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Enhancing AmBC Systems with Deep Learning for
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Abstract—The era of ubiquitous, affordable wireless con-
nectivity has opened doors to countless practical applications.
In this context, ambient backscatter communication (AmBC)
stands out, utilizing passive tags to establish connections with
readers by harnessing reflected ambient radio frequency (RF)
signals. However, conventional data detectors face limitations
due to their inadequate knowledge of channel and RF-source
parameters. To address this challenge, we propose an innovative
approach using a deep neural network (DNN) for channel state
estimation (CSI) and signal detection within AmBC systems.
Unlike traditional methods that separate CSI estimation and data
detection, our approach leverages a DNN to implicitly estimate
CSI and simultaneously detect data. The DNN model, trained
offline using simulated data derived from channel statistics,
excels in online data recovery, ensuring robust performance in
practical scenarios. Comprehensive evaluations validate the supe-
riority of our proposed DNN method over traditional detectors,
particularly in terms of bit error rate (BER). In high signal-
to-noise ratio (SNR) conditions, our method exhibits an im-
pressive approximately 20% improvement in BER performance
compared to the maximum likelihood (ML) approach. These
results underscore the effectiveness of our developed approach
for AmBC channel estimation and signal detection. In summary,
our method outperforms traditional detectors, bolstering the
reliability and efficiency of AmBC systems, even in challenging
channel conditions.

Index Terms—Ambient backscatter communication, channel
estimation, signal detection, and deep neural learning.

I. INTRODUCTION

The exponential growth of connected devices in the sixth
generation (6G) wireless network poses significant challenges
in terms of spectrum and energy usage [1]. One crucial
application driving the interconnection of numerous devices
is the Internet of Things (IoT) [2], [3]. However, devices
powered by batteries with limited storage face a critical
obstacle of frequent recharging, which hampers the energy
and cost efficiency of 6G [4], [5]. To tackle this challenge,
ambient backscatter communication (AmBC) has emerged as
a highly promising solution, attracting significant attention in
the literature [6]–[9].

In AmBC, a low-power and low-cost device called a tag
utilizes ambient radio frequency (RF) signals, such as those
from wireless fidelity (Wi-Fi) or television (TV), as its carrier
signal instead of generating RF signals on its own. This
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approach eliminates the need for power-hungry active com-
ponents like oscillators, mixers, and amplifiers, resulting in
power consumption of only a few tens of µ-watts, which is
significantly lower compared to active mobile devices con-
suming 1000 times more power [4]. These maintenance-free
tags can collect and backscatter sensed data under a wide
range of environmental conditions, spanning from extreme
scenarios like high-pressure or toxic environments to moderate
conditions in farmlands [2], [3]. They find applications in
various industries, such as industrial automation or smart
logistics, where they can efficiently track millions of parcels
[10]. Another important use case for these tags is in smart
agriculture, encompassing applications ranging from soil mon-
itoring to livestock tracking. The tags utilize load modulation
to alter the phase, amplitude, or frequency of the RF signal,
enabling the modulation of data over the radiated RF source
[6].

On the other side, the reader (backscatter receiver) must
decode the tag signal in order to extract the tag data. To
ensure the accuracy and reliability of this task, the reader
must eliminate interference caused by external environmental
signals [11]. Thus, signal detection presents several challenges.
These challenges include:

• Low backscatter signal strength: The tag-reflected
signal experiences deeper fades due to double path losses,
resulting in a low received signal power or signal-to-noise
ratio (SNR) at the reader. Moreover, the direct-link signal
is typically strong and can cause direct interference to
the reader [9]. Additionally, other ambient RF signals
can also corrupt the received signal, making detection
even more challenging. Subsequently, various strategies
to solve this challenge have been developed [12], [13].

• Unknown parameters: The ambient RF source param-
eters, such as its bandwidth, transmit power, and wave-
forms, are typically not known. Thus, the cancellation of
the direct-link interference (DLI) from the RF source to
detect the tag signal is highly challenging.

• Lack of Channel state information (CSI): Another
challenge arises from the ambiguity in acquiring channel
state information (CSI) [14]. Direct link channel esti-
mation (CE) poses difficulties due to the absence of
pilot signals from the ambient RF source. Moreover,
the limited memory and simplicity of the tag device
prevent it from dispatching an adequate number of pilots
to facilitate backscatter link CE. Consequently, several
studies have focused on addressing both CE and detection
for AmBC [11].
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A. Backscatter Signal detection methods

In the literature, numerous detection strategies have been
developed for AmBC signals [15]–[17]. They can be broadly
classified into coherent, noncoherent, and machine-learning-
based.

1) Coherent detection: Requires exact carrier phase knowl-
edge and CSI, offering optimal error probability. How-
ever, obtaining CSI and carrier phase knowledge can be
challenging in practice.

2) Non-coherent detection: Does not require carrier phase
and CSI knowledge, reducing receiver complexity but
sacrificing spectral efficiency or performance.

3) Semi-coherent detection: Combines both coherent and
non-coherent aspects, using a limited number of training
symbols to estimate required parameters without full
CSI estimation.

Coherent detection improves the sensitivity of the receiver
and enables the detection of weak signals in the presence of
noise [18]. For instance, [19] derives a maximum likelihood
(ML) detector, characterizing the outage probability. Similarly,
[17] derives the maximum a-posteriori (MAP) detector for
OOK tag modulation. A closed-form expression for the BER
of this optimal detector is also derived.

Noncoherent detection, on the other hand, recovers data
based on the statistical properties of the received signal.
For example, [16] develops an AmBC noncoherent detector
using the generalized likelihood ratio test (GLRT). The joint
probability density function (PDF) of the incoming signal is
examined in [20] to investigate two non-coherent detectors.
To overcome the lack of training symbols [15], [21], consider
the differential encoder at the tag. Furthermore, [21] suggests
two detection thresholds, one of which provides roughly
minimum BER and the other of which produces balanced error
probability for detecting the tag bit. In addition, some IoT
devices may be deployed in high-mobility situations, which
will cause a shorter channel coherence time and a larger
Doppler dispersion than in static scenarios. The authors in
[22] examine the case of non-coherent detection of ambient
signals in a time-selective fading channel via a model of a
first-order autoregressive process.

However, although non-coherent detection eliminates the
use of CSI, optimal detection requires precise CSI. For ex-
ample, [15] designs a joint-ED and derives the detection
threshold, which requires the estimation of some parameters.
Next, in [11], the joint AmBC CE and detection problem
is studied where the full-duplex (FD) orthogonal frequency-
division multiplexing (OFDM) access point (AP), and the
intended recipient of the backscatter information, are incor-
porated. The authors leverage the cyclic prefix (CP) structure
of OFDM symbols from RF sources to eliminate DLI at the
reader. In addition, they solve the detection problem by using
the space alternating generalized expectation maximization
(SAGE) algorithm. As outlined in [23], the authors posit that
backscattered signals can be modulated to operate within a
different frequency band in an OFDM-AmBC system, thereby
avoiding DLI from the RF source. In contrast, [24] proposes
a more straightforward approach known as the direct-link

averaging detector (DL-AD) to eliminate DLI based on the
log-likelihood ratio test while employing a semi-blind channel
estimator. However, it is worth noting that these DLI cancella-
tion techniques necessitate more intricate circuitry either at the
tag or the reader, which may contradict the cost and energy-
efficiency goals of passive backscatter systems. Furthermore,
perfect DLI cancellation requires precise time and frequency
synchronization, which presents its own set of challenges.

Machine learning has recently become an active signal
detection approach due to its ability to identify patterns in
large datasets that are not easily detectable through conven-
tional methods. By leveraging these patterns, machine learning
algorithms can significantly enhance signal detection accuracy
and precision. For instance, [25] applies unsupervised learning
to detect tag data by extracting signal features based on energy
information and grouping them into clusters. This method is
further improved by transmitting labeled bits from the tag for
cluster-bit mapping. Similarly, [14] transforms binary phase-
shift keying (BPSK) tag signal detection into a supervised
machine learning classification problem, outperforming the
traditional MMSE detector.

Another example is the use of Hadamard codes to inves-
tigate the detection of BPSK tags [26]. For multi-antenna
readers, the approach is based on k-nearest neighbors (KNN)
classification, where the first step involves eliminating direct
interference from the RF source. The remaining signals un-
dergo further signal processing, followed by learning detection
and decoding in the third and fourth phases. Moreover, [27]
proposes the deep transfer learning (DTL) approach in a
multi-antenna AmBC setup. They adopt a conventional neural
network to extract data features from the formation matrix
and use a covariance matrix aware neural network (CMNet)
that is DTL-oriented to detect tag signals. Overall, these
studies demonstrate the effectiveness of machine learning-
based methods in improving the accuracy and precision of
signal detection. Reference [28] introduces a label-assisted
transmission framework for AmBC in IoT, eliminating the
need for CSI estimation. The paper offers two detection
methods using labeled signals and a mix of both labeled and
unlabeled signals, both of which match the performance of
perfect CSI detectors. Meanwhile, [29] proposes cognitive
AmBC for spectrum sharing. Addressing challenges posed
by direct link interference from legacy systems, this paper
suggests detectors leveraging multiple antennas and presents
beamforming and likelihood-ratio-based detectors. A statis-
tical clustering framework for CSI learning and backscatter
detection is also introduced, with simulations showing these
methods outperform traditional energy detectors (ED).

B. Motivation and Contributions

Recently, deep neural networks (DNNs) have emerged
as promising solutions for wireless CE and data detection
[30], [31]. They offer several advantages. Firstly, they can
understand complex relationships between received signals
and transmitted data, resulting in higher detection accuracy.
Secondly, they reduce the computational complexity of signal
detection by exploiting the parallel processing capabilities of
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DNNs and offline training. Finally, offline training reduces
the energy consumption of the reader, making it more energy-
efficient.

Thus, using DNNs for joint CE and detection offers the
potential to enhance AmBC performance. However, this ap-
proach has been underexplored in the context of AmBC. Prior
work, such as [11], focused on monostatic backscatter systems
with an integrated reader and AP, rather than true AmBC.
Therefore, this paper investigates CE and data detection in
AmBC, presenting several significant contributions:

• Firstly, we propose an innovative DNN-based approach
to estimate channel coefficients and extract tag symbols
in AmBC systems. While the DTL approach was sug-
gested in [27], we introduce a groundbreaking DNN-
based method that outperforms existing methods in ac-
curately estimating channel coefficients. It leverages the
advanced capabilities of deep learning to adapt to varying
channel conditions, making it more robust and efficient
than conventional methods. By sufficiently training the
DNN, our approach can learn the complex relationships
between the received signals and the transmitted data, and
accurately estimate channel coefficients, even in noisy
and unpredictable environments. Our experiments demon-
strate that the proposed DNN-based method significantly
outperforms existing methods in terms of accuracy and
robustness.

• Secondly, our work also makes a significant contribution
by addressing CSI acquisition using DNN methods. This
aspect distinguishes our work from previous studies such
as [14], [25], [26]. Previous research mainly focused on
using machine learning techniques for detecting the tag
signal but did not give enough attention to the critical
problem of CSI acquisition. Our approach uses a joint
optimization framework that simultaneously estimates the
CSI and extracts the tag symbol using the proposed DNN
architecture. Through this joint approach, we can enhance
the accuracy of data detection in AmBC systems.

• Thirdly, we use the fully connected network (FCN)
architecture for our DNN approach due to its simplicity,
transparency, and the foundational understanding it offers
in this emerging field [30], [32], [33]. FCNs, despite
their basic structure, are robust and have consistently
shown strong performance, a fact reinforced by our ex-
perimental results. They provide computational efficiency,
crucial for real-time AmBC applications while allowing
scalability based on data availability. The uniqueness of
our approach is further highlighted through its enhanced
performance over conventional methods in AmBC.

• Fourthly, we present an extensive comparison of the
proposed detection-estimation method with traditional ap-
proaches, such as ML, semi-coherent (SemiCoh), energy,
Bayesian, and GLRT detectors. This comparative analysis
allows us to showcase the superiority of our proposed
DNN-based method in terms of accuracy and efficiency
compared to established techniques. This comparative
study highlights the potential of our proposed method
as a promising alternative to traditional approaches in

addressing the challenges of AmBC.
In summary, our work introduces an efficient approach for

joint CE and data detection in AmBC. Our experiments vali-
date its effectiveness in acquiring accurate CSI and extracting
tag symbols, even in low signal-to-noise ratio (SNR) scenarios,
highlighting its potential for reliable AmBC applications.

Notation: Vectors and matrices are represented by boldface
lowercase letters and uppercase letters, respectively. For matrix
A, AH and AT denote the Hermitian conjugate transpose
and the transpose. Euclidean norms of complex vectors and
absolute values of complex scalars are represented by | · |
and | · |, respectively. fX(.) denotes the probability density
function of X . The expectation operator is denoted by E[·].
A circularly symmetric complex Gaussian (CSCG) random
vector with mean µ and covariance matrix C is represented
as ∼ CM(µ,C). Additionally, RM×N and CM×N denote
M ×N dimensional real and complex matrices.

II. AMBC SYSTEM MODEL

The considered network – Fig 1 – comprises an ambient
RF source, a tag, and a reader. All nodes are equipped with a
single antenna [20], [25]. both the reader and the tag receive
the ambient signal from the RF source. The tag harvests energy
from it and subsequently reflects its data to the reader based
on the power splitting ratio, which is defined below. However,
the reader’s detection process is affected by the strong direct
link interference from the RF source. We next describe the EH
unit and the modulation block of the tag.

A. Tag’s Backscatter Modulation & Energy Harvesting

1) Backscatter Modulation: A tag is a passive device with
no active electronics and cannot generate an RF signal but
reflects ambient RF signals opportunistically to send data.
To do that, the tag tunes its load impedance depending
on its bit sequence, which is called load modulation. For
example, the tag realizes OOK by switching between two
load impedances to generate bit “0” or “1” by matching or
mismatching with antenna impedance, indicating absorbing or
reflecting (i.e., non-backscattering and backscattering states),
respectively. The reflection coefficient of the tag is expressed
as follows [6]:

Γi =
Zi − Z⋆

a

Zi + Za
, (1)

where Za denotes the antenna impedance of the tag, which
depends on the structure of the antenna, Zi is the load
impedance of state i = {1, 2}. Here, we assume that the
tag uses OOK modulation. It adjusts its impedance to either
match or mismatch the incoming signal. More specifically,
Γi = |Γi|ejθi where the tag can use distinct θi ∈ {0, π}
values to send its data. In addition, the reflection coefficients
of impedance values have a constant magnitude, i.e., |Γi|2 =
|Γ|2 = ξ ∈ (0, 1]. In particular, ξ = |Γ|2 denotes the power
reflection coefficient at the tag satisfying 0 ≤ ξ ≤ 1. To design
the constellation points, the load impedances Zi can then be
computed via the Smith chart techniques [34].
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Fig. 1: Smart city IoT network application scenarios.

2) Energy Harvesting: Each tag performs EH and data
transmission simultaneously [35]. Thus, the received RF signal
power is divided into two parts based on a power splitting ratio,
ξ. For more details, please see [7], [8] and references therein.
While we provide a brief overview of the EH aspect for
context, our paper primarily concentrates on signal detection
at the reader. The efficiency or intricacies of the EH phase
do not have a direct impact on signal detection. However,
we recognize the potential implications of EH and plan to
investigate its impact in future research.

B. Channel Modeling

Backscatter channels demonstrate unique characteristics in
contrast to conventional communication channels. Specifically,
the backscattered link is the cascade of the two channels from
the transmitter to the tag and from the tag to the receiver. As
a consequence, it encounters a dual-path loss phenomenon,
raising the risk of severe deep fades. These occurrences can
lead to communication outages and increased BERs. In our
analysis, we assume a scattered environment and model the
channel coefficients initially as zero-mean CSCG random
variables. This assumption is akin to adopting the small-scale
Rayleigh flat fading model with a predetermined coherence
time.

This assumption is widely used in AmBc studies for envi-
ronments without a dominant line-of-sight (LoS) component
[19], [20]. For example, it holds for environments such as fac-
tories where numerous obstructions and moving objects cause
signal fluctuations. Similarly, during storage or transportation,
tags enclosed in packaging or inside storage facilities may
encounter multipath propagation due to reflections.

The system consists of three primary channels: the RF
source-to-reader (hsr), the tag-to-reader (htr), and the RF
source-to-tag (hst). They are characterized by their respective
CSCG random variables, given by hsr ∼ CN (0, σ2

sr), htr ∼

CN (0, σ2
tr), and hst ∼ CN (0, σ2

st). These channels experience
independent Rayleigh fading, with their fading coefficients
changing independently over distinct coherence time intervals.

We also consider Rician fading when there is the presence
of a LoS component along with scattered paths. Thus, the
Rician fading channel model is given by

h =

√
κ

κ+ 1
hLoS
i +

√
1

κ+ 1
hNLoS
i , i ∈ {sr, tr, st}, (2)

where κ is the Rician factor, hLoS
i = 1 is the deterministic

LoS component that corresponds to the direct path between
the transmitter and receiver, without any obstructions or scat-
tering. Also, hNLoS

i is the non-LoS component that follows the
Rayleigh fading model.

Remark 1: The chosen tag frame structure is designed
for slow-fading channel models, maintaining consistent chan-
nel conditions within each frame, a technique prevalent in
AmBC studies [27], [36]. Complications emerge with fast-
fading channels due to discrepancies in channel environments
between training and test data, causing potential misalign-
ment in the neural network’s learned features, which could
hinder accurate tag signal detection. Addressing this requires
redesigning the tag frame structure, a promising direction for
future research.

Remark 2: Large-scale fading, also known as path loss,
plays a crucial role in wireless communication channels for
several reasons. These effects affect coverage prediction, inter-
ference mitigation, resource allocation, and energy efficiency.
The path loss is superimposed in the small-scale fading. In
this paper, the path loss model is introduced when the received
SNRs are determined (see (6)).

C. Signal model
We represent the RF source signal as s(n), satisfying

E[|s(n)|2] = 1. The signal s(n) could be either a complex
Gaussian signal or a modulated one.
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(a) Complex Gaussian ambient source: in wireless com-
munications, complex Gaussian signals, characterized
by both magnitude and phase components, often serve
as models for interference sources like artificial noise
[37]. These signals can be effectively represented as
complex Gaussian random variables, denoted as s(n) ∼
CN (0, Ps), where they exhibit a zero mean and power
Ps. This assumption enjoys broad relevance in commu-
nication systems, as it aligns with the characteristics of
numerous modulation schemes, such as OFDM, which
manifest near-white Gaussian attributes in the time do-
main [38].

(b) Modulated ambient source: In contrast, modulated sig-
nals are signals that have been altered in a specific
way to carry information, e.g., signals of TV towers,
cellular BSs, and Wi-Fi APs. Accordingly, symbol s(n)
is assumed to be selected from a Q-ary modulation
alphabet, with a power of Ps. Thus, it is drawn from
a constellation set S = {S1, S2, . . . , SQ}, where each
symbol is equally likely [24], [28].

Consequently, the signal received by the tag at the n-th
sampling instance can be represented as [20]

x(n) = hsts(n), (3)

The tag then reflects x(n) with reflection coefficient Γi to
communicate its own data. Given that ambient RF sources
typically transmit at much higher rates than the tags, Γi

remains constant during the N observations interval [20],
[25]. Thus, the backscattered signal from the tag can thus be
represented as

xb(n) = Γix(n). (4)

At the reader, the signal corresponding to the tag symbol is
given by

y(n) =
√
Prhsrs(n) +

√
Pchtrxb(n) + w(n)

=
(√

Prhsr +
√
PcΓihsthtr

)
s(n) + w(n), (5)

where w(n) represents additive white Gaussian noise (AWGN)
with mean zero and variance σ2

w, and the noise samples
are assumed to be independent. The average power received
directly at the reader is given by Pr, while Pc denotes the
average power from the backscatter link at the reader.

The average received SNRs for both the direct link and the
backscatter link can be defined as βd ≜ Pr

σ2
w

and βb ≜ Pc

σ2
w

,
respectively. Accordingly, the received power (dBm) at the
reader is given by

Pr = Pc+v1 log(dst)+v2 log(dtr)−v3 log(dsr)−log(ξFG2
l ),
(6)

where F = λ2/(4π)2 with λ being the wavelength, and Gl

is the tag’s antenna gain. Also, dsr, dst, and dtr denote the
distances from the RF source to the reader, the RF source
to the tag, and the tag to the reader, respectively. The path
loss exponents are given by vi, i ∈ {1, 2, 3}. By defining the
relative SNR as η ≜ βb

βd
= Pc

Pr
[27], [28], the received signal

at the reader can be represented as

y(n) = (hsr +
√
ηhsthtr) s(n) + w(n). (7)

A lower value of η indicates that the backscattered signal
is more prominent relative to the direct signal, which can
improve the detection performance of the reader. Conversely,
a higher value suggests that the direct signal is stronger, lead-
ing to increased interference and more challenging detection
scenarios.

D. Signal Detection Problem

This is a binary hypothesis testing scenario. The signal
received by the reader can be described differently under
various hypotheses, as below [39]:

y(n) =

{
h0s(n) + w(n), if decide on H0,
h1s(n) + w(n), if decide on H1,

(8)

Here, H0 corresponds to the null hypothesis and H1 corre-
sponds to the hypothesis that the transmitted symbol is Γ1.
In addition, h0 = hsr denotes the direct channel link and
h1 = hsr + Γ1hsthtr indicates the composite channel link.
Based on the hypotheses, the reader can decode the transmitted
symbols of the tag. It decides between two hypotheses, i.e.,
H0 and H1, based on the observed data. To make a decision,
two types of information are required [40]. Firstly, we need the
a-priori probabilities, represented by π0 = P (H = H0) and
π1 = P (H = H1), where they should satisfy π0 + π1 = 1.
Secondly, the measurement model for observation vector y =
[y(0), y(1), . . . , y(N−1)]T , where N denotes the total number
of observations, is required. Particularly, the measurement
model represents the probability density conditioned on each
hypothesis as:

H0 : Y ∼ fY(y|H0),
H1 : Y ∼ fY(y|H1),

(9)

which are referred to as likelihood functions. To make a
decision, the range of Y, denoted as Y , is divided into two
decision regions, Y0 and Y1, such that if y ∈ Yi, then
hypothesis Hi is selected as the best match for the data.
Therefore, the design of the decision region is crucial.

III. DETECTOR DESIGN

As mentioned before, detection can be classified as coher-
ent, noncoherent, or semi-coherent. However, recent advance-
ments in deep learning have led to the development of DNNs
for joint CE and data detection [30], [32]. The DNN can
leverage the robust feature extraction and learning capabilities
of deep learning models to enhance the accuracy and efficiency
of both tasks. Before getting into the DNN, we first describe
the most common conventional detectors.

A. Maximum Likelihood Detector

The ML detector is optimal in a specific sense. Although it
offers higher accuracy than an ED detector, it requires knowl-
edge of the statistical properties of the transmitted signal and
noise. This detector can be developed as follows. Assuming
independence between the sampled signals y(n) and noise
w(n),∀n at the reader, the received signal can be modeled
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as a Gaussian distribution. The received signal vector y under
hypotheses H0 and H1 can thus be expressed as

y ∼
{
CN (0, δ20IN ), if H0,
CN (0, δ21IN ), if H1,

(10)

where δ20 = |h0|2Ps + σ2
w and δ21 = |h1|2Ps + σ2

w. The
variances δ20 and δ21 reflect the combined effects of signal
power and noise power for both hypotheses. Consequently,
the ML detector involves a likelihood ratio test based on the
energy of the received signal vector, denoted by z = ∥y∥2.
The ratio is given by

P (y|H0)

P (y|H1)
=

(
δ21
δ20

)N

exp
(
δ20 − δ21
δ20δ

2
1

z

)
. (11)

Here, P (y|Hi), ∀i ∈ {0, 1} represents the PDF of y under
different hypotheses. The likelihood ratio only depends on
the energy of the received signal vector, allowing for a
decision rule based solely on z. With equiprobable transmitted
messages Γ = {0, 1}, the ML decision rule can be written as
follows [16]:

LML(y) =
P (y|H0)

P (y|H1)

H0

⋛
H1

1 =⇒


z

H0

⋛
H1

ΘTh
ML, δ20 > δ21 ,

z
H1

⋛
H0

ΘTh
ML, δ20 < δ21 ,

(12)
where ΘTh

ML is the detection threshold, which is given as
ΘTh

ML =
Nδ20δ

2
0

δ21−δ20
ln

δ21
δ20

[16]. The decision rule aims to minimize
the probability of error by comparing the likelihood of the
received signal LML(y) under both hypotheses H0 and H1.
Specifically, (12) also indicates that the ML detector can
be referred to as a modified energy detection. It is worth
mentioning that if δ20 = δ21 , the detection is unsuccessful due to
indistinguishable hypotheses. However, the case with δ20 = δ21
(i.e., hst = 0 or htr = 0) is disregarded, as hst = 0 indicates
a tag backscatter failure and htr = 0 signifies the absence of
a received signal from the tag.

The ML approach provides optimal detection results when
the statistical properties of the signals and noise are known.
However, perfect CSI may not be available in practical AmBC
systems due to the lack of cooperation between the reader and
the RF source. This limitation highlights the need for robust
detection techniques that can work efficiently in the absence
of perfect CSI or under varying channel conditions. Although
the knowledge of CSI is unavailable, the values of δ2i can be
estimated in a way that will be presented in the next section.

B. Semi-Coherent Detector

Although the CSI is unknown, it is possible to estimate the
values of δ2i , ∀i ∈ {0, 1} blindly [16]. We term this approach
as a SemiCoh detector. Let us briefly describe the steps of
blind estimation. The parameters δ20 and δ21 represent the
mathematical expectation values of the received signal energy
under different hypotheses. We can estimate δ2i ,∀i ∈ {0, 1} by
computing the average energies of a set of received signals
with unknown values.

Algorithm 1 Semi-Coherent Detector Algorithm

Input: Number of tag symbols M , number of training sym-
bols Mt, initialize empty list Σ

1: for m = 1 to M do
2: Calculate the normalized energy of ym as Σm = |ym|2

N
and append to ΣmtoΣ

3: end for
4: Sort Σ in ascending order to obtain Σ↑ and divide into

two equal parts: Σ↑
1 (first half) and Σ↑

2 (second half)
5: Compute the averages of the elements in Σ↑

1 and Σ↑
2 as

Σmin and Σmax, respectively
6: Compute the average of Mt normalized powers as Σt =

1
Mt

∑Mt

j=1
|ytj |2
N

7: if |Σmin − Σt| < |Σmax − Σt| then
8: Set δ̂20 = Σmax and δ̂21 = Σmin
9: else

10: Set δ̂20 = Σmin and δ̂21 = Σmax
11: end if
12: return Estimated values {δ̂20 , δ̂21}

Specifically, let us assume that the channel energy re-
mains constant during M symbol periods of the tag, or
correspondingly, MN instances of s(n). The received signal
vectors at the reader during this time are denoted as ym for
m = {1, . . . ,M}. The SemiCoh signal detection algorithm is
presented in Algorithm 1. The estimation procedure consists
of the following steps [16]:

• Calculate the energy of each received signal ym and
normalize it by dividing it by the number of samples in
the signal. This normalization allows for comparison be-
tween different received signals. Arrange the normalized
energies in ascending order to facilitate their division into
two groups, corresponding to the two hypotheses H0 and
H1.

• Since the tag sends “0” and “1” with equal probability,
we can assume that the first half of the sorted energies
corresponds to hypothesis H0 and the second half to
hypothesis H1. Calculate the average energy for each
half, which will provide estimates for δ̂20 and δ̂21 .

• Assume the tag sends Mt ≥ 1 training bits and cor-
responding received signal vectors are denoted as ytj ,
j = {1, . . . ,Mt}. Compute the average normalized power
of the Mt training bits, providing an additional signal
energy estimate. Combining this information with the
results from steps 7 and 8, refine the estimates of δ̂20 and
δ̂21 .

• These steps provide a practical approach to estimate the
required parameters for estimating δ20 and δ21 , based on
the received signal energies under different hypotheses.

C. Energy Detector

Ideally, an optimal detector relies on parameters and statis-
tics of the received signal, but these are typically unavailable or
require additional work to estimate accurately. Therefore, the
ED is proposed in the literature as a method that reduces the
need for other parameter values and channel knowledge [22],
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[41]–[43]. The ED test statistic is based on the average energy
of the received signal samples [44]. The reader determines the
transmitted data by averaging the received signal energy over
N samples, given as follows:

E =
1

N

N∑
n=1

|y(n)|2. (13)

More specifically, an ED is a device used in signal processing
to extract the baseband signal from a modulated one [44]. This
is achieved by removing negative portions of the signal and
filtering out the carrier frequency, resulting in a duplicate of the
original signal with a direct current (DC) offset. EDs simplify
synchronization but are less effective than coherent detection
and can be affected by interference and noise. However, they’re
a viable solution for cost-effective, low-power networks like
passive IoT systems. In particular, the probability distribution
of E under different hypotheses can be expressed as

Λ ∼
{
H0 : A0 +B0, if Γ = 0,
H1 : A1 +B1, if Γ = 1,

(14)

where the components can be calculated as

A0 =
1

N

N∑
n=1

|h0|2|s(n)|2 + |w(n)|2,

A1 =
1

N

N∑
n=1

|h1|2|s(n)|2 + |w(n)|2,

B0 =
1

N

N∑
n=1

2ℜ{h0s(n)w
H(n)},

B1 =
1

N

N∑
n=1

2ℜ{h1s(n)w
H(n)}. (15)

As N increases, the values of B0 and B1 approach zero as the
noise w(n) and the signal s(n) are uncorrelated. According
to the central limit theorem (CLT) [45], B0 and B1 can be
denoted as B0 ∼ N (0, γ2

0) and B1 ∼ N (0, γ2
1), with their

variances given by γ2
0 = 2

N |h0|2Psσ
2
w and γ2

1 = 2
N |h1|2Psσ

2
w

[21]. As a result, under different hypotheses, we have

Λ ∼
{
H0 : Λ0 ∼ N (δ0, γ

2
0), if Γ = 0,

H1 : Λ1 ∼ N (δ1, γ
2
1), if Γ = 1.

(16)

Then, the ML decision rule can be expressed as

LED(Λ) = Λ
H1

⋛
H0

ΘTh
ED, (17)

where ΘTh
ED is the detection threshold, given by ΘTh

ED =
δ0γ1+δ1γ0

γ0+γ1
[41]. The ED detector is a widely used and straight-

forward technique for measuring the received signal energy.
While it is computationally efficient, it may not provide the
best detection accuracy.

D. Bayesian Detector

A Bayesian detector is a statistical approach based on the
Bayes theorem, providing noise resistance and adaptability
to environmental changes. Despite its higher computational
complexity than ML detector, it excels in incorporating prior

knowledge, handling complex signal models, and updating
estimates with new observations. The basic detection rule is
as follows.

Proposition 1: The detector decision can be determined by

LBaysian(z)
H1

⋛
H0

ΘTh
Baysian, (18)

where

LBaysian(z) = log

∫ ∞

σ2
w

e−z/t

tN
I1

(
t− σ2

w

Ps
;σ2

sr, ξσ
2
stσ

2
tr

)
dt

− log IN (z;σ2
w, σ

2
srPs),

with an optimal decision threshold ΘTh
Bayesian = log(K0

K1
).

Proof 1: Please see Appendix A.
The Bayesian approach typically has higher computational
complexity than other detection methods due to the need for
integration and calculation of posterior probabilities.

E. GLRT Detector
The GLRT is another statistical method that involves esti-

mation and detection. The goal of GLRT is to jointly estimate
the unknown parameters (v0, v1) and replace the unknown
parameters with their ML estimates under each hypothesis.
The GLRT can provide improved detection accuracy compared
to ED and SemiCoh detectors. Also, it is a suboptimal detector
that does not require the a-priori probabilities of the unknown
parameters. The GLRT technique begins with the calculation
of the maximum log-likelihood estimate of the unknown
parameter v. This estimate, denoted as v∗, can be computed
using: v∗ = argmax

v≥0
log Pr (y|v). After performing some

elementary calculus, the ML estimate of v is obtained as
follows v∗ =

(
z

NPs
− σ2

w

Ps

)
+

, where (x)+ = max(0, x) [20].
Using the estimated value of v∗, the system can determine
which hypothesis, H0 or H1, is more likely to be true.
Consequently, the GLRT is defined as follows:

LGLRT(y)
∆
=

Pr(v∗|Γ = 1)

Pr(v∗|Γ = 0)

H1

⋛
H0

1, (19)

where Pr(v∗|Γ = 0) and Pr(v∗|Γ = 1) are given by (28)
and (29), respectively. Subsequently, we can simplify the test
statistics as follows:

LGLRT(y) =
v∗

σ2
sr

+ log I1(v∗;σ2
sr, ξσ

2
stσ

2
tr), (20)

with an optimal decision threshold ΘTh
Baysian = log

(
ξσ2

stσ
2
tr

σ2
sr

)
−

σ2
sr

ξσ2
stσ

2
tr

. The detector decision can be determined by

LGLRT(z)
H1

⋛
H0

ΘTh
GLRT. (21)

This approach can lead to improved detection accuracy when
the channel gains are accurately estimated. Finally, Table I
presents a comparison of different signal detection techniques
used in AmBC. A proposed DNN method is also included in
the comparison. The table helps to provide an overview of the
advantages and disadvantages of different detection methods
and can be used to guide the selection of the most appropriate
technique for a particular application.
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TABLE I: Comparison of Detectors

Detector Complexity Robustness to Noise Robustness to Environmental Changes Optimality
ML High Moderate Moderate Optimal
Bayesian High High High Suboptimal
ED Low Low Low Suboptimal
GLRT Moderate Moderate Moderate Suboptimal
SemiCoh Moderate High Moderate Suboptimal
DNN High High High Suboptimal

IV. DEEP LEARNING-BASED JOINT ESTIMATION AND
DETECTION

A DNN is a specific type of artificial neural network
(ANN) comprising multiple interconnected layers of nodes
(also known as neurons) that can learn intricate patterns in
data. Deep learning has achieved remarkable accomplishments
across various domains, including computer vision, natural
language processing, and speech recognition [46]. A DNN
architecture typically consists of an input layer, one or multiple
hidden layers, and an output layer.

1) Input layer: This, being the first layer of the neural
network, accepts input data in various forms such as
images, audio, or text. It processes the input data and
forwards it to the next layer.

2) Hidden Layers: Hidden layers reside between the input
and output layers in a neural network, and their quantity
and the number of neurons within each layer are deter-
mined by the intricacy of the problem. Every neuron
in the hidden layer accepts input from the previous
layer, calculates a weighted sum of the input, and passes
the output through an activation function. This process
introduces nonlinearity into the network, allowing it to
learn complex associations between input and output
variables.

• Activation functions are essential components in
artificial neural networks, particularly deep learn-
ing models, as they introduce nonlinearity into the
network. Popular activation functions include the
Sigmoid function, which maps input values to the
range (0, 1) and is often used in the output layer
for binary classification problems, and the Rectified
Linear Unit (ReLU) function, which is computa-
tionally efficient and helps mitigate the vanishing
gradient problem in deep networks [46].

• Batch normalization is another technique to enhance
DNN training by addressing the internal covari-
ate shift issue that arises when input distributions
change due to weight updates in preceding layers,
slowing down the learning process [46]. It normal-
izes input features for each layer, achieving a mean
of 0 and a standard deviation of 1. Therefore, it sta-
bilizes input distributions and accelerates learning.

3) Output: As the final layer, the output layer generates the
output predictions.

To obtain an effective DNN model for joint CE and data
detection, we first need to design the tag frame structure. The
tag frame structure consists of one data symbol and two pilot
symbols [27]. The pilot symbols are known to the reader,

Fig. 2: The frame structure of the tag signals.

while one of the remaining tag symbols is employed for data
transmission. The signal model frame structure at the reader
is depicted in Fig. 2, comprising Mt = 2N pilot symbols
and 3N −Mt data symbols in a single frame. Indeed, each
tag symbol, whether it is a pilot or a transmitted bit, remains
consistent throughout the N RF source symbol periods.

Remark 3: While backscatter data rates might theoretically
match RF sources, they often run into practical challenges
in AmBC systems. Notably, high data rates demand swift
switching, leading to advanced tag processing, which runs
counter to AmBC’s core tenets of simplicity and energy
efficiency [47], [48]. Real-world deployments further validate
this approach, as most backscatter devices, such as smart home
sensors, inherently prioritize low power over high data rates
[10], [34].
This frame structure is designed for slow-fading channel
models where the channel stays constant for each frame. The
current random channel is simulated using the Rayleigh fading
channel model, and the received signal is acquired by applying
channel distortions, including noise, to the tag frames. The
training data is gathered by combining the received signal
with the original transmitted bit. Subsequently, the real and
imaginary components of the tag frames are utilized as input
for the DNN. The output layer employs the Sigmoid function
to map the results to the [0, 1] range. Then, the DNN is trained
on a large dataset of known channel conditions and their
corresponding received signals. The hidden layers perform
nonlinear transformations of the input signal to extract features
relevant for estimating channel conditions, and the output layer
produces an estimate of the transmitted data.

In the subsequent sections, we will delve into a compre-
hensive examination of the DDN’s structure, accompanied by
some theoretical analysis.

A. Deep Neural Network Model

The DNN architecture – Figure 3 – consists of three fully
connected layers with varying numbers of neurons, specifically
512, 256, and 128 neurons in each layer, respectively. The
number of neurons in each layer is selected based on a balance
between computational efficiency and model accuracy.
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Fig. 3: The deep neural network architecture for AmBC joint channel estimation and signal detection.

Let us consider the input vector x ∈ R4NT for the DNN,
where NT = 3N . This vector includes the real and imaginary
parts of the received signal and the original transmitted data,
combined with training data. The size of each of these com-
ponents is 2NT . Furthermore, q ∈ R denotes the scalar output
of the DNN. In this architecture, each layer l = {1, . . . , 4} is
associated with a weight matrix W (l) ∈ Rml×ml−1 and a bias
vector b(l) ∈ Rml . The activation function for each layer l is
symbolized by fl, while the batch normalization function for
each layer l is represented by gl. For each layer l, the output
can be calculated as

z(l) = W (l)g(l−1)(a(l−1)) + b(l), a(l) = f (l)(z(l)), (22)

where a0 = x serves as the input vector to the first layer.
This computes the activation of each neuron in layer l by
taking the weighted sum of the activations from the previous
layer, applying the batch normalization function, and passing
the result through the activation function. The final output
of the DNN comes from the last layer, denoted as a(L).
This represents the probability of each input being classified
as either 1 or 0, indicating whether the tag is on or off,
respectively. In the following, we will introduce the model
training framework [32]. In the next section, we will discuss
the model training framework in more detail.

B. Model Training

The DNN model used for joint Channel Estimation (CE) and
data detection follows a two-stage process: (1) offline training
and (2) online usage. In the first stage, it is trained using a
comprehensive dataset comprising tag symbols. These symbols
are collected from a diverse range of information sequences
transmitted under various channel conditions, each possessing
specific statistical properties. By exposure to this wide array

of scenarios, it learns to generalize effectively across different
channel conditions.

Once the DNN model is sufficiently trained, it is deployed in
the online stage for practical usage. It then takes the received
signal as input and generates an output that accurately recovers
the transmitted data. The notable advantage of this approach
is that it eliminates the explicit need for channel estimation, as
the DNN model implicitly learns to perform this task during
the training stage. Overall, this approach leverages the power
of deep learning to effectively combine channel estimation and
data detection, streamlining the process and enhancing overall
performance. These two stages are described next.

Given a dataset DS = (XS , QS) containing pairs of input
data x

(i)
S and corresponding labels q

(i)
S for i = {1, 2, . . . , IS}.

We assume that the samples are independent. Let’s also assume
that the DNN outputs a probability q̂

(i)
S for each input x

(i)
S ,

representing the likelihood of x
(i)
S belonging to class 1 or 0.

The likelihood function L(ϕ) denotes the joint probability of
observing the labels q

(i)
S given the input data x

(i)
S and the

model parameters ϕ [49]:

L(ϕ) =
IS∏
i=1

Pr(q(i)S |x
(i)
S ;ϕ). (23)

The individual probabilities can be expressed as
Pr(q(i)S |x

(i)
S ;ϕ) = (q̂

(i)
S )q

(i)
S (1 − q̂

(i)
S )1−q

(i)
S . This equation

represents the probability of the true label q(i)S given the input
data x

(i)
S and model parameters ϕ in a binary classification

problem. Here, q̂(i)S represents the predicted probability of the
positive class (class 1) for the i-th input sample, and q

(i)
S is

the true label for the i-th input sample, which can be either
0 or 1. By substituting this into the likelihood function, we
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Algorithm 2 Deep Learning-Based Signal Detection Algo-
rithm
Input: Dataset DS = (XS , QS) with input-label pairs

(x
(i)
S , q

(i)
S ), i ∈ {1, 2, . . . , IS}. Initialize model parameters

ϕ, learning rate β, batch size B, epoch counter e = 1, max
epochs E, and patience P for early stopping. Set Vbest to
a high value and patience counter p = 0. Split dataset into
training and validation subsets.

1: while (e ≤ E) and (p < P ) do
2: Shuffle the training set to create random mini-batches

of size B
3: for each mini-batch in the training set do
4: Calculate the gradient of the cost function J(ϕ) in

(27) with respect to ϕ using the current mini-batch.
5: Update the model parameters ϕ by applying the back-

propagation algorithm based on the Adam optimizer
with learning rate β.

6: end for
7: Evaluate the model performance on the validation set

and let Vcurrent be the current validation performance.
8: if Vcurrent < Vbest then
9: Update Vbest ← Vcurrent and reset the patience counter

p← 0.
10: Save the current model parameters as ϕ∗.
11: else
12: Increment the patience counter p← p+ 1.
13: end if
14: Increment the epoch counter e← e+ 1
15: Fine-tune the model by reducing the learning rate β if

necessary.
16: end while
17: return Model parameters ϕ∗

obtain:

L(ϕ) =
IS∏
k=1

(q̂
(i)
S )q

(i)
S (1− q̂

(i)
S )1−q

(i)
S . (24)

It is more practical to work with the log-likelihood function,
which is the natural logarithm of the likelihood function:

ℓ(ϕ) = lnL(ϕ) =
IS∑
k=1

[
q
(i)
S ln q̂

(i)
S + (1− q

(i)
S ) ln(1− q̂

(i)
S )

]
.

(25)
Indeed, ℓ(ϕ), is used in the context of binary classification
problems, as it provides a measure of how well the model
predicted probabilities (q̂

(i)
S ) match the true labels (q

(i)
S ) of

the i-th data. To find parameter ϕ, we need to maximize the
conditional PDF given as

ϕ∗ = argmax
ϕ

Pr(QS |XS ;ϕ), (26)

which is also equivalent to minimizing the following cost
function:

J(ϕ) = − 1

IS

IS∑
k=1

[
q
(i)
S ln q̂

(i)
S + (1− q

(i)
S ) ln(1− q̂

(i)
S )

]
.

(27)

TABLE II: Simulation Parameters.

Parameters Values
Monte Carlo iterations 1× 105

Speed of light, c 3× 108 m/s
Carrier frequency, fc 915MHz
Tag coefficient, ξ 1
Tag antenna gain, Gl 0dB
Number of tag bits, Tbit 100
Number of samples, N 40
SNR 10dB

During the training process, the DNN model aims to minimize
the binary cross-entropy loss by adjusting neuron weights,
which ensures that the predicted probabilities are as close
as possible to the true class labels. This helps the model
learn the optimal parameters (ϕ) to make accurate predictions.
Since the sigmoid activation function is used in the last layer,
the output value ranges from 0 to 1. To map the output
probability to binary class labels (0 or 1), a threshold value
is applied to the predicted probability. Typically, the threshold
is set at 0.5. If the output probability is greater than or equal
to the threshold (i.e., q̂

(i)
S ≥ 0.5), the input is assigned to

class 1. Conversely, if the output probability is less than
the threshold (i.e., q̂

(i)
S < 0.5), the input is assigned to

class 0. This threshold-based approach converts the continuous
probability values produced by the sigmoid activation function
into discrete binary class labels.

Then, the model parameters are optimized using backprop-
agation and the Adam optimizer, which adaptively adjusts the
learning rate for each parameter based on the first and second
moments of the gradients [50]. From the above analysis, the
signal detection algorithm utilizing deep learning is outlined
in Algorithm 2. In addition, the early stopping technique is
also used to prevent overfitting, and the learning rate may be
adjusted for fine-tuning. The complexity of this deep learning-
based signal detection algorithm can be dissected by looking
at three crucial factors: the number of epochs (E), the number
of batches per epoch (IS/B), and the complexity of the
backpropagation operation (O(N)), where N represents the
total number of parameters in the model. The number of
batches per epoch depends on the size of the dataset (IS)
and the chosen batch size (B). The backpropagation operation,
used for updating the model parameters, typically exhibits a
complexity proportional to the total number of parameters
(N ) within the model. Consequently, models with a larger
number of parameters require a greater amount of computa-
tions, thus escalating the time complexity. Given these factors,
the algorithm’s overall time complexity can be modeled as
O(E · ISB · N), indicating that the time complexity increases
linearly with the number of epochs, the number of parameters,
and inversely with the batch size.

V. NUMERICAL RESULTS

In the considered system, three single-antenna nodes are
involved, and we set their distances based on prior research
[48], [51]. Specifically, the ambient RF source is placed at
a distance of dst = 2.5m from the tag. The tag itself
is positioned at dsr = 4.8m from the RF source and at
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Fig. 4: Training and validation losses.

dtr = 0.5m from the reader. It is important to note that
in Figure 10, we explore various path-loss exponent values,
effectively altering the distances. For conciseness, we limit
our examination to this specific set of distances and do not
report other distance configurations. Furthermore, the reader
receives signals from both the direct ambient RF source and
the reflected signals from the tag. We compare our DNN
detector against traditional ML, ED, Bayesian, and GLRT
methods. We also make comparisons to the Gaussian mixture
model (GMM), an algorithm using unsupervised learning
[25]. The GMM leverages the expectation-maximization (EM)
algorithm to effectively learn the parameters of the model. It
has good robustness and efficiency, particularly for Gaussian
data. GMM is used to directly extract energy information from
received signals for tag signal detection. [25]. It is assumed
that the channel remains constant throughout the NTbit bits
[25]. Also, the maximum number of iterations for the EM
algorithm is set to 1000.

Following the architectural design (Fig. 3), the data length
is set to N , and the pilot number is set to 2N . The datasets
have been partitioned into training, validation, and testing sets,
each containing 800, 000, 240, 000, and 240, 000 samples re-
spectively. This allocation ensures a robust base for both model
training and performance assessment. Table II summarizes the
simulation parameters [20], [48].

In Fig. 4, we present the training and validation losses as a
function of the number of epochs for N set to 40 and 80. The
figure illustrates the convergence behavior of the model during
the training process over 200 epochs. As the number of epochs
increases, both the training and validation losses decrease,
demonstrating the effectiveness of the learning process in
optimizing the model parameters. A notable observation from
the figure is the impact of increasing N on the loss values.
When N increases from 40 to 80, both the training and
validation losses show a noticeable reduction. This suggests
that the model benefits from a larger input size, allowing it to
more accurately estimate the channel and detect the data. Con-
sequently, it highlights the selection of an appropriate value
for N . In both cases, the losses eventually stabilize at values
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Fig. 5: BER versus SNR for the different number of pilot lengths.

below 0.1, suggesting that the model achieves satisfactory
performance. This figure provides valuable insights into the
model learning behavior, highlighting the advantages of using
larger N and confirming the convergence of the training and
validation losses over the 200 epochs.

Table III presents the learning runtime of our DNN model in
relation to data length, both with and without early stopping
(ES). The experiment is conducted on a personal computer
powered by an Intel® Xeon® CPU clocked at 3.5 GHz. The
validation loss is monitored for the early stopping mechanism,
and the patience level is set at 5. As data length increases,
so does the learning runtime. However, it is evident that
employing early stopping can significantly reduce latency.
For instance, at a data length of 100, early stopping reduces
the latency from 27.75 min to 3.33 min, highlighting its
importance in optimizing computational efficiency.

In Fig. 5, the BER performance of the DNN for joint CE
and data detection is plotted against the SNR for various pilot
lengths, specifically Mt = 2 and 3. The figure demonstrates
a clear trend, where an increase in pilot length leads to better
BER performance across the entire SNR range. The pilot
symbols serve as a valuable resource for the model to learn the
channel characteristics more effectively, and thus, increasing
the number of pilot symbols results in more accurate CE. The
technical rationale behind this observation can be explained
through the increased amount of information available to the
DNN for CE when the pilot length is increased. With more
pilot symbols, the model is exposed to a larger set of known
reference signals transmitted over the channel, allowing it
to better understand the underlying channel conditions and
adapt accordingly. Furthermore, as the DNN has a more
comprehensive knowledge of the channel conditions, it can
more effectively exploit the spatial and temporal correlations
present in the wireless communication environment. This
exploitation of correlations allows the DNN to make more
informed decisions during data detection, thereby reducing
the likelihood of errors and ultimately leading to lower BER
values. In addition, the enhanced CE achieved through the
use of longer pilot sequences also contributes to improved
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TABLE III: Training Time of the DNN Model.

Data Length, N With ES (min) No ES (min)
20 1.35 16.42
40 2.08 19.86
60 2.27 21.84
80 3.80 25.07

100 3.33 27.75
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Fig. 6: BER versus SNR for the different number of observation
lengths.

equalization and interference mitigation. As the DNN becomes
more adept at discerning the channel nuances, it can more
effectively filter out noise and interference, further bolstering
the accuracy of data detection.

Fig. 6 showcases the BER performance against SNR for
DNN and ML detectors with varying input sizes N . This
figure demonstrates the effect of increasing N on the BER
performance, as well as a comparison between the DNN and
ML detectors at various SNR levels. The BER results of the
introduced algorithms indicate a slightly poorer performance
under the complex Gaussian ambient RF source compared to
the quadrature phase shift keying (QPSK) ambient one. This is
because it is harder to differentiate between the two scenarios
in the former situation. It can be observed that the ML
detector plateaus at higher SNRs for all N values, indicating
a performance limit. This plateau can be attributed to the
ML detector’s sensitivity to noise and interference, which
becomes more noticeable at higher SNRs. However, at lower
SNR values, the ML detector exhibits superior performance
compared to the DNN. This is because the ML detector
likelihood-based approach is more robust to noise at lower
SNR levels, leading to better data detection accuracy. The
impact of increasing N on the BER performance can also
be observed. For both DNN and ML detectors, the BER is
improved when the input size N is increased. As N increases,
the detectors can better differentiate between the hypotheses,
resulting in a lower BER. This improved hypothesis testing
can be explained by the fact that a larger input size allows
the detectors to observe a greater number of signal samples,
which aids in reducing the uncertainty in the decision-making
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Fig. 7: BER versus SNR for the different channel models.

process. This reduced uncertainty leads to a more accurate
estimation of the transmitted symbols, ultimately resulting in a
lower BER. However, larger input sizes can be used to capture
spatial and temporal correlations within the received signal,
which can be exploited by DNNs to enhance their estimation
and detection capabilities.

In Fig. 7, the performance evaluation under varying channel
models is depicted, focusing specifically on the Rician fading
model with a Rician factor of κ = 3. The integration of
this model becomes indispensable in environments charac-
terized by a pronounced line-of-sight (LoS) path, offering a
stark contrast to the Rayleigh model, which predominantly
encapsulates scenarios of multi-path propagation absent of
a direct path. Due to the existence of the LoS component,
the BER is significantly reduced. This reduction in BER
is mainly due to reduced vulnerability to interference and
fading in the Rician model’s direct LoS path. This provides
a resilient communication link, capable of mitigating diverse
transmission impediments.

Figure 8 depicts the BER performance of the detectors
across various Signal-to-Noise Ratio (SNR) levels. As ex-
pected, the BER decreases as the SNR increases. Compara-
tively, the SemiCoh detector exhibits a higher BER compared
to the ML detector. The ML detector outperforms classical
detectors, showcasing superior performance as the SNR in-
creases. However, it reaches a plateau when the SNR becomes
relatively large, primarily due to direct link interference. On
the other hand, the Bayesian detector, being a more advanced
approach compared to the ED, effectively utilizes channel
knowledge to enhance detection performance. It employs a
maximum log-likelihood approach to estimate channel pa-
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Fig. 8: BER versus SNR

rameters before conducting the hypothesis test. However,
this method requires accurate knowledge of transmit signal
statistics and is sensitive to uncertainties, leading to diminished
detection performance. Our proposed method outperforms
GMM, as the relationships between features are complex and
non-linear.

Notably, the DNN demonstrates exceptional performance
compared to classical detectors, exhibiting superiority starting
from an SNR of 7 dB and even surpassing the ML detector
when the SNR exceeds 12.5 dB. While ML is considered
the optimal approach, it still incorporates interference from
the RF source, leading to saturation even with perfect CSI.
However, our proposed deep-learning approach excels at ex-
tracting complex patterns and improving channel estimation.
This finding highlights the effectiveness of the DNN in
distinguishing between hypotheses, even in the presence of
direct link interference. For instance, at an SNR of 10 dB,
the proposed DNN method achieves a BER of 0.0679, while
the ML detector achieves a BER of 0.0562, showcasing the
advantages of our proposed approach. While it is observed
that the DNN has slightly worse BER than the ML detector,
it is important to note that the DNN does not require CSI.
The ML detector, on the other hand, requires perfect channel
estimation. Importantly, DNN executes channel estimation and
data detection concurrently.

Fig. 9 illustrates the effect of scattering efficiency, ξ, on
the BER performance of detection schemes, as well as a
DNN detector. The figure shows that the BER consistently
decreases as ξ increases for all detection schemes under
consideration. This can be attributed to the fact that higher
scattering efficiency leads to improved signal quality, which
in turn enhances the detection capabilities of the detectors.
When ξ is small, the performance of the three proposed
detectors (ED, GLRT, and SemiCoh) is relatively similar.
This is because, under low scattering efficiency conditions,
the received signal quality is poor, making it challenging for
the detectors to differentiate between the transmitted symbols.
However, as ξ increases, the Bayesian detector exhibits a
significantly lower BER than the ED, GLRT, and SemiCoh
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Fig. 9: BER versus scattering efficiency of the tag, ξ.
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Fig. 10: BER versus relative coefficient between the backscattered
signal path and the direct signal path, η.

detectors, indicating its superior performance in scenarios with
higher scattering efficiency. This superiority can be attributed
to the Bayesian detector’s ability to exploit prior knowledge
and make more informed decisions during data detection.
Furthermore, the performance gap of the ED and SemiCoh
detector compared to other detectors also widens, revealing a
more pronounced difference in their detection capabilities as ξ
increases. This widening gap can be attributed to the inherent
limitations of the ED and SemiCoh detectors, which are less
capable of handling complex channel conditions and exploiting
the benefits of increased scattering efficiency. In addition to
these observations, the figure also highlights that the ML
detector outperforms all other detectors under consideration,
emphasizing its robustness in various scattering conditions.
Notably, the DNN detector demonstrates performance close
to that of the ML detector. This comparable performance
can be attributed to the DNN’s ability to learn and adapt
to the underlying channel conditions, making it a promising
alternative to traditional ML-based detection schemes.
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Fig. 10 demonstrates the relationship between the BER and
the relative coefficient between the backscattered signal path
and the direct signal path, η. The figure reveals that as η
increases, the BER also increases for all detection schemes.
This behavior can be attributed to the fact that as the direct
channel link becomes more comparable to the reflected chan-
nels, the detection process becomes more challenging. This is
due to the growing interference caused by the direct signal
path, which can hinder the detectors’ ability to accurately
estimate the transmitted symbols. Despite this increase in
BER, the DNN detector still exhibits superior performance
compared to all other detectors, highlighting its robustness and
effectiveness in handling challenging detection scenarios. The
DNN’s strong performance allows it to better cope with the
effects of increasing η. Moreover, the Bayesian and GLRT
detectors demonstrate converging performance trends as η
increases. This convergence suggests that the Bayesian and
GLRT detectors may share some similar underlying principles
or their performance may be similarly affected by the increas-
ing impact of the direct signal path. One possible explanation
for the convergence of the Bayesian and GLRT detectors’
performance could be related to their utilization of channel
knowledge. As η increases, the direct channel link becomes
more prominent, and the reflected channels become less dis-
tinguishable. Consequently, the additional channel knowledge
that the Bayesian and GLRT detectors rely on becomes less
informative, resulting in performance degradation.

VI. CONCLUSION

In this paper, we developed a DNN-based approach for
signal detection and channel estimation AmBC systems. The
developed approach benefits from a larger input size and an
increase in pilot length leads to better BER performance.
Further, we observed superior performance compared to clas-
sical detectors, even surpassing the ML detector. The BER
performance of the detectors is affected by factors such as
scattering efficiency and the relative coefficient between the
backscattered signal path and the direct signal path. The supe-
rior performance of the DNN detector highlights its potential
for AmBC data detection, providing a viable alternative to
traditional methods. Future works include exploring different
neural network architectures, enhancing robustness to varying
channel conditions, exploiting multi-antenna systems, and in-
vestigating DLI removal.

APPENDIX

A. Proof of Proposition 1

In the AmBC systems, the squared magnitude of channel
coefficients can be denoted as v0 = |h0|2 and v1 = |h1|2. The
PDF of v0 is an exponential distribution given by

Pr(v0) =
1

σ2
sr

e
− v0

σ2
sr . (28)

On the other hand, the PDF of v1 can be written as

Pr(v1) =
1

ξσ2
stσ

2
tr

e
σ2
sr

ξσ2
stσ

2
tr I1

(
v1;σ

2
sr, ξσ

2
stσ

2
tr

)
. (29)

We define the integral function IL(z; a, b) as follows [52]:

IL(r; a, b) =

∫ ∞

0

uL exp
(
−
( r

u
+

u

b

))
du, (30)

where r ≥ 0, a ≥ 0, and b ≥ 0. Here, it is assumed that L is a
positive integer [20], [52], although it can be any real number.
The conditional PDF of y(n) given v0 and v1 is given by

Pr (y|vi) =
1

(π(viPs + σ2
w))

N
e
− ∥y∥2

viPs+σ2
w . (31)

The likelihood function of the received signal under H0 and
H1 can be obtained by integrating out the nuisance parameters
v0 and v1, and the posterior probability can be calculated using
Bayes’ theorem. Given the observation vector y, the Bayesian
test is defined as follows [20]:

LBaysian(y)
∆
=

∫∞
0

Pr(y|v1)Pr(v1)dv1∫∞
0

Pr(y|v0)Pr(v0)dv0

H1

⋛
H0

1. (32)

In particular, the numerator and denominator of the Bayesian
test can be written as∫ ∞

0

Pr(y|v0)Pr(v0)dv0 = K0IN (z;σ2
w, σ

2
srPs),∫ ∞

0

Pr(y|v1)Pr(v1)dv1 = K1
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where K0 = exp
(

σ2
w

σ2
srPs

)
/πNσ2

srPs and K1 =

exp
(
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2
tr

)
/πNξσ2

stσ
2
trPs. Subsequently, we can simplify

the test statistics in (32) as follows:

LBaysian(z) = log
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w
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with an optimal decision threshold ΘTh
Bayesian = log(K0

K1
).
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