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Abstract—We consider a wireless communication system with
a passive eavesdropper, in which a transmitter and legitimate
receiver generate and use key bits to secure the transmission
of their data. These bits are added to and used from a pool
of available key bits. In this work, we analyze the reliability
of the system in terms of the probability that the budget of
available key bits will be exhausted. In addition, we investigate
the latency before a transmission can take place. Since security,
reliability, and latency are three important metrics for modern
communication systems, it is of great interest to jointly analyze
them in relation to the system parameters. In particular, we show
under what conditions the system may remain in an active state
indefinitely, i.e., never run out of available secret-key bits. The
results presented in this work will allow system designers to adjust
the system parameters in such a way that the requirements of
the application in terms of both reliability and latency are met.

Index Terms—Physical layer security, Ruin theory, Secret-key
generation, Reliability analysis, Latency analysis.

I. INTRODUCTION

The next generation of mobile communication systems 6G,
is expected to bring significant advances in terms of capacity,
speed, and connectivity [1]. However, with the increasing
reliance on wireless networks for a variety of applications
and the growing amount of sensitive information transmitted
over these networks, the need for robust security measures
becomes paramount [2]. While cryptography is currently the
most widely used technique to protect data transmissions from
potential eavesdroppers, physical layer security provides an
alternative solution [3], [4]. In particular, physical layer security
allows a system to achieve a degree of security that is provable
from an information theoretic viewpoint, rather than relying on
the presumed impracticality of computational problems. This is
done by exploiting the physical properties of the communication
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channel between the transmitter and a legitimate receiver. There
are several ways to do this [5]. In particular, in addition to
using wiretap codes, the characteristics of the communication
channel can be used to securely generate bits that are shared
only by the transmitter and the legitimate receiver. These bits
can then act as a secret key in the form of a one-time pad to
secure a message.

Secret-key generation (SKG) uses channel reciprocity to
establish a common randomness between the transmitter and
the legitimate receiver, which in turn can be used to distill
the key bits [6], [7]. Due to the physical nature of wireless
propagation, the channel between transmitter and legitimate
receiver is difficult to predict for outside observers. Therefore,
it is not possible for a potential eavesdropper to reconstruct
the generated key bits, i.e., they can act as a shared key
between transmitter and legitimate receiver. For the specific
implementation of SKG, various schemes have been proposed
in the literature [8]–[11].

In this work, we consider a wireless communication system
in which the transmitter and a legitimate receiver perform
SKG to secure the transmission of their data. The generated
key bits are added to and used from a pool of available bits.
We analyze the reliability in terms of the probability that the
budget of available key bits will be exhausted. In addition, we
investigate the latency before a transmission can take place.
For the analysis in this work, we leverage tools from ruin
theory [12].

Classical ruin theory addresses the problem of modeling
the evolution of an insurance company’s financial surplus
and its risk of becoming insolvent [12]. In the classical ruin-
theoretic model, also known as the Cramér-Lundberg model [13,
Chap. IV.1], the insurance company experiences the following
two cash flows. On the one hand, it receives a constant stream of
income from insurance premiums. On the other hand, random
claims arrive according to a Poisson process. This leads to
problems such as calculating the probability of ruin, i.e., the
probability that the total surplus becomes negative.

Tools from ruin theory have been applied in previous works
to various problems in the broad area of wireless communi-
cations. Along the traditional lines of considering monetary
quantities, the probability of financial ruin for network-sharing
arrangements is considered in [14]. Other applications include
resource allocation, e.g,. spectrum sharing [15], [16], user
association [17], [18], and power allocation [18]. In [18], a
unmanned aerial vehicle (UAV)-assisted cellular network is
considered. The authors use the traditional ruin-theoretic model
of constant income and random claims to describe the available
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energy of the UAVs. The UAVs have only a finite amount of
stored energy, which is consumed when transmitting data. The
energy consumption corresponds to the claims in the ruin-
theoretic model. At the same time, the battery is recharged by
harvesting solar energy at a constant rate, which corresponds
to the income stream in the traditional insurance model.

While we also use the basic structure of the traditional
ruin-theoretic model of income and claim, we consider an
adapted model in this work. In particular, the income rate is
not constant but a random variable, since the quality of the
wireless channels, and thus the SKG rate, varies randomly.
Additionally, we assume two different scheduling schemes
for generating new key bits and transmitting messages, which
affects the way that claims arrive.

To the best of the authors’ knowledge, this work is the
first to consider a communication system with a secret-key
budget and the goal of this work is to provide a framework for
a theoretical analysis of such systems. Therefore, the results
derived in this work are applicable to a variety of scenarios
and, in particular, they are not limited to a specific underlying
SKG scheme. Our main contributions and the outline of the
manuscript are summarized as follows.

• We formulate a model for a communication system with
a secret-key (SK) budget, in which new SK bits are
generated and then used for securely transmitting messages
to a legitimate receiver (Section III).

• For this model, we first consider a scheme where SKG and
transmission alternate (Section IV). Reliability is analyzed
in terms of both the outage probability and latency. It
is shown that the system will eventually run out of key
bits to securely transmit messages with probability one
(Corollary 1).

• In addition, we investigate an alternative operating scheme
where messages arrive randomly with probability p in
each time slot and SKG is performed whenever no secure
message is to be transmitted (Section V). For this setting,
it may happen that the communication system can operate
indefinitely. We characterize the range of p for which this
is possible (Corollary 2).

The source code to reproduce all presented results and
simulations is made publicly available at [19]. The provided
source code can also be freely adapted to custom numerical
examples.

Notation: Random variables are denoted in capital boldface
letters, e.g., X , and their realizations in small letters, e.g., x.
We use FX and fX for the probability distribution and its
density, respectively. The expectation is denoted by E and the
probability of an event by Pr. The relation X

d
= Y holds

for two random variables X and Y when they are distributed
according to the same probability distribution. The Bernoulli
distribution with mean p is denoted as B(p). The indicator
function is written as 1.

II. PRELIMINARIES AND BACKGROUND KNOWLEDGE

The two primary groups of themes that are touched upon in
this work are secret-key generation and ruin theory. In order to
improve the flow of reading, we will give a brief introduction
to these areas in this section.

A. Secret-Key Generation

One way to achieve perfect information-theoretic secrecy
is the use of a one-time pad [20]. This one-time pad needs
to consist of key bits that are only known to the legitimate
parties. Secret-key generation is a way for two legitimate
communication parties to agree on such secret key bits through
exploiting the physical properties of their communication
channel [21]. In order to achieve this, multiple models and
algorithms have been proposed and analyzed in the literature
for various communication scenarios [22]–[25]. This includes
static environments [26], quasi-static fading channels [27], and
fast-fading channels with correlated channels [28], [29].

The concept behind secret-key agreement is that Alice and
Bob have access to shared randomness, which can be used
to extract identical bits to serve as key bits [30]. To correct
errors when observing the randomness and protect against
eavesdroppers, Alice and Bob can exchange messages across
a public channel. The most notable models for secret-key
agreement are the channel model (CM) and source model
(SM) [31, Chap. 4], [32], each differing in the generation of
the random observations. In the SM [33], both legitimate nodes
and the eavesdropper have access to some source of common
randomness modeled by a joint distribution. In the CM, the
randomness originates from transmissions over a noisy wiretap
channel [34]. In both models, the public channel is used to
generate the secret key bits from the observed randomness at the
legitimate nodes, leaving the eavesdropper with no information
about it.

In this work, we consider a communication system with a
secret-key budget. As described above, the legitimate nodes
perform SKG and agree on secret key bits using any SKG
scheme. They then append the newly generated bits to previ-
ously generated key bits. This way, a pool of available SK bits
is built up at both legitimate communication parties. Whenever
a secure transmission of a message with length n takes place,
the oldest n SK bits are used as a one-time pad to encrypt
the message. Since only the legitimate transmitter and receiver
know the key bits, the transmission is information-theoretically
secure. Due to the nature of one-time pads, the SK bits used
for the transmission can only be used once and are therefore
removed from the list of available key bits.

B. Ruin Theory

Ruin theory originated in economics and actuarial science,
where it is used to analyze the solvency of an insurance
company [13]. The basic idea is that an insurance company
deals with two opposing cash flows simultaneously. On the
one hand, they receive money in the form of premiums paid
by customers. On the other hand, there occur claims that are
paid by the insurance company.

In the traditional model, the premiums arrive at a constant
(positive) rate, while the claims arrive randomly according to a
Poisson process. The main quantity of interest is the probability
that the insurance company will go bankrupt.

For this section, let τ = inf{t ≥ 0 | X(t) ≤ 0} be the time
of ruin, i.e., the first time t at which the aggregate surplus X
falls to zero [35]. This defines the probability of ultimate
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ruin ψ∞ as the probability that bankruptcy will eventually
occur,

ψ∞ = Pr(τ <∞) .

Similarly, the probability of ruin in finite time ψt = Pr(τ ≤ t)
is given as the probability of ruin before time t.

Ruin theory has been extensively studied in the literature
of mathematical finance and actuarial science, where many
different problems have been discussed and explicitly solved,
including expressions for finite-time ruin probability when
considering specific claim distributions [36], [37] or when
considering interest rates [38], [39]. For a more detailed
overview of the topic, we refer the reader to [13], [35].

Due to the differences between financial systems and
communication systems, we cannot simply apply all existing
results from the literature. Instead, we will take some of the
above ideas and definitions from the area of ruin theory as
a basis and adapt them to the problem considered in this
work. The system model and the exact problem formulation
are discussed in the following section.

III. SYSTEM MODEL AND PROBLEM FORMULATION

Throughout this work, we consider a wiretap channel, where
a transmitter (Alice) wants to securely transmit data to a
legitimate receiver (Bob). The transmission is overheard by a
passive eavesdropper (Eve). Both the channel between Alice
and Bob and the channel between Alice and Eve are quasi-static
fading channels with additive white Gaussian noise (AWGN)
at the receivers and signal-to-noise ratios (SNRs) X and Y ,
respectively [31, Sec. 5.2]. The SNR values are assumed to be
independent random variables, which also change independently
over time. The achievable rates to Bob and Eve at time t are
given as

RB,t = log2(1 +Xt) (1)
RE,t = log2(1 + Yt) , (2)

respectively, where Xt and Yt denote the SNR values of the
main channel and eavesdropper’s channel at time t. According
to the quasi-static model, we assume that the channels remain
constant for the transmission of one codeword and the time
index denotes this (discrete) time slot [31, Sec. 5.2].

To securely transmit messages to Bob, Alice uses key bits
for encryption. These key bits are generated by the standard
SKG procedures for wiretap channels [31, Chap. 4] and stored
in a pool of available key bits. They are then used as a one-
time pad to secure message bits, i.e., each SK bit can be used
exactly once and is then removed from the budget of available
key bits.

The SKG rate in time slot i for the considered model is
given by [31, Sec. 5.1]

RSK,i = θi = log2

(
1 +Xi + Yi

1 + Yi

)
. (3)

This corresponds to the income of SK bits to the budget in
time slot i. The number of key bits that are required to encrypt
a transmission in time slot j is determined by the transmission
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Figure 1. Exemplary illustration of the temporal progress of the number of
available SK bits Bt. During the active state, both SKG and transmission are
performed. Once the budget is exhausted, the system switches to a recharge
state, where only new key bits are generated until a certain threshold b0 is
reached. The latency T is defined as the number of time slots between two
active states. In the shown example, we have T = 10.

rate from Alice to Bob over the respective channel in time
slot j

RB,j = ξj = log2

(
1 + X̃j

)
, (4)

where X̃j denotes the SNR during transmission. We assume
that X̃ is distributed according to the same distribution as X ,
i.e., X̃ d

= X; however, they are assumed to be independent. For
simplicity, we assume that the transmit power is the same for
both SKG and data transmission. However, this could further
be optimized in future work.

Therefore, the total number of available SK bits at time t is
given by the difference between the total number of generated
key bits and the total number of used key bits up to that time
slot. The total number of SK bits available at the end of time
slot t is denoted as Bt. In addition to generating new key bits,
we assume that the system starts with an initial budget b0 > 0.

An outage is defined as the event that the SK budget is
exhausted at the end of time slot t, i.e., Bt ≤ 0. Based on this,
we define the survival probability ψ̄t as the probability that
the communication will last until time slot t, i.e., that Bt > 0
holds for all time slots i ≤ t,

ψ̄t(b0) = Pr

(
min
1≤i≤t

Bi > 0

)
. (5)

Similarly, we define the outage probability ψt as its complement

ψt(b0) = 1− ψ̄t(b0) . (6)

As long as there are still key bits available, i.e., Bt > 0, we
say that the system is in the active state. Whenever the number
of available SK bits drops to zero, the system enters a recharge
phase, where no data is transmitted and only new SK bits are
being generated until the initial amount b0 is reached again. At
this point, the system switches back to the active state, where
both SKG and data transmission occur, as described above. An
exemplary illustration of this system model can be found in
Figure 1.
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The duration between two active states, in which data
transmission takes place, defines the latency T of the system.
It is given as the first time slot within the recharge phase in
which the budget reaches the specified threshold b0, i.e.,

T (b0) = inf

{
t ≥ 0

∣∣∣∣∣
t∑

i=t0

θi ≥ b0

}
− t0 + 1 , (7)

where t0 denotes the first time slot of the recharge phase.
Note that we can set t0 = 1 without loss of generality if the
distribution of θi is stationary over time. Recall that during
the recharge state only SKG takes place and the number of
SK bits available in a specified time slot is given by the sum
of the bits generated up to that time slot. Since the number of
generated bits θi in each time slot i is random, the latency T
is also a random variable.

An overview of the most commonly used variable notation
can be found in Table I.

The exact nature of the random process Bt depends on
the communication scheme of the system. In this work, we
will discuss two different schemes. First, we will consider a
deterministic timing scheme in Section IV, where in each
time slot both SKG and data transmission are performed.
Second, we analyze a different model in Section V, where data
transmissions occur randomly and SKG is performed when no
data is to be transmitted.

A. Problem Formulation

Based on the introduction of the system model above, two
immediate problems arise, which will be explicitly stated in
the following.

Problem Statement 1. What is the outage probability ψt(b0)
for given distributions of the channels and an initial budget b0?

Problem Statement 2. What is the latency-reliability tradeoff
for the described system? In particular, given an application
requirement that the transmission needs to last at least τ time
slots with an outage probability of at most ε, we can determine
the minimum required initial budget bτ0(ε) by the solution of
Problem 1. However, in order to generate this initial amount
of SK bits, we need a certain number of time slots before
any transmission can start, which defines the latency T of the
system.

Both problems will be analyzed for the deterministic timing
scheme and the random timing scheme in Section IV and
Section V, respectively.

IV. DETERMINISTIC SCHEME

As a first scheduling scheme for the active state, we consider
a deterministic scheme where SKG and transmission (TX)
alternate. An illustration can be found in Figure 2. The channels
are assumed to vary independently between each SKG and TX
block. However, they remain constant for the entire duration
of each single block. Throughout this section, we refer to the
combination of one full cycle of an SKG block followed by a
transmission block as one time slot, i.e., each time slot consists
of one SKG block and one TX block, cf. Figure 2.

SKG SKG SKG SKG SKGTX TX TX TX TX

1 2 3 4

Time Slot t

C
ha

nn
el

G
ai

n

Figure 2. Illustration of the scheduling with a deterministic scheme during
the active state. In each time slot, there is an SKG block followed by a TX
block. While the channels are assumed to remain constant for each individual
phase, they change independently between the SKG and TX blocks.

For this scheme, in each time slot i, the amount θi
corresponding to the SKG rate is added to the budget of
available SK bits, while ξi bits are removed from it during the
TX block. Thus, the total number of SK bits available at the
end of time slot t is given as

Bt = b0 +

t∑
i=1

θi −
t∑

i=1

ξi (8)

= b0 −
t∑

i=1

Zi (9)

= b0 − St (10)

where Zi = ξi − θi describes the net usage of SK bits in time
slot i and

St =

t∑
i=1

Zi (11)

gives the accumulated net usage until time t.

A. Reliability Analysis

First, we start with a reliability analysis for the scheme
described above. The first important observation is that the
system loses SK bits in each time slot on average, which is
formalized in the following Lemma 1.

Lemma 1 (Average Net Usage – Deterministic Scheme).
Consider the described communication system in the active
state with the deterministic timing scheme. The expected value
of the net usage Zi = ξi−θi is positive, i.e., E [Zi] > 0. Thus,
the system’s SK budget reduces on average in every time slot.

Proof. The proof can be found in Appendix A.

An important consequence that follows from Lemma 1 is
stated in the following.

Corollary 1 (Probability of Ultimate Ruin – Deterministic
Scheme). The secret-key budget of the system in the active
state using the deterministic timing scheme will almost surely
be exhausted in finite time.

Proof. Since Zi has a positive expected value, cf. Lemma 1,
the sum St forms a random walk with (positive) drift. From
[40, Chap. XII.2, Thm. 1 and 2], it follows that St drifts to
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Table I
DEFINITIONS OF THE MOST COMMONLY USED VARIABLES

Xt SNR of the main channel (Alice to Bob) during the SKG phase in time slot t
X̃t SNR of the main channel during data transmission in time slot t
Yt SNR of the eavesdropper channel (Alice to Eve) during the SKG phase in time slot t
Bt Amount of available SK bits in time slot t
θt SKG rate in time slot t
ξt Number of used SK bits for transmission in time slot t
Zt Net usage of SK bits in time slot t
St =

∑t
i=1 Zi Accumulated net usage of SK bits up to time slot t

b0 Amount of initially available SK bits
ψt(b0) Outage probability until time t with initial budget b0
ψ̄t(b0) = 1− ψt(b0) Survival probability until time t with initial budget b0
bτ0 (ε) Required initial budget to survive at least τ time slots with an outage probability of at most ε
T Latency between two active system states

+∞ with probability one. Thus, Bt = b0 − St will become
negative with probability one.

Having established that the secure communication cannot last
indefinitely, it is of interest to quantify the outage probability
at any given time slot t. This outage probability is defined
according to (6). The complementary probability is the survival
probability ψ̄t from (5), i.e., the probability that the system
will remain in the active state until time slot t. The survival
probability ψ̄t can be described by the following recursive
relation [41], [42]:

ψ̄t+1(b) =

∫ b

−∞
ψ̄t(b− s)dFZ(s) , (12)

where FZ describes the common distribution function of the
independent and identically distributed (i.i.d.) net claims Zi.
The intuition behind this equation is that, in order to survive
until time slot t + 1, the system needs to first survive until
time t. Additionally, the net usage Zt+1 of the next time slot
needs to be small enough to leave a positive budget remaining.

Remark. The recursive relation (12) can also be derived from
the standard time-discrete ruin theoretic model without the
income process [35].

Example. To illustrate (12), we solve the first steps explicitly.
For the initial state of the system at time t = 0, the
budget B0 is equal to the initial budget b0. The initial survival
probability ψ̄0(b0) is therefore a step function, where the step
from zero to one occurs at b0. Thus, for the next time step,
we obtain from (12) that

ψ̄1(b0) =

∫ b0

−∞
dFZ(s) = FZ(b0) ,

i.e., the probability of surviving the first time slot is equal to
the probability that the net claim Z1 is less than the initial
available budget b0. This relation can now be applied recursively
to calculate the survival probabilities ψ̄t for all time slots t.

However, the recursive equation in (12) can be difficult to
solve for general distributions of the net usage FZ . We are
therefore interested in finding an efficient way to compute it
numerically. It is clear that (12) is an integrodifference equation,

which can be solved numerically by several different methods.
For a detailed treatise, we refer the interested reader to [43].
Throughout the following, we use the fast Fourier transform
(FFT) method to calculate ψ̄t(b0) according to [43, Chap. 8].
Our implementation is made publicly available in [19].

Even though (12) can be efficiently solved numerically, it
still requires a recursive calculation up to the desired time step t.
Therefore, we provide an easy-to-calculate upper bound on the
outage probability ψt in the following theorem. While this is
only a (loose) worst-case bound, it can be easily computed
without recursion for any given time slot t.

Theorem 1 (Worst-Case Bounds of the Ruin Probability –
Deterministic Scheme). Consider the described communication
system employing the deterministic timing scheme. The outage
probability ψt(b0) can be upper bounded by

ψt(b0) ≤ Ψt(b0) < Ψ̂t(b0) (13)

with
Ψt(b0) =

E [max (St, 0)]

b0
(14)

and

Ψ̂t(b0) =

√
var(St) + E [St]

2

b0
. (15)

Proof. The proof can be found in Appendix B.

Remark 1. Since we assume that all channel realizations are
mutually independent, we can simplify (15) to

Ψ̂t(b0) =

√∑t
i=1 var(Zi) +

(∑t
i=1 E [Zi]

)2

b0
. (16)

If we on top of that assume that the distribution of the channel
gains does not vary over time, i.e., Z1

d
= Z2

d
= · · · d

= Zi for
all i, we can further simplify the expression to

Ψ̂t(b0) =

√
t var(Z1) + t2E [Z1]

2

b0
. (17)

Example 1 (Rayleigh Fading). We now illustrate the reliability
analysis with a numerical example. For this purpose, we
assume that both Bob and Eve experience Rayleigh fading,
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Figure 3. Outage probability ψt for different initial budgets b0 over time for a
system using the deterministic scheme. The channels to both Bob and Eve are
Rayleigh fading with average SNRs E [Xi] = 20 dB and E [Yi] = 10 dB,
respectively. The solid lines correspond to the numerically calculated outage
probabilities according to (12) while the markers indicate results from MC
simulations with 106 samples (Example 1).

i.e., the channel gains Xi and Yi are distributed according
to an exponential distribution. The channel realizations are
i.i.d. over time and independent in space. The average SNR
of Bob’s channel is set to 20 dB while Eve’s average SNR
is 10 dB. With these parameters, the average net usage of
SK bits per time slot is about E [Zi] = 2.58 bit. In Figure 3,
the outage probability ψt(b0) is shown over time for different
initial SK budgets b0. The solid lines indicate the numerically
calculated values from (12), while the markers are obtained
from Monte Carlo (MC) simulations with 106 samples. All of
the calculations and simulations can be reproduced using the
source code provided in [19].

As expected from Corollary 1, all of the outage probabilities
approach 1 over time. However, increasing the initially available
number of SK bits b0 decreases the outage probability, i.e.,
the system stays longer in the active state for a given outage
probability. The upper bounds from Theorem 1 are not shown in
Figure 3 because they are loose for this particular example. For
b0 = 50 at time t = 15, the bound is about Ψ̂15(50) = 0.80,
while both (12) and MC simulations yield the actual outage
probability of about ψ15(50) = 0.11.

Remark 2. Throughout this work, we use the above Rayleigh
fading example to numerically illustrate the theoretical results
and show how they can be applied. However, it should be
noted that these general results can be applied to a variety
of scenarios, even including those with an active jammer. In
this case, the distributions of the channel gains Xi and Yi,
and thus the resulting distributions of θi and ξi need to be
adjusted accordingly. The source code for all the presented
results and calculations is made freely available at [19] and
can be adapted to custom numerical examples, e.g., for other
types of fading like Rician fading.

B. Latency Analysis

Having analyzed the reliability of the communication system
in the active state, we next investigate the latency between
two active states. Recall from Section III that we assume that
the system enters a recharge phase once the SK bit budget is
exhausted, cf. Figure 1. In this phase, only SKG is performed
until a minimum number of available key bits is reached. The
number of time slots this process takes is defined to be the
latency T of the system.

The minimum initial budget that needs to be reached depends
on the requirements of the application. In the following, we
assume that there is a constraint on the outage probability for
a given time slot, i.e., the system must remain in the active
state for τ time slots with an outage probability of at most ε.
Equivalently, this means that the system should survive at least
τ time slots with a probability of at least 1 − ε. Thus, the
minimum initial budget to achieve this is

bτ0(ε) = inf
{
b ≥ 0

∣∣ 1− ε ≤ ψ̄τ (b)
}
,

which corresponds to the inverse of ψ̄τ , i.e.,

bτ0(ε) = ψ̄−1
τ (1− ε) = ψ−1

τ (ε) . (18)

The operational meaning behind this is that we have to
generate at least bτ0(ε) SK bits, before we can start transmitting.
Once the SK bit budget is exhausted, this process needs to be
repeated. Therefore, this quantity determines the latency before
the communication system can securely transmit messages
again.

Since the SKG rates in each time slot vary randomly, the
latency T is also a random variable. The following theorem
characterizes the average latency for a system with i.i.d. channel
realizations.

Theorem 2 (Average Latency). Consider the described com-
munication system with a tolerated outage probability ε for
a specified survival duration τ . The SKG rates θi are i.i.d.
with positive and finite expectation E [θ1]. The average latency
between two active system states is given by

E [T ] =
bτ0(ε)

E [θ1]
. (19)

Proof. The proof can be found in Appendix C.

Remark 3. The (average) latency in (19) is defined in terms
of independent channel realizations of the main channel.
According to the timing model in Figure 2, two independent
channel realizations form one time slot. Thus, the latency in
terms of time slots is half of that in (19).
Remark 4. Up to the last step of the proof of Theorem 2, we do
not require b0 to be constant. Therefore, the result only needs to
be slightly modified in the case where b0 is a random variable.
In this case, we get E [T ] = E [E [T | b0]] = E [b0] /E [θ1].

Example 2 (Reliability-Latency Tradeoff). We illustrate the
result of the latency analysis with the following numerical
example. Similar to Example 1, we assume i.i.d. Rayleigh
fading with average SNRs of E [Xi] = 20 dB and E [Yi] =
10 dB for Bob’s and Eve’s channel gains, respectively. For
this scenario, the minimum required initial budget bτ0(ε) is
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Figure 4. Required initial budget bτ0 over the outage probability ε for a
system in the recharge state. The channels to both Bob and Eve are Rayleigh
fading with average SNRs E [Xi] = 20 dB and E [Yi] = 10 dB, respectively.
The solid lines correspond to the numerically calculated outage probabilities
according to (18) while the markers indicate results from MC simulations
with 106 samples (Example 2).

depicted in Figure 4 over the outage probability constraint ε
for multiple time constraints τ . The solid lines again show the
numerically calculated values by the recursive relation in (12),
while the markers indicate the results of MC simulations with
106 samples.

The first clear observation is that the required initial budget
drops to zero as the tolerated outage probability approaches
one. Similarly, it increases with a stricter reliability constraint.
Interestingly, for the chosen example of Rayleigh fading, the
required bτ0(ε) increases only slowly when decreasing ε at a
fixed τ . For τ = 5, an initial budget of around b50(10

−1) =
19.9 bit is required to survive with an outage probability less
than 10−1. For a stricter requirement of 10−5, this increases to
around b50(10

−5) = 33.3 bit, i.e., for a 10 000-times increase
in reliability, the initial budget only needs to be increased by
a factor of around 1.67.

In contrast, when increasing the duration τ that the system
should remain in the active state, the increase in bτ0(ε) is more
significant. In order to survive τ = 10 time slots with an outage
probability of at most ε = 10−1, the required initial budget is
around b100 (10−1) = 35.8 bit, which is an 1.8-times increase
compared to τ = 5 with the same outage probability constraint.

According to Theorem 2, the average latency E [T ] is a
simple linear scaling of the required initial budget bτ0(ε). For
this numerical example, we have an average SKG rate around
E [θ1] = 3.31 bit. Thus, we have an average latency of around
E [T ] = 6 time slots for τ = 5 and ε = 10−1. Similarly, this
increases to around 10 time slots for ε = 10−5.

V. RANDOM TRANSMISSION TIMES

After having introduced and analyzed a deterministic timing
scheme in the previous section, we now consider a different
scheme in which messages arrive randomly.

SKG SKG SKG SKG SKG SKG SKGTX TX TX

1 2 3 4 5 6 7 8 9

Time Slot t

Figure 5. Illustration of the scheduling model with random TX blocks during
the active system state. In each time slot t, there is a probability of pt that
a message is transmitted. If no message is transmitted, SKG is performed
instead.

A. Random Transmission – Model Description

In each time slot t, there is a probability pt that a message
needs to be securely transmitted. An example where this timing
model is applicable is a communication scenario between a
sensor and a fusion center where the sensor only transmits data
when an external event occurs, e.g., when the temperature rises
above a threshold. Assuming that these external events occur
randomly, the times at which data is transmitted are also random.
By adjusting the threshold at which the sensor transmits
data, the system designer could influence the transmission
probability pt.

When a message needs to be transmitted, available SK bits
are used to encrypt the data. Similar to the scheme in Section IV,
this removes ξt bits from the budget of available key bits.
However, if no transmission occurs, the time slot is used for
SKG, which adds θt bits to the budget. An illustration can be
found in Figure 5. Overall, the number of available SK bits Bt

at time t is again given by

Bt = b0 −
t∑

i=1

Zi = b0 − St , (20)

where Zi again denotes the net usage of key bits in time
slot i. While this looks identical to the budget expression for
the deterministic scheme in (10), the distribution of the net
usage Zi is different. In contrast to the deterministic scheme,
we now express Zi as

Zi = Piξi − (1− Pi)θi , (21)

where Pi ∼ B(pi) is an independent Bernoulli-distributed
random variable indicating whether time slot i is used to
transmit a message or perform SKG. The distribution of Zi

then follows as

FZi(z) = Pr (Piξi − (1− Pi)θi ≤ z)

= (1− pi) Pr (−θi ≤ z) + pi Pr (ξi ≤ z)

= (1− pi)F̄θi(−z) + piFξi(z) , (22)

where F̄θi
= 1 − Fθi

denotes the survival function of θi.
As before, we will assume throughout the following, that
all involved random variables are mutually independent and
identically distributed over time.
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Remark 5. For the expression of Zi in (21) recall that θi
denotes the (non-negative) SKG rate. Since the generated key
bits are added to the budget, the income θi is a negative usage.

Remark 6. The distribution of Zi in (22) has the form of a
mixture distribution where Pi is a mixture of ξi and −θi.

B. Reliability Analysis

Even though the distribution of Zi is different from that
in Section IV, the progress of the budget Bt over time is
still given by a random walk, cf. (20). Thus, we can reuse
the results on the outage probability ψt from Section IV-A
by adjusting the distribution of Zi. However, there exists a
major qualitative difference when switching to the random time
scheme.

In the deterministic scheme, the average net usage of SK bits
is greater than zero, i.e., E [Zi] > 0, cf. Lemma 1. Therefore,
on average, the system loses SK bits, which results in an
eventual outage, cf. Corollary 1. In contrast, in the random
scheme, it is possible for E [Zi] to be negative, as shown in
the following.

Corollary 2 (Average Net Usage – Random Scheme). Consider
the described communication system in the active state where
a message is transmitted with probability pt in time slot t.
The following relation between the expected value of the net
usage Zi and the transmission probability pi holds

E [Zi] ⪌ 0 ⇔ pi ⪌
E [θi]

E [θi] + E [ξi]
. (23)

Proof. The expected value of the net usage in time slot i is
given as

E [Zi] = E [Piξi]− E [(1− Pi)θi]

= E [Pi]E [ξi]− E [1− Pi]E [θi]

= piE [ξi]− (1− pi)E [θi] ,

where we use the assumption that Pi is independent from both
θi and ξi. This yields the relation

E [Zi] ⪌ 0 ⇔ pi ⪌
E [θi]

E [θi] + E [ξi]
,

which concludes the proof.

The important consequence of Corollary 2 is that, depending
on pi, the average net usage of SK bits may be negative, i.e.,
on average more bits are generated than used in each time slot.
In contrast to the result in Corollary 1 for the deterministic
scheme, this implies that there is a non-zero chance for the
system to remain in the active state indefinitely.

Based on the calculation of the outage probability ψt within
a finite time horizon t in (12), we can calculate the probability
of ultimate ruin ψ = lim

t→∞
ψt according to the integral equation

ψ(b) = (1− FZ(b)) +

∫ ∞

0

ψ(s)fZ(b− s)ds (24)

where we assume i.i.d. Zi with density fZ . This is a Fredholm
integral equation of the second kind, which can be solved nu-
merically, e.g., by applying Nyström’s method [44, Chap. 19.1].

For the numerical examples presented in the following, this
technique is used to approximate the exact solution.

While the relation from (24) allows an exact calculation of
the outage probability ψ in theory, a solution may be difficult
to obtain in practice. Therefore, we provide a worst-case bound
in the following theorem, which may be easier to compute in
practice.

Theorem 3 (Upper Bound of Probability of Ultimate Ruin
– Random Scheme). Consider the described communication
scheme in the active state with i.i.d. SKG rates θi and i.i.d.
rates to Bob ξi. In time slot i, a message is transmitted with
probability pi. This probability is the same for all time slots i
and fulfills

p1 = · · · = pi = p <
E [θ1]

E [θ1] + E [ξ1]
. (25)

In this case, the probability of eventually leaving the active
state ψ is upper bounded by

ψ(b0) ≤ exp(−r⋆b0) (26)

with r⋆ being the positive solution to

E [exp (r⋆Z1)] = 1 , (27)

assuming it exists.

Proof. The proof can be found in Appendix D.

The upper bound from (26) shows that there is a non-zero
probability of staying in the active system state indefinitely if
the expected net usage of SK bits E [Zi] is negative, i.e., more
bits are generated than used on average.

Remark 7. The above results have direct implications for
practical system design. If the system designer can influence the
transmission probability p, its value should be set below the crit-
ical value E [θ1] /(E [θ1] + E [ξ1]). Similar to Section IV, we
can then calculate the minimum required initial budget b∞0 (ε)
for a tolerated outage probability ε. Thus, with probability ε
there will be only the initial latency to generate b∞0 (ε) key
bits and no subsequent recharging phases.

Example 3 (Rayleigh Fading – Random Scheme). For this
numerical example, we assume the same system parameters as
in the previous Example 1 and Example 2, i.e., i.i.d. Rayleigh
fading with E [Xi] = 20 dB and E [Yi] = 10 dB. This gives
us the expected values of the SKG rates θi and Bob’s rates ξi
as E [θi] = 3.31 bit and E [ξi] = 5.889 bit, respectively. From
(23) in Corollary 2, the critical transmission probability is
calculated to be 3.31/9.199 = 0.360, i.e., for transmission
probabilities p < 0.360 the average net usage of SK bits is
negative. According to Theorem 3, this implies that the outage
probability for such a scenario approaches a value less than 1
over time.

The numerical results are presented in Figure 6. First, we
show the outage probability ψt in finite time for two values
of the transmission probability p < 0.36 with an initial budget
of b0 = 20bit in Figure 6a. The probabilities of ultimate
ruin ψ, which are indicated by the dashed lines, are numerically
evaluated according to (24). Additionally, the upper bound
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Figure 6. Probability of ultimate ruin ψ for a system with transmission
probability p. The channels to both Bob and Eve are Rayleigh fading with
average SNRs E [Xi] = 20 dB and E [Yi] = 10 dB, respectively. The
dashed lines correspond to the numerically calculated outage probabilities ψ
according to (24) while the markers indicate results from MC simulations
with 106 samples. The dash-dotted lines represent the upper bound from (26).
(Example 3)

from (26) in Theorem 3 is given by the dash-dotted lines.
It can be seen that the outage probability ψt approaches the
limit ψ for large t. In the case of p = 0.1, this limit is around
ψ = 1.45 ·10−3 and the upper bound is around 3.53 ·10−3. As
expected, these values increase with an increasing transmission
probability p, since more blocks are used for transmission
which uses up more of the available SK bits. For p = 0.35,
the probability of eventually exhausting the key-bit budget is
ψ = 0.64, i.e., there is a 36% chance that the system will
remain in the active state indefinitely.

Next, we show the behavior of the probability of ultimate
ruin ψ over the initially available number of SK bits b0 in
Figure 6b. As expected, this probability decreases with an
increasing initial budget and the slope is steeper for smaller
transmission probabilities p.

VI. CONCLUSION

In this work, we have considered a wireless communication
system with a passive eavesdropper. Alice and Bob perform
SKG to generate key bits, which are added to a pool of available
key bits. When transmitting a message, bits from this pool
are used as a one-time pad to secure the data transmission.
In this setting, we have analyzed the reliability in terms
of the probability that the budget of available key bits will
be exhausted. We have shown how to compute this outage
probability numerically and, additionally, derive worst-case
bounds. Interestingly, for randomly arriving messages, there
is a positive probability that the communication system will
remain active indefinitely and never run out of SK bits. In this
case, there is only an initial latency to reach the initial budget
of key bits before a transmission can take place.

For the cases where the system eventually runs out of
available key bits, we have additionally investigated the latency
between two active states, i.e., the duration during which Alice
and Bob only generate new keys without performing any data
transmission. It is shown that the expected latency can be
computed by a simple expression that is linear in the number
of SK bits that need to be initially available.

System designers can utilize the findings of this work to
adjust parameters, meeting specific performance requirements,
e.g., the outage probability after a specified time.

Since calculating the exact outage probability requires
solving an integrodifference equation recursively, it will be
interesting for future work to find approximations or tight
bounds that are less computationally expensive. In addition,
the assumption that the channel distributions are stationary
could be removed in future work. In this way, a scenario with
time-varying channel distributions could also be modeled and
analyzed.

APPENDIX A
PROOF OF LEMMA 1

Based on the definitions of Zi, ξi, and θi, we find that

E [Zi] = E [ξi − θi]

= E [log2 (1 + Yi)] + E
[
log2

(
1 + X̃i

)]
− E [log2 (1 +Xi + Yi)]

= E
[
log2

(
(1 + Yi)(1 + X̃i)

)]
− E [log2 (1 +Xi + Yi)]

= E
[
log2

(
1 + X̃i + Yi + X̃iYi

)]
− E [log2 (1 +Xi + Yi)]

= E [log2 (1 +Xi + Yi +XiYi)]

− E [log2 (1 +Xi + Yi)]

> 0 ,

where we require X̃i
d
= Xi and Xi,Yi > 0.

APPENDIX B
PROOF OF THEOREM 1

For the first inequality ψt ≤ Ψt, we use Doob’s martingale
inequality [45, Chap. 12.6, Thm. 1]. In order to be able to
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apply it, we first formulate ψt in terms of the probability of
the maximum of Si as follows. We start with the survival
probability ψ̄t, which describes the probability that the SK
budget Bt never falls to zero up to time t, i.e.,

ψ̄t(b0) = Pr

(
min
1≤i≤t

Bt > 0

)
.

This can be rewritten using the definition of Bt from (10) as

ψ̄t(b0) = Pr

(
max
1≤i≤t

Si < b0

)
,

which in turn can be expressed in terms of the outage
probability ψt as

ψt(b0) = Pr

(
max
1≤i≤t

Si ≥ b0

)
.

Next, we need to show that the random process St =
∑t

i=1 Zi

forms a submartingale (together with the natural filtration), i.e.,
we need to show that

E [St+1 | St, . . . ,S1] ≥ St

holds. This result can be obtained as follows:

E
[
St+1

∣∣∣ St, . . . ,S1

]
= E [Z1 + · · · +Zt +Zt+1 | Z1, . . . ,Zt]

= Z1 + · · · +Zt + E [Zt+1 | Z1, . . . ,Zt]

(a)
= St + E [Zt+1]

(b)

≥ St ,

where (a) holds due to the assumption that all Zi are
independent from each other and (b) follows from Lemma 1.
The inequality ψt ≤ Ψt now follows directly from Doob’s
martingale inequality.

For the second inequality, we use the following general
observations. For a real-valued random variable X with the
expected value µ = E [X] and variance var(X) = E

[
X2

]
−

µ2, it is apparent that

0 ≤ E [max(X, 0)] ≤ E [|X|] .

From Jensen’s inequality, it follows that

E [|X|]2 < E
[
|X|2

]
since x2 is a strictly convex function. Combining the above with
the fact that E

[
|X|2

]
= E

[
X2

]
and E

[
X2

]
= var(X)+µ2,

we find that

E [max(X, 0)]
2 ≤ E [|X|]2

< E
[
|X|2

]
= E

[
X2

]
= var(X) + µ2 ,

and in turn

E [max(X, 0)] <
√
var(X) + µ2 .

Now we can set X = St to obtain the second inequality
Ψt < Ψ̂t.

APPENDIX C
PROOF OF THEOREM 2

By definition of the latency T in (7), it can be seen that it
is a hitting time of the random walk

∑t
i=1 θi. In [46, Thm. 4

and 8], lower and upper bounds on the expected value of
such hitting times for random walks with drift are derived.
In particular, it is shown that for a random walk {At}, the
following equality holds:

E [T | A0] =
A0

δ
,

with

T = inf {t ≥ 0 | At ≤ 0} ,

if At − E [At+1 | A0, . . . ,At] = δ holds.
In order to use this result, we use the correspondence At =

b0 −
∑t

i=1 θi with A0 = b0. With this, we obtain

E
[
At+1

∣∣∣ A0, . . . ,At

]
= E [b0 − θ1 − θ2 − · · · − θt − θt+1 | A0, . . . ,At]

= b0 − θ1 − θ2 − · · · − θt − E [θt+1]

= At − E [θt+1] ,

where the steps closely follow the ones in the proof of
Theorem 1. Based on the above relation, it is clear that

At − E [At+1 | A0, . . . ,At] = E [θt+1] = δ .

Therefore, we have based on [46]

E [T | b0] =
b0

E [θ1]
,

where E [θ1] = · · · = E [θt+1] stems from the fact that we
assume all θi to be i.i.d.. Since b0 is assumed to be a constant,
it follows for the expectation of T that

E [T ] = E [E [T | b0]] =
b0

E [θ1]
.

Since we need to reach bτ0(ε) as an initial budget for the given
system parameters, we obtain (19) as a final expression.

APPENDIX D
PROOF OF THEOREM 3

The proof closely follows the lines of the proof of Lundberg’s
inequality for the classical insurance risk model [47, Chap. 5].

First, recall that we aim to show

ψ(b0) = lim
t→∞

ψt(b0) ≤ exp (−r⋆b0) .

We start the proof by introducing the following functions:

g(r) = log (E [exp (rZ1)]) , (28)
Ar

t = exp (rSt − tg(r)) , (29)
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where St =
∑t

i=1 Zi is again the accumulated net usage. Next,
we show that the stochastic process {Ar

t}t≥1 is a martingale,

E
[
Ar

t+1

∣∣∣ Ar
t , . . . ,A

r
1

]
= E [exp (rSt+1 − (t+ 1)g(r)) | Ar

t , . . . ,A
r
1]

= E [Ar
t · exp (rZt+1 − g(r)) | Ar

t , . . . ,A
r
1]

= Ar
t · E [exp (rZt+1 − g(r)) | Ar

t , . . . ,A
r
1]

(a)
= Ar

t · E [exp (rZt+1 − g(r))]

= Ar
t · E [exp (rZt+1 − log (E [exp (rZ1)]))]

= Ar
t ·

E [exp (rZt+1)]

E [exp (rZ1)]
(b)
= Ar

t ,

where we use the independence assumption in step (a) and the
assumption of identical distributions in step (b). In order to
take the outage condition into account, we define the following
stopping time:

τm = inf {t | St ≥ b0} ∧m, (30)

where ∧ denotes the minimum operator. By the definition of r⋆

from (27), we have that

E
[
Ar⋆

1

]
= E [exp (r⋆Z1)] = 1 .

It further follows

1 = E
[
Ar⋆

1

]
(a)
= E

[
Ar⋆

τm

]
≥ E

[
Ar⋆

τm 1τm<m

]
(b)

≥ E [exp (r⋆b0)1τm<m]

= exp (r⋆b0) Pr (inf {t | St ≥ b0} < m)

(c)
= exp (r⋆b0)ψm(b0) ,

where (a) is due to the optional stopping theorem [45,
Chap. 12.5], (b) follows from the definition of the stopping
time τm, and (c) uses the definition of the outage probability
in finite time. Rearranging finally yields

ψm(b0) ≤ exp (−r⋆b0) , for all m ∈ N . (31)

As a final step, we need to show that r⋆ is the positive solution
to (27), assuming it exists. By Jensen’s inequality, we have

g(r) = log (E [exp (rZ1)]) ≥ E [rZ1] ,

and by the definition of r⋆, it follows that

g(r⋆) = 0 ≥ r⋆E [Zi] ,

which is a contradiction for r⋆ < 0, since E [Zi] < 0 by the
assumption on p and Corollary 2.
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