) = MfX(x)FX(x)M−1 and (42)

fXmin(x) = MfX(x)[1− FX(x)]M−1. (43)
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Proof. Due to independence, the CDF of Xmax can be readily found:

FXmax(x) =
M∏
m=1

P(Xm ≤ x) = FX(x)M . (44)

By differentiating FXmax(x) with respect to x, we obtain fXmax(x). Similarly, FXmin(x) = 1 −

[1− FX(x)]M , and the rest of the proof is straightforward.

The second lemma provides statistics of an inner product of two IID random unit vectors in

an (M − 1)-dimensional sphere.

Lemma 2. For two random unit-norm vectors, u ∈ RM and v ∈ RM , that are uniformly

distributed on a sphere SM−1, their inner product W = 〈u,v〉 has a PDF given by

fW (w) =
Γ
(
M
2

)
√
πΓ
(
M−1
2

)(1− w2)
M−3

2 . (45)

Proof. If X = {X1, X2, . . . XM} follows the standard multivariate normal distribution, i.e.,

Xi ∼ N (0, 1), then X
‖X‖2 is uniformly distributed on the unit sphere. We assume that v =

[1, 0, . . . , 0] thanks to spherical symmetry, and then the distribution of W is identical to that of

X1√
X2

1 +X2
2 + · · ·+X2

M

. (46)

It is well known that the square of ratio distribution in (46) follows Beta(1
2
, M−1

2
). The rest of

the proof is trivial.

Now, we are ready to prove Theorem 1. We denote by E1 and E2 an error event at stage 1 and

2 of the proposed two-stage MAP decoder, respectively. Using these error events, the probability

of decoding error is given by

P(E) = P(E1) + P(E2|Ec1)P(Ec1). (47)

We consider a randomly constructed dictionary matrix A = [U1,U2, . . . ,UG], i.e., Ui and Uj

are independent for i 6= j ∈ [G]. Without loss of generality, we assume that K1 = 1 and U1

has participated in encoding, so Ax = U1x1, where ‖x1‖0 = 1. For the AWGN channel, the

received symbol in the mth channel use is given by

Ym =

1 + Vm for m ∈ I

Vm for m /∈ I,
(48)
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where Vm is a zero-mean Gaussian noise with variance σ2
v . As explained in Remark 4, a simple

OS decoder is optimal in this case. Then, the error event at stage is {x̂1 6= x1}, and its probability

can be computed as

P(E1) = 1− P(Ec1)

= 1− P(Y min
I > Y max

Ic ), (49)

where Y min
I

4
= min

m∈I
Ym and Y max

Ic
4
= max

m∈Ic
Ym. The conditional expectation theorem gives

P(Y min
I > Y max

Ic ) = EY max
Ic

{
P(Y min

I > y)|Y max
Ic = y

}
=

∫ ∞
−∞

P(Y min
I > y)fY max

Ic
(y)dy

=

∫ ∞
−∞

P(Y min
I > y)(M − 1)fYIc (y)FYIc (y)M−2dy

=
(M − 1)√

2πσ2
v

∫ ∞
−∞

[1− FYI(y)]FYIc (y)M−2e
− y2

2σ2v dy. (50)

Note that Ym is distributed as N (1, σ2
v) for m ∈ I and N (0, σ2

v) for m ∈ Ic. Plugging FYI(y) =

1−Q
(
y−1
σv

)
and FYIc (y) = 1−Q

(
y
σv

)
into (50), we arrive at the expression in (38).

Now, we shift our focus to the second stage. Under the condition that the decoder has correctly

estimated a sparse sub-message vector under H1, i.e., x̂1 = x1, an error occurs when at least

one codeword estimate Ugx̂g for g ∈ [G]\{1} is closer to y in terms of Euclidean distance

compared to U1x̂1. The conditional error probability at stage 2 can be expressed as follows:

P(E2|Ec1) = 1− P(ĝ = 1|x̂1 = x1)

= 1− P
(
∩g∈[G]\{1}{yTU1x1 > yTUgx̂g}

)
. (51)

We first consider the probability that yTU1x1 is larger than yTUgx̂g. Recall that the OS decoder

estimates the support under Hg by finding the maximum element of UT
g y = UT

g (U1x1 + v).

We define the mth element of random vector UT
g y as

Ỹg,m = uT
g,mv + uT

g,mU1x1. (52)

The first term Ṽg,m = uT
g,mv is a zero-mean Gaussian random variable with variance σ2

v , while

the second term Wg,m = uT
g,mU1x1 is distributed per Lemma 2. The decoder finds the maximum
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index:

Îg = arg max
m∈[M ]

uT
g,mU1x1 + uT

g,mv. (53)

The decoder generates x̂g as a one-hot vector with a non-zero value at Îg. Therefore, yTUgx̂g

is distributed as the maximum of Ỹg,m, i.e., max
{
Ỹg,1, . . . , Ỹg,M

}
, and (51) can be re-written

as

P(E2|Ec1) = 1− P

 ⋂
g∈[G]\{1}

{
yTU1x1 > max

{
Ỹg,1, . . . , Ỹg,M

}}

= 1− P

 ⋂
g∈[G]\{1}
m∈[M ]

{
vTU1x1 + ‖U1x1‖22 > Ṽg,m +Wg,m

} . (54)

Note that Ỹg,m = Ṽg,m + Wg,m is IID for g ∈ [G]\{1}. Denoting Z̃g,m = vTU1x1 − Ṽg,m, a

zero-mean Gaussian with variance 2σ2
v , we obtain the following expression:

P(E2|Ec1) = 1−
∏

g∈[G]\{1}
m∈[M ]

P(Z̃g,m > Wg,m − 1)

= 1−
∏

g∈[G]\{1}
m∈[M ]

EWg,m

{
P(Z̃g,m > w − 1)|Wg,m = w

}

= 1−

[
Γ
(
M
2

)
√
πΓ
(
M−1
2

) ∫ 1

−1
Q

(
w − 1√

2σ2
v

)
(1− w2)

M−3
2 dw

]M(G−1)

. (55)

Finally, by plugging (38) and (55) into (47), we complete the proof.
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