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Abstract—Grant-free protocols exploiting compressed sensing
multi-user detection (MUD) are appealing for solving the random
access problem in massive Internet of Things (IoT) networks with
sporadic device activity. Such protocols would greatly benefit
from prior deterministic knowledge of the sparsity level, i.e., the
instantaneous number of simultaneously active devices K. Aiming
at this, herein we introduce a framework relying on coordinated
pilot transmissions (CPTs) for detecting K. Specifically, the
proposed CPT mechanism includes a downlink (DL) phase
for channel state information acquisition that resolves fading
uncertainty in the uplink (UL) transmission phase using shared
UL pilot symbols for channel compensation. We propose a signal
sparsity level detector and analytically assess its accuracy when
network channels are subject to Rayleigh fading. We show
that the variance of the estimator increases with K, and its
distribution approximates that of the sum of a Student’s t and
Gaussian random variable. The numerical results evince the
need for carefully configuring the duration of the DL and UL
phases. Indeed, we show that relatively short DL phases are
preferable in highly sparse networks given the total CPT duration
is fixed. Finally, we discuss and exemplify with some early results
the potential of the proposed CPT framework for MUD, and
highlight relevant research directions.

Index Terms—massive IoT, compressed sensing, multi-user
detection, signal sparsity level, grant-free random access

I. INTRODUCTION

The number of Internet of Things (IoT) devices is exponen-
tially growing driven by the need to turn our homes, vehicles,
entertainment, health, work, industries, and social/community
services into smart, autonomous, sustainable, interactive, and
intelligent environments [1]–[5]. The massive machine-type
communication (mMTC) paradigm aims to address the corre-
sponding connectivity challenges, which are intertwined with
the unique features of massive IoT setups, specifically [1]–[4]:
i) sporadic transmissions, i.e., an unknown/random subset of
machine-type communication devices, called simply devices
in the sequel, is active at a given time instant; ii) short-packet
communications dominated by uplink (UL) traffic; and iii)
energy-limited communications/operation. The third feature
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evinces the need for energy-efficient communication/operation
protocols and, in many cases, battery-free operation [6], [7].
Meanwhile, all features, in particular the first two, call for
novel multiple-access mechanisms [3]–[5], to which our work
here contributes.

Grant-free multiple-access protocols are particularly attrac-
tive for mMTC since they [1]–[3]: i) promote efficient spec-
trum utilization as each device is not assigned a dedicated
transmission resource block, ii) reduce signaling overhead,
and iii) improve energy efficiency of the devices. Note that
due to the massiveness of the network, it is impossible to
assign orthogonal pilot sequences/preambles to the devices,
thus, motivating the need for grant-free non-orthogonal mul-
tiple access protocols. However, a key challenge here lies
in efficiently identifying the set of sporadically active, non-
orthogonally coexisting, devices and their data, for which
collision resolution mechanisms are required [3], [4].

We can distinguish two basic types of collisions: hard and
soft. The former occurs when exactly the same preamble is
used simultaneously by several active devices. In contrast, the
latter occurs when active devices use different non-orthogonal
preambles, as they interfere to some extent with each other.
The probability of hard/soft collisions increases/decreases as
the number of available preambles reduces. Since hard col-
lisions are difficult to resolve without relying on sufficiently
orthogonal channel subspaces [8]–[10] and/or additional com-
munication overhead, increasing the pool of non-orthogonal
preambles (thus, favoring the occurrences of soft instead of
hard collisions) is usually recommended in practice [2]–[4].
A promising class of soft collision resolution methods, known
as compressed sensing (CS) techniques, have been considered
for multi-user detection (MUD) in mMTC [11], [12]. Note
that MUD may include both user activity detection (UAD) and
data detection, jointly or separately. However, in the following
and to simplify our exposition, we refer by MUD either to i)
UAD alone, in the case that data detection is implemented
separately, or ii) both UAD and data detection, in the case
they are implemented jointly.

A. Related Work

CS-MUD is usually based on regularization, greedy,
message-passing (MP), and/or artificial intelligence (AI) tech-
niques.

1) Regularized MUD relies on transforming the highly non-
convex CS-MUD problem to convex via regularization and
iterative procedures. For instance, Zhu and Giannakis [13]
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proposed a ridge detector and a least absolute shrinkage
and selection operator detector, which directly regularize the
original CS-MUD problem based on l2− and l1−norm, re-
spectively. Later, some sparsity-aware successive interference
cancellation regularization techniques were proposed in [14],
[15] aiming at lowering the detection complexity by sequen-
tially recovering the transmitted symbols. Meanwhile, Renna
and Lamare [16] incorporated a l1− norm regularization into
an iteratively updated linear minimum mean square error filter
and a constellation-list scheme to enable sparse detection.
Moreover, joint user identification and channel estimation ap-
proaches using the alternating direction method of multipliers
(ADMM) were proposed in [17]–[19]. Finally, Gao et al. [20]
proposed a low complexity coordinate descent mechanism for
the CS-MUD problem.

2) Greedy MUD has low complexity and often only requires
appropriate termination tuning of the transmitted signal/vector
reconstruction. Schepker and Dekorsy [21] applied for the first
time orthogonal least squares and orthogonal matching pursuit
(OMP) greedy algorithms to a sparse mMTC scenario. Since
the latter outperforms the former, the latest research on greedy
MUD has focused mainly on OMP-based algorithms. For
instance, Schepker et al. [22] proposed group OMP leveraging
channel decoders for greater performance, while Xiong et al.
[23] proposed a detection-based OMP algorithm that, unlike
conventional OMP, does not rely on prior knowledge of the
signal/device sparsity (the number of active devices). Specifi-
cally, it runs a binary hypothesis test on the residual vector of
OMP at each iteration, while stopping when there is no signal
component in the residual vector. Meanwhile, a noise-robust
greedy algorithm exploiting a posteriori probability ratios for
every index of sparse input signals is designed in [24]. Lee
and Yu [25] leveraged a priori information on the activation
probability of each device to improve the performance of
several greedy MUD schemes in mMTC, and showed that
they are robust against prior information inaccuracy. Finally,
Xiao et al. [26] proposed a MUD mechanism exploiting
backward signal sparsity estimation. The latter is implemented
by modifying the classical sparsity adaptive matching pursuit
algorithm [27] to deal with data length diversity coming from
the exploitation of repeating and spreading sequences.

3) MP-based MUD constitutes a class of algorithms that
exploit factor graphs, thus the a posteriori distribution of
the signal to be reconstructed. In practice, due to the large-
scale nature of the access problem in mMTC, the usual ap-
proach is to adopt/design approximate MP (AMP) algorithms
relying on iterative thresholding, which also allows analytic
performance characterization via the so-called state evolution.
For instance, Chen et al. [28] derived efficient denoisers for
AMP depending on whether the large-scale component of the
channel fading is known. Senel and Larsson [29] analyzed
and proposed algorithmic enhancements for coherent and non-
coherent MUD based on AMP. Meanwhile, Ke et al. [30]
designed non-orthogonal pseudorandom pilots for massive UL
broadband access. They formulated active user detection and
channel estimation as a generalized multiple measurement
vector CS problem and solved it via a generalized multiple
measurement vector AMP algorithm. The suitability of AMP

for joint device activity detection and channel estimation of
devices coexisting with mobile broadband services is assessed
and promoted in [31]. Wang et al. [32] designed an AMP al-
gorithm that exploits the temporal activation correlation of the
devices, and showed the achievable performance gains. Renna
and Lamare [33] proposed the so-called bilinear message-
scheduling generalized AMP, which uses the channel decoder’s
beliefs to refine activity detection and data decoding. An AMP-
aided CSI estimator and MUD is proposed in [34], where
the authors use a multi-state Markov chain-based transmission
model to characterize the diverse time-varying traffic demands
of the users. Finally, Ke et al. [35] proposed an AMP-based
unified semi-blind detection framework for grant-free sourced
and unsourced random access aiming to facilitate massive
ultra-reliable low-latency (URLLC) in massive multiple-input
multiple-output (MIMO) systems.

4) AI-based MUD leads to direct detection decisions as
the detection parameters are learned and configured on the
go, thus, avoiding empirical parameter tuning. Deep learning
is the most commonly used AI tool for solving the CS-
MUD problem [36]. Some examples of deep learning-based
MUD can be found in [37]–[40]. Specifically, Bai et al.
[37] proposed a fast data-driven algorithm for CS-MUD in
mMTC relying on a novel block restrictive activation nonlinear
unit that nicely captures the system sparsity. Meanwhile, Cui
et al. [38] designed two model-driven approaches, which
effectively utilize features of sparsity patterns in designing
common measurement matrices and adjusting the state-of-
the-art detectors/decoders. Interestingly, the optimum depth,
i.e., the number of layers, to be configured in a deep neural
network varies according to the sparsity statistics, which
motivated the work in [39]. Therein, the authors proposed
to autonomously/dynamically update the number of layers
in the inference phase by introducing an extra halting score
at each layer. Hanxiao et al. [40] proposed a deep learning
approach consisting of a preamble detection neural network
for a first tentative/rough MUD followed by a data detection
neural network exploiting the information data signals to refine
MUD. Finally, AI-based MUD may also leverage Bayesian
learning [41]–[44]. Indeed, Zhang et al. [41] developed two
CS-MUD Bayesian inference algorithms exploiting sparse
prior information of the estimated channel vector. Similar
approaches, but also exploiting the correlation of user activity
over successive access slots, are proposed in [42]. Meanwhile,
Marata et al. [43] proposed a unified framework for non-
coherent and coherent mMTC and enhanced mobile broadband
data transmissions, respectively, including a proper pilot de-
sign. MUD for clustered MTC is explored in [44] by utilizing
the approximation error method to account for errors in the
sensing matrix and likelihood function. In addition to Bayesian
learning, the works in [43] and [44] also assessed the system
performance under regularized, greedy, and MP-based MUD
algorithms.

B. Contributions

In general, the state-of-the-art research on CS-MUD either
assumes that i) signal sparsity level is known and exploited
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for MUD, e.g., [13]–[19], or ii) signal sparsity level detection
is a sub-product or stage of MUD, e.g., [20]–[35], [37]–[44].
In the first case, there have been no direct answers on how the
sparsity level could be accurately known in advance to MUD
in mMTC,1 which makes the mechanisms proposed in [13]–
[19] impractical so far. In the second case, the sparsity-level in-
formation is not required. However, having and exploiting this
information would certainly improve the MUD performance.
Specifically, the iterative mechanisms proposed in [20]–[35],
[41]–[44] face the challenge of setting an appropriate stopping
criterion, although the proposals in [26], [27] are more resilient
in this regard, since the signal sparsity level is implicitly and
iteratively estimated together with MUD. Moreover note that
the deep learning-based mechanisms proposed in [37], [38],
[40] have a fixed depth in terms of the number of layers and do
not adapt well to highly-varying sparsity levels. Interestingly,
the depth could also be learned [39], but this introduces further
non-linearity into the system. Although such an approach
leads to accuracy improvements with respect to state-of-the-art
MUD based on deep learning, it is also more complex.

From the discussion above, and as highlighted in [12], we
can conclude that the CS-MUD mechanisms can all signifi-
cantly benefit from a (sufficiently) deterministic prior on the
sparsity level, which is specifically our aim here. Information
on the sparsity level enables the application of the MUD
solutions in [13]–[19], while potentially making those in [20]–
[35], [37]–[44] more easily configurable and accurate.

We consider an mMTC deployment under quasi-static fad-
ing, where K random devices become active and aim to
communicate with a coordinator. Our main contributions are
three-fold:

• We introduce a coordinated pilot transmission (CPT)
framework for detecting2 the signal sparsity level, K, in
time division duplex (TDD) systems and to be imple-
mented prior to the MUD. Specifically, the CPT mecha-
nism consists of a downlink (DL) broadcast transmission
using N1 symbols for the purpose of channel state in-
formation (CSI) estimation, and an UL transmission with
channel inversion (power and phase) control using N2

shared symbols to resolve the fading uncertainty at the
coordinator. Note that the use of shared pilot symbols is
a key innovation here. After this, the signal sparsity level,
K, is detected based on the signal received at the coor-
dinator by performing a relaxed (real-domain) estimation
followed by a rounding-to-the-nearest operation.

• We assess the performance of the proposed CPT mech-
anism and signal sparsity level estimator in Rayleigh
fading channel conditions. Specifically, we characterize

1Notice that the estimation of the number of receive radio frequency signals
has been already investigated in the literature for some decades (see [45]–
[49]). However, the proposed approaches require a sufficiently large number
of available samples/symbols, which is affordable for the considered radio-
cognitive, spectrum sensing, and radar applications but not for mMTC, where
messages are natively short. Therefore, they cannot be leveraged to accurately
estimate the signal sparsity level in mMTC so as to be beneficial for MUD.

2By convention [50], [51], a detection or classification operation is applied
over a (discrete) set of possible hypotheses, while an estimation operation is
not restricted to a discrete/natural domain. Hence, a detector for K outputs
an integer solution, while an estimator for K may output a real solution.

analytically the permissible maximum power and average
power consumption of the devices, and the probability
that an active device cannot transmit due to insufficient
power to compensate for the channel losses. Moreover,
we demonstrate and corroborate numerically that the
estimator’s variance increases linearly with K and that
its distribution matches approximately that of the sum of
a Student’s t and a Gaussian random variable. Moreover,
we provide a semi-closed-form approximation for the
detection success probability under the proposed signal
sparsity level estimator, which is valuable for system
design/optimization purposes.

• We show that the attainable accuracy performance de-
pends on the specific allocation of N1, N2 rather than
on the total number of CPT symbols N = N1 + N2

alone, thus, motivating a proper optimization of the DL
and UL duration. Specifically, we illustrate that short DL
phases are preferable in highly sparse networks (with
small realizations of K) given a fixed N . Moreover, we
motivate the proposed CPT + MUD over the conven-
tional standalone MUD implementation by presenting and
discussing some preliminary results on their attainable
MUD performance.

Finally, we discuss several attractive research directions related
to CPT to pursue in the sequence.

C. Organization

The remainder of this paper is organized as follows. Sec-
tion II presents the system model and introduces the proposed
CPT mechanism and signal sparsity level estimator. The accu-
racy of the proposed estimator is assessed in Section III, while
Section IV discusses numerical results. Finally, Section V
concludes the article and highlights further research directions.

Notation: Boldface lowercase letters denote column vectors.
Superscripts (·)∗ and (·)H denote the complex conjugate and
Hermitian operations, respectively. || · || is the Euclidean
norm of a vector, | · | is the absolute (or cardinality for
sets) operation, and round(·) denotes the rounding-to-the-
nearest rounding operation. Pr[A] denotes the probability of
the occurrence of event A, while A|B denotes a random
variable A conditioned on B. E[ · ] and var[ · ] output the
expected value and variance of the argument, respectively.
ℜ{·} (ℑ{·}) outputs the real (imaginary) part of the argument.
Additionally, E1(·) is the exponential integral [52, eq. (6.2.1)],
erfc( · ) is the complementary error function [52, eq. (7.2.2)],
and Γ( ·) is the complete gamma function [52, eq. (5.2.1)].
C is the set of complex numbers, and ı =

√
−1 is the imag-

inary unit. fX(x) and FX(x) denote the probability density
function (PDF) and cumulative distribution function (CDF),
respectively, of a continuous random variable X , while pY (y)
denotes the probability mass function (PMF) of a discrete
random variable Y . Moreover, X ∼ C

(
E[X], var[X]

)
, X ∼

CN
(
E[X], var[X]

)
, X ∼ Ray

(
E[X]

√
2/π

)
, and X ∼ T (ν),

are respectively a Gaussian, a circularly-symmetric complex
Gaussian, a Rayleigh, and a Student’s t with ν degree of
freedom, random variable. Finally, Table I lists the main
symbols used throughout the paper.
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TABLE I: Main symbols used throughout the paper

Symbol Definition

Q (Q) set (total number) of devices in the network
K (K) set (number) of simultaneously active devices in a time slot
hi i−th channel coefficient (i−th device ⇄ coordinator)
ĥi (h̃i) estimator (estimation error) of hi

βi average channel power gain of the i−th channel
N total number of CPT symbols for the purpose of detecting K
N1 (N2) number of symbols for DL (UL) phases. N1 +N2 = N
v (s) DL (UL) pilot CPT signal
zi (y) receive signal at the i−th device (coordinator) in the DL (UL)
wi additive white Gaussian noise (AWGN) in the i−th device
w AWGN at the coordinator
σ2 variance of the AWGN in the devices and coordinator
p (ρ) transmit power (target receive power) of (at) the coordinator
φK uncertainty in the UL receive signal related to {h̃i}∀i∈K
K̂ (K̂r) integer (relaxed/real) estimator of K
ϱ DL transmit signal-to-noise ratio (SNR)
λi (ϑi) power (variance) of ĥi

µ channel power transmission threshold in the devices
pmax (p̄i) permissible maximum (average) device transmit power
pout,i probability that an active device cannot transmit
γ̄u target receive SNR in the UL
ϑ smallest possible ϑi, i.e., ϑ ≜ mini∈Q ϑi

ζ detection threshold in the AMP MUD mechanism

II. SYSTEM MODEL & PROPOSED CPT
Consider an mMTC deployment, where a set Q of devices

is served by a single coordinator, e.g., a base station or an
aggregator. It is assumed that all devices and the coordinator
are equipped with a single antenna.3 Assume that time is slot-
ted and active devices must wait for the next immediate time
slot to start a (synchronous) transmission. Let us denote by
hi the channel coefficient of the link between the coordinator
and the i−th device, and assume that the channels are subject
to quasi-static fading and remain unchanged during each time
slot. In addition, DL and UL channels are reciprocal, which is
motivated by the use of the same frequency band and a TDD
operation [4], [6], [39].

The MTC traffic is sporadic, i.e., only a random subset
of the devices K ⊆ Q is active at any given time. We
aim to detect the number of devices K = |K|, out of the
total Q = |Q|, becoming active in a given time slot, which
is also referred to as signal sparsity level. This information
is then potentially exploited in posterior detection/decoding
mechanisms, e.g., [13]–[35], [37]–[44].

As illustrated in Fig. 1, the proposed CPT mechanism for
estimating the sparsity level, K, consists of a DL and a UL
pilot transmission phase. This is followed by the transmission
of training and data symbols in the case of coherent MUD, or
only data symbols in the case of non-coherent MUD.

A. DL Phase

At the beginning of each time slot, the coordinator sends a
broadcast pilot signal v ∈ CN1 comprising N1 symbols. The

3As this is, to the best of our knowledge, the first work that proposes
the sparsity level detection problem prior to the MUD, our aim here lies in
introducing the basic ideas, principles, and performance baselines, and we
focus on single antenna devices. The extension of our proposed mechanisms
to multi-antenna setups is not only an interesting but a required research
direction, which demands specific but non-trivial adjustments and analyses
that we leave for future work.

Fig. 1: Proposed CPT mechanism.

signal received by the i−th device is given by

zi[n] =
√
phiv[n] + wi[n], n = 1, 2, · · · , N1, (1)

where ||v||2 = N1, p is the per-symbol average transmit power
of the coordinator, and wi[n] ∼ CN (0, σ2

i ) is the n−th AWGN
sample at the i−th device. For simplicity, we assume σ2

i =
σ2,∀i.

This DL broadcast pilot transmission phase is leveraged
by the active devices to estimate their corresponding channel
coefficient since the UL and DL channels are reciprocal.
Specifically, the minimum variance unbiased estimator of hi

and the corresponding estimation error are respectively given
by

ĥi = vHzi/(N1
√
p), (2)

h̃i = vHwi/(N1
√
p), (3)

with ĥi = hi + h̃i.

B. UL Phase
Note that the transmission of DL pilots for the acquisition

of DL / UL CSI (and corresponding power control, precod-
ing/beamforming design, and other channel-aware resource
allocation mechanisms) is widely used in TDD systems [4],
[6], [9].4 The innovative part of our proposal lies in how this
information is exploited for UL pilot transmissions. Specifi-
cally, we propose that, after the DL CSI acquisition phase, the
active devices exploit the remaining N2 symbols for sending a
common/shared pilot sequence s ∈ CN2 , with |s[n]|2 = 1 ∀n,
but phase shifted as e−ı∠ĥis = ĥ∗

i s/|ĥi|, thus, aiming at a
coherent signal combination at the coordinator. We adopt a
channel inversion power control such that the i−th device
transmits with power ρ

|ĥi|2
given a target receive power ρ.

The signal received at the coordinator, y ∈ CN2 , is given by

y[n] =
∑
i∈K

√
ρĥ∗

i his[n]/|ĥi|2 + w[n]

=
√
ρKs[n] + φKs[n] + w[n], (4)

for n = 1, 2, · · · , N2, where w[n] ∼ CN (0, σ2) is the AWGN
sample at the coordinator. Finally, the last step in (4) follows
after using ĥi = hi + h̃i and setting

φK ≜
√
ρ
∑
i∈K

ĥ∗
i h̃i

|ĥi|2
, (5)

which denotes the uncertainty in the UL receive signal related
to the CSI estimation error.

4In current fifth-generation wireless communications systems, reference and
synchronization DL pilot signals, which are transmitted using a collection
of broad and mildly-directional multi-antenna beams over several spectrum
resource blocks, are used for this purpose [53].
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C. Signal Sparsity Level Estimator

The signal y received at the coordinator is used to detect the
signal sparsity level, K, among all the Q+1 possible hypothe-
ses: Hk : K = k, where k = 0, 1, · · · , Q. Here, notice that
the distribution and statistics of φK are completely unknown
given no prior modeling assumption of the channel. Therefore,
probably the wisest thing to do is to relax the integer detection
problem to a real-domain continuous estimation as suggested
by [51]. Moreover, observe that

E[sHy] =
√
ρN2K

since E[h̃i] = 0, thus E[φK] = 0. More specifically,
E[ℜ{sHy}] =√

ρN2K, while E[ℑ{sHy}] = 0. Thus, we can
use the method of moments in estimation theory [50] to obtain
the relaxed estimator

K̂r = ℜ{sHy}/(N2
√
ρ), (6)

and set K̂ = round(K̂r). Note that E[K̂] = K, i.e., the
estimator is unbiased. Good detection accuracy is expected
if E[|φK|2], σ2 ≪ ρK, as should occur in practice by design.

Finally, note that our CPT proposal cannot be applied
in setups where channel reciprocity does not hold, such as
frequency division duplex systems.

III. ACCURACY OF THE PROPOSED ESTIMATOR

In the following, we adopt a channel model for the purpose
of assessing the detection accuracy of the proposed CPT
mechanism and corresponding estimator. Specifically, channels
are assumed to be subject to quasi-static Rayleigh fading such
that hi ∼ CN (0, βi), where βi is the average channel power
gain. Using this, together with (2) and (3), one obtains

ĥi ∼ CN (0, ϑi), (7)

h̃i ∼ CN
(
0,

1

N1ϱ

)
, (8)

where ϱ ≜ p/σ2 is the DL transmit SNR, and ϑi ≜ βi+
1

N1ϱ
.

Moreover, we consider that the transmitting (thus, de-
tectable) devices are only the active devices whose channels
are not deeply faded, i.e., those with λi ≜ |ĥi|2 ≥ µ. In
practice, µ must be set based on the permissible maximum
power and/or average power consumption, which are given
respectively by

pmax = ρ/µ, (9)

p̄i = E
[
ρ/λi

∣∣ λi ≥ µ
]

=
ρ

1− FΛi
(µ)

∫ ∞

µ

1

λi
fΛi

(λi)dλi

=
ρ

ϑi
Γ
(
0,

µ

ϑi

)
e

µ
ϑi , (10)

where the last step comes from exploiting that λi is an
exponential random variable with mean ϑi, and using the
definition of the upper incomplete gamma function [52, eq.
8.2.2]. Finally, the probability that an active device cannot
transmit due to insufficient power to compensate for the
channel losses is given by

pout,i = Pr[λi < µ] = FΛi
(µ) = 1− e−µ/ϑi . (11)

A. Variance of the Relaxed Estimator

In the following, we analyze the variance of the relaxed
estimator (6). First, let us define V ≜ ℜ{sHw/(N2

√
ρ)} and

depart from (6) to obtain

var[K̂r] = var
[
ℜ
{φK√

ρ

}∣∣∣|ĥi| ≥
√
µ
]
+var[V ]

(a)
=

(∑
i∈K

var

[
ℜ
{ ĥ∗

i h̃i

|ĥi|2
}∣∣∣|ĥi| ≥

√
µ

]
+

1

2N2γ̄u

)
(b)
=
∑
i∈K

var

[
ℜ{h̃i}
|ĥi|

∣∣∣|ĥi| ≥
√
µ

]
+

1

2N2γ̄u

(c)
=
∑
i∈K

var[Zi]

2N1ϱϑi
+

1

2N2γ̄u
, (12)

where (a) follows from using (5), setting γ̄u ≜ ρ/σ2,
which denotes the target receive SNR in the UL, and using
var[V ] = 1/(2N1γ̄u) since V ∼ N (0, 1/(2N2γ̄u)). Mean-
while, (b) comes after exploiting the fact that ĥ∗

i h̃i/|ĥi|2 is
equivalently distributed as h̃i/|ĥi| since ĥ∗

i /|ĥi| is uniformly
distributed in the unit circle and independent of h̃i/|ĥi|, thus,
it does not alter the latter’s distribution. Finally, (c) uses
Zi ≜

√
2N1ϱϑiℜ{h̃i}/|ĥi|

∣∣ |ĥi| ≥
√
µ.

Observe that Zi can be written as Zi = Xi/Yi, where
Xi ≜

√
2N1ϱℜ{h̃i} ∼ N (0, 1), and Yi ≜ |ĥi|/

√
ϑi

∣∣ |ĥi| ≥√
µ. Therefore, by letting U ≜ |ĥi|/

√
ϑi ∼ Ray(1/

√
2) and

noticing that Yi ∼ U | U ≥
√
µ/ϑi, one obtains

fYi
(y) =

fU (y)

1− FU (
√
µ/ϑi)

= 2yeµ/ϑi−y2

for y ≥
√

µ/ϑi. (13)

Then, since Xi and Yi are independent and E[Xi] = 0, we
proceed as follows

var[Zi] = E[X2
i ]E[Y

−2
i ]

(a)
=

∫ ∞

0

y−2fYi
(y)dy

(b)
=

∫ ∞

√
µ/ϑi

2

y
eµ/ϑi−y2

dy

(c)
= e

µ
ϑi E1(µ/ϑi), (14)

where (a) comes from using E[X2
i ] = 1 and the integral

form of E[Y −2
i ], (b) comes from substituting (13), while (c)

is attained by applying simple algebraic transformations and
using the definition of the exponential integral [52, eq. (6.2.1)].

Now, by substituting (14) into (12), one attains

var[K̂r] =
1

2N1ϱµ

∑
i∈K

g(µ/ϑi) +
1

2N2γ̄u
, (15a)

≤ g(µ/ϑ)

2N1ϱµ
K +

1

2N2γ̄u
, (15b)

where g(x) = xexE1(x). Meanwhile, in the last line, we
use ϑ ≜ mini∈Q ϑi motivated by the fact that var[K̂r] is a
decreasing function of ϑi. This can be corroborated by noticing
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that g is an increasing function of x as both bounds in [52,
eq.6.8.1]

x

2
ln(1 + 2/x) < g(x) < x ln(1 + 1/x) (16)

increase with x. All this shows that the worst-case scenario is
where the active devices are the farthest from the coordinator
and, thus, are characterized by the smallest ϑi.

Hereinafter, we focus on the worst-case deployment sce-
nario, i.e., the active devices are at the edge of the service
area such that ϑi = ϑ, ∀i ∈ K. Then, using (15) and (16),
one obtains

var[K̂r] =
g(µ/ϑ)

2N1ϱµ
K +

1

2N2γ̄u
, (17a)

var[K̂r] <
ln(1 + ϑ/µ)

2N1ϱϑ
K +

1

2N2γ̄u
, (17b)

var[K̂r] >
ln(1 + 2ϑ/µ)

4N1ϱϑ
K +

1

2N2γ̄u
. (17c)

Finally, var[K̂] > var[K̂r] due to the variance introduced by
the rounding operation. Interestingly, such additional variance
is always smaller than 1/12 as this corresponds to the worst-
case scenario, where K̂ − K̂r is uniformly distributed in
[−1/2, 1/2].

B. Distribution of the Estimator

In general, and especially for the considered setup, the
estimator variance cannot be directly used to quantify, at least
thoroughly, the performance degradation due to detection mis-
matches. Instead, the distribution of the classification results
must be taken into account.

The PMF of K̂ can be found as

pK̂(k̂) = Pr
[
round(K̂r) = k̂

]
= Pr

[
k̂ − 1/2 ≤ K̂r ≤ k̂ + 1/2

]
= FK̂r

(k̂ + 1/2)− FK̂r
(k̂ − 1/2). (18)

Notice that the distribution of the relaxed estimator, K̂r, is
needed for computing pK̂(k̂). Hence, the problem translates
to finding FK̂r

(k̂), for which we rewrite (6) as

K̂r = K +
∑
i∈K

Zi√
2N1ϱϑ

+ V, (19)

and proceed as follows.
The distribution of Zi is derived as

fZi(z) =
d

dz
Pr
[Xi

Yi
≤ z
]
=

d

dz

∫ ∞

√
µ/ϑ

FXi(yz)fYi(y)dy

(a)
=

∫ ∞

√
µ/ϑ

yfXi(yz)fYi(y)dy

(b)
=

√
2

π
eµ/ϑ

∫ ∞

√
µ/ϑ

y2e−y2(z2/2+1)dy

(c)
=

eµ/ϑ√
2π

(z2
2

+ 1
)−3/2

Γ

(
3

2
,
(z2
2

+ 1
)
y2
)∣∣∣∣y→∞

y=
√

µ/ϑ

(d)
=

eµ/ϑΓ
(
3/2, µ(z2/2 + 1)/ϑ

)√
2π(z2/2 + 1)3

, (20)
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Fig. 2: PDF of Z according to (20) for µ/ϑ ∈ {0, 0.01, 0.1, 1}.

where (a) comes from differentiating under the integral sign
by leveraging Leibniz rule and dFXi

(yz)/dz = yfXi
(yz),

and (b) follows from substituting fXi
(x) = e−x2/2/

√
2π, and

fYi
(y) as given in (13). The indefinite integral is solved in

(c) using [54, eq. (2.325.6)], while (d) follows directly after
evaluating the definite integral limits. Fig. 2 illustrates the
shape of fZi(z) for different values of µ/ϑ. By using (11),
one obtains pout = 0.6321 already for µ/ϑ = 1, thus, we only
considered configurations with µ/ϑ ≤ 1, which are required
to guarantee a relatively small pout,i. Notice that fZ(z) is
symmetric around 0, which is expected since Xi is a zero-
mean Gaussian random variable and Yi ≥ 0, and is bell-
shaped.

With (20) at hand, the CDF of K̂r can be obtained as follows

FK̂r
(k̂) =Pr

[
K+

1√
2N1ϱϑ

∑
i∈K

Zi+V ≤ k̂
]

=

∞∫
−∞

· · ·
∞∫

−∞︸ ︷︷ ︸
K integrals

FV

(̂
k−K−

∑
i∈K

zi/
√
2√

N1ϱϑ

)∏
i∈K

fZi(zi)dzi, (21)

where FV (v) = 1 − erfc(v
√
N2γ̄u)/2. Unfortunately, eval-

uating (21) becomes computationally expensive and often
unaffordable, especially when K ≫ 1 due to the increased
number of integration operations.

To address the above issue, herein we exploit the fact
that T ≜

∑
i∈K Zi is approximately distributed as a scaled

Student’s t distribution
√

w1(1− 2/ν)T (ν), where ν is the
solution to

2
ν
2−1ω2Γ

(ν
2

)
=K ν

2
(
√
ω1(ν−2))(

√
ω1(ν−2))

ν
2 , (22)

and

ω1 ≜ eµ/ϑE1(µ/ϑ)K, (23)

ω2 ≜

[
2

∫ ∞

0

cos(z)fZ(z)dz

]K
. (24)

See the Appendix for the proof and accuracy-related dis-
cussions. From (19), this implies that the distribution of
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the relaxed estimator is symmetric around K and accurately
matches the distribution of the sum of a Gaussian and a
Student’s t random variable.

Now, let us denote T ′ ∼ T (ν), where ν is the solution to
(22). Then, one attains

FK̂r
(k̂)

(a)
≈ Pr

[
V ≤ k̂−K−

√
ω1(1− 2/ν)

2N1ϱϑ
T ′
]

=

∞∫
−∞

FV

(
k̂−K−

√
ω1

(
1− 2

ν

)
2N1ϱϑ

t

)
fT (t)dt

(b)
= 1−

Γ
(
ν+1
2

)
2
√
νπΓ(ν2 )

∞∫
−∞

(
1+

t2

ν

)− ν+1
2

× erfc

(√
N2γ̄u

(
k̂−K−

√
ω1

(
1− 2

ν

)
2N1ϱϑ

t

))
dt, (25)

where (a) comes from using the first line of (21) together
with the definition of T , while (b) follows from using the
distribution of V and T ′. Notice that by using [55, eq. (3)],
one can state the integral operation in (25) as an infinite
sum that includes factorials, incomplete gamma, and confluent
hypergeometric functions. However, such an approach may not
significantly reduce the mathematical complexity of numerical
computing (25), so we do not adopt it here.

Finally, observe that computing (25) is much less compu-
tationally demanding than (21) since only two integrals must
be evaluated, i.e., (25) and ω2 in (24), independently of the
value of K.

IV. NUMERICAL RESULTS

In this section, we numerically analyze the performance of
the proposed CPT mechanism under Rayleigh fading channel
conditions. For this, we resort to Monte Carlo simulations and
the analytical approximations derived in Section III, which are
shown to match closely. Performance is evaluated in terms of
the detection success probability given by pK̂(K), which can
be approximately obtained from evaluating (18) using (25),
and the variance of the relaxed estimator, which is analytically
characterized in (17).

We consider the worst-case deployment scenario, where all
devices are at the edge of the service area, so βi = β ∀i.
Unless stated otherwise, we consider a massive deployment
of Q = 1000 devices, out of which K = 5 become active
at each time slot, and β = −120 dB, which may correspond
to a link distance in the order of 500 m [29]. Also, we set
N1 = 2 and N2 = 4 such that N = 6 symbols are dedicated
to CPT. This may be a reasonable choice considering that the
overall transmission time may comprise many more symbols
depending on the data traffic and connectivity solution.5 Let
p = 30 dBm, µ = −140 dB, and ρ = −115 dBm such
that the maximum power allowed (9) and the average power
consumption (10) of the devices are 316.2 mW and 12.9 mW,

5For instance, orthogonal frequency division multiplexing-based solutions
such as NB-IoT and LTE-M may support 14 symbols per subcarrier in a 1.17
ms time slot of 15 KHz bandwidth [56], [57]. Message transmissions may
span over several time slots.

Fig. 3: PMF of K̂ for K ∈ {0, 5, 10}. Markers correspond to
the analytical PMF approximation.

respectively, while the probability that an active device cannot
transmit due to insufficient power to compensate for the
channel losses is 10−2. Finally, we set σ2 = −120 dBm by
assuming a transmission bandwidth of 180 kHz.

A. On the Detection Scalability

Fig. 3 depicts the PMF of K̂ considering several values of
K. The results here corroborate the symmetric shape of the
distribution of K̂r (and K̂), which matches approximately that
of the sum of a Student’s t and a Gaussian random variable.
Moreover, the accuracy of the estimation decreases with K.
The latter phenomenon can be more clearly appreciated in
Fig. 4, where both the variance of the relaxed estimator
(Fig. 4a) and the corresponding detection success probability
(Fig. 4b) are plotted against K for β ∈ {−130,−120}
dB. Indeed, the variance of the relaxed estimator increases
linearly with K and decreases with β as predicted by (17),
while being lower-bounded by the noise variance level, i.e.,

1
2N1γ̄u

. The quantitative impact of such behavior is captured
by the detection success probability metric, which shows, for
instance, that the signal sparsity level, K, is predicted with an
accuracy of 91%, and 98% for K = 5 when β = −130 dB,
and β = −120 dB, respectively, while such figures decrease
to 76%, and 97% when K = 15.

B. How Many CPT Symbols are Needed?

Fig. 5 shows the detection success probability as a function
of N1 for a fixed number of CPT symbols N = 6. This
is, N1 + N2 = N , thus, N2 = N − N1. Note that the
allocation of the DL/UL symbol significantly influences the
detection success probability. Indeed, a relatively small/large
ρ makes the DL phase less/more performance sensitive, thus
motivating the allocation of less/more pilots to it for optimum
performance. For instance, the optimum pilot allocation is
N1 = 1 and N1 = 3 when ρ = −115 dBm and ρ = −110
dBm, respectively. Observe that the optimum configuration of
N1, N2 is also the one that minimizes var[K̂r] since the esti-
mator’s distribution is symmetric around K. Since N1, N2 are
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Fig. 4: a) Variance of the relaxed estimator (6) (top), and b)
detection success probability (bottom), as a function of K. We
set µ = β/100 such that pout ≈ 10−2 independently of β.

positive integers and N is usually small in practical setups, a
brute force mechanism suffices to solve argminN1,N2 var[K̂r]
subject to N1 +N2 = N .

Meanwhile, Fig. 6a illustrates the potential performance
improvements from increasing the total number of CPT sym-
bols N . Herein, we test the performance under all possible
combinations of (N1, N2) with N1 +N2 = N and select the
one leading to the best detection success probability (or simply,
minimum estimator’s variance), which appears depicted in
Fig. 6b. Observe that the probability of detection success
increases rapidly with N , which represents the degrees of
freedom to resolve the uncertainties related to fading in the
system. Moreover, as K increases, it is more beneficial to
allocate more symbols to the DL phase, which is a behavior
that can be deduced from (17). Specifically, the first term of
(17) increases (decreases) with K (N1), thus, these values
must be traded-off for best performance. However, the value
of K is not known beforehand; therefore, in practice, the
optimization of N1, N2 can only be performed based on the
statistical expectations of the number of active users K.

1 2 3 4 5

0.7

0.8

0.9

1

Fig. 5: Detection success probability as a function of N1. We
set N1 +N2 = N , thus, N2 = N −N1, with N = 6.

C. A Primer on the Performance of CPT + MUD

Next, we briefly illustrate how the performance of MUD,
which comprises only UAD for simplicity, would benefit from
incorporating the CPT mechanism proposed in this paper. For
this, we consider that the coordinator is equipped with a 64-
antenna array, although a single antenna is used for the purpose
of signal sparsity level estimation using CPT. We adopt two
fundamental CS-MUD algorithms: OMP [21], [23] and AMP
[29], [31].6 In the CPT + MUD implementation, K is first
estimated using N symbols, then, MUD is executed employing
M symbols in such a way that only the K̂ devices with the
strongest estimated channel power, in the case of AMP, or the
K̂ devices first detected, in the case of OMP, are declared
active. We compare our proposed approach with the standard
standalone MUD implementations leveraging N+M symbols,
where a device is detected if its associated estimated channel
power, in the case of AMP, or the residual signal power
immediately before detecting the device, in the case of OMP,
exceeds a pre-defined threshold ζ. In the following, we assume
that the devices use Bernoulli pilots as in [29] and become
active with probability ϵ = 0.01, thus, there are ϵQ = 10
devices active on average in the network.

Fig. 7 shows the activity detection error rate as a function of
the detection threshold ζ, which is only used in the standalone
MUD implementations. Here, a relatively small ζ tends to
decrease the miss-detection probability but at the expense of
more false-alarm events. In comparison, a relatively large ζ
tends to decrease the false-alarm probability at the expense of
the occurrence of more miss-detection events. Indeed, notice
that as ζ → 0 and ζ → ∞, the activity detection error

6Note that there are more advanced MUD algorithms in the literature,
some of which were briefly discussed in Section I. Herein, we focus on
basic MUD algorithms for baseline integration and comparison, which allows
us to establish a strong foundation for arguing the effectiveness or not
of our proposal. In fact, basic MUD algorithms like OMP and AMP are
well-understood and transparent, making it easier to reproduce, analyze, and
interpret the results. The AMP implementation adopted here leverages a
minimum mean square error-based (Bayes optimal) denoiser.
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Fig. 6: a) Optimum detection success probability (top), and b)
optimum N1 as a function of N , thus, N opt

2 = N−N opt
1 . Here,

the markers denote the results from Monte Carlo simulations.

converges to 1 − E[K]/Q = 0.99 and E[K]/Q = 0.01,
respectively. This motivates the need to carefully tune ζ for
optimum performance as discussed in Section I-A. Meanwhile,
the proposed CPT + MUD completely avoids this tuning
problem and, according to Fig. 7, can significantly outperform
the standalone MUD implementations if the latter are not
optimally/ideally configured as in practice. Note that the AMP
outperforms OMP-based in terms of average error rate for
relatively appropriate threshold choices, although at the cost
of greater complexity and convergence time.

Fig. 8 illustrates the performance of standalone and CPT-
assisted MUD mechanisms as a function of the number of
symbols N + M . In this case, we adopt only OMP-based
MUD algorithms for simplicity and illustrate the results cor-
responding to the optimum selection of N1, N2, and M . In
the case of the standalone MUD mechanisms, we consider
two configurations: one where the detection threshold ζ is
optimal, i.e., ζ = ζ⋆, which corresponds to an ideal standalone
configuration, and another where ζ can randomly deviate up
to 0.25 dB from the optimal, i.e., ζ (dB)∈ [ζ⋆ (dB)−0.25
dB, ζ⋆ (dB)+0.25 dB]. As one may expect, when the number
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Fig. 7: Average activity detection error rate as a function of
the detection threshold ζ. We set N = 6 and M = 18.
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Fig. 8: Average activity OMP-based detection error rate as a
function of the total number of symbols N +M . The results
correspond to the optimum configuration of N1, N2, and M .

of available symbols is relatively small, the application of
CPT is not advisable, and one may resort to standard stan-
dalone MUD approaches. However, as the number of available
symbols increases, CPT assistance becomes more appealing.
Interestingly, this depends on the sparsity of the network
such that the number of symbols dedicated to CPT should be
greater (smaller) for a smaller (greater) ϵ. Indeed, considering
ϵ = 0.01 and comparing with the ideal standalone OMP-based
MUD, 0, 2, 3, 4, and 6 CPT symbols are recommended when
the total number of symbols is [1,22], [23,25], [26,30], [31,33],
[34,36], respectively. Meanwhile, when the system sparsity
degrades such that ϵ = 0.03, the MUD phase must be pri-
oritized and CPT symbols may only be needed when the total
number of available channels is as large as 33 considering a
sub-optimal selection of ζ for a standalone MUD. Meanwhile,
it always holds that N2 ≥ N1 is preferable as also illustrated
in Fig. 6. All in all, the results here evince that a CPT-assisted
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MUD may provide significant performance gains relative to a
standalone implementation, even if the detection threshold for
the latter is optimally selected, considering the availability of
a relatively large number of detection symbols.

V. CONCLUSION AND FUTURE RESEARCH DIRECTIONS

In this work, we introduced a framework for detecting the
number K of devices that become active, i.e., signal sparsity
level, in an mMTC network. Specifically, the proposed CPT
mechanism consists of a DL transmission using N1 symbols
for the purpose of CSI estimation, and an UL transmission
with channel inversion (power and phase) control using N2

shared symbols to resolve the fading uncertainty at the coor-
dinator. We presented an efficient estimator for K based on
such a UL signal and illustrated with some early results its
crucial role for sparse signal recovery algorithms aiming at
accurately identifying the specific set of active devices.

Regarding the signal sparsity level estimator, we analytically
characterized its variance and distribution when the network
channels are subject to Rayleigh fading. We showed that
the estimator’s variance increases linearly with K and that
its distribution approximates that of the sum of a Student’s
t and a Gaussian random variable. The provided analytical
framework allows tractable computation and optimization of
the detection success probability, thus, becoming valuable
for system design/analysis purposes. The numerical results
showed that the attainable accuracy performance depends on
the specific allocation of N1, N2 rather than on the total
number of CPT symbols N = N1+N2 alone, thus, motivating
a proper optimization of the DL and UL phases. Indeed,
we revealed that relatively short DL phases are preferable in
highly sparse networks (with small realizations of K) given a
fixed N .

To conclude, below we enumerate some attractive research
directions that we would like to pursue in the sequence. Note
that they aim to address key limitations of our current work
such as the fact that the proposed CPT and signal sparsity
level estimator are i) completely agnostic of the statistics of
K, ii) designed only for single-antenna systems, iii) derived
assuming perfect network synchronization, and iv) not jointly
optimized with MUD.

1) Exploiting Prior Statistical Knowledge of K: We have
not assumed any statistical knowledge of K. In practice,
the coordinator might have some prior expectations based on
traffic history, which can be leveraged for more accurate CPT-
based detectors. In future work, our aim is to design CPT-based
detectors exploiting traffic history.

2) CPT Optimized for MIMO Systems: MIMO technology
is key for successful MUD, especially in mMTC networks with
sporadic device activations. Therefore, adapting our proposed
CPT framework to MIMO setups is undoubtedly appealing.
Due to the overhead introduced by multi-antenna CSI training
and the limited number of CPT symbols that may be available,
an efficient proposal can rely on a compressed CPT training
phase that limits the number of communicating antennas
and/or exploits efficiently configured precoders/combiners.

3) CPT for Imperfectly Synchronized Networks: The pro-
posed CPT mechanism requires network synchronization, as
assumed throughout the paper. However, IoT devices may lack
precise clocks and have heterogeneous hardware capabilities
and protocol stacks, making it challenging to achieve accurate
network synchronization [1], [2]. Mitigating the impact of
timing discrepancies, especially for critical IoT networks, e.g.,
supporting URLLC [58], typically involves implementing time
synchronization protocols and error-handling mechanisms, but
perfect synchronization may not be achieved. Therefore, it
is interesting to investigate/analyze the performance of CPT
under imperfect synchronization conditions and propose syn-
chronization error countermeasures, if applicable.

4) Joint CPT & MUD Optimization: The proposed CPT
mechanism spanning over N symbols and aiming to determine
the number of active devices is followed by MUD occupying
M symbols, where the specific set of active devices is detected.
Note that the number of active devices detected by CPT works
as a prior for MUD mechanisms. An interesting question that
we aim to address in future work is how to efficiently allocate
the CPT and MUD symbols given that N +M is constrained.
For this, one needs to jointly assess the performance of
both CPT and MUD mechanisms, which ultimately reveals
the (practical) achievable performance of MUD. Some early
insights were provided in the discussions around Fig. 8, but
dedicated research and trade-off analysis are still required.
Finally, comparisons with state-of-the-art MUD approaches
that intrinsically implement signal sparsity level estimation,
e.g., [26], [27], must be conducted.

APPENDIX

Recall that each Zi is symmetric around 0 and bell-shaped
as shown in Fig. 2 and discussed after (20). Therefore, T is
also symmetric around 0 and bell-shaped. This suggests that a
Student’s t distribution, which is more general than a Gaussian
distribution, may be a good fit. Several simulation campaigns
that we carried out revealed that this is indeed the case.

At least two moments of T are needed to match those
of a scaled Student’s t distribution since such distribution is
characterized only by the scale s and the number of degrees of
freedom ν. The challenge lies in that ν must be greater than
the moment order, while odd moments cannot be used since
they are 0. For instance, this implies that we cannot rely on
the first moment, and we cannot fit moments of order higher
than 2 in order to allow ν ∈ (2,∞) (which is required for
having defined variance as is the case here, see (17)). The
latter issue is very important since simulation results evinced
that T may accurately fit, in many cases, a scaled Student’s t
distribution with ν approaching 2 from above. To avoid these
issues, we resort to a fitting based on the second moment and
characteristic function.

The second moment of T is given by

ω1 ≜ E[T 2] = KE[Z2], (26)

which equals ω1 in (24) by exploiting the independence and
zero-mean features of {Zi} together with (14) with ϑi = ϑ
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Fig. 9: Empirical PDF of the normalized sum of K i.i.d. RVs
distributed as (20) and corresponding scaled Student’s t fitting.
We set µ/ϑ = 10−2.

since Zi = Xi/Yi =
√
2N1ϱϑℜ{h̃i}/|ĥi| | |ĥi| ≥ √

µ.
Meanwhile, the characteristic function of T is given by

ω2(t) ≜ E[eıtT ] = E
[
eıt

∑
i∈K Zi

]
= E[eıtZ ]K

(a)
=

[ ∫ ∞

−∞

(
cos(tz) + ı sin(tz)

)
fZ(z)dz

]K
(b)
=

[
2

∫ ∞

0

cos(tz)fZ(z)dz

]K
, ∀t ≥ 0, (27)

where (a) comes from exploiting eıa = cos a + ı sin a and
expressing the expectation in integral form, while (b) is
obtained by leveraging the symmetry of fZ(s) around 0, and
properties cos(−a) = cos a, sin(−a) = − sin a.

Now, we proceed to match (26) and (27) with the second
moment and characteristic function of a scaled Student’s t
distribution sT (ν), which are respectively given by [59]

E
[
(sT (ν))2

]
=

s2ν

ν − 2
, (28)

CF
(
sT (ν)

)
=

Kν/2(
√
νts)(

√
νts)ν/2

2ν/2−1Γ(ν/2)
, ∀t ≥ 0. (29)

Then, the system of equations to solve becomes{
ω1 =

s2ν

ν − 2
, ω2(t) =

Kν/2(
√
νts)(

√
νts)ν/2

2ν/2−1Γ(ν/2)

}
. (30)

Through extensive simulation campaigns, we found that the
solution of the above system of equations leads to a very
accurate fitting when t = 1. By setting t = 1 and combining
the equations in (30), we obtain (22), where ω2 in (24) matches
(27). Then, s is attained from ν by exploiting the first equation
in (30). The accuracy of the fitting is illustrated in Fig. 9.
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