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Abstract

We consider the problem of estimating the channel in reconfigurable intelligent surface (RIS)

assisted millimeter wave (mmWave) systems. We propose two variational expectation maximization

(VEM) based algorithms for channel estimation in RIS-aided wireless systems. The first algorithm is

a structured mean field based sparse Bayesian learning (SM-SBL) algorithm that exploits the doubly-

structured sparsity as well as the individual sparsity of the elements of the channel. To exploit the

sparsities we propose a column-wise coupled Gaussian prior. We next design the factorized mean field

based algorithm based on the prior we propose. This algorithm called the factorized mean field SBL

(FM-SBL) algorithm addresses the time complexities of the SM-SBL algorithm without sacrificing

channel estimation accuracy. We show using extensive numerical investigations that the i) proposed

SM-SBL and FM-SBL algorithms outperform several existing algorithms and ii) FM-SBL has lower

time complexity compared to the SM-SBL algorithm.

Index Terms

Variational inference, expectation maximization, sparse Bayesian learning (SBL).

I. INTRODUCTION

Reconfigurable intelligent surface (RIS) is a promising technology to assist mmWave systems

in achieving high spectral and energy efficiency. An RIS consists of a large number of passive

reflecting elements which phase shifts the incident signal, and reflects it passively. Each of the

RIS elements reflects the incident signal independently, and these elements can be configured

such that the received signal combines coherently, thus improving the received signal power

[1]. This is especially useful in cases when the direct path between the user (UE) and the base

station (BS) is blocked by obstructions [1].

There has been extensive research in the area of joint optimization of the beamformer and

the RIS reflection coefficient matrix [2]–[4]. These works assume that the accurate channel state

information (CSI) is available. Accurate CSI hence becomes extremely important for deployment

of RIS-aided wireless systems. However, the channel estimation in these systems is difficult due

http://arxiv.org/abs/2211.14495v1
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to the large number of passive reflecting elements [1]. The end-to-end channel in RIS-assisted

wireless systems, the cascaded channel, is a product of two separate components, the UE-RIS

and RIS-BS channel. The cascaded virual angular domain (VAD) channel, due to the limited

number of scatterers around the BS and RIS exhibits sparsity.

References [2], [5]–[7] have estimated the cascaded channel of the RIS-aided wireless systems.

Taha et al. in [5] estimated the channel by including active elements in the RIS which have signal

processing capability. These active elements receive the signal and help in estimating the UE-RIS

and RIS-BS channels. This design uses compressive sensing tools to contruct channels of all the

RIS elements from the channels observed only at the active elements. The installation of active

elements with signal processing capability in RIS is, however, costly and may not be suitable

for many applications [1]. Mishra et al. in [2] have proposed a channel estimation algorithm for

multiple input single output systems that are assisted by RIS. It uses a binary reflection least

squares estimator to estimate the cascaded channel matrix. For channel estimation only one of

the elements is turned on at a time. The BS then estimates the cascaded channel from the UE to

the BS. The ON/OFF reflection modes need to be implemented for each individual passive RIS

element. The ON/OFF techniques leads to a sub-optimal solution [6]. Jensen et al. in [6] proposed

minimum variance unbiased estimator to estimate the cascaded channel. This design does not

require any prior knowledge about the channel and employs a least squares estimation technique.

He et al. in [7] proposed a two step channel estimation protocol for RIS-aided massive MIMO

systems. The first step of the algorithm estimates the UE-RIS channel using matrix factorization

techniques. The second step estimates the RIS-BS channel using matrix completion. It assumes

that the reflection coefficient matrix of the RIS is binary and requires it to be sparse for accurate

channel estimation. The ON/OFF switching of the passive RIS elements in [2], [7] is costly

as this requires separate amplitude control of each RIS element [8]. The channel estimation

techniques considered in [2], [5]–[7] do not exploit the inherent sparsity of the cascaded VAD

channel, hence, they require large training overhead for accurate channel estimation [1].

The cascaded VAD channels for different UEs have a doubly-structured sparsity with com-

pletely common non-zero rows and partially-common non-zero columns. The authors in [1]

exploited the sparsity of the cascaded channel to express the downlink channel estimation prob-

lem in RIS-aided mmWave systems as compressed signal recovery. It then uses the orthogonal

matching pursuit (OMP) and generalized approximate message passing (GAMP) to solve the

compressed sensing problem. The GAMP algorithm, in order to incorporate the sparsity structure,
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assumed a Gaussian mixture prior on the channel. The OMP based algorithm is, however, greedy

and requires the knowledge of the sparsity degree of the signal to be recovered. Ruan et al.

in [9] proposed a two step protocol by expressing the channel estimation as a compressed

sensing recovery problem. It requires the deployment of a testing site in order to aid with the

channel estimation process. In the offline phase the test site T1 transmits pilot signals to BS for

estimating the cascaded T1-RIS-BS channel to obtain the RIS-BS channel. In the online phase

T1 first transmits pilot signals to UEs for estimating the cascaded T1-RIS-UE channel to obtain

the RIS-UE channel. It then uses the vector approximate message passing (VAMP) algorithm to

solve the compressed sensing recovery problem. To capture the sparsity structure of the cascaded

VAD channel, a Bernoulli-Gaussian family of prior is assumed. The AMP based algorithms in

[1], [9] do not exhaustively exploit the complete sparsity of the cascaded VAD channel in the

RIS-aided wireless systems.

The authors in [10] introduced and leveraged the doubly-structured sparsity of the angular

domain cascaded channels associated with different UEs. They proposed a doubly-structured

orthogonal matching pursuit (DS-OMP) based algorithm. This method jointly estimates the row

and the column supports of all the UEs. This reduces the pilot overhead of the cascaded channel

estimation. The authors in [11] have proposed another aspect in the sparsity structure of the

cascaded VAD channel of different UEs. They have proposed that in addition to the doubly-

structured sparsity the cascaded VAD channel also has an additional column index shift which

is common across all the UEs. They proposed that for each UE the non-zero rows of the

cascaded VAD channel has a shift relative to each other which is independent of the UE. After

compensating for this shift all the non-zero rows of each UE have the same column support.

Based on this they have proposed a three-step OMP (TS-OMP) algorithm for channel estimation.

The algorithms [10], [11] require sparsity information of cascaded VAD channel, i.e., the number

of non-zero rows and columns, for channel estimation. These are acquired with extremely high

computational complexity for large number of BS antennas or RIS elements [9].

References [1], [9]–[11] which exploit sparsity of the cascaded channel in RIS-assisted wireless

systems, propose the channel estimation problem as compressed signal recovery. We can thus

apply various compressed sensing algorithms in order to obtain accurate channel estimates. The

sparse bayesian learning (SBL) framework introduces a suitable prior over the sparse channel to

be recovered and estimates the channel using probablistic methods [12]. The choice of the prior

here is very important as it must accurately capture the sparsity structure of the channel. These
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SBL algorithms are, however, iterative in nature and suffer from time complexity issues [13].

Reference [13] proposes a faster version of the SBL algorithm using variational inference (VI).

These methods have not been applied for channel estimation in RIS-aided mmWave systems.

To summarize, the existing literature for RIS-assisted wireless communication systems has

not yet designed a VI based channel estimation technique which is able to exhaustively exploit

the entire sparsity structure of the cascaded VAD channel. VI proposes the inference problem in

channel estimation as an optimization problem. This allows us to approximate even intractable

posterior distibutions and also allows us to use different simpler forms of the approximating

distribution for faster convergence [13]. In this work we estimate the channel of the RIS-assisted

mmWave systems. We exploit the doubly-structured sparsity of the cascaded VAD channel in

order to reduce the channel estimation pilot overhead. Our main contributions can be summarized

as follows,

1) We first propose a column-wise coupled prior which accurately captures the sparsity structure

of the cascaded VAD channel in RIS-aided systems. The proposed prior, along with the joint

estimation of the cascaded VAD channel of all UEs helps in reduncing the pilot overhead of

channel estimation.

2) We develop a structured mean field sparse Bayesian learning (SM-SBL) algorithm for accu-

rate channel estimation in RIS-assisted mmWave systems. The developed algorithm accurately

estimates the cascaded VAD channel along with hyperparameters of the proposed prior. The

SM-SBL algorithm maximizes a bound on the log marginal likelihood of the model called the

evidence lower bound (ELBO). The proposed algorithm has much lower training overhead than

the existing algorithms [10], [11].

3)The SM-SBL algorithm suffers from time complexity issues due to the computational cost of

each iterative step in the algorithm. We then propose an algorithm which uses VI along with the

Lipschtiz inequality to get a faster version of the algorithm, referred to as the factorized mean

field sparse Bayesian learning (FM-SBL) algorithm. The Lipschitz inequality is used to bound

the ELBO along with the factorized posterior assumption of VI to come up with updates that

do not require matrix inversions, this speeds up the mean and variance computation steps.

4) We numerically show that the proposed SM-SBL and FM-SBL algorithms, have a lower

normalized mean squared error (NMSE) and lower pilot overhead than the existing algorithms

[10], [14]. The proposed algorithms also have low normalized support error rate (NSER) which

shows that they accurately estimate the true support of the cascaded VAD channel. We plot the
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Kullback–Leibler (KL) divergence to show that the proposed FM-SBL algorithm estimates a

distribution which is very close to the distribution estimated by the SM-SBL algorithm. This

plot also helps us in validating that the Lipschitz inequality in the FM-SBL algorithm does not

degrade the performance. We finally show that the proposed FM-SBL algorithm has much lower

runtime than the SM-SBL algorithm.

Notations: The mth element of vector y is denoted as ym. The superscripts, (·)T , (·)∗, (·)H

are transpose, conjugate and conjugate transpose operations. The symbols xm,n, xTm, xn, denote

the (m,n)th element, mth row and nth column of matrix X, respectively. The notations C
K×M ,

R
K×M
+ , {0, 1}K×M represent complex, positive real valued and binary matrices respectively, of

dimension K ×M . The symbol IM , 1M and 0M denote M ×M identity matrix, M × 1 all-one

and all-zero vectors, respectively. The notations I(·) and φ denote the indicator function and the

null set, respectively. The notations ‖ · ‖2 and ‖ · ‖F denote the ℓ2 and Frobenious norm of a

vector and matrix, respectively. The statistical expectation with respect to a distribution p(·) is

denoted as Ep(·)(·). The notation diag(y) represents a diagonal matrix with the elements of y on

its diagonal. The notation CN (x|a, b) implies that the random variable x has complex Gaussian

distribution with mean a and variance b. The support set of a vector/matrix is denoted as supp(·).
II. SYSTEM MODEL

We consider an RIS-assisted mmWave system with an M-antenna BS and K single-antenna

UEs. The RIS is degined as a uniform planar array (UPA) with N1 horizontal and N2 vertical

reconfigurable elements. The total number of RIS elements is N = N1 ×N2. Each RIS element

is passive , and has no signal processing capability. It only shifts the phase of the incident signal

[10]. The uplink channel from UE to RIS is denoted as hrk ∈ CN×1, while that of between the

BS to RS is denoted as G ∈ CM×N . This work focuses on estimating the cascaded uplink UE-

RIS-BS channel at the BS. The direct channel between the UE and BS can be easily estimated

using the conventional estimation schemes [10], and is not considered in this work.

Each UE, similar to [10], [11], transmits a known orthogonal pilot over Q time slots to the

BS to estimate the uplink cascaded channel. Let skq be the pilot signal transmitted by the kth

UE in the qth time slot, for q = 1 to Q. The pilot signal received at the BS from the kth UE in

the qth time slot after removing the contribution of the direct channel is expressed as [10]:

ykq = Gdiag(θq)hrkskq +wkq
(a)
= Gdiag(hrk)θqskq +wkq. (1)

Here θq = [θq,1, θq,2, . . . , θq,N ]
T ∈ RN×1 is the RIS reflection vector, with θq,n, for n = 1 to N ,

being the reflection coefficient of the nth RIS element in the qth time slot. Equality in (a) is
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obtained by interchanging θq and hrk, as diag(θq) is a diagonal matrix. The vector wkq, with

pdf CN (0, σ2IM), is the additive white Gaussian noise(AWGN) at the BS. The objective is to

estimate the cascaded channel Hk , Gdiag(hrk). To achieve it, we re-express (1) as follows:

ykq = Hkθqskq +wkq. (2)

The Q time-slot pilot transmissions are concatenated, for the sake of mathematical convenience,

as Yk = [yk1, . . . ,ykQ] ∈ CM×Q. Since the objective is to estimate the cascaded UE-RIS-BS

channel for the given RIS reflection coefficients, Eq. (2) is simplified by assuming that skq = 1,

∀ k UEs and q slots, as follows:

Yk = HkΘ+Wk, (3)

where Θ = [θ1, . . . , θQ] ∈ CN×M and Wk = [wk,1, . . . ,wkQ] ∈ CM×Q.

A. Virtual angular domain representation of the cascaded UE-RIS-BS channel

The cascaded channel for the kth UE Hk in (2) is next equivalently represented in the virtual

angular domain (VAD) [10], where it exhibits sparsity due to the limited number of scatterers

around the BS and RIS. This as shown later, will aid its estimation. The Hk can be represented

in VAD as Hk [10]:

Hk = UM(H̃k)HUT
N . (4)

Here H̃k is the cascaded VAD channel for the kth UE, UM and UN are the M ×M and N ×N
unitary dictionary matrices at the BS and RIS, respectively. Each column of UM represents the

array steering vector corresponding to an angle of arrival (AoA) at the BS [11]. Similarly, the

each column of UN represents the array steering vectors corresponding to a particular angle of

departure (AoD) at the RIS. These dictionary unitary matrices uniformly sample the AoA and

AoD angles in [−π/2, π/2], and accurately capture the true physical channel [15]. By substituting

the VAD representation from (4) into (3), we have

Yk = UM (H̃k)HUT
NΘ +Wk. (5)

Pre-multiplying (5) by UH
M , and by taking the conjugate transpose, we have

Ỹk = Θ̃H̃k + W̃k. (6)

Here Ỹk = (UH
MYk)H ∈ CQ×M is the effective received pilot matrix, Θ̃ = (UT

NΘ)H ∈ CQ×N

is the effective phase matrix, and W̃k = (UH
MWk)H ∈ C

Q×M is the effective noise matrix.

A joint system model for all the UEs using (6) can be expressed as follows

Ỹ = Θ̃H̃+ W̃. (7)
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Here Ỹ = [(Ỹ1)T , . . . , (ỸK)T ]T ∈ C
QK×M is the effective joint receive pilot matrix, Θ̃ ∈

CQK×MK is the joint effective phase matrix and H̃ ∈ CNK×M is the joint effective channel. If

the mth column of H̃ and H̃k are represented as h̃m and h̃km respectively, then

h̃m = [(h̃1
m)

T , . . . , (h̃Km)
T ]T ∈ C

NK×1. (8)

We next take a closer look at the cascaded channel Hk and its corresponding VAD repre-

sentation H̃k from (4). To perform this investigation, the Saleh-Valenzuela channel model from

[10] is used to represent the BS-RIS channel G as follows [10]:

G =

√

MN

LC

LC
∑

l=1

αGl b(ϑ
Gr

l , ψGr

l )a(ϑGt

l , ψ
Gt

l )T . (9)

Here LC is the number of scatterers between the RIS and BS, αGl is the complex gain of the

lth path, ϑGr

l (resp. ψGr

l ) are the azimuth (resp. elevation) angle at the BS, and ϑGt

l (resp. ψGt

l )

are the azimuth (resp. elevation) angle at the RIS for the lth path. The RIS-kth UE channel hrk

can similarly be represented as follows [10]:

hrk =

√

N

LkR

Lk

R
∑

l2=1

αrkl2 a(ϑ
rk
l2 , ψ

rk
l2 )

T . (10)

The term LkR is the number of paths between the kth UE and the RIS, αrkl2 is the complex gain of

the l2th path, and ϑrkl2 , and ψrkl2 are respectively the the azimuth and elevation angles at the RIS

for the l2th path. The vectors b(ϑ, ψ) ∈ CM×1 and a(ϑ, ψ) ∈ CN×1 represent the normalized

array steering vectors at the BS and the RIS respectively. For a UPA of size N = N1 ×N2, the

normalized array steering vector at the RIS a(ϑ, ψ) can be represented as follows [10]:

a(ϑ, ψ) =
1√
N

[

e−j2πdsin(ϑ) cos(ψ)n1/λ
]

⊗
[

e−j2πd sin(ϑ)n2/λ
]

. (11)

The normalized array steering vector at the BS b(ϑ, ψ) can similarly be represented as [11]:

b(ϑ, ψ) =
1√
M

[

e−j2πdsin(ϑ) cos(ψ)m1/λ
]

⊗
[

e−j2πd sin(ϑ)m2/λ
]

. (12)

Here n1 = [0, 1, . . . , N1 − 1]T , n2 = [0, 1, . . . , N2 − 1]T , m1 = [0, 1, . . . ,M1 − 1]T , m2 =

[0, 1, . . . ,M2 − 1]T , λ is the carrier wavelength, and d is the antenna spacing.

B. Doubly-structured sparsity of the angular cascaded channel

From (9) and (10), the cascaded VAD channel in (4) can be re-expressed as [10]:

H̃k = UT
N(Gdiag(hrk))

HUM =

√

MN2

LCLkR

LC
∑

l=1

Lk

R
∑

l2=1

(αGl )
∗(αrkl2 )

∗ã(ϑGt

l + ϑrkl2 , ψ
Gt

l + ψrkl2 )
T b̃(ϑGr

l , ψGr

l ).

(13)

Here b̃(ϑ, ψ) = b(ϑ, ψ)HUM and ã(ϑ, ψ) = a(ϑ, ψ)HUN . Both b̃(ϑ, ψ) and ã(ϑ, ψ) have only

one non-zero element which lies at the position of array steering vector in the direction (ϑ, ψ)
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in UM and UN [10]. This happens because each column of UM and UN is given by the array

steering vector corresponding to one specific angle, i.e.,

UM =
[

b(ϑGr

1 , ψGr

1 ), . . . ,b(ϑGr

M1
, ψGr

1 ),b(ϑGr

1 , ψGr

2 ), . . . ,b(ϑGr

M1
, ψGr

M2
)
]

∈ C
M×M , (14)

UN =
[

a(ϑGt

1 , ψGt

1 ), . . . , a(ϑGt

N1
, ψGt

1 ), a(ϑGt

1 , ψGt

2 ), . . .a(ϑGt

N1
, ψGt

N2
)
]

∈ C
N×N .

When UM and UN are multiplied with b(ϑ, ψ)H and a(ϑ, ψ)H respectively, only that element of

b̃(ϑ, ψ) and ã(ϑ, ψ), is non-zero, which corresponds to the angle (ϑ, ψ). The non-zero element of

b̃(ϑ, ψ) corresponds to a particular scatterer between the BS and RIS and results in the column

sparsity of H̃k. In Fig. 1, the scatterer 5 between the RIS and BS causes the element of b̃

corresponding to (ϑGr

l , ψGr

l ) AoA at the BS to be non-zero. This makes, as shown in Fig. 1,

one column of H̃1 and H̃2 non-zero. Similarly, the non-zero element of ã(ϑ, ψ) corresponds to

the scatterer between the UE and RIS and results in row sparsity of H̃k. In Fig. 1 the scatterer

1 for UE1 causes ã(ϑGt

l + ϑr11 , ψ
Gt

l + ψr11 ) to be non-zero. This makes one element inside the

lth non-zero column of H̃1 and H̃2 non-zero. The matrix H̃k, consequently, has two different

kinds of sparsities, which are discussed below.

Fig. 1: Doubly-structured sparsity in the virtual angular domain (VAD) cascaded UE-RIS-BS channels.

1) Common column sparsity: The decomposition of cascaded VAD channel H̃k in (13) shows

that only LC of its columns are non-zero, which correspond to the LC scatterers between the BS

and RIS. As seen from (13), the non-zero column indices depend on the azimuth and elevation

angle at the BS denoted by (ϑGr

l , ψGr

l ). We also observe from (2) that the channel G is common to

all the K UEs. The angles {(ϑGr

l , ψGr

l )}LC

l=1 are, thus, same for all the UEs. The non-zero column

support of H̃k, denoted as Ωkc is common for all K UEs i.e., Ω1
c = Ω2

c = · · · = ΩKc = Ωc. Here

Ωc is the non-zero common column support of H̃k for all k ∈ [1, . . . , K] UEs. It is shown for

two different UEs in Fig. 1, and is given as Ωc = {1, 4}. The two common non-zero columns are
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a result of scatterer 4 and scatterer 5 between the RIS and BS. These common column supports

are denoted by the red outlines. Since this support is common for the UEs, the shared sparsity

across them can be exploited by jointly estimating their channel.

2) Partially-common row sparsity: As discussed earlier, in each non-zero column, only a few

rows are non-zero due to the limted number of scatterers around the RIS. As seen from (13),

the indices of these non-zero rows is decided by the azimuth and elevation angle at the RIS

denoted as {(ϑGt

l + ϑrkl2 , ψ
Gt

l + ψrkl2 )}
Lk

R

l2=1. In each non-zero column, there are thus LkR non-zero

rows, which correspond to the number of scatterers between the RIS and UE. Some of these

scatterers, as shown by scatterer 2 in Fig. 1, will be common for different UEs. These common

scatterers will lead to {hrk}Kk=1 having partially-common paths with the same angle at the RIS

as shown by the green lines in Fig. 1. If the number of partially-common paths between the

UE and RIS is denoted as LR, with LR ≤ LkR, then for each l we can find that, there exists

LR common paths for the cascaded VAD channel between the K UEs and BS, {H̃k}Kk=1 [10].

This means that for each non-zero column l (l = 1, 2, . . . , LC), the channels of all K UEs i.e.,

{H̃k}Kk=1 share LR common non-zero rows. The common non-zeros rows in each column across

the UEs is denoted by the green boxes in Fig. 1 If we denote the non-zero row entries of the

lth column and kth UE as (Ωlr)
k, then

K
⋂

k=1

(Ωlr)
k = Ωlr. (15)

Here Ωlr denotes the partially-common row support for the lth column ∀ k. We show this

partially-common row sparsity of cascaded VAD channels in Fig. 1 for two different UEs where

the number of paths between the i) BS and RIS is LC = 2; and ii) UE and RIS for each UE is

LkR = 2. We see that there the one shared scatterer between the RIS and the UEs is scatterer 2.

Out of the LkR paths, thus LR = 1 path is common for both the UEs to the RIS. This implies

that for each UE ,there are a total of LC×LkR = 4 number of non-zero elements in the cascaded

VAD channel. Out of these 4 non-zero elements, LC × LR = 2 is common across all the UEs

due to the shared scatterer between the UEs and RIS. The partially-common row support for the

first column is Ω1
r = {3} and for the fourth column is Ω4

r = {1}. The common column sparsity

along with the partially-common row sparsity is termed as the doubly-structured sparsity.

3) Individual sparsity: The scatterers which are not common across the different UEs, result

in {H̃k}Kk=1 having some UE-specific non-zero elements. In each non-zero column, there are

LkR − LR non-zero elements which are not common across the different UEs corresponding to
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the UE-specific scatterers. This sparsity is termed as the individual sparsity of each user. In Fig.

1, scatterer 1 is specific to UE1 and results in one non-zero element in each non-zero column of

H̃1 which is not common with H̃2. These are denoted by the blue boxes. The individual sparsity

of UE2 due to scatterer 3 is denoted by the orange boxes.

Given the above sparsity of the cascaded VAD channel H̃, the problem of estimating H̃, from

the observation matrices Ỹ, in (7) now becomes a compressed sensing recovery problem. The

authors in [9], [10] jointly estimated the cascaded VAD channel by compressed sensing recovery.

The design in [10] jointly estimates the row and column supports of {H̃k}Kk=1 and uses the OMP

algorithm to get the channel estimates. The authors in [9] use the sparse Bayesian learning (SBL)

framework which assumes a prior over the channel to encode its sparsity information. It assumed

a Bernoulli-Gaussian family of prior on H̃ and used VAMP algorithm for channel estimation.

The design in [10], however, is based on the OMP algorithm which requires the number of non-

zero elements in H̃ beforehand. The prior in [9] does not exploit the doubly-stuctured sparsity

of the cascaded VAD channel exhaustively. It also suffers from time complexity issues as is the

case with many SBL inference methods [13]. In order to address these issues we propose two

algorithms based on SBL inference method called VI for joint estimation of sparse channel in

RIS-assisted mmWave systems. Unlike [10], the proposed method does not require information

about the number of non-zero elements in the channel and it also addresses the time complexity

issues of [9]. We show that the proposed designs based on VI and a column-wise coupled prior

to encode the channel information, due to better exploitation of channel sparsity, outperforms

the one in [9], [10].

III. REVIEW OF SPARSE BAYESIAN LEARNING

For the system model in (7), the Bayesian learning framework treats Ỹ and H̃ as the ob-

servation and unknown variables, respectively. The framework also assigns a prior distribution

p(H̃|Ω) to H̃, with the hyperparameter set Ω. The prior incorporates a belief about H̃, which

in this case is its sparsity structure. The Bayesian framework uses the likelihood distribution

p(Ỹ|H̃), along with the prior, to infer the posterior distribution of the unknown variable H̃

using Bayes rule as p(H̃|Ỹ,Ω) ∝ p(Ỹ|H̃)p(H̃|Ω). The choice of prior distribution is critical in

Bayesian learning framework. Recent literature in [14], [17]–[19] has considered different kind

of sparsity-promoting priors. We now discuss these works, and the limitations of priors used

therein in capturing the doubly-structured sparsity in the cascaded VAD channel.
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1) SBL: The authors in [14] recovered a sparse vector h̃m from the observation ỹm = Θ̃h̃m+

ñ, a problem which can be obtained by setting M = 1 in (7). The design in [14] assigned a

zero-mean Gaussian prior to the sparse vector h̃m i.e, p(h̃m|α) =
∏NK

n=1 CN (h̃nm|0, α−1n ), with

α = [α1, . . . , αNK ]
T ∈ R

NK×1
+ being the precision (inverse of variance) hyperparameter vector.

When αn is high, the unknown variable h̃nm, with a very high probability, takes a value close

to its mean, which is zero. The zero-mean Gaussian prior, with independent entries, thus only

captures the individual sparsity of each entry, but not the common column and partially common-

row sparsity of the cascaded VAD channel.

2) cCP-SBL: The authors in [15] considered a centralized coupled prior algorithm for joint

active UE detection and channel estimation. This work assumed a generalized prior for the

composite channel H̃. The prior on its (n,m)th element is given as

p(h̃nm|αn,βnm) = CN
(

h̃nm

∣

∣

∣
0,

(

M
∑

b=1

βn,m,bαn,b

)−1
)

=
βTnmαn

π
exp

−|h̃nm|2
(βTnmαn)−1

. (16)

The non-negative scalar αnm is the precision hyperparameter for h̃nm. The scalar βn,m,b is

the shared weight hyperparameter, which denotes the relevance given to αn,b to calculate the

variance of h̃nm. The column vector αn = [αn,1, αn,2, · · · , αnm]T ∈ R
M×1
+ and the row vector

βTnm = [βn,m,1, βn,m,2, · · · , βn,m,M ] ∈ [0, 1]1×M thus denote the precision and shared weight

vector for the nth row, respectively. The shared weight parameters βn,m,b of (16), however, are

such that it wrongly models the shared sparsity among the elements of a row in H̃, and ignores

any shared sparsity across the rows. It, thus, captures the individual sparsity for each UE but

fails to capture the common column and partially-common row sparsity of H̃, which arises due

to the shared sparsity across different rows (UEs).

3) FMF-SBL: Worley in [13] proposed a faster verison of the SBL algorithm which is scalable

in the number of measurements. For the system ỹm = Θ̃h̃m+ñ, the algorithm finds the posterior

distribution over h̃m, i.e. p(h̃m|ỹ) by approximating it as p(h̃m|ỹ) ≈ q(h̃m), with q(h̃m) being

the approximating posterior distribution. The design in [13] optimizes the parameters of q(h̃m)

to make it close to the true posterior distribution. This design further simplify the posterior

calculation by assuming a fully-factorized approximating posterior distribution as follows:

q(h̃m) =

NK
∏

n=1

q(h̃nm). (17)

Using the above approximations, this work proposed the fast mean-field (FMF)-SBL algorithm.

This proposed algorithm, however, assumed that the prior over h̃m is a simple multivariate

Gaussian with a diagonal covariance matrix. This prior, thus, only captures the individual sparsity.
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IV. PROPOSED COLUMN-WISE COUPLED PRIOR

We now propose a column-wise coupled prior which captures the complete sparsity of the

cascaded VAD channels of all UEs i.e. {H̃k}Kk=1. The sparsity can be summarized as follows:

• the channel matrix H̃k has LC non-zero columns, and the column support is common across

all H̃k, ∀k = 1, . . . , K UEs.

• In each non-zero column of {H̃k}Kk=1, there are LkR non-zero rows, out of which LR, with

LR ≤ LkR, non-zero row entries in each column being common to all the UEs. There are,

thus, LkR − LR non-zero row entries which are UE-specific.

We assume a column-wise coupled prior over the joint cascaded VAD channel H̃. This prior,

as we will discuss later, models the doubly-structured and individual sparsity of H̃. Each element

of the channel H̃, denoted as h̃nm, is assumed to be generated from the following prior:

p(h̃nm|αm,um) = CN
(

h̃nm

∣

∣

∣

∣

∣

0,
(

unmα
NZ
m + (1− unm)α

Z
m

)−1
)

=
1

πγnm
exp

−|h̃nm|2
γnm

. (18)

The scalar unm denotes the support of h̃nm which satisfies unm = I(h̃nm 6= 0). The non-negative

scalars αNZ
m and αZ

m represent the precision parameter of h̃nm, when it is non-zero and zero,

respectively. The scalar γnm is the variance of h̃nm, which is defined as follows:

γnm ,
(

unmα
NZ
m + (1− unm)α

Z
m

)−1
. (19)

The column vector αm = [αNZ
m , αZ

m]
T ∈ R

2×1
+ denotes the prior precision parameter for the mth

column of H̃. The column vector um = [u1,m, u2,m, . . . , uNK,m]
T ∈ {0, 1}NK×1 is the support

vector for the mth column of H̃. The prior distribution for the joint cascaded VAD channel is

thus given as,

p(H̃|A,U) =

NK
∏

n=1

M
∏

m=1

p(h̃nm|αm,um) =

M
∏

m=1

CN (h̃m|0NK ,Υm). (20)

The matrix A = [α1, . . . ,αM ] ∈ R
2×M
+ is the precision parameter matrix, and U = [u1, . . . ,um] ∈

{0, 1}NK×M is the binary support matrix. The diagonal matrix Υm = diag(γm) denotes the

covariance matrix of the mth column of H̃, i.e. h̃m. The nth entry of the vector γm, i.e. γnm,

is the variance of h̃nm, and is defined in (19).

A. Discussion on how prior parameters capture the doubly-structured sparsity

We note from (18) that
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• all the non-zero entries h̃nm 6= 0, ∀n = 1, . . . , NK in the mth column of H̃ (i.e., all n such

that unm = 1) are drawn from the a Gaussian distribution CN (0M , α
NZ
m ).

• all the zero entries h̃nm = 0, ∀n = 1, . . . , NK in the mth column of H̃ (i.e., all n such that

unm = 0) are drawn from the a Gaussian distribution CN (0M , α
Z
m).

The prior precision hyperparameters αNZ
m and αZ

m are same for all n = 1, . . . , NK rows. This

ensures that the prior distribution of the entries h̃nm for all n = 1, . . . , NK, which share same

sparsity structure are drawn from same prior distribution. We couple all the non-zero (zero)

entries in the column h̃m by assuming same prior distribution over them. The non-zero and zero

entries are found using the parameter unm, the support of h̃nm. Also, since the hyperparameter

αNZ
m corresponds to the case when unm = 1 or h̃nm 6= 0, it has a value close to zero. Similarly,

the hyperparameter αZ
m. The prior proposed in (20) captures the

1) common-column sparsity by having a shared hyperparameters αNZ
m , αZ

m, which are inde-

pendent of the entries in the column. When the column m is completely zero, h̃m = 0,

unm = 0, ∀n. The entries h̃nm, ∀n, from (18), are thus drawn from CN (0M , α
Z
m), where

αZ
m → ∞, which makes all h̃nm → 0, for all n = 1, . . . , NK entries in the mth column.

2) partially-common row and individual row sparsity by assigning same distribution CN (0M , α
NZ
m )

to all the entries in the mth column which are non-zero; and same distribution CN (0M , α
Z
m)

to all the entries in the mth column which are equal to zero.

The proposed prior does not distinguish between the partially-common sparsity across different

UEs and the individual row sparsities. It instead captures the shared sparsity in the complete col-

umn h̃m = [h̃1,m, . . . , h̃NK,m]
T , which includes both the sparsities. The prior is thus generalized,

which is able to capture any kind of shared sparsity in the non-zero columns of the channel.

The parameters of the proposed prior, i.e., the precision matrix A and the binary support

matrix U = [u1, . . . ,uM ] ∈ {0, 1}NK×M , need to be estimated. To facilitate estimation of A,

similar to [12], we assign a Gamma hyperprior distribution over its elements:

p(A) =
∏

i∈{NZ,Z}

M
∏

m=1

p(αim) =
∏

i∈{NZ,Z}

M
∏

m=1

Γ(c)−1dc(αim)
ce−dα

i
m . (21)

Here, Γ(c) =
∫∞
0
tc−1e−tdt is the Gamma function. The Gamma distribution is a suitable

hyperprior for the positive quantity, precision, and makes the Bayesian inference tractable [12].

To promote sparsity in the entries of H̃ we choose the value of c = 1 and d = 10−8 [15], as

they encourage large values of precision parameters αnm, and consequently close-to-zero values

of channel entries h̃nm. With p(H̃|A,U) from (20), and p(A) from (21), the prior p(H̃|U)
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on H̃, which is calculated as p(H̃|U) =
∫

p(H̃|A,U)p(A)dA, has a Student-t distribution

[12]. This distribution, due to its sharp peak at zero [12], has a better sparsity-encouraging

properties than the Gaussian prior. This approach for constructing a prior using hyperprior is

called hierarchical prior modeling, which allows us to indirectly use complex non-conjugate

prior distributions for tractable inference [22]. In order to estimate U we use the log-likelihood

ratio test similar to [15]. The updates for A and U are dependent on one another, hence, we use

an alternating optimization technique to estimate them along with the channel H̃. We propose

an iterative variational expectation maximization (VEM) approach for their estiamtion [23]. The

VEM approach incorporates the idea of variational inference in the EM algorithm.

V. VARIATIONAL EXPECTATION MAXIMIZATION APPROACH WITH COUPLED PRIOR

VI is a method to infer the posterior distribution over all the unknowns in the model. It helps

in dealing with intractable posteriors and casts the inference problem as an optimization problem.

The idea is to posit a simple family of distributions over the unknowns and find the member of

the family that is closest in KL divergence to the true posterior distribution. It treats Ỹ and H̃

as the observation and unknown variables, respectively. The parameters of the model are prior

precision matrix A and the binary support matrix U. VI infers the posterior distribution over all

the unknowns p(H̃,A,U|Ỹ). This inference problem is, however, difficult to solve due to the

complex structure of the posterior distribution [13]. In order to simplify this inference problem

variational expectation maximization (VEM) is used which infers the posterior distribution over

some unknowns and finds point estimates for the rest. We use the VEM framework to estimate

the posterior distribution over H̃ denoted as p(H̃|Ỹ,A,U) and find point estimates for A,U.

Since A and U are parameters common to the entire model, their uncertainty estimates are quite

low and hence doing just a point estimation over them suffices [23]. The VEM-algorithm is a

two-step iterative procedure based on the following identity [23]:

p(Ỹ|A,U) = L(q,A,U) + KL(q||p), where, (22)

L(q,A,U) =

∫

q(H̃) ln(
p(Ỹ, H̃|A,U)

q(H̃)
)dH̃,KL(q||p) = −

∫

q(H̃) ln
p(H̃|Ỹ,A,U)

q(H̃)
)dH̃.

(23)

Here KL(q||p) is the KL-divergence between q and p, q is any probability distribution over

H̃ and L(q,A,U) is called the ELBO. VEM solves an optimization over a class of tractable

distributions Q in order to find an approximating distribution q ∈ Q, that is most similar to p.

Let us denote the parameter set of the model as Θ = {A,U}. Let us denote the approximating
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distribution for p(H̃|Ỹ,A,U) as q(H̃; θ). The E-step of VEM algorithm, calculates q(H̃; θ) such

that it maximizes the ELBO L(q,Θ) for a fixed Θ. To perform this maximization, a particular

form of q(H̃; θ) must be assumed, so that the problem of inference of q(H̃; θ) can be reduced

to the optimization of its parameters θ [23]. The parameters, θ, of the approximating posterior

distribtuion are called the variational parameters. The ELBO L(θ,Θ), thus, becomes a function

of these parameters and is maximized with respect to θ in the E-step, and with respect to Θ in

the M-step [23]. The M-step of the VEM algorithm is shown to be equivalent to maximizing

the expected complete data log-likelihood (CLL) of the model defined as 〈p(H̃, Ỹ;Θ)〉q(H̃;θnew)

[23]. The VEM algorithm is summarized below,

E-step: Evaluate θnew = argmax
θ

L(q(H̃; θ),Θold) (24)

M-step: Evaluate Θnew = argmax
Θ

〈p(H̃, Ỹ;Θ)〉q(H̃;θnew).

Employing this VEM algorithm for channel estimation in RIS-aided mmWave systems not only

allows us to deal with intractable posterior distributions but also, as seen later, allows us to obtain

faster updates for θ by assuming simpler forms of the approximating distribution q(H̃; θ). In

order to obtain updates for q(H̃; θ), we derive the ELBO expression which is optimized to

get variational parameters θ. Based on the structure of q(H̃; θ) we propose two algorithms,

the SM-SBL and FM-SBL algorithm. The SM-SBL algorithm assumes a structured form of

the approximating distribution and optimizes the ELBO to obtain updates for the structured

variational parameters. The FM-SBL algorithm assumes a factorized approximating distribution

and optimizes a bound on the ELBO to obtain faster iterative updates for factorized variational

parameters. It is shown in Appendix C that the proposed updates ascend on the actual ELBO.

A. ELBO expression with the proposed coupled prior

We begin by calculating the ELBO expression with the coupled prior of (20). This ELBO

expression is optimized in the E-step of the VEM algorithm to get the variational parameters

θ. As discussed earlier we will need to assume an appropriate form for the approximating

distribution of the posterior, so that the ELBO can be maximized with respect to its parameters.

In order to obtain the ELBO we need the likelihood distirbution p(Ỹ|H̃). It is defined as follows

[15]:

p(Ỹ|H̃) =

M
∏

m=1

p(ỹm|h̃m) =
M
∏

m=1

CN (ỹm|Θ̃h̃m, σ
2IQ). (25)
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The posterior distribution of H̃ which needs to be approximated has the following form [15]:

p(H̃|Ỹ,A,U) =
M
∏

m=1

p(h̃m|ỹm,A,U). (26)

To estimate p(h̃m|ỹm,A,U), we employ the VEM technique discussed earlier. To this end, the

approximating posterior distribution for p(h̃m|ỹm,A,U) is assumed as q(h̃m; θ). Here θ denotes

the variational parameters, whose expressions are calculated by maximizing the ELBO. In our

model the parameters are Θ = {A,U}. The ELBO expression from (23) for the model defined

can be written as follows :

L[q(h̃m; θ),A,U] = Eq[ln p(ỹm, h̃m)]− Eq[ln q(h̃m; θ)] (27)

(a)
= Eq[ln p(ỹm|h̃m)] + Eq[ln p(h̃m)]− Eq[ln q(h̃m; θ)]

(b)∝ − 1

σ2
〈||ỹm − Θ̃h̃m||22〉 −

NK
∑

n=1

〈|h̃nm|2〉(γnm)−1 − 〈ln q(h̃m; θ)〉.

= − 1

σ2
λ(θ)−

NK
∑

n=1

βn(θ)(γnm)
−1 +H(θ).

Here λ(θ) = 〈||ỹm−Θ̃h̃m||22〉, βn(θ) = 〈|h̃nm|2〉, and H(θ) = −〈ln q(h̃m; θ)〉. The expectations

are with respect to the approximating distribution q(h̃m; θ). Equality in (a) is obtained by

replacing p(ỹm, h̃m) with p(ỹm|h̃m)p(h̃m). Proportionality in (b) is obtained by substituting

the likelihood and prior from (25) and (18) respectively, and by considering only the terms

dependent on the variational parameters.

Based on the form of the approximating distribution q(h̃m; θ) , the ELBO expression in (27)

take different forms. We next propose structured mean field sparse Bayesian learning algorithm

(SM-SBL) and factorized mean field sparse Bayesian learning algorithm (FM-SBL) algorithms

which exploit the VEM technique. The SM-SBL algorithm assumes a structured version of the

approximating distribution q(h̃m; θ) and maximizes the ELBO to calculate the parameters of

the structured q(h̃m; θ). This form of structured distribution leads to a prohibitively expensive

updates for the parameters of q(h̃m; θ). To circumvent this issue, we propose a factorized version

of q(h̃m; θ) in the FM-SBL algorithm. This technique, in addition to assuming a factorized

version of the approximating distribution q(h̃m; θ), also uses the Lipschtiz inequality to lower

bound the ELBO. It then maximzes this lower bound to estimate the parameters of the factorized

q(h̃m; θ). Optimizing the lower bound of the ELBO instead of the actual ELBO leads to faster

updates of the variational parameters.
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B. Structured mean field sparse Bayesian learning (SM-SBL) algorithm

The SM-SBL algorithm assumes the following structured approximate posterior distribution:

q(h̃m; θ) = CN (h̃m|µm,Σm). (28)

The mean and covariance matrix µm and Σm respectively, of the multivariate normal distribution

q are its variational parameters. The E-step of SM-SBL algorithm calculates the variational

parameters by maximizing the ELBO in (27). The M-step calculates the parameters Θ, i.e., the

precision matrix A and the binary support matrix U.

1) E-step of the SM-SBL algorithm: The E-step assumes that A and U are fixed at their current

values and optimizes the ELBO with respect to µm and Σm. For the structured distribution in

(28), the ELBO expression is calculated in the next lemma, which is derived in Appendix A.

For notational simplicity we omit A and U from the ELBO on left hand side since they are

fixed in the E-step.

Lemma 1. The ELBO expression for the structured distribution in (28) can be written as follows:

LS[µm,Σm] = − 1

σ2
λ(µm,Σm)−

NK
∑

n=1

βn(µm,Σm)(γnm)
−1 +H(Σm) (29)

= − 1

σ2
||ỹm − Θ̃µ̃m||22 −

1

σ2
tr(Θ̃

H
Θ̃Σm)−

NK
∑

n=1

(|µnm|2 + τnm)(γnm)
−1 + ln det(Σm),

where λ(µm,Σm) = ||ỹm−Θ̃µ̃m||22+tr(Θ̃
H
Θ̃Σm), βn(µm,Σm) = |µnm|2+τnm, and H(Σm) =

ln det(Σm).

To calculate the update expression for the variational parameters µm and Σm, the ELBO is

next maximized using the first order stationarity conditions [13]. We, therefore, calculate the

gradients of ELBO with respect to µm and Σm, which are given as follows:

∇µm
LS[µm,Σm] = − 2

σ2
(Θ̃

H
Θ̃µm − Θ̃

H
ỹm)− 2 diag(γm)

−1, (30)

∇Σm
LS[µm,Σm] = − 1

σ2
Θ̃
H
Θ̃− diag(γm)

−1 +Σ−1m .

The update expression can now be calculated by equating these gradients to zero.

Σm =
(

σ−2Θ̃
H
Θ̃+ diag(γm)

−1
)−1

and µm = σ−2ΣmΘ̃
H
ỹm. (31)

2) M-step of the SM-SBL algorithm: The M-step of SM-SBL algorithm estimates the precision

matrix A and the support matrix U by employing alternating maximization. This is because they

depend on each other. The matrix A is calculated by assuming U to be a constant, and vice-versa.

• Estimation of precision matrix A: We saw that in the M-step of VEM algorithm the

parameters are estimated by maximizing the expected CLL of (24). The prior over the precison
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matrix A is given by (21), thus, CLL for our model is defined as [log p(Ỹ, H̃|A,U)+log p(A)] =

log p(A, Ỹ, H̃|U). Due to the coupling in the parameters of A, the optimization problem for

expected CLL does not have a closed form solution. We try to obtain a sub-optimal range of

solutions by analyzing the optimiality conditions. In order to estimate A we fix the value of U

and maximize the expected CLL of (24) as follows:

Â=argmax
A

E
H̃|Ỹ,Aold,U[log p(A, Ỹ, H̃|U)]. (32)

The expectation is taken with respect to the posterior distribution calculated in the E-step. In

the above expression, Aold represents its current estimate. The above maximization problem can

equivalently be cast as follows:

max
A

E
H̃

[

log
(

p(A, Ỹ, H̃|U
)]

=max
A

E
H̃

[

log
(

p(A)p(Ỹ|H̃)p(H̃|A,U)
)]

(a)
= max

A

∑

i∈{NZ,Z}

M
∑

m=1

(

c logαim − dαim

)

+
(

NK
∑

n=1

M
∑

m=1

log(γnm)
−1 − (γnm)

−1
E
H̃

[

|h̃nm|2
])

. (33)

For notational simplicity, we use the notation E
H̃
[·] = E

H̃|Ỹ,Aold[·]. Equality (a) is obtained by i)

ignoring the distribution p(Ỹ|H̃) as it is independent of A; and ii) using (21) and (25). We note

that the optimization in (33) cannot be decoupled into 2×M problems, for each hyperparameter

αim. This is because αim, ∀m, are coupled together in the logarithm term log(γnm)
−1. For such

cases, a closed form solution of (33) is difficult to obtain. Reference [18] derived a sub-optimal

closed-form solution for a similar optimization by examining its optimality condition. We also

derive a closed form sub-optimal solution by examining the optimality condition of (33), and

the properties of support vector um in the next theorem, which is derived in Appendix B.

Theorem 1. The optimal value of αNZm and αZm parameters of matrix A i.e., (αNZm )∗ and (αZm)
∗

is

(αNZm )∗ ∈
[

c
∑NK

n=1 unmenm + d
,

c+
∑NK

n=1 unm
∑NK

n=1 unmenm + d

)

∀m, (34)

(αNZm )∗ ∈
[

c
∑NK

n=1(1− unm)enm + d
,

c+
∑NK

n=1(1− unm)
∑NK

n=1(1− unm)enm + d

)

∀m.

where and enm = |µnm|2 + τnm. The scalar µnmis the nth entry of the mean vector µm, while

τnm is the (n, n)th entry of the covariance matrix Σm. We note that (αim)
∗ lies in the range given

in (34). Any value in this range is a suboptimal solution of (33). We chose the lower bound

without any loss of generality

αNZm =
c

∑NK
n=1 unmenm + d

and αZm =
c

∑NK
n=1(1− unm)enm + d

∀m. (35)

• Estimation of binary support matrix U of the cascaded VAD channel H̃: For the prior
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in (18), the prior precision of elements of h̃m, which is the mth column of H̃, depends on its

support um, whose (n,m)th entry unm satisfies unm = I(h̃nm 6= 0). We now aim to detect this

support with a high accuracy using the index-wise log-likelihood ratio test (LLRT) [24]. The

authors in [15] derived the following LLRT for the (n,m)th element of H̃:

((θ̃m)
H(σ2IQ + Θ̃diag(γ\n,m)Θ̃

H
)−1ỹm)

2

θ̃
H

m(σ
2IQ + Θ̃diag(γ\n,m)Θ̃

H
)−1θ̃m

> θ̄. (36)

Here θ̃m ∈ CQ×1 is the mth column of the pilot matrix Θ̃ and γ\n,m =

[γ1,m, · · · , γn−1,m, 0, γn+1,m, · · · , γNK,m]T . For a desired probability of false alarm ǫ ∈ [0, 1], i.e.,

the probability that an element is zero but declared non-zero, the threshold θ̄ =

(

Q−1
(

ǫ
2

)

)2

.

The term Q is the standard Q-function [24]. The binary support matrix U ∈ {0, 1} is estimated

using the index-wise LLRTs in (36) as: ûnm = 1 if (36) is true, and 0 otherwise. The estimate

is denoted as Û with its (n,m) entry being ûnm. This completes the M-step of the proposed

SM-SBL algorithm. The steps of SM-SBL are next summarized in Algorithm 1.

Algorithm 1: Structured Mean field SBL (SM-SBL) algorithm.

Input: {Ỹ}, Θ̃ and initialize t = 1, γ
(0)
nm = 10−2,∀n = 1, . . . , NK,∀m = 1, . . . ,M , U(0) = 0NK×NK .

1 while t ≤ Tmax & ∆ ≥ η do

2 E-step: Update diagonal elements of posterior covariance Σm, and the mean µm,m = 1, . . . ,M, using (31), respectively.

3 M-step: Update precision parameter matrix αNZ
m and αNZ

m , ∀m = 1, . . . ,M, according to (35).

4 Update binary support ûnm,∀n = 1, . . . , N,m = 1, . . . ,M, according to (36).

5 t← t+ 1, ∆ =
∑

M

m=1(||µ
(t−1)
m − µ

(t)
m ||2/||µ(t−1)

m ||2).

6 return
̂̃
H← [µ1, . . . ,µM ](t), Û(t)

C. Factorized mean field sparse Bayesian learning algorithm

The SM-SBL algorithm proposed above has a high time complextiy as the covariance matrix

computation in (31) inverts an NK×NK full covariance matrix. This has a time complexity of

O(N3K3). For a practical RIS-aided wireless system, with a large number of RIS elements N ,

the SM-SBL algorithm will have a radically high time complexity. The author in [13] proposed

the fast mean field SBL (FMF-SBL) algorithm based on the fast mean field approximation [13].

We now use the fast mean field approximation from [13] to develop a faster version of SM-SBL,

referred to as the factorized mean field SBL (FM-SBL) algorithm, to reduce its time complexity.

The authors in [13] have derived the updates for a simple uni-variate Gaussian prior which does

not capture the complete sparsity structure of the joint cascaded VAD channel H̃. They have used

a real Gaussian distribution which is not applicable in RIS-assisted mmWave systems because

the channel in these systems is complex. To address these issues we derive the updates using the
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proposed column-wise coupled prior which as discussed earlier captures the complete sparsity

of H̃. We also use complex Gaussian distribution to correctly model the channel. We will show

later that reduction in time complexity of the FM-SBL algorithm is achieved without sacrificing

channel estimation accuracy.We need to discuss as to how our algoirhm is not a straight forward

application of the algorithm in [13]

The FM-SBL algorithm assumes a fully-factorized version of the approximating posterior

distribution of (28) i.e.,

q(h̃m) =

NK
∏

n=1

CN (h̃nm|µnm, τnm) = CN (h̃m|µm, diag(τm)). (37)

The variational parameters µm and τm respectively are the mean and marginal variance of the

factorized normal distribution. The E-step of the FM-SBL algorithm updates µm and τm. The

E-step also uses the Lipschitz inequality to bound the factorized ELBO. These two steps reduce

the complexity of update steps of the variational parameters. The M-step of the FM-SBL is

exactly same as the SM-SBL algorithm.

1) E-step of the FM-SBL algorithm: The E-step again assumes that A and U are fixed at

their current values and estimates the posterior distribution. The factorized ELBO expression

is derived in the following lemma, whose proof is relegated to Appendix A. For notational

simplicity we remove A and U from the ELBO expression on left hand side since they are fixed

in the E-step.

Lemma 2. The ELBO for the fully-factorized approximating posterior distribution of (37) is

defined as follows:

LF [µm, τm] = − 1

σ2
λ(µm, τm)−

NK
∑

n=1

βn(µm, τm)(γnm)
−1 +H(τm) (38)

= − 1

σ2
||ỹm − Θ̃µm||22 −

1

σ2
aTτm −

NK
∑

n=1

(|µnm|2 + τnm)(γnm)
−1 +

NK
∑

n=1

ln τnm.

Here λ(µm, τm) = ||ỹm − Θ̃µm||22 + aTτm, βn(µm, τm) = |µnm|2 + τnm, and H(τm) =
∑NK

n=1 ln τnm. Also a = diag(Θ̃
H
Θ̃).

As discussed in [13], the presence of the l2 norm in (38) leads to prohibitively expensive

updates to µm. To obtain faster updates, we need to bound ||ỹm − Θ̃µm||22 such that it leads to

less expensive updates. This objective is achieved by using the majorization framework. Instead

of trying to maximize the exact function, we optimize a lower bound on the function. We apply

the following lemma to obtain a majorizing function for λ(µm, τm) of (38).
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Lemma 3. For any continuously differentiable function h : Rn → R with an Lh Lipschitz

gradient, the inequality is applicable [13]

h(x) ≤ g(x; z) , h(z) + (x− z)H∇xh(z) +
L

2
||x− z||22. (39)

We apply this lemma by taking h(µm) = ||ỹm−Θ̃µm||22. This leads to the following majorizing

function for λ(µm,γm):

Λ(µm, τm; δ) = ||ỹm − Θ̃δ||22 + 2(µm − δ)HΘ̃
H
(Θ̃δ − ỹm) +

L

2
||µm − δ||2 + aTτm.

Substituting this into ELBO of (27), we get the lower bound for LF [µm, τm], which is denoted

as LFMF [µm, τm; δ]:

LFMF [µm, τm; δ] = − 1

σ2
Λ(µm, τm; δ)−

NK
∑

n=1

βn(µm, τm)(γnm)
−1 +H(τm). (40)

By construction, LF [µm, τm] ≥ LFMF [µm, τm; δ], ∀δ and LF [µm, τm] = LFMF [µm, τm;µm].

The updates of µm and τnm in the FM-SBL algorithm are derived by applying the first order

stationarity conditions [13]. To apply the stationarity conditions, we first calculate the gradient

of LFMF [µm, τm] with respect to µm and τnm, which are given as follows:

∇τnm
LFMF [µm, τm] =

an
σ2

+ (γnm)
−1 − 1

τnm
, (41)

∇µm
LFMF [µm, τm] =

2

σ2
Θ̃
H
(Θ̃δ − ỹm) +

L

2σ2
∗ 2(µm − δ) + 2 Ξµm.

By applying the first order stationarity condition, we get the following updates for the mean

and covariance matrix using the local ascent approach [13]:

µ(t+1)
m = D(t)ζ(t), where, ζ(t) =

1

σ2

(

L

2
µ(t)
m − Θ̃

H
(Θ̃µ(t)

m − ỹm)

)

and D(t) =

(

L

2σ2
I+Ξ

)−1
,

and τ (t+1)
m = (

1

σ2
a+αm)

−1. (42)

In order to obtain (42), the substitution δ = µ
(t)
m was made. Here Ξ is the precision matrix,

αm is the prior precision vector with Ξ = diag(αm) and a = diag(Θ̃
H
Θ̃). Here αm is the

mth column of the prescision matrix A and L = 2λmax(Θ̃
H
Θ̃). While deriving the mean and

variance updates, we have assumed that the precision matrix A and the binary support matrix U

are known. These hyperparameters are estimated similar to the SM-SBL algorithm. The precision

updates are calculated by maximizing the expected value of the complete data log likelihood

and the support is estimated from the LLRT test.

2) M-step of the FM-SBL algorithm: The M-step is the same as the SM-SBL algorithm. The

precision matrix A is updated according to (35). The binary support matrix is updated according

to (36). The proposed FM-SBL algorithm, thus, solves the time complexity issues of the SM-SBL
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algorithm by using a factorized approximating posterior and also using the Lipschtiz inequality

to bound the factorized ELBO. The steps of FM-SBL are next summarized in Algorithm 2.

Algorithm 2: Factorized mean field SBL (FM-SBL) algorithm.

Input: {Ỹ}, Θ̃.

Intialize: t = 1, γ
(0)
nm = 10−2, ∀n = 1, . . . , N,∀m = 1, . . . ,M , B

(0)
m =

1NK×NK

NK
, ∀m = 1, . . . ,M .

1 while (t ≤ Tmax & ∆m > η1) do

2 m = 1.

3 while (m ≤M ) do

4 E-step: Update diagonal elements of posterior covariance Σm, and the mean µm, using (42) and (42), respectively.

5 M-step: Update parameter matrix αNZ
m and αZ

m, according to (35).

6 Update binary support ûnm, ∀n = 1, . . . , N according to (36).

7 m← m+ 1

8 t← t+ 1, ∆ =
∑

M

m=1(||µ
(t−1)
m − µ

(t)
m ||2/||µ(t−1)

m ||2).

9 return
̂̃
H← [µ1, . . . ,µM ](t), Û(t).

D. Complexity analysis of SM-SBL and FM-SBL

We now show the per-iteration time complexity of the proposed SM-SBL and FM-SBL

algorithms in Table Ia and Table Ib, respectively. The computation complexity of calculating the

covariance matrix Σm in (31), by using the Woodbury identity [14] Σm = Υm−ΥmΘ̃
H
(σ2IQ+

Θ̃ΥmΘ̃
H
)−1Θ̃Υm, is reduced from O(N3K3) to O(Q3). The FM-SBL algorithm, as derived in

(42), updates the variance of each element independently. The mean update for FM-SBL in (42)

inverts a diagonal matrix with O(NK) complexity. The mean and variance updates of FM-SBL

algorithms do not invert a full matrix, and hence its is much faster than the SM-SBL algorithm.

The index-wise LLRTs step to update ûm for both algorithms has the highest complexity.

Variable updates proposed SM-SBL

µm,Σm, ∀m O((Q3 + (NK)2)M)

αm, ∀m O(NKM)

ûnm, ∀n,m O(NKQ3M +NKM)

(a)

Variable updates proposed FM-SBL

µm,Σm O((NK + (NK)2)M)

αm, ∀m O(NKM)

ûnm, ∀n,m O(NKQ3M +NKM)

(b)

Table I: (a) Per iteration complexity of SM-SBL. (b) Per iteration complexity of FM-SBL.

VI. NUMERICAL RESULTS

We investigate the performance of the proposed SM-SBL and FM-SBL algorithm in this

section for channel estimation in RIS-assisted mmWave systems. We consider the following

metrics to compare the performance, (i) NMSE, for channel estimation which is defined as
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|| ˆ̃H− H̃||2F/||H̃||2F , (ii) normalized support error rate (NSER), which measures the error in the

estimated support and is defined as ||Û − U||2F/||U||2F , (iii) KL divergence which measures

the difference between the true posterior distribution and the estimated approximate posterior

distribution. It is defined as, KL(p||q) = −Eq

[

log p
q

]

, where p is the true posterior distribution

and q is the approximate posterior distribution, (iv) sum-spectral efficiency (sum-SE) which

describes the amount of data transmitted over a given spectrum. The BS precodes the UE data

s ∈ CK×1 by maximum ratio combining (MRC), which for the kth UE is given as vk =

Ĥkθ√
E[||Ĥkθ||2]

∈ C
M×1. The signal for the kth UE as detected by the BS is

yk = (vk)HHkθsk + (vk)H
∑

n 6=k
Hnθsn + (vk)Hwk

. The sum-SE (in bps/Hz) for the K UEs is defined as follows:

SE =

(

1− Tp
Tc

) K
∑

k=1

E

[

log2

(

1 +
|(vk)HHkθ|2

(vk)H
∑

n 6=kH
nθ + σ2

)]

.

Here Tp and Tc denote the length of the pilots and the coherence interval, respectively, and

(v) finally we plot the run-time which measures the difference in execution time between the

proposed algorithms. These studies are performed by considering a BS with M = 64 antennas

and a UPA RIS with N = 128 elements. The total number of UEs is K = 4. The number of paths

between the BS and RIS is LC = 20, and the number of paths between the RIS and each UE is

LkR = 40. The elements of RIS reflecting matrix Θ are selected uniformlly from {− 1√
N
, 1√

N
},

similar to [10]. We also compare the performance of the proposed algorithms with the following

algorithms: (i) DS-OMP [10]: doubly-structured sparsity based algorithm for channel estimation

proposed in [10]. It uses the OMP algorithm by incorporating the sparsity structure of the

cascaded VAD channel; (ii) SBL [14]: solves the channel estimation using the SBL algorithm.

It incorporates just the individual sparsities of the elements of cascaded VAD channel and not

its doubly-structured sparsity. We also plot the performance of these algorithms against a lower

bound, Oracle MMSE, which knows the true support of the cascaded VAD channel and calculates

the minimum mean squared error (MMSE) solution for this over-determined problem.

NMSE Comparison: We show in Fig. 2a the NMSE of various algorithms by varying the

SNR = P/σ2 = 1/σ2, and fixing number of pilots as Q = 100. We see that the proposed

SM-SBL and FM-SBL algorithms have lower NMSE than the other algorithms. This is because

they exploit the doubly-structured sparsity along with the individual sparsities of the cascaded

VAD channel H̃. Their performance is also close to the Oracle MMSE. The SM-SBL and FM-

SBL algorithms give the same performance except at 15dB, where the latter performs slightly
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Fig. 2: (a) NMSE with SNR; (b) NMSE with varying pilots, and; (c) NMSE with varying number sparsity level.

worse. This is because the factorized posterior assumption used in this algorithm, gives an

underestimated variance [25]. This incorrect posterior variance issue is observed in other works

as well [25]. The proposed algorithms also outperform the (i) SBL algorithm which does not

exploit the doubly-structured sparsity across the UEs and (ii) DS-OMP algorithm which does

not exploit the indvidual sparsities of each element of H̃. It also requires the complete sparsity

degree information of H̃ which is obtained with high complexity [1].

We plot in Fig. 2b the NMSE by varying the number of pilots Q. We see that the NMSE

of all algorithms decreases with increase in Q. This is due to the increase in the number of

observations. We also observe that the two proposed algorithms have the lowest NMSE for all

values of Q. This is because the proposed algorithms exploit the entire sparsity structure of H̃.

DS-OMP which does not exploit the individual sparsity and SBL which does not exploit the

doubly-structured sparsity have higher NMSE. The proposed algorithms require fewer number

of pilots for channel estimation, thus help in reducing the pilot overhead. For example, both

FM-SBL and SM-SBL yield a NMSE of −14dB with Q = 104, while SBL requires 120 pilots.

The DS-OMP will require an even higher number of pilots.

We next plot in Fig. 2c the NMSE values by varying the number of non-zero values inside

each non-zero column of H̃, denoted as LkR. This corresponds to varying the number of scatterers

between the UE and the RIS. The SNR is fixed at 10 dB. We first observe that the two proposed

algorithms have the lowest NMSE. The DS-OMP algorithm performs just slightly worse than

the proposed algorithms when the number of scatterers is low. This is because with low number

of scatterers, the individual sparsities of each element is insignificant. Exploiting the doubly-

structured sparsity gives the low NMSE values. With increase in the number of scatterers, keeping

the number of non-zero columns LC and number of common entries in each non-zero column LR

of H̃ fixed, the individual sparsities become more significant. The NMSE of DS-OMP algorithm
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which does not epxploit the individual sparsity, hence, becomes worse with increase in LkR. We

plot in Fig. 3a, the NMSE values for the DS-OMP and FM-SBL algorithms by varying the

number of pilots Q and the number of scatterers between the RIS and UE which corresponds

to varying LkR, as discussed earlier. We observe that for low LkR values, both algorithms have

low NMSE values. This is because there are sufficient number of pilots, and exploiting just the

doubly-structured sparsity is enough. But for high LkR values, the proposed FM-SBL algorithm

has a much lower NMSE than the DS-OMP. This is because, as discussed earlier, it exploits

both the individual and doubly-structured sparsities, which the DS-OMP does not. This makes

the FM-SBL algorithm more robust to the change in number of scatters between the UE and the

RIS. The proposed algorithms are thus a better choice for RIS channel estimation in different

scattering environments.
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Fig. 3: (a) NMSE with varying pilots and sparsity level; (b) NMSE with varying measurements; and; (c) KL divergence.

We plot in Fig. 3b the NMSE values by varying the number of BS antennas M . We observe

that for all algorithms the NMSE value decreases with the increase in M . For a fixed number

of scattering paths the sparsity in the channel remains constant. Increasing M , increases the

number of observations, QNKM , without increasing sparsity. This reduces the NMSE values

for all algorithms. We once again observe that the proposed algorithms have the lowest NMSE,

which is close to the Oracle lower bound. This shows the effectiveness of the proposed algorithms

even for a large value of M , which is typical in the current 5G mmWave systems. For high M

values, the DS-OMP algorithm has a lower NMSE than the SBL algorithm. This is because with

increase in M , the doubly-structured sparsity of H̃ becomes significant, which the DS-OMP

exploits better than SBL.

KL-divergence Comparison: We plot in Fig. 3c the KL-divergence against the number of

iterations. As discussed earlier, the KL-divergence is a measure of distance between distributions.

We compare the KL divergence between the SM-SBL posterior distribution and the posterior
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distributions estimated by the FM-SBL and SAVE algorithms. The SAVE algorithm uses the

fully factorized posterior distribution of (37), and does not use the Lipschitz inequality of (39)

to bound the factorized ELBO. This plot helps us in understanding how the Lipschitz inequality

affects the convergence properties of the proposed FM-SBL algorithm. We observe that the

SAVE algorithm converges slightly faster than the FM-SBL algorithm. The KL-divergence for

both algorithms, however, becomes close to zero with the increase in number of iterations.

We conclude that the FM-SBL algorithm also converges to the SM-SBL posterior distribution,

and Lipschitz inequality does not affect the final distribution to which the proposed FM-SBL

algorithm converges. It marginally affects the convergence rate.
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Fig. 4: (a) Sum-SE comparision against Uplink Power; (b) NSER with Iterations; and; (c) Runtime.

SE Comparison: We in Fig. 4a, we compare the sum-SE of the proposed algorithms to the

other existing ones. We plot the SE by varying the uplink power and by fixing the number of

pilots at Q = 80. The number of scatters between the BS and the RIS is set as LC = 35. The

Oracle MMSE has the highest SE because its NMSE, as observed in Fig. 2a, is the lowest.

The two proposed algorithms outperform the other algorithms in terms of sum-SE as well. This

is due to their lower channel estimation NMSE values. For high values of uplink power, the

sum-SE of all algorithms saturates. This is because of high multi-UEs interference. We also see

that the SBL algorithm has higher sum-SE than the DS-OMP algorithm, this is due to a high

number of scatterers between the BS and the RIS. This can also be verified from the sprsity plot

of Fig. 2c, where for a high number of scatterers, the SBL algorithm has a lower NMSE than

the DS-OMP algorithm.

NSER Comparison: We compare in Fig. 4b the estimated support of H̃ of the proposed

algorithms against the true support at SNR=15dB. We observe that although the SM-SBL

algorithm converges faster than the FM-SBL algorithm, the value at which it converged is

same as the FM-SBL algorithm. The NSER values are low for the proposed algorithms. The
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support estimated by them is highly accurate. This again validates that the fact that the Lipschitz

inequality does not affect the value at which the FM-SBL algorithm converges, it just affects

the convergence rate.

Runtime Comparison: We finally in Fig. 4c plot the run-time of the proposed algorithms

by varying the number of pilots Q. We observe that the FM-SBL algorithm has a significantly

lower run-time than the SM-SBL algorithm. The DS-OMP algorithm will require much less

time. This is expected as the proposed algorithms are iterative and do not require the knowledge

of the number of UE-RIS and RIS-BS channel paths, which have to be provided as input for

the DS-OMP. We also observe that run-time gap between the two proposed algorithms increase

with the number of pilots Q. This makes the FM-SBL algorithm more suitable for mmWave

systems, as its run-time scales at a lower rate with Q than the SM-SBL algorithm.

VII. CONCLUSIONS

We proposed two algorithms for CE in RIS assisted mmWave MIMO systems i.e., SM-SBL

and FM-SBL, algorithms. Both these algorithms use the column wise coupled prior which is able

to exploit the doubly-structured sparsity and the individual sparsity of the elements of angular

cascaded channel. We showed through our numerical investigations that i) NMSE values of the

proposed SM-SBL and FM-SBL algorithm are lower than the other state of the art algorithms

and ii) The FM-SBL algorithm has lower runtime as compared to the SM-SBL algorithms.

APPENDIX A

Derivation of Terms of Structured ELBO: Here we derive the terms in the ELBO for the

approximating posterior of (28) which are denoted as λ(µm,Σm), βn(µm,Σm) and H(Σm).

λ(µm,Σm) = 〈||ỹm − Θ̃h̃m||22〉 = 〈(ỹm − Θ̃h̃m)
H(ỹm − Θ̃h̃m)〉 (43)

(a)∝ 〈h̃HmΘ̃
H
Θ̃h̃m〉 − 2〈h̃m〉HΘ̃

H
ỹm

(b)
= trace(〈h̃HmΘ̃

H
Θ̃h̃m〉)− 2µH

mΘ̃
H
ỹm

= 〈trace(h̃HmΘ̃
H
Θ̃h̃m)〉 − 2µHmΘ̃

H
ỹm

(c)
= trace(Θ̃

H
Θ̃(Σm + µmµ

H
m))− 2µH

mΘ̃
H
ỹm

(d)
= ||ỹm − Θ̃µm||22 + trace(Θ̃

H
Θ̃Σm)

Proportionality in (a) is obtained by just looking at the terms which are dependent on the

variational parameters. Equality in (b) is obtained by replacing the expectation with the mean

of the approximating distribution and the fact that the trace of a scalar is the same as the scalar

value. Equality in (c) is obtained by using the cyclic property of the trace operation. The cyclic
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propert of trace states that trace(AB) = trace(BA). Equality in (d) is obtained by the linearity

of trace operation and rearranging the terms in form of the l2 norm. Now we derive the entropy

term H(Σm),

H(Σm) = −Eq[ln q(h̃m)]
(a)
= ln(πn det(Σm))

∫

q(h̃m)(h̃m − µm)
HΣ−1m (h̃m − µm)dh̃m (44)

= ln(πn det(Σm))〈(h̃m − µm)
HΣ−1m (h̃m − µm)〉

(b)
= ln(πn det(Σm))trace(Σ−1m Σm)

(c)∝ ln(det(Σm))

Equality in (a) is obtained by the definition of expectations. Equaltiy in (b) is obtained by

introducing the trace as done in the previous derivation. Proportionality in (c) is obtained by just

looking at the terms which are dependent on the variaitonal parameters. The term βn is trivial

to obtain, hence it is omitted.

Derivation of Terms of Factorized ELBO: Here we derive the expression for λ(µm, τm)

given in equation (38). We have

λ(θ) = 〈||ỹm − Θ̃h̃m||22〉 (45)

The expectation above is w.r.t. the approximating posterior distribution. Since we assume a fully

factorized version of the approximating posterior given by (37), the variational parameters are

given as follows θ = {µm, τm}. So

λ(µm, τm) = ỹHmỹm − 2ỹHmΘ̃〈h̃m〉+ 〈h̃HmΘ̃
H
Θ̃h̃m〉 (46)

(a)
= ỹHmỹm − 2ỹHmΘ̃µm + trace([µmµ

H
m + diag(τm)]Θ̃

H
Θ̃)

(b)
= ||ỹm − Θ̃µm||22 + trace(diag(τm)Θ̃

H
Θ̃) = ||ỹm − Θ̃µm||22 + aTτm.

Equality in (a) is because h̃HmΘ̃
H
Θ̃h̃m is a scalar. Equality in (b) is obtained by exchanging ex-

pectation and trace and using the cyclic property of trace as stated above. Here a = diag(Θ̃
H
Θ̃).

Rest of the terms for the factorized version are easily derived from the structured version.

APPENDIX B

Derivation of parameter matrix A: We maximize the expected value of the complete data

log likelihood, by differentiating (33) with respect to αNZm and applying first order optimality

conditions. The derivative of (33) w.r.t. αNZm can be written as follows

c

αNZm
− d+

NK
∑

n=1

unm
unmαNZ

m + (1− unm)αZ
m

−
NK
∑

n=1

unmE[h̃nm]. (47)
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We have to equate this gradient to 0. We observe that a closed form solution for αNZm cannot

be obtained due to the coupling of the terms. Hence we try to obtain a sub-optimal range of

solutions. Since, αNZm > 0, and
∑NK

b=1 βb,n,m = 1, we have,
∑NK

n=1 unm
(αNZm )∗

>

NK
∑

n=1

unm
unmαNZ

m + (1− unm)αZ
m

≥ 0. (48)

After substituting (48) in (47), we have
∑NK

n=1 unm
(αNZm )∗

> − c

(αNZm )∗
+ d+

NK
∑

n=1

unmE[h̃nm] ≥ 0, (49)

which gives us a range of stationary points given in (34). Here, we have used the notation

ωnm =
∑NK

b=1 βb,n,mE[h̃b,m]. Similarly we can obtain the range for (αZm)
∗.

APPENDIX C

Convergence Proof of FM-SBL: Here we prove that the updates for the FM-SBL of equations

(42) and (42) ascend on the factorized ELBO of (38) LF .

LF [µ(t+1)
m , τ (t+1)

m ]
(a)
= LFMF [µ

(t+1)
m , τ (t+1)

m ; δ(t+1)] (50)

(b)

≥ LFMF [µ
(t+1)
m , τ (t+1)

m ; δ(t)]
(c)

≥ LFMF [µ
(t)
m , τ

(t)
m ; δ(t)]

(d)
= LF [µ(t)

m , τ
(t)
m ]

Equality in (a) is because δ(t+1) = µ(t+1). Inequality in (b) is due tothe Lipschitz inequality

in (39). Inequality in (c) holds due to the gradient ascent on LFMF . Equality in (d) is because

δ(t) = µ(t). This proves that update equations obtained from optimizing the LFMF , ascend on

the factorized objective LF .
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