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RIS-Aided Multiple-Input Multiple-Output
Broadcast Channel Capacity

H. D. Tuan1, A. A. Nasir2, E. Dutkiewicz1, H. V. Poor3, and L. Hanzo4

Abstract—Scalable algorithms are conceived for obtaining the
sum-rate capacity of the reconfigurable intelligent surface (RIS)-
aided multiuser (MU) multiple-input multiple-output (MIMO)
broadcast channel (BC), where a multi-antenna base station (BS)
transmits signals to multi-antenna users with the help of an
RIS equipped with a massive number of finite-resolution pro-
grammable reflecting elements (PREs). As a byproduct, scalable
path-following algorithms emerge for determining the sum-rate
capacity of the conventional MIMO BCs, closing a long-standing
open problem of information theory. The paper also develops
scalable algorithms for maximizing the minimum rate (max-min
rate optimization) of the users achieved by the joint design of
RIS’s PRE and transmit beamforming for such an RIS-aided BC.
The simulations provided confirm the high performance achieved
by the algorithms developed, despite their low computational
complexity.

Index Terms—Reconfigurable intelligent surface (RIS )-aided
communication, sum capacity, mixed discrete continuous opti-
mization, scalable algorithms.

I. INTRODUCTION

Reconfigurable intelligent surfaces (RISs) have emerged
as a potential technology for low-power and energy-efficient
information delivery in communication and sensing [1], [2].
Tuning of the RISs’ reconfigurable programmable elements
(PREs) has been shown to be effective in maximizing the
spectral efficiency of the Internet-of-Things (IoT) (see e.g.
[3]–[9] and references therein). However, there is a paucity of
literature on the capacity of RIS-aided multiple-input multiple-
output (MIMO) broadcast channels (BCs). This is not a sur-
prise, because since the publication of [10] it has been widely
acknowledged that the capacity of conventional (RIS-less) BCs
can be obtained by solving a semi-definite convex optimization
problem, but no scalable algorithm has been discovered for its
computation. Hence its investigation remains limited to simple
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low-dimensional scenarios. Meanwhile, as RISs have to use
large numbers of low resolution PREs to exploit their full
potential [11]–[13], the capacity of RIS-aided BCs is obtained
by solving a large-scale mixed discrete-continuous problem,
which is computationally intractable. Another computationally
challenging problem is that of maximizing the users’ minimum
rate achieved by RIS-aided BCs, which leads to the fairest
possible user rate distribution. This problem of non-smooth
optimization has been addressed in our previous work [4]
for the case of infinite-resolution PREs. In fact, the non-
smoothness of the minimum rate based objective function
does not impose any additional computational difficulty on
convex-solver based algorithms, which exploit the fact that the
pointwise minimum of concave functions is a non-smooth but
a concave function [14]. However, this non-smoothness consti-
tutes a challenge for the development of scalable algorithms,
which iterate by evaluating closed-form expressions instead of
solving convex subproblems. Thus, to avoid this non-smooth
minimum rate objective function, our recent contributions [5],
[6], [15], [16] unveiled the benefits of having smooth objective
functions relying on the user rates’ geometric mean (GM-
rate), whose maximization conveniently leads to improving
the UEs’ fairness. By exploiting the smoothness of the latter,
scalable algorithms have been developed in [5], [15], [16] for
its maximization.

Against the above background, the paper offers the follow-
ing new contributions:

• It develops scalable algorithms for determining the ca-
pacity of RIS-aided MIMO BCs. Their byproducts are
scalable path-following algorithms characterizing the ca-
pacity of the conventional (RIS-less) MIMO BCs. Apart
from their communications theoretical insights, these al-
gorithms are also novel from an optimization perspective.

• It develops scalable algorithms for addressing the prob-
lem of maximizing the users’ minimum rate achieved
by the joint design of the RIS’s PREs and transmit
beamforming. More explicitly, we propose a surrogate
problem of max-min optimization, for which the non-
smooth max-min objective function is closely approxi-
mated by a smooth function termed as a soft-min func-
tion. Accordingly, a scalable algorithm is developed for
its computation. The simulations provided show that the
algorithm achieved a near-unity minimum to maximum
rate ratio, demonstrating an excellent rate-fairness.

To sum up, we boldly and explicitly contrast our novel
contributions to the literature in Table I.

The remainder of the paper is structured as follows. Sec-
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TABLE I: Contrasting our novel contributions to the related literature.

Contents
Literature This work [10] [4] [5] [6] [15], [16]

BC capacity
√ √

RIS-aided BC capacity
√

RIS-aided max-min rate
√ √

GM-rate maximization
√ √ √

RIS-aided GM-rate maximization
√ √

Quantized RISs
√ √

Scalable algorithms
√ √ √ √

tion II and Section III are devoted to the development of
scalable algorithms conceived for determining the RIS-aided
BC capacity and to maximizing the users’ minimum rates,
respectively. Section IV provides simulations and reports on
the associated computational aspects, while our conclusions
are given by Section V. The mathematical ingredients of the
paper are matrices inequalities, which are provided in the
Appendix.

Notation. Only optimization variables are boldfaced in the
paper; X ⪰ 0 (X ≻ 0, resp.) indicates that X is a positive
semi-definite (definite, resp.) matrix; Whenever X ⪰ 0,
λmax(X) stands for the maximal eigenvalue of X; Whenever
X = (X1, . . . , XK), X ⪰ 0 means Xk ⪰ 0, k = 1, . . . ,K.
The reader is referred to [17]–[19] for fundamental results on
matrix inequalities that are useful for computational solutions
of communication and signal processing systems. Further-
more, we also use notations such as ⟨X,Y ⟩ ≜ trace(XHY ),
⟨X⟩ = trace(X), [X]2 = XXH for the matrices X and Y .
Thus, the Frobenius squared norm of the matrix X can be
defined by ||X||2 ≜ ⟨[X]2⟩.

Basic definition. According to [14, p. 366], a function f̄ is
said to be a tight minorant (majorant, resp.) of a function
f over the domain dom(f) at a point x̄ ∈ dom(f) if
f(x̄) = f̄(x̄) and f(x) ≥ f̄(x) ∀ x ∈ dom(f) (f(x) ≥
f̄(x) ∀ x ∈ dom(f), resp.). Then f(xopt) ≥ f(x̄) for
xopt = argmaxx∈dom(f) f̄(x) (f(xopt) ≤ f(x̄) for xopt =

argminx∈dom(f) f̄(x), resp.).

II. RIS-AIDED BC CAPACITY
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Fig. 1: RIS-aided BC

We consider the RIS-aided MIMO BC illustrated by Fig. 1,
where a RIS of N reflecting elements supports the broad-
cast by an Nt-antenna BS to K Nr-antenna users (UEs)
k ∈ K ≜ {1, . . . ,K}. It is conventional to assume line-of-
sight (LoS) links between the BS and RIS, and the RIS and

UEs, and but non-LoS (NLoS) link between the BS and UEs
because the RIS is typically in a prominent high-rise position
[20]. Accordingly, the quasi-static and flat-fading channels
spanning from the BS and the RIS to UE k and from the BS
to the RIS are modelled by H̃B,k =

√
βB,kHB,k ∈ CNr×Nt ,

H̃R,k =
√
βR,kHR,k ∈ CNr×N , and H̃B,R =

√
βB,RHB,R ∈

CN×Nt , where
√
βB,k,

√
βR,k, and

√
βB,R model the path-

loss and large-scale fading of the BS-to-UE k link, the RIS-
to-UE k link, and the BS-to-RIS link, respectively [11],
[21]. Furthermore, HR,k is modelled by Rician fading for
representing the LoS channels between the RIS and the UEs
[22]. By contrast, HB,k is modelled by Rayleigh fading in the
face of NLoS channels between the BS and the UEs. Similarly
to the seminal papers on network capacity, we assume having
perfect channel state information (CSI), which can be obtained
by channel estimation [23]–[27]. The channel matrix of the
RIS-aided connection between the BS and UE k ∈ K is given
by

CNr×Nt ∋ Hk(θθθ) ≜ H̃R,kR
1/2
R,kdiag(e

ȷθθθ)H̃B,R + H̃B,k (1)

= H̃BR,kdiag(e
ȷθθθ)HB,R + H̃B,k, (2)

with H̃BR,k ≜
√
βB,R

√
βR,kHR,kR

1/2
R,k ∈ CNr×N , where

RR,k ∈ CN×N represents the spatial correlation matrix of the
RIS elements with respect to user k [21], and diag(eȷθθθ) in
(5) for θθθ = (θθθ1, . . . , θθθN )T ∈ [0, 2π)N represents the matrix
of PREs. We are interested in quantized PREs having b-bit
resolution, formulated as:

θθθn ∈ B ≜

{
ν
2π

2b
, ν = 0, 1, . . . , 2b − 1

}
, (3)

for n ∈ N ≜ {1, . . . , N}, i.e.

θθθ ∈ BN . (4)

Let x ∈ CNt×1 be the signal to be broadcast by the BS. The
signal received at UE k ∈ K is

yk = Hk(θθθ)x+ nk, (5)

where nk ∈ C(0, σINr
) is the background noise at UE k. Let

Π be the set of all bijections from K to itself. Given the power
budget P , the sum-rate capacity of this RIS-aided MIMO BC
with θθθ held fixed at θ̄ is achievable by dirty paper coding
(DPC) [28] given by

max
CNt×Nt∋Wk⪰0,

k∈K,π∈Π

K∑
k=1

ln
∣∣∣INr

+Hπ(k)(θ̄)Wπ(k)HH
π(k)(θ̄)
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maxCNr×Nr∋Xk⪰0

∑K
k=1 ln

∣∣∣σINt
+
(
σINt

+
∑K

i ̸=kHH
i (θ̄)HX

(κ)
i Hi(θ̄)

)−1/2

HH
k (θ̄)XkHk(θθθ)(

σI +
∑K

i ̸=kHH
i (θ̄)X

(κ)
i Hi(θ̄)

)−1/2∣∣∣ s.t. (7b), (8)

×(σI +
k−1∑
i=1

Hπ(k)(θ̄)Wπ(i)HH
π(k)(θ̄))

−1
∣∣∣

s.t.
K∑

k=1

⟨Wk⟩ ≤ P, (6)

where Wk represents the covariance matrix to be designed
for the UE k ∈ K. However, this problem is computationally
intractable, so the main result of [10] is that it can be obtained
via its duality

max
CNr×Nr∋Xk⪰0,

k∈K

ln
∣∣∣σINt +

K∑
k=1

HH
k (θ̄)XkHk(θ̄)

∣∣∣
− ln |σINt

| (7a)

s.t.
K∑

k=1

⟨Xk⟩ ≤ P, (7b)

which is a semi-definite problem of convex optimization, but
there is no scalable algorithm for its solution (see e.g. [29]),
where Xk represents the covariance matrix to be designed for
the UE k ∈ K. More explicitly, there is no convex solver of
polynomial complexity for its computation. One can see the
computational difficulty of this problem by briefly recalling
how it was addressed in [29]. To elaborate at the κ-th iteration,
the algorithm of [29] solves the problem shown at the bottom
of this page to generate X(κ+1): which admits a closed-form
solution. However, since this next iterative point X(κ+1) is not
necessarily better X(κ), it is not easy to show the convergence
of this iterative procedure [30].

The authors of [31] did not address (7) but solved the
problem of individual power constraints formulated as

max
CNr×Nr∋Xk⪰0

ln
∣∣∣σINt

+

K∑
k=1

HH
k (θ̄)XkHk(θ̄)

∣∣∣ (9a)

s.t. ⟨Xk⟩ ≤ Pk, k = 1, . . . ,K, (9b)

by alternating optimization for all Xk: fixing all Xi = X̄i,
i ̸= k to solve

max
CNr×Nr∋Xk⪰0

ln
∣∣∣σINt +

K∑
i ̸=k

HH
i (θ̄)X̄iHi(θ̄)

+HH
k (θ̄)XkHk(θ̄)

∣∣∣ s.t. ⟨Xk⟩ ≤ Pk. (10)

Apart from its slow convergence due to the optimization
relying on a single variable per iteration, the main drawback
of (10) is that it does not work for the sum power constraint
in (7) (because it is clear that ⟨Xk⟩ ≡ Pk during the whole
process!).

Indeed, the construction of a scalable algorithm for obtain-
ing the global solution of (7) has remained an open problem
for twenty years at the time of writing.

Thus, in this section we aim for determining the sum-rate
capacity of the above RIS-aided BC. According to (7), this
may be formulated by the following problem of mixed discrete
continuous optimization:

max
θθθ,X⪰0

f(θθθ,X) ≜ ln
∣∣∣σINt

+

K∑
k=1

HH
k (θθθ)XkHk(θθθ)

∣∣∣
− ln |σINt

| s.t. (4), (7b). (11)

On one hand, alternating optimization in the continuous vari-
able X with θθθ held fixed, is still challenging as discussed
above. More particularly, one cannot use (8) because it does
not necessarily result in a better feasible point. On the other
hand, alternating optimization in the discrete variable θθθ with
X held fixed poses a challenging combinatoric problem. We
now develop scalable alternating iterations for both these
problems.

Initialized by a
(
θ(0), X(0)

)
feasible for (11), let(

θ(κ), X(κ)
)

be a feasible point of (11) that is found from
the (κ− 1)th iteration.

A. Covariance iteration

1) SVD-based iteration: We generate X(κ+1) so that

f
(
θ(κ), X(κ+1)

)
> f

(
θ(κ), X(κ)

)
. (12)

Upon defining H(κ)
k ≜ H(θ(κ)), and then f (κ)(X) ≜

f
(
θ(κ+1),X

)
= ln |σINt

+
∑K

k=1(H
(κ)
k )HXkH(κ)

k | −
ln |σINt

|, we generate X(κ+1) verifying (12) by addressing
the following convex problem

max
CNr×Nr∋X⪰0

f (κ)(X) ≜ ln
∣∣∣σINt

+

K∑
k=1

(H(κ)
k )HXkH(κ)

k

∣∣∣
− ln |σINt

| s.t. (7b). (13)

Using the inequality (100) yields the following tight minorant
of f (κ)(X) at X(κ):

f̃ (κ)(X) ≜ f (κ)(X(κ))−
K∑

k=1

〈
A

(κ)
k , (Xk + ϵINr

)−1−

(X
(κ)
k + ϵINr

)−1
〉
− ln |σINt

|, (14)

where

CNr×Nr ∋ A(κ)
k = (X

(κ)
k ϵINr

)H(κ)
k

×
[
σINt

K∑
k=1

(H(κ)
k )HX

(κ)
k H

(κ)
k

]−1

× (H(κ)
k )H(X

(κ)
k + ϵINr ) ⪰ 0, (15)

and
ϵ =

σ

2λmax(
∑K

k=1(H
(κ)
k )HH(κ)

k )
, (16)
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resulting in:

σINt − ϵ
K∑

k=1

(H(κ)
k )HH(κ)

k ⪰ (σ/2)INt ≻ 0. (17)

We solve the following problem to generate X(κ+1):

max
X⪰0

f̃ (κ)(X) s.t. (7b), (18)

or, equivalently

min
X≻0

K∑
k=1

⟨A(κ)
k , (Xk + ϵINr )

−1⟩ s.t. (7b). (19)

Upon harnessing the singular value decomposition (SVD),

A
(κ)
k = U

(κ)
k Σ

(κ)
k (U

(κ)
k )H (20)

in conjunction with a unitary U
(κ)
k and a positive diagonal

Σ
(κ)
k = diag{γk,1, ..., γk,Nr

}, (19) becomes equivalent to

min
X̄≻0

K∑
k=1

⟨Σ(κ)
k , X̄

−1
k ⟩ s.t. (7b) (21)

for

X̄k = (U
(κ)
k )H (Xk + ϵINr

)U
(κ)
k , k = 1, . . . ,K. (22)

It can be inferred that the optimal solution X̄k in (21) must
be diagonal, i.e.

X̄k = diag{xk,1 + ϵ, ....,xk,Nr + ϵ} (23)

and (22) leads to

min
xk,j>0

K∑
k=1

Nr∑
j=1

γk,j
xk,j + ϵ

s.t.
K∑

k=1

Nr∑
j=1

xk,j = P. (24)

The optimal solution of (24) is given by

xoptk,j = max{λ√γk,j − ϵ, 0}, (25)

where λ > 0 is found by bisection so that
K∑

k=1

Nr∑
j=1

max{λ√γk,j − ϵ, 0} = P. (26)

Thus, it follows from (22) and (25) that a X(κ+1) verifying
(12) obeys:

X
(κ+1)
k ≜ U

(κ)
k diag{xoptk,1, ...., x

opt
k,Nr
}(U (κ)

k )H , (27)

with U (κ)
k and xoptk,j are defined in (20) and (25).

Remark 1. When we replace the sum power constraint (7b)
by the individual power constraints (9b) for the problem (19)
, the solution is given by (27) in conjunction with

xoptk,j = max{λk
√
γk,j − ϵ, 0}, (28)

where λk > 0 is found by bisection satisfying that
Nr∑
j=1

max{λk
√
γk,j − ϵ, 0} = Pk. (29)

Remark 2. Note that the problem (13) is convex and
thus (27) provides a scalable path-following iteration for
computing its globally optimal solution, which is new even
from algorithmic optimization perspective.

2) SVD-free based iterations: To avoid the SVD of (20),
we make the following variable changes

Xk = [Pk]
2,Pk ∈ CNr×Nr , k ∈ K. (30)

Accordingly, we also set X(κ)
k = [P

(κ)
k ]2, k = 1, . . . ,K. For

P ≜ (P1, . . . ,PK), the problem (13) used for generating
X(κ+1) verifying (12) is expressed by the following problem

max
P

g(κ)(P) ≜ ln |INt +

K∑
k=1

[(H(κ)
k )HPk]

2/σ|

s.t.
K∑

k=1

⟨[Pk]
2⟩ ≤ P. (31)

Using the inequality (101) yields the following minorant of
g(κ)(P) at P (κ):

g̃(κ)(P) ≜ a(κ) +
2

σ

K∑
k=1

ℜ{⟨(P (κ)
k )H [H(κ)

k ]2Pk⟩}

−
K∑

k=1

⟨C(κ), [(H(κ)
k )HPk]

2⟩

= a(κ) +
2

σ

K∑
k=1

ℜ{⟨(P (κ)
k )H [H(κ)

k ]2Pk⟩}

−
K∑

k=1

⟨PH
k H

(κ)
k C(κ)(H(κ)

k )HPk⟩, (32)

in conjunction with

a(κ) ≜ g(κ)(P (κ))− 1

σ

K∑
k=1

⟨[(H(κ)
k )HP

(κ)
k ]2⟩ − σ⟨C(κ)⟩,

0 ⪯ C(κ) ≜
1

σ
INt
−

(
σINt

+

K∑
k=1

[(H(κ)
k )HP

(κ)
k ]2

)−1

.

(33)
For C

(κ)
σ ≜ σC(κ) = INt

−
(
INt

+

1
σ

∑K
k=1[(H

(κ)
k )HP

(κ)
k ]2

)−1

, we thus solve the following
problem of tight minorant maximization of (30) to generate
P (κ+1):

max
P

g̃(κ)(P) s.t.
K∑

k=1

⟨[Pk]
2⟩ ≤ P, (34)

which admits the following closed-form solution given at the
top of the next page, where µ > 0 is found by bisection, so
that

K∑
k=1

⟨[(H(κ)
k C(κ)

σ (H(κ)
k )H + µINr

)−1[H(κ)
k ]2P

(κ)
k ]2⟩ = P.

(36)
Thus, X(κ+1)

k ≜ [P
(κ+1)
k ]2 verifies (12).

Remark 3. The advantage of harnessing the variable change
in (30) is that it still works for Pk ∈ CNr×q with q < Nr,
where Pk plays the role of MIMO-aided uplink beamforming
in multi-access channels (MAC).
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P
(κ+1)
k =


(H(κ)

k C
(κ)
σ (H(κ)

k )H)−1[H(κ)
k ]2[P

(κ)
k ]2

if
∑K

k=1⟨[(H
(κ)
k C

(κ)
σ (H(κ)

k )H)−1[H(κ)
k ]2P

(κ)
k ]2⟩ ≤ P,

(H(κ)
k C

(κ)
σ (H(κ)

k )H + µINr )
−1[H(κ)

k ]2P
(κ)
k otherwise,

(35)

B. PREs iteration

With P
(κ+1)
k ≜

√
X

(κ+1)
k , and φ(κ)(θθθ) ≜ f(θθθ,X(κ+1)) =

ln |INt
+
∑K

k=1[HH
k (θθθ)P

(κ+1)
k ]2/σ|, to generate θ(κ+1) so that

f
(
θ(κ+1), X(κ+1)

)
= φ(κ)(θ(κ+1))

> φ(κ)(θ(κ))

= f
(
θ(κ), X(κ+1)

)
, (37)

we address the following problem

max
θθθ

φ(κ)(θθθ) s.t. (4). (38)

Using the inequality (101) yields the following minorant of
φ(κ)(θθθ) at θ(κ):

φ̃(κ)(θθθ) ≜ ã(κ) +
2

σ

K∑
k=1

ℜ{⟨X(κ+1)
k H(κ)

k H
H
k (θθθ)⟩}

−
K∑

k=1

⟨C̃(κ),HH
k (θθθ)X

(κ+1)
k Hk(θθθ)⟩

= ã(κ) +
2

σ

K∑
k=1

ℜ{⟨(H(κ)
k )HX

(κ+1)
k Hk(θθθ)⟩}

−
K∑

k=1

⟨C̃(κ),HH
k (θθθ)X

(κ+1)
k Hk(θθθ)⟩, (39)

with

ã(κ) ≜ φ(κ)(θ(κ))− 1

σ

K∑
k=1

⟨(H(κ)
k )HX

(κ+1)
k H(κ)

k ⟩ − σ⟨C̃
(κ)⟩,

0 ⪯ C̃(κ) ≜
1

σ
INt
−

(
σINt

+

K∑
k=1

(H(κ)
k )HX

(κ+1)
k H(κ)

k

)−1

.

(40)
Then we have

σφ̃(κ)(θθθ) = σã(κ) + 2

K∑
k=1

ℜ{⟨(H(κ)
k )HX

(κ+1)
k Hk(θθθ)⟩}

−
K∑

k=1

⟨C̃(κ)
σ ,HH

k (θθθ)X
(κ+1)
k Hk(θθθ)⟩, (41)

along with C̃
(κ)
σ ≜ INt −(

INt
+ 1

σ

∑K
k=1(H

(κ)
k )HX

(κ+1)
k H(κ)

k

)−1

.

We may write diag(eȷθθθ) =
∑N

n=1 e
ȷθθθnΥn, where Υn is the

matrix of size N ×N having only zero entries, except for its
(n, n)-entry, which is 1. Then the matrix Hk(θθθ) defined by
(2) is represented by

Hk(θθθ) =

N∑
n=1

eȷθθθnHk,n + H̃B,k, (42)

with Hk,n ≜ H̃BR,kΥnHB,R. Therefore, we have

⟨(H(κ)
k )HX

(κ+1)
k Hk(θθθ)⟩ = α

(κ)
k,1 +

N∑
n=1

b̃
(κ)
k,1(n)e

ȷθθθn , (43)

in conjunction with1

α
(κ)
k,1 ≜ ⟨(H(κ)

k )HX
(κ+1)
k H̃B,k⟩,

b̃
(κ)
k,1(n) = ⟨(H

(κ)
k )HX

(κ+1)
k Hk,n⟩, n ∈ N .

(44)

Furthermore,

⟨C̃(κ)
σ ,HH

k (θθθ)X
(κ+1)
k Hk(θθθ)⟩⟩ = α

(κ)
k,2 + 2

N∑
n=1

ℜ{b̃(κ)k,2(n)e
ȷθθθn}

+ (eȷθθθ)HΦ
(κ+1)
k eȷθθθ, (45)

with

α
(κ)
k,2 ≜ ⟨C̃(κ)

σ (H̃B,k)
HX

(κ+1)
k H̃B,k⟩,

b̃
(κ)
k,2(n) = ⟨C̃

(κ)
σ (H̃B,k)

HX
(κ+1)
k Hk,n⟩, n = 1, . . . , N,

Φ
(κ+1)
k (n′, n) ≜ ⟨C̃(κ)

σ HH
k,n′X

(κ+1)
k Hk,n⟩, (n′, n) ∈ N ×N .

(46)
Based on (43), and (45), we obtain

σφ̃(κ)(θθθ) = ã(κ+1) + 2ℜ
{ N∑

n=1

b̃(κ+1)(n)eȷθθθn

}
−(eȷθθθ)HΦ(κ+1)eȷθθθ, (47)

with

ã(κ+1) ≜ σã(κ) +
∑K

k=1

(
2ℜ{α(κ)

k,1} − α
(κ)
k,2

)
,

b̃(κ+1)(n) ≜
∑K

k=1

(
b̃
(κ)
k,1(n)− b̃

(κ)
k,2(n)

)
, n ∈ N ,

Φ(κ+1) ≜
∑K

k=1 Φ
(κ+1)
k .

(48)

Furthermore, a tight minorant of σφ̃(κ)(θθθ) and σφ(κ)(θθθ) is

˜̃φ(κ)
σ (θθθ) ≜ ã(κ+1) + 2ℜ

{ N∑
n=1

(
b̃(κ+1)(n)

−
N∑

n′=1

e−ȷθ
(κ)

n′ Φ(κ+1)(n′, n)

+ λmax(Φ
(κ+1))e−ȷθ(κ)

n

)
eȷθθθn

}
− (eȷθ

(κ)

)HΦ(κ+1)eȷθ
(κ)

− 2λmax(Φ
(κ+1))N. (49)

We thus solve the following discrete problem of tight minorant
maximization for (38) to generate θ(κ+1):

max
θθθ∈BN

˜̃φ(κ)
σ (θθθ), (50)

which admits the closed-form solution of

θ(κ+1)
n = 2π −

⌊
∠
(
b̃(κ+1)(n)−

N∑
m=1

e−ȷθ(κ)
m Φ(κ+1)(m,n)

1In what follows b(i) is the i-th entry of b and [A](i, i) is the i-th diagonal
entry of A, and [A]∗(i, i) is the complex conjugate of [A](i, i)
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+ λmax(Φ
(κ+1))e−ȷθ(κ)

n

)⌉
b
, n ∈ N , (51)

where ⌊α⌉b represents the projection of α ∈ [0, 2π] into B
defined by

⌊α⌉b = να
2π

2b
, (52)

with

να ≜ arg min
ν=0,1,...,2b

∣∣∣∣ν 2π2b − α
∣∣∣∣ , (53)

which can be readily found, because we have να ∈ {ν, ν+1}
for α ∈ [ν 2π

2b
, (ν + 1) 2π

2b
]. We also reset να = 0, when the

optimal solution of (53) is 2b.

C. Scalable path-following algorithms and their convegence

The pseudo code of the SVD-based iteration (27) (SVD-
free iteration (35), resp.) for generating X(κ+1) and the
iteration (51) for generating θ(κ+1) is provided by Algorithm
1 (Algorithm 2, resp.). It follows from (27) and (37) that

f(
(
θ(κ+1), X(κ+1)

)
> f

(
θ(κ), X(κ)

)
, (54)

i.e. both of them are path-following computational procedures,
which iteratively improve the feasible points. As such, the
sequence {

(
θ(κ), X(κ)

)
} converges to a limit point (θ̄, X̄)

according to the Cauchy theorem.

Algorithm 1 SVD-based sum-rate capacity (SVD-based SRC)
path-following algorithm to solve the problem (11).

1: Initialization. Randomly generate P
(0)
k satisfying∑K

k=1⟨[P
(0)
k ]2⟩ ≤ P . Set X(0) ≜ ([P

(0)
1 ]2, . . . , [P

(0)
K ]2).

Generate a feasible point θ(0). Set κ = 0.
2: Repeat until convergence of the objective in (11):

Generate X(κ+1) by (23)-(26), and θ(κ+1) by (51). Reset
κ := κ+ 1.

3: Output
(
X(κ), θ(κ)

)
and the achieved sum-rate capacity

f
(
θ(κ), X(κ)

)
.

Algorithm 2 SVD-free sum-rate capacity (SVD-free SRC)
path-following algorithm to solve the problem (11).

1: Initialization. Randomly generate P
(0)
k satisfying∑K

k=1⟨[P
(0)
k ]2⟩ ≤ P . Set X(0) ≜ ([P

(0)
1 ]2, . . . , [P

(0)
K ]2).

Generate a feasible point θ(0). Set κ = 0.
2: Repeat until convergence of the objective in (11):

Generate P (κ+1) by (35), X(κ+1) by (30), and θ(κ+1)

by (51). Reset κ := κ+ 1.
3: Output

(
X(κ), θ(κ)

)
and the achieved sum-rate capacity

f
(
θ(κ), X(κ)

)
.

III. MAX-MIN RATE OPTIMIZATION

In this section, the transmit signal x in (5) is

x =

K∑
k=1

Pksk, (55)

where sk ∈ Cd with d ≤ Nr and E(||sk||2) = 1 encodes the
information stream intended for UE k, which is beamformed
by Pk ∈ CNt×d. For P ≜ (P1, . . . ,PK), the rate at UE k is

rk(θθθ,P) ≜ ln
∣∣∣INr +[Hk(θθθ)Pk]

2(σINr +

K∑
i̸=k

[Hk(θθθ)Pi]
2)−1

∣∣∣.
(56)

Given the power budget P , we are interested in the following
problem of max-min rate optimization

max
θθθ,P

min
k=1,...,K

rk(θθθ,P) s.t. (4), (57a)

K∑
k=1

⟨[Pk]
2⟩ ≤ P. (57b)

Our previous work [4] provides a convex-solver based algo-
rithm for solving (57) for d = Nr = 1 and b = ∞, under
which the variable ϑϑϑ ≜ eȷθθθ in (57) is also continuous with
its entries satisfying the unit modulus constraint, so they can
be handled by using an exact penalty based method. The
computational complexity of alternating iterations in P is
O
(
(KNt)

3
)

while that of alternating iterations in θθθ is O(N3).
As mentioned in the Introduction, the non-smoothness of the
objective function in (57) does not add an additional compu-
tational difficulty for convex-solver based algorithms, but it
is still a hurdle for the development of scalable algorithms.
Instead of the non-smooth objective function mink=1,...,K rk
in (57), our recent treatises [5], [15], [16] used the smooth ob-

jective function
(∏K

k=1 rk

)1/K
of the rate functions’ geomet-

ric mean (GM-rate), whose maximization leads to improved
rate-fairness for the users. By exploiting the smoothness of
the latter, the scalable algorithms have been developed for its
maximization in [5], [15], [16].

Given the discrete constraint (4) for the PREs’ b-bit resolu-
tion, (57) represents a computationally challenging problem
of large scale mixed discrete-continuous optimization, for
which an exact penalty based method for its solution unlikely
exists. Moreover, the convex-solver based approach is hardly
applicable to discrete problems.

To develop scalable algorithms for addressing (57) , we
conceive the following surrogate max-min problem

max
θθθ,P

min
k∈K

ln
∣∣∣INr

+ [Hk(θθθ)Pk]
2
(
cσINr

+ c

K∑
i ̸=k

[Hk(θθθ)Pi]
2
)−1∣∣∣

s.t. (4), (57b). (58)

for c > 0. In fact, for Nr = 1,

rk(θθθ,P) = ln

(
1 +

|Hk(θθθ)Pk|2

σ +
∑K

i ̸=k |Hk(θθθ)Pi|2

)
,

so

(57) ⇔ max
θθθ,P

min
k∈K

|Hk(θθθ)Pk|2

σ +
∑K

i ̸=k |Hk(θθθ)Pi|2

s.t. (4), (57b) (59)

⇔ max
θθθ,P

min
k∈K

|Hk(θθθ)Pk|2

c
(
σ +

∑K
i ̸=k |Hk(θθθ)Pi|2

)
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s.t. (4), (57b) (60)

⇔ max
θθθ,P

min
k∈K

ln

1 +
|Hk(θθθ)Pk|2

c
(
σ +

∑K
i ̸=k |Hk(θθθ)Pi|2

)


s.t. (4), (57b), (61)

i.e. (57) is equivalent to (58).
Let us define

Γc(θθθ,P) ≜
K∑

k=1

[
INr
− (Hk(θθθ)Pk)

H
(
[Hk(θθθ)Pk]

2 + cσINr

+ c

K∑
i ̸=k

[Hk(θθθ)Pi]
2
)−1

Hk(θθθ)Pk

]
. (62)

Then one has

fMM (θθθ,P) ≜ max
k∈K

ln

∣∣∣∣(INr
+ [Hk(θθθ)Pk]

2
(
cσINr

+ c

K∑
i ̸=k

[Hk(θθθ)Pi]
2
)−1

)−1∣∣∣∣ (63)

= max
k∈K

ln

∣∣∣∣INr
− (Hk(θθθ)Pk)

H

(
[Hk(θθθ)Pk]

2

+ cσINr
+ c

K∑
i ̸=k

[Hk(θθθ)Pi]
2

)−1

Hk(θθθ)Pk

∣∣∣∣
(64)

≤ ln
∣∣∣Γc(θθθ,P)

∣∣∣ (65)

≤ 1

K

∑
k∈K

ln

∣∣∣∣INr − (Hk(θθθ)Pk)
H

(
[Hk(θθθ)Pk]

2

+ cσINr + c

K∑
i ̸=k

[Hk(θθθ)Pi]
2

)−1

Hk(θθθ)Pk

∣∣∣∣
+ lnK (66)

=
1

K

∑
k∈K

ln

∣∣∣∣(INr
+ [Hk(θθθ)Pk]

2
(
cσINr

+ c

K∑
i ̸=k

[Hk(θθθ)Pi]
2
)−1

)−1∣∣∣∣+ lnK (67)

≤ fMM (θθθ,P) + lnK. (68)

Note that lnK in (68) becomes small compared to
fMM (θθθ,P), as c becomes smaller. Thus, with c smaller, the
smooth function ln

∣∣∣Γc(θθθ,P)
∣∣∣ closely approximates the non-

smooth function fMM (θθθ,P). Furthermore, we have

−fMM (θθθ,P) = −max
k∈K

[
− ln

∣∣∣∣INr + [Hk(θθθ)Pk]
2

×
(
cσINr

+ c

K∑
i ̸=k

[Hk(θθθ)Pi]
2
)−1

∣∣∣∣ ] (69)

= min
k∈K

[
ln
∣∣∣INr

+ [Hk(θθθ)Pk]
2
(
cσINr

+ c

K∑
i ̸=k

[Hk(θθθ)Pi]
2
)−1

∣∣∣∣ ], (70)

so the non-smooth objective function in (58) is closely ap-

proximated by the function − ln
∣∣∣Γc(θθθ,P)

∣∣∣ = ln
∣∣∣Γc(θθθ,P)

∣∣∣−1

.
We thus propose to consider the following problem having a
smooth objective function, which is called a soft-min objective
function, to address (61)/(57):

max
θθθ,P

fc(θθθ,P) ≜ ln
∣∣∣Γc(θθθ,P)

∣∣∣−1

s.t. (4), (57b). (71)

Initialized by
(
θ(0), P (0)

)
feasible for (71), let

(
θ(κ), P (κ)

)
be a feasible point for (71) that is found from the (κ− 1)-th
iteration.

A. Beamforming iteration

To generate a feasible P (κ+1) so that

fc

(
θ(κ), P (κ+1)

)
> fc

(
θ(κ), P (κ)

)
, (72)

we address the following problem

max
P

f
(κ)
b (P) ≜ ln

∣∣∣Γ(κ)
b (P)

∣∣∣−1

s.t. (57b), (73)

in conjunction with

Γ
(κ)
b (P) ≜ Γc(θ

(κ),P)

=

K∑
k=1

[
INr − (H(κ)

k Pk)
H
(
[H(κ)

k Pk]
2

+cσINr + c

K∑
i ̸=k

[H(κ)
k Pi]

2
)−1

H(κ)
k Pk

]
,(74)

where H(κ)
k ≜ Hk(θ

(κ)), k = 1, . . . ,K. Applying the
inequality (108) for

X̄k ≜ H(κ)
k P

(κ)
k , k ∈ K

Ȳk ≜ [H(κ)
k P

(κ)
k ]2 + cσINr

+ c
∑K

i ̸=k[H
(κ)
k P

(κ)
i ]2, k ∈ K

(75)
yields the following tight minorant of f (κ)b (P):

f̃
(κ)
b (P) ≜ a(κ) + 2

K∑
k=1

ℜ{⟨AkPk⟩} −
K∑

k=1

〈
Bk,

(
[H(κ)

k Pk]
2

+ c

K∑
i ̸=k

[H(κ)
k Pi]

2
)〉

(76)

= a(κ) + 2

K∑
k=1

ℜ{⟨AkPk⟩} −
K∑

k=1

⟨Ck, [Pk]
2⟩, (77)

where we have

a(κ) ≜ ln
∣∣∣Γ(κ)

b (P (κ))
∣∣∣−1

−
∑K

k=1

〈
(Γ

(κ)
b (X̄, Ȳ ))−1

X̄H
k Ȳ

−1
k X̄k

〉
− cσ

∑K
k=1⟨Bk⟩,

Ak ≜ (Γ
(κ)
b (X̄, Ȳ ))−1X̄H

k Ȳ
−1
k H

(κ)
k ,

Bk ≜ Ȳ −1
k X̄k(Γ

(κ)
b (X̄, Ȳ ))−1X̄H

k Ȳ
−1
k

(78)

and

CNt×Nt ∋ Ck ≜ (H(κ)
k )HBkH(κ)

k + c
∑
i ̸=k

(H(κ)
i )HBiH(κ)

i ,

k ∈ K. (79)
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We thus solve the following problem of tight minorant maxi-
mization of (73) to generate P (κ+1) verifying (72)

max
Pk

f̃
(κ)
b (P) s.t. (57b), (80)

which admits the closed-form solution of

P
(κ+1)
k =

 C−1
k AH

k if
∑
k∈K

⟨[C−1
k A

H
k ]2⟩ ≤ P,

(Ck + µINt
)−1AH

k otherwise,
(81)

where µ > 0 is found by bisection, so that

K∑
k=1

⟨[(Ck + µINt
)−1AH

k ]2⟩ = P.

B. PREs iteration

To generate a feasible θ(κ+1) sothat

fc

(
θ(κ+1), P (κ+1)

)
> fc

(
θ(κ), P (κ+1)

)
, (82)

we address the following problem

max
θθθ

f (κ)p (θθθ) ≜ ln
∣∣∣Γ(κ)

p (θθθ)
∣∣∣−1

s.t. (4), (83)

with

Γ(κ)
p (θθθ) ≜ Γc(θθθ, P

(κ+1))

=

K∑
k=1

[
INr
− (Hk(θθθ)P

(κ+1)
k )H

(
[Hk(θθθ)P

(κ+1)
k ]2

+ cσINr
+ c

K∑
i ̸=k

[Hk(θθθ)P
(κ+1)
i ]2

)−1

Hk(θθθ)P
(κ+1)
k

]
.

(84)

Applying the inequality (108) for

X̄k ≜ H(κ)
k P

(κ+1)
k , k ∈ K

Ȳk ≜ [H(κ)
k P

(κ+1)
k ]2 + cσINr + c

∑K
i̸=k[H

(κ)
k P

(κ+1)
i ]2,

(85)
yields the following tight minorant of f (κ)p (θθθ):

f̃ (κ)p (θθθ) ≜ ã(κ) + 2

K∑
k=1

ℜ{⟨ÃkHk(θθθ)⟩}

−
K∑

k=1

⟨B̃k,Hk(θθθ)[P
(κ+1)
k ]2(Hk(θθθ))

H

+c

K∑
i ̸=k

Hk(θθθ)[P
(κ+1)
i ]2(Hk(θθθ))

H⟩ (86)

= ã(κ) + 2

K∑
k=1

ℜ{⟨ÃkHk(θθθ)⟩}

−
K∑

k=1

⟨B̃k,Hk(θθθ)Ψ
(κ+1)
k (Hk(θθθ))

H⟩, (87)

where

ã(κ) ≜ ln
∣∣∣Γ(κ)

p (θ(κ))
∣∣∣−1

−
∑K

k=1⟨(Γ
(κ)
p (X̄, Ȳ ))−1X̄H

k Ȳ
−1
k X̄k⟩

−c σ
∑K

k=1⟨B̃k⟩,
Ãk ≜ P

(κ+1)
k (Γ

(κ)
p (X̄, Ȳ ))−1X̄H

k Ȳ
−1
k ,

Bk ≜ Ȳ −1
k X̄k(Γ

(κ)
p (X̄, Ȳ ))−1X̄H

k Ȳ
−1
k ,

Ψ
(κ+1)
k ≜ [P

(κ+1)
k ]2 + c

∑
i ̸=k[P

(κ+1)
i ]2.

(88)
Upon recalling (42), we can arrive at

⟨ÃkHk(θθθ)⟩ = α
(κ+1)
k,1 +

N∑
n=1

b̃
(κ+1)
k,1 (n)eȷθθθn (89)

in conjunction with

α
(κ+1)
k,1 ≜ ⟨ÃkH̃B,k⟩, k ∈ K; b̃(κ+1)

k,1 (n) ≜ ⟨ÃkHk,n⟩, n ∈ N ,
(90)

and

⟨B̃k,Hk(θθθ)Ψ
(κ+1)
k (Hk(θθθ))

H⟩ = α
(κ+1)
k,2 + (eȷθθθ)HΦ

(κ+1)
k eȷθθθ

+2

N∑
n=1

ℜ{b̃(κ+1)
k,2 (n)eȷθθθn}

(91)

with

α
(κ+1)
k,2 ≜ ⟨B̃k(H̃B,k)Ψ

(κ+1)
k H̃H

B,k⟩,
b̃
(κ+1)
k,2 (n) = ⟨B̃k(H̃B,k)Ψ

(κ+1)
k HH

k,n⟩, n = 1, . . . , N,

Φ
(κ+1)
k (n′, n) ≜ ⟨B̃kHk,nΨ

(κ+1)
k HH

k,n′⟩, (n′, n) ∈ N ×N ,
(92)

Therefore,

f̃ (κ)p (θθθ) = ã(κ+1) + 2

N∑
n=1

ℜ{b̃(κ+1)(n)eȷθθθn}

−(eȷθθθ)HΦ(κ+1)eȷθθθ (93)

with

ã(κ+1) ≜ ã(κ) +
∑K

k=1

[
2ℜ{α(κ+1)

k,1 } − α(κ+1)
k,2

]
b̃(κ+1)(n) ≜

∑K
k=1

[
b̃
(κ+1)
k,1 (n)− b̃(κ+1)

k,2 (n)
]
, n ∈ N ,

Φ(κ+1) ≜
∑K

k=1 Φ
(κ+1)
k .

(94)
Furthermore, a tight minorant of f̃ (κ)p (θθθ) and f (κ)p (θθθ) is

˜̃
f (κ)p (θθθ) ≜ ã(κ+1) + 2ℜ

{ N∑
n=1

(
b̃(κ+1)(n)−

N∑
n′=1

e−ȷθ
(κ)

n′

×Φ(κ+1)(n′, n) + λmax(Φ
(κ+1))e−ȷθ(κ)

n

)
eȷθθθn

}
−(eȷθ

(κ)

)HΦ(κ+1)eȷθ
(κ)

− 2λmax(Φ
(κ+1))N (95)

We thus solve the following discrete problem of tight minorant
maximization for (83) to generate θ(κ+1) verifying (82):

max
θθθ∈BN

˜̃φ(κ)
σ (θθθ), (96)

which admits the closed-form solution of

θ(κ+1)
n = 2π −

⌊
∠
(
b̃(κ+1)(n)−

N∑
m=1

e−ȷθ(κ)
m Φ(κ+1)(m,n)

+λmax(Φ
(κ+1))e−ȷθ(κ)

n

)⌉
b
, n ∈ N . (97)
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C. Soft max-min algorithm and its convergence

Algorithm 3 provides the pseudo-code for solving the prob-
lem (71) based on iterating (81) and (97). It follows from (72)
and (82) that

fc

(
θ(κ+1), P (κ+1)

)
> fc

(
θ(κ), P (κ)

)
,

i.e. Algorithm 3 provides a path-following procedure, which
iteratively improves feasible points. As such, the sequence
{
(
θ(κ), P (κ)

)
} converges to a limit point (θ̄, P̄ ) by the Cauchy

theorem.

Algorithm 3 Soft max-min algorithm to solve problem (71).

1: Initialization. Generate a feasible point
(
P (0), θ(0)

)
for

problem (71). Set κ = 0.
2: Repeat until convergence of the objective in (71):

Generate P (κ+1) by (81), and θ(κ+1) by (97). Reset
κ := κ+ 1.

3: Output
(
P (κ), θ(κ)

)
and the achieved individual UE rates

rk
(
θ(κ), P (κ)

)
, k = 1, . . . ,K.

IV. SIMULATION RESULTS

Unless otherwise specified, we assume having Nt = 10
downlink transmit-antennas at the BS, d = Nr = 2, N = 100
PREs at the RIS, P = 10 dBm transmit power budget, and
b = 3 bit-resolution of quantized PREs. The noise power is
set to σ = −114 dBm, i.e. the noise power spectral density
is −174 dBm/Hz over the transmission bandwidth of 1 MHz.
The convergence tolerance of the proposed algorithms is set
to 10−3. The antenna gains of the AP (GAP) and the RIS’s
elements (GRIS) are set to 5 dBi. The AP and RIS are deployed
at the coordinates of (20, 0, 25) and (0, 30, 40) in the three-
dimensional (3D) space, respectively. We set K = 10 UEs,
which are randomly distributed in a (120× 120) area right of
the AP and RIS. The spatial correlation matrix, which models
the correlation between the RIS elements with respect to the
users, is given by [RR,k]n,n′ = ejπ(n−n′) sin ϕ̃k sin θ̃k , where
ϕ̃k and θ̃k represent the azimuth and elevation angle of UE k,
respectively [21], [32].

We simulate a pair of practical scenarios. The first scenario
assumes the availability of a direct link between the BS
and UEs, while the second scenario assumes that the direct
transmission path between the BS and UEs is blocked by some
obstruction. We refer to them as Scenario 1 and Scenario 2,
respectively. Due to the absence of the direct path in Scenario
2, the distances between the nodes have to be kept lower, i.e.,
the UEs are randomly placed in a (60× 60) area to the right
of the BS and RIS.

A. Results for sum-rate capacity optimization

The SVD-based and SVD-free sum-rate capacity optimiza-
tion Algorithms 1 and 2 conceived for solving the problem
(11) are represented as “SVD-based SRC” and “SVD-free
SRC”.

Fig. 2 shows the convergence of SVD-based SRC and
SVD-free SRC at the transmit power budget P = 0 dBm.

Observe that both algorithms converge monotonically. In ad-
dition to observing the convergence performance with RIS
(b = ∞), Fig. 2 also shows the convergence performance
for the RIS-less case, i.e., without RIS, which implies that
communication only takes place via the direct path between
the BS and UEs. The sum-rate capacity slightly improves with
the RIS’s assistance and it takes more iterations to converge. In
addition, we can observe that the SVD-based SRC converges
more promptly than SVD-free SRC, which does not rely on
SVD.

Table II shows that, on average, SVD-based SRC and
SVD-free SRC require 37.8 and 72.9 iterations for conver-
gence, respectively. Furthermore, the covariance iterations in
SVD-based SRC are computationally more efficient than
their counterparts in SVD-free SRC. This shows that SVD-
based SRC may have a computational advantage over SVD-
free SRC. Note that overall, both of them are computationally
efficient, thanks to iterating by evaluating closed-form expres-
sions.

Fig. 3 plots the sum-rate capacity versus the transmit power
budget P of both SVD-based SRC and SVD-free SRC,
while using b = 3 bit-resolution of quantized PREs. Fig. 3
also plots the sum-rate capacity of the RIS-less case, which
shows that the sum-rate capacity of the RIS-less case and RIS-
aided case (b = 3) is close to each other, especially at higher
power budgets. This is because under Scenario 1, the RIS
only offers a modest advantage due to the availability of the
direct path between the BS and UEs. Fig. 3 shows that both
algorithms improve the sum-rate capacity vs. the power budget
P . Both algorithms perform similarly at lower power budgets,
but SVD-based SRC outperforms SVD-free SRC at higher
power budgets. We observe that by adjusting the convergence
tolerance to 10−4, SVD-free SRC starts performing closer to
SVD-based SRC. However, we decide to use the convergence
tolerance of 10−3 in our simulations because 10−4 requires
a very large number of iterations for convergence and the
resultant improvement in the sum-rate capacity is negligible.

Figures 4-7 consider Scenario 2, which assumes that the
direct transmission path between the BS and UEs is blocked
by some obstruction. Fig. 4 plots the sum-rate capacity versus
the transmit power budget P by SVD-based SRC and SVD-
free SRC. For comparison, Fig. 4 also plots the sum-rate
capacity without PRE optimization, which assumes having
some random phase-shifts θθθ for PREs. We can observe the
advantage of the proposed SVD-based SRC and SVD-free
SRC, which employ joint optimization of X and θθθ over the
“without PRE optimization” scenario.

Fig. 4 shows that under Scenario 2, SVD-free SRC
slightly outperforms SVD-based SRC at higher power bud-
gets. This observation is different from the one that we had
under Scenario 1 and it can be explained as follows. Under
Scenario 1, the RIS only offers a minor advantage because
there is a direct path between the BS and UEs, as demonstrated
in Fig. 3. Therefore, we may conclude that under Scenario 1,
the problem (11) is effectively about optimizing the covariance
X . The optimization of X alone in (13) consitutes a convex
problem and SVD-based SRC offers the globally optimal so-
lution. That is why SVD-based SRC was seen to outperform
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TABLE II: Complexity of SVD-based SRC and SVD-free SRC for N PREs, Nr receive antenna elements and K UEs.

SVD-based Alg. 1 SVD-free Alg. 2
Covariance iteration PREs iteration Covariance iteratiion PREs iteration

Computational Complexity O (NrK) O(N) O (Nr log2(Nr)K) O(N)
Average # of iterations for convergence 37.8 72.9
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Fig. 4: Sum-rate capacity versus transmit power budget P
under Scenario 2.
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Fig. 5: Sum-rate capacity versus quantized PREs’ resolution
under Scenario 2.

SVD-free SRC under Scenario 1. However, under Scenario
2, where we totally rely on the RIS-assisted path, RIS promises
a clear advantage. Thus, jointly optimizing the covariance X
and phase-shifts θθθ is important, as demonstrated by Fig. 4.
Since, the joint optimization of X and θθθ in (11) is a non-
convex problem, both SVD-based SRC and SVD-free SRC
can only promise to find a locally optimal solution at best and
achieve similar performance, as shown in Fig. 4.

Fig. 5 plots the sum-rate capacity versus the bit-resolution b
of PREs. Two different values of the number of RIS elements
N = {100, 150} are considered. Fig. 5 shows that the sum-rate
capacity increases upon increasing N due to the increase in

the number of resources. Observer that the performance gap
between the sum-rate capacity of 3-bit quantized PREs and
∞-resolution PREs is quite small.

Fig. 6 plots the sum-rate capacity versus the number of
transmit antennas Nt at the BS for both SVD-based SRC and
SVD-free SRC under Scenario 2, where Nr = {1, 2} are
considered at the UE. Fig. 6 shows that the sum-rate capacity
increases with Nt and Nr due to the increase in the number
of resources. In addition, we can observe that the performance
advantage of employing Nr = 2 antennas over single-antenna
UEs increases with the increase in Nt. Fig. 7 plots the sum-
rate capacity versus the number of UEs K. Observe that the
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proposed algorithms accommodate an increased number of
UEs and the sum-rate capacity increases with the increase in
K .

B. Results for max-min rate optimization

In this subsection, we characterize the performance of the
max-min rate optimization Alg. 3, which solves the problem
(71) and it is represented by the label “Soft max-min”. The
problem (71) is based on function Γc, which is defined in
(62) and depends on the value of c. In order to choose the
best value of c, we observe the minimum UE rate by solving
problem (71) for varying values of simulation parameters. We
select c = 0.1, because it overall achieves better minimum
UE rate and quicker convergence than the other values over a
wide range of simulation parameters.

Fig. 8 shows the minimum UE rate versus the Soft max-
min iterations for c = {0.05, 0.1} and P = 0 dBm. We only
consider c = 0.05 and c = 0.1 in Fig. 8, because we find them
better than other values of c both in terms of convergence and
throughput. The results of Fig. 8 consider (i) Scenario 1 with
RIS (b = ∞), (ii) Scenario 1 with RIS-less case, and (iii)
Scenario 2 with RIS (b =∞). Fig. 8 shows that the minimum
UE-rate converges monotonically in all the cases. We observe
that although the minimum UE rate of c = 0.05 is slightly
better than that of c = 0.1 under Scenario 1, we observe the
clear supremacy of the latter under Scenario 2.

Fig. 9 shows the ratio of the maximum UE rate to the
minimum UE rate, which is a measure of rate-fairness among
the UEs, versus the number of iterations in Alg. 3 for c = 0.1
and P = 0 dBm. Fig. 9 shows that the ratio is smaller for
Scenario 1 than that for Scenario 2, because the former has
the direct link between the BS and UEs and this is helpful
for achieving a higher minimum UE rate and lower deviation
among the UEs rates. Fig. 9 also shows that the Soft max-min
achieves quite a small deviation among the UE rates, where
the ratio of the maximum UE rate to the minimum UE rate is
in the range of (1.5, 2).

Fig. 10 considers the RIS-less case of Scenario 1 and
compares the minimum UE rate of the proposed Soft max-
min and that of the convex solver based approach. More
particularly, by using off-the-shelf convex solvers, we solve the
(i) max-min rate optimization problem (57) and (ii) problem
(71) under the RIS-less case. These problems are non-convex
and we use the inequalities (101) and (108) to develop iterative
convex approximation procedures for solving (57) and (71),
respectively. Fig. 10 shows that Soft max-min and the solution
of problem (71) using a convex-solver based approach yield
similar minimum user-rates. However, solving the max-min
rate optimization problem of (57) using a convex-solver based
approach yields a higher minimum user-rate. This is expected,
because our proposed Soft max-min does not explicitly solve
the max-min rate optimization problem. Therefore, we cannot
expect it to yield the same minimum UE rate as that achieved
by explicitly solving the max-min rate optimization problem.
Nonetheless, the proposed Soft max-min optimization is ben-
eficial because it is computationally efficient compared to the
convex solver based approaches, as shown in Table III. This
is because our proposed Soft max-min iterates by evaluating
closed-form expressions to generate feasible points. Secondly,
the achievable minimum UE rate of Soft max-min is not far
from that of the max-min rate optimization of (57), just 16.3%
lower at P = 12 dBm, for example. Further features of our
proposed Soft max-min can be seen from Fig. 11, which plots
the individual UE rates at P = 12 dBm. We can observe
that only three out of K = 10 UEs are slightly behind in
terms of achievable rate, when compared to the max-min rate
optimization of (57).

Fig. 12 plots the ratio of the maximum UE rate to the
minimum UE rate versus P under Scenario 2. Three different
quantized PREs associated with b = {2, 3,∞}, are considered.
We can observe that this rate-ratio, which reflects the spread
of the UE rates, decreases upon increasing b. A benefit of our
proposed Soft max-min is that the performance gap between
2-bit quantized PREs and ∞-resolution PREs is very small.
The rate-ratio also decreases with the increase in P due to the
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TABLE III: Computational complexity comparison of Soft max-min and of the convex solver based approaches for a
RIS-less case.

Soft max-min under
RIS-less case

Convex solver approach to
solve (57) under RIS-less
case

Convex solver approach to
solve (71) under RIS-less
case

Computational Complexity O (Nt log2(Nt)K) O
(
(NtNrK)3

)
O

(
(NtNrK)3

)
Average # of iterations for convergence 43.8 18.2 43.8
Average computation time per iteration 0.017 sec 1.104 sec 1 sec

increase in power budget. It is noteworthy that the rate-ratio
becomes even lower than 1.3 at P = 20 dBm.

Fig. 13 plots the minimum UE rate versus the number of
transmit antennas Nt at the BS for Nr = {1, 2} in Scenario
2. Fig. 13 shows that the minimum UE rate increases with
the increase in Nt, Nr, or b, due to the increase in the
number of resources. We can observe that the performance
gap between the single-antenna and two-antenna UEs reduces
with the increase of Nt for both b = 3 bit-resolution or ∞-
resolution PREs.

Fig. 14 plots the achievable minimum rate under the bit-
resolution b of PREs in Scenario 2. Three different values of
the number of RIS elements N = {100, 150, 200} are con-
sidered. Fig. 14 shows that the minimum rate increases with
N . However, the improvement in the achievable minimum
rate becomes marginal upon increasing N from 150 to 200
compared to that when we increase N from 100 to 150. Fig.
14 shows that the quantized PREs designed by the proposed
Soft max-min is very efficient because the minimum UE rate
of b = 4 bit-resolution is not far from that of ∞-resolution
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Fig. 15: Minimum UE rate by Soft max-min versus K
under Scenario 2.

PREs.
Fig. 15 plots the minimum UE rate versus the number

of UEs K. We can observe that the minimum UE rate
decreases with the increase in K. This is because as we
increase K, the competition among the UEs increases for the
limited resources, i.e., under fixed values of P and Nt. For
comparison, Fig. 15 also plots the minimum UE rate without
PRE optimization. We can clearly observe the advantage of the
proposed Soft max-min, which employs joint beamforming
and PREs optimization over that “without PRE optimization”
case.

V. CONCLUSIONS

Determining the capacity and maximizing the users’ min-
imum rate in RIS-aided BCs have been regarded as compu-
tationally intractable problems due to their large-scale mixed
discrete-continuous nature. This paper has demonstrated that
both of these challenges can be efficiently addressed using our

scalable path-following algorithms, opening up new avenues
for exploring large-scale RIS-aided BCs. Their extensions to
scenarios based on channel statistics only for the sake of avoid-
ing the potential bottleneck caused by the channel overhead
required for channel estimation in large scale networks are of
great interest and are under current study.

APPENDIX: MATRIX INEQUALITIES

Theorem 1: [33, Th.2] For the A ≻ 0 the function ln |A+
HX−1HH | is convex in X ≻ 0.

Theorem 2: [18] The matrix-valued function XHY−1X is
convex over the domain {(X,Y) : Y ≻ 0}, i.e. the following
matrix inequality holds for all α ≥ 0 and β ≥ 0 with α+β =
1, and X1, X2, Y1 ≻ 0 and Y2 ≻ 0

(αX1 + βX2)
H (αY1 + βY2)

−1
(αX1 + βX2) ⪯

αXH
1 Y−1

1 X1 + βXH
2 Y−1

2 X2. (98)
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Theorem 3: For the A ≻ 0 function ln |A+

n∑
i=1

HiX
−1
i HH

i |

is convex in Xi ≻ 0, i = 1, 2, . . . , n, so the following
inequalities hold for all Xi ≻ 0 and X̄i ≻ 0, i = 1, . . . , n:

ln
∣∣∣A+

n∑
i=1

HiX
−1
i HH

i

∣∣∣ ≥
ln
∣∣∣A+

n∑
i=1

HiX̄
−1
i HH

i

∣∣∣
+

n∑
i=1

〈
X̄−1

i HH
i

(
A+

n∑
i=1

HiX̄
−1
i HH

i

)−1

×HiX̄
−1
i ,Xi − X̄i

〉
. (99)

Proof: Rewrite

ln |A+

n∑
i=1

HiX
−1
i HH

i | = ln |A+HX−1HH |,

H =
[
H1 H2 ... Hn

]
,

X = diag[Xi]i=1,2,...,n

which is convex in X according to Theorem 1. □

By resetting X−1
i ← Xi and X̄i ← X̄i in (99), we obtain

the following inequality for all Xi ≻ 0 and X̄i ≻ 0, i =
1, . . . , n:

ln
∣∣∣A+

n∑
i=1

HiXiH
H
i

∣∣∣ ≥
ln
∣∣∣A+

n∑
i=1

HiX̄iH
H
i

∣∣∣
+

n∑
i=1

〈
X̄iH

H
i

(
A+

n∑
i=1

HiX̄iH
H
i

)−1

×HiX̄i,X
−1
i − X̄

−1
i

〉
. (100)

Another inequality is for all V and V̄ of size n×m and Y ≻ 0
and Ȳ ≻ 0 of size n× n [34], [35]:

ln
∣∣In + [V]2(Y)−1

∣∣ ≥ ln
∣∣In + [V̄ ]2(Ȳ )−1

∣∣− ⟨[V̄ ]2(Ȳ )−1⟩
+ 2ℜ{⟨V̄ H(Ȳ )−1V⟩}
−
〈
(Ȳ )−1− (Ȳ + [V̄ ]2)−1, [V]2 +Y

〉
.

(101)

Considering both sides of (101) as functions of the variables
(V,Y), they match at (V̄ , Ȳ ), i.e. the function defined by the
right-hand-side (RHS), which is concave quadratic because
(Ȳ )−1 − (Ȳ + [V̄ ]2)−1 ⪰ 0, provides a tight minorant of the
log-determinant function defined by the left-hand-side (LHS)
at (V̄ , Ȳ ).

A particular case of (101) is the following inequality for all
V ∈ Cn×m and V̄ ∈ Cn×m and σ > 0:

ln
∣∣In + [V]2/σ

∣∣ ≥ ln
∣∣In + [V̄ ]2/σ

∣∣− 1

σ
⟨[V̄ ]2⟩

+
2

σ
ℜ{⟨V̄ HV⟩} −

〈
σ−1In

− (σIn + [V̄ ]2)−1, [V]2 + σIn

〉
. (102)

For X ≜ (X1, . . . ,XK) and Y ≜ (Y1, . . . ,YK) with Xk ∈
Cn×m and 0 ≺ Yk ∈ Cn×n, k = 1, . . . ,K, consider the
function

ψ(X,Y) ≜ ln
∣∣∣Γ(X,Y)

∣∣∣ (103)

in conjunction

Γ(X,Y) ≜
K∑

k=1

(Im −XH
k Y−1

k Xk) (104)

in the domain{
[Xk]

2 ≺ Yk, k = 1, . . . ,K
}
. (105)

Theorem 4: In the domain constrained by (105), the function
ψ(X,Y) is concave with its differential at a point (X̄, Ȳ )
given by 〈

ψ(X̄, Ȳ ), (X,Y)− (X̄, Ȳ )
〉

=〈
Γ−1(X̄, Ȳ )

K∑
k=1

(
− X̄H

k Ȳ
−1
k Xk −XH

k Ȳ
−1X̄k

+X̄H
k Ȳ

−1
k X̄k + X̄H

k Ȳ
−1
k YkȲ

−1
k X̄k

)〉
. (106)

Thus, the following inequality holds for all (X,Y) and
(X̄, Ȳ ) in the domain constrained by (105):

ln
∣∣∣Γ(X,Y)

∣∣∣ ≤ ln
∣∣∣Γ(X̄, Ȳ )

∣∣∣+ K∑
k=1

⟨Γ−1(X̄, Ȳ )X̄H
k Ȳ

−1
k X̄k⟩

− 2

K∑
k=1

ℜ{⟨Γ−1(X̄, Ȳ )X̄H
k Ȳ

−1
k Xk⟩}

+

K∑
k=1

⟨Ȳ −1
k X̄kΓ

−1(X̄, Ȳ )X̄H
k Ȳ

−1
k Yk⟩,

(107)

or equivalently,

ln
∣∣∣Γ(X,Y)

∣∣∣−1

≥ ln
∣∣∣Γ(X̄, Ȳ )

∣∣∣−1

−
K∑

k=1

〈
Γ−1(X̄, Ȳ )X̄H

k Ȳ
−1
k

× X̄k

〉
+2

K∑
k=1

ℜ{⟨Γ−1(X̄, Ȳ )X̄H
k Ȳ

−1
k Xk⟩}

−
K∑

k=1

⟨Ȳ −1
k X̄kΓ

−1(X̄, Ȳ )X̄H
k Ȳ

−1
k Yk⟩.

(108)

Proof: By Theorem 2, we have:

Γ(αX + βX̄, αY + βȲ2) ⪯ αΓ(X,Y) + βΓ(X̄, Ȳ )

for all (X,Y) and (X̄, Ȳ ) in the domain constrained by (105)
and α ≥ 0 and β ≥ 0 with α+ β = 1. Therefore,

ln
∣∣∣Γ(αX + βX̄, αY + βȲ2)

∣∣∣ ≤
ln
∣∣∣αΓ(X,Y) + βΓ(X̄, Ȳ )

∣∣∣ ≤ (109)

α ln
∣∣∣Γ(X,Y)

∣∣∣+ β ln
∣∣∣Γ(X̄, Ȳ )

∣∣∣, (110)
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where the second inequality follows from the concavity of
the function ln det. This shows the concavity of the log-
determinant function. Then (107) is a fundamental property
of concave functions [14]. □

REFERENCES

[1] M. D. Renzo, F. H. Danufane, and S. Tretyakov, “Communication mod-
els for reconfigurable intelligent surfaces: From surface electromagnetics
to wireless networks optimization,” Proc. IEEE, vol. 110, pp. 1164–
1208, Sept. 2022.

[2] H. Zhang, B. Di, K. Bian, Z. Han, H. V. Poor, and L. Song, “Toward
ubiquitous sensing and localization with reconfigurable intelligent sur-
faces,” Proc. IEEE, vol. 110, pp. 1401–1422, Sept. 2022.

[3] C. Pan et al. , “Multicell MIMO communications relying on intelligent
reflecting surface,” IEEE Trans Wirel. Commun., vol. 19, pp. 5218–5233,
Aug. 2020.

[4] H. Yu, H. D. Tuan, A. A. Nasir, T. Q. Duong, and H. V. Poor, “Joint
design of reconfigurable intelligent surfaces and transmit beamforming
under proper and improper Gaussian signaling,” IEEE J. Sel. Areas
Commun., vol. 38, pp. 2589–2603, Nov. 2020.

[5] H. Yu, H. D. Tuan, E. Dutkiewicz, H. V. Poor, and L. Hanzo, “Maxi-
mizing the geometric mean of user-rates to improve rate-fairness: Proper
vs. improper Gaussian signaling,” IEEE Trans. Wirel. Commun., vol. 21,
pp. 295–309, Jan. 2022.

[6] A. A. Nasir, H. D. Tuan, E. Dutkiewicz, H. V. Poor, and L. Hanzo,
“Low-resolution RIS-aided multiuser MIMO signaling,” IEEE Trans.
Commun., vol. 70, pp. 6517–6531, Oct. 2022.

[7] L. Wei et al. , “Joint channel estimation and signal recovery for RIS-
empowered multiuser communications,” IEEE Trans. Commun., vol. 70,
pp. 4640–4655, July 2022.

[8] M. Abughalwa, H. D. Tuan, D. N. Nguyen, H. V. Poor, and L. Hanzo,
“Finite-blocklength RIS-aided transmit beamforming,” IEEE Trans. Ve-
hic. Techn., vol. 71, pp. 12374–12379, Nov. 2022.

[9] X. Zhai, G. Han, Y. Cai, and L. Hanzo, “Beamforming design based on
two-stage stochastic optimization for RIS-assisted over-the-air compu-
tation systems,” IEEE Internet Things J., vol. 9, pp. 5474–5488, Apr.
2022.

[10] N. Jindal, S. Vishwanath, and A. Goldsmith, “On the duality of Gaussian
multiple-access and broadcast channels,” IEEE Trans. Info. Theory,
vol. 50, no. 4, pp. 768–783–1580, 2004.

[11] O. Ozdogan, E. Bjornson, and E. G. Larsson, “Intelligent reflecting
surfaces: Physics, propagation, and pathloss modeling,” IEEE Wirel.
Commun. Lett., vol. 9, pp. 581–585, May 2020.

[12] W. Tang et al., “Wireless communications with reconfigurable intelligent
surface: Path loss modeling and experimental measurement,” IEEE
Trans. Wirel. Commun., vol. 20, pp. 421–439, Jan. 2021.

[13] M. Najafi, V. Jamali, R. Schober, and H. V. Poor, “Physics-based mod-
eling and scalable optimization of large intelligent reflecting surfaces,”
IEEE Trans. Commun., vol. 69, pp. 2673–2691, Apr. 2021.

[14] H. Tuy, Convex Analysis and Global Optimization (second edition).
Springer International, 2017.

[15] H. D. Tuan, A. A. Nasir, H. Q. Ngo, E. Dutkiewicz, and H. V.
Poor, “Scalable user rate and energy-efficiency optimization in cell-free
massive MIMO,” IEEE Trans. Commun., vol. 70, pp. 6050–6065, Sept.
2022.

[16] W. Zhu, H. D. Tuan, E. Dutkiewicz, and L. Hanzo, “Collaborative
beamforming aided fog radio access networks,” IEEE Trans. Veh. Techn.,
vol. 71, pp. 7805–7820, Jul. 2022.

[17] H. D. Tuan, H. H. Kha, H. H. Nguyen, and V. J. Luong, “Optimized
training sequences for spatially correlated MIMO-OFDM,” IEEE Trans.
Wirel. Commun., vol. 9, pp. 2768–2778, Sept. 2010.

[18] U. Rashid, H. D. Tuan, and H. H. Nguyen, “Joint optimization of source
precoding and relay beamforming in wireless MIMO relay networks,”
IEEE Trans. Comm., vol. 62, pp. 488–499, Feb. 2014.

[19] Z. Sheng, H. D. Tuan, H. H. Nguyen, and M. Debbah, “Optimal training
sequences for large-scale MIMO-OFDM systems,” IEEE Trans. Signal
Process., vol. 65, no. 13, pp. 3329–3343, 2017.

[20] M. Di Renzo, M. Debbah, and et al., “Smart radio environments
empowered by AI reconfigurable meta-surfaces: An idea whose time
has come,” EURASIP J. Wirel. Commun. Network., no. 1, p. 129, 2019.

[21] Q. U. A. Nadeem, A. Kammoun, A. Chaaban, M. Debbah, and M. S.
Alouini, “Asymptotic max-min SINR analysis of reconfigurable intel-
ligent surface assisted MISO systems,” IEEE Trans. Wirel. Commun.,
vol. 19, no. 12, pp. 7748–7764, 2020.

[22] E. Bjornson, O. Ozdogan, and E. G. Larsson, “Intelligent reflecting
surface versus decode-and-forward: How large surfaces are needed to
beat relaying?,” IEEE Wirel. Commun. Lett., vol. 9, no. 2, pp. 244–248,
2020.

[23] L. Wei, C. Huang, G. C. Alexandropoulos, C. Yuen, Z. Zhang, and
M. Debbah, “Channel estimation for RIS-empowered multi-user MISO
wireless communications,” IEEE Tran. Commun., vol. 69, pp. 4144–
4157, June 2021.

[24] A. L. Swindlehurst, G. Zhou, R. Liu, C. Pan, and M. Li, “Channel esti-
mation with reconfigurable intelligent surfaces: A general framework,”
Proc. IEEE, vol. 110, pp. 1312–1338, Sept. 2022.

[25] J. An et al., “Joint training of the superimposed direct and reflected links
in reconfigurable intelligent surface assisted multiuser communications,”
IEEE Trans. Green Commun. Network., vol. 6, pp. 739–754, June 2022.

[26] J. An, C. Xu, L. Gan, and L. Hanzo, “Low-complexity channel estima-
tion and passive beamforming for RIS-assisted MIMO systems relying
on discrete phase shifts,” IEEE Trans. Commun., vol. 70, pp. 1245–1260,
Feb. 2022.

[27] C. Xu et al., “Channel estimation for reconfigurable intelligent surface
assisted high-mobility wireless systems,” IEEE Trans. Veh. Techn.,
vol. 72, pp. 718–734, Jan. 2023.

[28] S. Vishwanath, N. Jindal, and A. Goldsmith, “Duality, achievable rates,
and sum-rate capacity of MIMO broadcast channels,” IEEE Trans. Info.
Theory, vol. 49, pp. 2658–2668, Oct. 2003.

[29] N. Jindal, W. Rhee, S. Vishwanath, S. A. Jafar, and A. Goldsmith,
“Sum power iterative water-filling for multi-antenna Gaussian broadcast
channels,” IEEE Trans. Info. Theory, vol. 51, no. 4, pp. 1570–1580,
2005.

[30] P. He and L. Zhao, “Correction of convergence proof for iterative
water-filling in Gaussian MIMO broadcast channels,” IEEE Trans. Info.
Theory, vol. 57, pp. 2539–2543, Apr. 2011.

[31] W. Yu, W. Rheee, S. Boyd, and J. M. Cioffi, “Iterative water-filling for
Gaussin vector multiple-access cahnnels,” IEEE Trans. Infor. Theory,
vol. 50, pp. 145–152, Jan 2004.

[32] Q.-U.-A. Nadeem, A. Kammoun, M. Debbah, and M.-S. Alouini, “A
generalized spatial correlation model for 3D MIMO channels based
on the Fourier coefficients of power spectrums,” IEEE Trans. Signal
Process., vol. 63, pp. 3671–3686, Jul. 2015.

[33] L. D. Nguyen, H. D. Tuan, T. Q. Duong, and H. V. Poor, “Multi-user
regularized zero-forcing beamforming,” IEEE Trans. Signal Process.,
vol. 67, pp. 2839–2853, Nov. 2019.

[34] H. H. M. Tam, H. D. Tuan, and D. T. Ngo, “Successive convex quadratic
programming for quality-of-service management in full-duplex MU-
MIMO multicell networks,” IEEE Trans. Commun., vol. 64, pp. 2340–
2353, June 2016.

[35] H. D. Tuan, H. H. M. Tam, H. H. Nguyen, T. Q. Duong, and H. V.
Poor, “Superposition signaling in broadcast interference networks,” IEEE
Trans. Commun., vol. 65, pp. 4646–4656, Nov. 2017.


