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Abstract—The maximum information rates for bandlimited
channels with direct detection are achieved with joint detection
and decoding (JDD), but JDD is often too complex to imple-
ment. Two receiver structures are studied to reduce complexity:
separate detection and decoding (SDD) and successive inter-
ference cancellation (SIC). For bipolar modulation, frequency-
domain raised-cosine pulse shaping, and fiber-optic channels
with chromatic dispersion, SIC achieves rates close to those
of JDD, thereby attaining significant energy gains over SDD
and intensity modulation. Gibbs sampling further reduces the
detector complexity and achieves rates close to those of the
forward-backward algorithm at low to intermediate signal-to-
noise ratio (SNR) but stalls at high SNR. Simulations with polar
codes, higher-order modulation, and multi-level coding confirm
the predicted gains.

Index Terms—Capacity, direct detection, Gibbs sampling, in-
formation rate, successive interference cancellation.

I. INTRODUCTION

SHORT-REACH fiber-optic communication systems often
use direct detection (DD) devices with one photodiode

(PD) per wavelength that outputs the intensity of the received
optical signal [1]. DD allows easy reconstruction of the
transmitted data when using intensity modulation (IM) and
symbol-rate sampling [2]–[4]. The paper [5] showed that the
DD capacity increases by oversampling, i.e., sampling faster
than the symbol rate. In fact, if the dominant noise is before
DD, then the capacity is within 1 bit/s/Hz of the capacity with
coherent detection. This motivates DD with bipolar modulation
(BM) or even complex-valued modulations [5]–[10].

As in [10], we study bandlimited systems and compute
achievable information rates for frequency-domain raised-
cosine (FD-RC) pulses. BM and complex-valued modulations
exhibit significant energy gains over classic IM, but the gains
in [10] are achieved with joint detection and decoding (JDD)
which is usually infeasible. The primary goal of this paper is
to show how to approach JDD rates with practical detectors.
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A. Detection and Decoding

One can reduce JDD complexity in several ways.
• Separate detection and decoding (SDD): compute

symbol-wise a posteriori probabilities (APPs) and pass
them to a decoder; see [11], [12]. SDD is usually subop-
timal and exhibits a rate loss that grows with the channel
memory; see [13, Fig. 5], [14, Fig. 7-9].

• Turbo detection and decoding (TDD): use SDD in a turbo
loop to exchange extrinsic APPs between the detector
and decoder; see [15], [16]. TDD can approach JDD
performance only by carefully designing codes; see [17].

• Successive interference cancellation (SIC): use SDD
with multi-level coding (MLC) and multi-stage detec-
tion/decoding (MSD); see [13], [18], [19].

We focus on SIC because it can approach JDD performance
with “off-the-shelf” binary codes [13], [19].

Besides comparing JDD and SIC performance, we also com-
pare two detection algorithms. First, a standard approach to
compute APPs is the forward-backward algorithm (FBA) [20].
However, implementing the FBA is infeasible for large mem-
ory or symbol alphabets. To reduce complexity, we approx-
imate the APPs by Gibbs sampling, a Markov Chain Monte
Carlo method [21, Ch. 29]. Gibbs sampling has been applied
to code-division multiple access [22], [23], multi-input multi-
output systems [24], [25], and channels with intersymbol
interference (ISI) [26]–[30].

B. Organization

This paper is organized as follows. Sec. II describes nota-
tion, and Sec. III reviews the system model. Sec. IV reviews
the information rates of SDD and SIC. Sec. V describes
SIC for binary forward error control codes. Sec. VI reviews
Gibbs sampling for APP estimation and achievable rates for
mismatched decoding. Sec. VII presents numerical results for
SDD, SIC, and polar codes and compares them with the plots
in [10]. The results show that SDD does not approach the
JDD rates and that BM rates can be worse than IM rates. The
results also show that SIC with Gibbs sampling recovers most
gains possible with JDD at low to intermediate signal-to-noise
ratio (SNR) but stalls at high SNR. Sec. VIII concludes the
paper and suggests research problems.

II. NOTATION

Column vectors and matrices are written using bold letters.
The transpose of the vector a is aT, the 𝑛-dimensional all-zeros
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vector is 0𝑛, and the 𝑛 × 𝑛 identity matrix is I𝑛. The element-
wise absolute values of the entries in a are |a| and the element-
wise squares are a◦2. We write strings as 𝑥𝑛𝜅 = (𝑥𝜅 , . . . , 𝑥𝑛) and
x𝑛𝜅 = (x𝜅 , . . . , x𝑛) and omit the subscript if 𝜅 = 1. We write
a[𝑖 ] for the vector a without entry 𝑎𝑖 . For complex-valued 𝑥,
we write ∠𝑥 for the phase of 𝑥.

The sinc function is sinc(𝑡) = sin(𝜋𝑡)/(𝜋𝑡). The signal 𝑎(𝑡)
and its Fourier transform 𝐴( 𝑓 ) are related by 𝑎(𝑡) 𝐴( 𝑓 ).
The expression 𝑔(𝑡) ∗ℎ(𝑡) refers to the convolution of 𝑔(𝑡) and
ℎ(𝑡) and ∥𝑎(𝑡)∥2 =

∫ ∞
−∞

�� 𝑎(𝑡)��2d𝑡 is the energy of 𝑎(𝑡).
Random variables are written with upper-case letters and

their realizations with lower-case letters. The probability mass
function (PMF) or density of a discrete or continuous random
vector X is written as 𝑃X or 𝑝X, respectively. E[ 𝑓 (𝑋,𝑌 )] is the
expectation of 𝑓 (𝑋,𝑌 ). A multivariate real Gaussian density
is written as N(x; µ ,C) where µ and C are a mean vector
and covariance matrix, respectively. The conditional density
of Y given X is written as 𝑝Y |X.

The entropy of a discrete-valued X and the mutual infor-
mation of X and Y with conditional density 𝑝(y|x) are

𝐻 (X) = E
[
− log2 𝑃(X)

]
𝐼 (X; Y) = E

[
log2

𝑝(Y|X)
𝑝(Y)

]
where we measure the quantities in bits. As mentioned above,
we discard subscripts on PMFs or densities if the arguments
are uppercase or lowercase versions of their random variables.
For 𝑛-dimensional X, define the entropy rate, conditional en-
tropy rate, and mutual information rate in bits per transmitted
symbol as the respective

𝐻𝑛 (X) = 1
𝑛
𝐻 (X), 𝐻𝑛 (X|Y) = 1

𝑛
𝐻 (X|Y)

𝐼𝑛 (X; Y) = 𝐻𝑛 (X) − 𝐻𝑛 (X|Y).

III. SYSTEM MODEL

Propagation in fiber is described by the Nonlinear
Schrödinger Equation [31, p. 65] that models attenuation and
chromatic dispersion (CD), both linear effects, and a Kerr
nonlinearity. We consider short-reach links without optical
amplifiers or optical noise and with sufficiently small launch
power so we can neglect the Kerr non-linearity.

A. Continuous-Time Model

The model is depicted in Fig. 1; see [10]. The symbol
alphabet is A = {𝑎1, . . . , 𝑎𝑀 } with 𝑀 = 2𝑚. A source
puts out uniformly, independently, and identically distributed
(u.i.i.d.) symbols (𝑈𝜅 )𝜅∈Z with 𝑈𝜅 ∈ A. A differential phase
mapper 𝑓diff (·) maps these symbols to the transmit symbols
(𝑋𝜅 )𝜅∈Z, 𝑋𝜅 ∈ A, using |𝑋𝑘 | = |𝑈𝑘 | and ∠𝑋𝑘 = ∠𝑋𝑘−1 + ∠𝑈𝑘
for phase modulation. Differential coding helps resolve phase
ambiguities; see [10, Sec. IV] and the Appendix.

For the continuous-time signal, we use an FD-RC pulse
shape 𝑔tx (𝑡) to obtain the baseband waveform

𝑋 (𝑡) =
∑︁
𝜅

𝑋𝜅 · 𝑔tx (𝑡 − 𝜅𝑇s) (1)

with symbol-rate 𝐵 = 1/𝑇s. The roll-off factor is 𝛼 and 𝛼 =

0 corresponds to the sinc pulse; see [10, Eq. (5)-(6)]. The
channel exhibits CD with response [32, Sec. II.B]

ℎ𝐿 (𝑡) 𝐻𝐿 ( 𝑓 ) = 𝑒j(𝛽2/2)𝜔2𝐿 (2)

where 𝛽2 is the group velocity dispersion, 𝜔 = 2𝜋 𝑓 , and 𝐿

is the fiber length. The convolution of 𝑋 (𝑡) and ℎ𝐿 (𝑡) results
in 𝑋𝐿 (𝑡). The receiver PD is modeled as a square-law device
(SLD) that outputs the intensity 𝑍 ′ (𝑡) = |𝑋𝐿 (𝑡) |2 and the PD
noise 𝑁 ′ (𝑡) is a real-valued white Gaussian random process
with two-sided power spectral density 𝑁0/2.

The signal and noise pass through a bandwidth-limited
sampling device, resulting in 𝑌 (𝑡). The filter 𝑔rx (𝑡) has a
unit gain frequency response in the interval [−𝐵, 𝐵] Hz. The
analog-to-digital converter sampling rate is 1/𝑇 ′

s = 2𝐵, i.e., the
oversampling factor is 𝑁os = 𝑇s/𝑇 ′

s = 2 samples per transmit
symbol. Observe that the SLD doubles the bandwidth since
squaring in time corresponds to self-convolution in frequency,
i.e., the FD-RC bandwidth doubles from (1+𝛼)𝐵 to 2(1+𝛼)𝐵.
The filter 𝑔rx (𝑡) thus removes useful signal components at the
band edges unless 𝛼 = 0. We will study 𝛼 = 0 and 𝛼 = 0.2.

B. Discrete-Time Model

Suppose first that 𝑔tx (𝑡) is a sinc pulse, so the filter 𝑔rx (𝑡)
and two-fold oversampling provide sufficient statistics. The
channel response up to 𝑋𝐿 (𝑡) is 𝜓(𝑡) = 𝑔tx (𝑡) ∗ ℎ𝐿 (𝑡) and the
samples are 𝜓𝑘 = 𝜓(𝑘𝑇 ′

s ), 𝑘 ∈ Z. For simplicity, suppose
𝜓𝑘 = 0 for 𝑘 ∉ [0, 𝐾 − 1], where 𝐾 is an odd integer.
We write the channel Toeplitz matrix as 𝚿 ∈ C2𝑛×(2𝑛+𝐾−1) ,
which is constructed from the oversampled channel response
ψ = [𝜓𝐾−1, . . . , 𝜓0] ∈ C𝐾 . Consider the vector of noise-free
samples

z = |𝚿x̃′ |◦2 = [𝑧1, 𝑧2, 𝑧3, . . . 𝑧2𝑛]T ∈ R2𝑛×1 (3)

with input x̃′ = [sT
0 , (x

′)T]T and upsampled symbols

x′ = [0, 𝑥1, 0, 𝑥2, . . . , 0, 𝑥𝑛]T ∈ C2𝑛×1 (4)

where the initial state vector is

s0 =
[
0, 𝑥1−𝐾 , 0, 𝑥2−𝐾 , . . . , 0, 𝑥0

]T ∈ C(𝐾−1)×1 (5)

and the channel memory is 𝐾 = (𝐾 − 1)/2. The discrete-time
channel is Gaussian with conditional density

𝑝(y|x) = N
(
y − |𝚿x̃′ |◦2 ; 02𝑛 , 𝑁0𝐵 I2𝑛

)
. (6)

More generally, for 𝛼 ≥ 0 we compute 𝚿 for the continuous-
time model described in Sec. III-A, and we perform simula-
tions with 𝑁os = 4 times oversampling as in [10, Eq. (60)]
followed by low-pass filtering and downsampling.

IV. INFORMATION RATES

We study the information rates of several detection algo-
rithms, including for a fixed block length 𝑛 and for 𝑛 → ∞.
The limiting rates are listed in Table I for convenience.
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𝑓diff ( ·) 𝑔tx (𝑡 ) ℎ𝐿 (𝑡 ) | · |2 + 𝑔rx (𝑡 ) Detector
𝑈𝜅 𝑋𝜅 𝑋 (𝑡 ) 𝑋𝐿 (𝑡 ) 𝑍 ′ (𝑡 ) 𝑌 ′ (𝑡 ) 𝑌 (𝑡 ) 𝑌𝑘 �̂�𝜅

𝑁 ′ (𝑡 ) ∈ R

Sampler

Rate 2𝐵1+𝛼
2 [−𝐵, 𝐵] [−𝐵, 𝐵]Channel SLD

Fig. 1: System model with DD and two-fold oversampling [10].

TABLE I: Information rates studied in the paper.

Information Mismatched
Detector Rate Rate Reference

JDD 𝐼JDD 𝐼𝑞,JDD (8), (43)
SDD 𝐼SDD 𝐼𝑞,SDD (9), Sec. VI-D

SIC / MSD 𝐼SIC = 𝐼MSD 𝐼𝑞,SDD = 𝐼𝑞,MSD (14), Sec. VI-D
SIC, bit-wise 𝐼b-SIC 𝐼𝑞,b-SIC (29), Sec. VI-D

A. SDD Information Rates
SDD computes the symbol-wise APPs 𝑃(𝑢𝜅 |y), 𝜅 =

1, . . . , 𝑛; see [14]. Consider the bound

𝐼𝑛 (U; Y) ≥ 𝐻𝑛 (U) − 1
𝑛

𝑛∑︁
𝜅=1

𝐻 (𝑈𝜅 |Y) := 𝐼𝑛,SDD. (7)

The JDD and SDD limiting rates are

𝐼JDD = lim
𝑛→∞

𝐻𝑛 (U) − 𝐻𝑛 (U|Y) (8)

𝐼SDD = lim
𝑛→∞

𝐻𝑛 (U) − 1
𝑛

𝑛∑︁
𝜅=1

𝐻 (𝑈𝜅 |Y) (9)

and (7) implies 𝐼SDD ≤ 𝐼JDD. The difference 𝐼JDD − 𝐼SDD may
be significant for channels with memory because SDD puts
out marginals which neglect dependencies; see [14, Figs. 7-
9], [33, Fig. 12].

B. SIC Information Rates
SIC performs a serial-to-parallel (S/P) conversion on the

information U, i.e., downsample U to create 𝑆 shorter strings
of length 𝑁 = 𝑛/𝑆 (assume 𝑁 ∈ Z). We write

V𝑠 =
(
𝑉𝑠,𝑡

)𝑁
𝑡=1 =

(
𝑈𝑠 ,𝑈𝑠+𝑆 , . . . ,𝑈𝑠+(𝑁−1)𝑆

)
(10)

and form the vector V = (V𝑠)𝑆𝑠=1. Fig. 2a illustrates the S/P
conversion for an input string 𝑈20 with 𝑆 = 4 and 𝑁 = 5. The
four rows in Fig. 2a represent V1, . . . ,V4.

We relate the JDD, SDD, and SIC rates; see [13], [19]. We
have 𝐼𝑛 (U; Y) = 𝐼𝑛 (V; Y) and the bounds

𝐼𝑛 (V; Y) (𝑎)
= 𝐻𝑛 (V) − 1

𝑛

𝑆∑︁
𝑠=1

𝐻 (V𝑠 |Y,V𝑠−1) (11)

(𝑏)
≥ 𝐻𝑛 (V) − 1

𝑛

𝑆∑︁
𝑠=1

𝑁∑︁
𝑡=1

𝐻 (𝑉𝑠,𝑡 |Y,V𝑠−1)︸                                         ︷︷                                         ︸
:= 𝐼𝑛,SIC

(12)

(𝑐)
≥ 𝐻𝑛 (V) − 1

𝑛

𝑆∑︁
𝑠=1

𝑁∑︁
𝑡=1

𝐻 (𝑉𝑠,𝑡 |Y)︸                                 ︷︷                                 ︸
= 𝐼𝑛,SDD

(13)

where step (𝑎) follows from the chain rule of entropy; steps
(𝑏)-(𝑐) follow because conditioning cannot increase entropy;
and step (𝑐) recovers the SDD rate. The limiting SIC rate is

𝐼SIC = lim
𝑛→∞

𝐼𝑛,SIC. (14)

Fig. 2b shows how SIC reduces interference. The colored
strips are the same as in Fig. 2a and the points show the
magnitudes |𝜓𝑘 | of the channel response samples due to the
symbol 𝑉3,3 = 𝑈11. SIC successively detects and decodes the
rows in Fig. 2a with the vectors V1, . . . ,V4. The rates (11)
and (12) are the same if 𝑉𝑠,1, . . . , 𝑉𝑠,𝑁 are independent given
Y and V𝑠−1 for each 𝑠. For example, consider V3. The channel
outputs Y that are relevant for detecting 𝑉3,3 = 𝑈11 are hardly
affected by 𝑉3,1 = 𝑈3 and 𝑉3,2 = 𝑈7.

We describe some properties of the SIC rates. First, we write
𝐼𝑛,SIC in (12) as

𝐼𝑛,SIC =
1
𝑆

𝑆∑︁
𝑠=1

1
𝑁

𝑁∑︁
𝑡=1

𝐼

(
𝑉𝑠,𝑡 ; Y,V𝑠−1

)
︸                        ︷︷                        ︸

:= 𝐼 (𝑠)
𝑁 ,SIC

. (15)

The expression (15) suggests the receiver in Fig. 3 with 𝑆

stages, each with a symbol-wise APP detector and decoder. In
SIC stage 𝑠, the detector computes APPs

𝑃(𝑣𝑠,𝑡 |y, v̂𝑠−1), 𝑡 = 1, . . . , 𝑁 (16)

where V̂𝑠−1 is the vector of decoded symbols from previous
stages. Next, suppose V𝑠 is encoded with a rate less than the
limiting rate [13, Sec. III a)]

𝐼
(𝑠)
SIC = lim

𝑁→∞
𝐼
(𝑠)
𝑁 ,SIC. (17)

This allows reliable decoding as the block length grows, and
we may assume V𝑠 = V̂𝑠 and the rates of the individual stages
are non-decreasing

𝐼
(1)
SIC ≤ 𝐼

(2)
SIC ≤ . . . 𝐼

(𝑆)
SIC . (18)

By (11)–(13) we have 𝐼SDD ≤ 𝐼SIC ≤ 𝐼JDD.
We remark that the SIC component codes are shorter than

those of SDD (alternatively, the decoding latency is larger
if one uses the same code length per stage as for SDD).
Moreover, to prevent error propagation, one must back off
from the rate (17) as the block length decreases, which reduces
the SIC gain. To mitigate this effect, we use polar codes with
successive cancellation list decoding (SCL) [34] and pass the
list across decoding stages [35], [36]; see Sec. VII-B.
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𝑡 = 1, . . . , 5.
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(b) ISI with SIC.

Fig. 2: SIC example.

APP 1 Dec. 1

APP 2 Dec. 2

. . .

APP S Dec. S

Y

V̂1

V̂2

V̂1

V̂2

V̂𝑆

Stage 1

Stage 2

Stage 𝑆

Fig. 3: SIC receiver structure.

V. BINARY CODES FOR SIC
This section combines SIC with binary codes. Each symbol

𝑉𝜅 of V is labeled by 𝑚 bits 𝑏(𝑉𝜅 ) and we write the string of
𝑚𝑛 bits of V as

B = 𝑏(V) = (𝑏(𝑉1), 𝑏(𝑉2), . . . , 𝑏(𝑉𝑛)) . (19)

The 𝑙 th bit of 𝑉𝜅 is 𝑏𝑙 (𝑉𝜅 ) and the string of 𝑙 th bits of V is
𝑏𝑙 (V) = (𝑏𝑙 (𝑉1), . . . , 𝑏𝑙 (𝑉𝑛)). We write

𝑏𝑖𝑙 (V) = (𝑏𝑙 (V), . . . , 𝑏𝑖 (V)) (20)

for 𝑖 ≥ 𝑙 when referring to more than one bit-level.

A. SIC Transmitter
Fig. 4 shows the encoder. A binary source provides 𝑘 ≤ 𝑛·𝑚

u.i.i.d. bits D. The S/P converter partitions D into 𝑆 strings
D1, . . . ,D𝑆 where D𝑠 has length 𝑘𝑠 . Each D𝑠 is encoded to a
length 𝑁𝑚 bit string B𝑠 , so the code rate per stage is 𝑘𝑠/(𝑁𝑚).
The bits B𝑠 are mapped to the length 𝑁 string V𝑠 of symbols
from the modulation alphabet A. The information rate in bits
per channel use (bpcu) for SIC stage 𝑠 is

𝑅𝑠 = 𝑘𝑠/ 𝑁 [bpcu] (21)

and the overall information rate is

𝑅SIC =
1
𝑆

𝑆∑︁
𝑠=1

𝑅𝑠 =
𝑘

𝑛
[bpcu]. (22)
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.
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D1

D2

D𝑆

B1

B2

B𝑆

V1

V2

V𝑆

U
X

Fig. 4: SIC encoder for binary codes.

Finally, the strings V1, . . . ,V𝑆 are passed to a P/S converter
that reverses (10) and produces U.

B. SIC Receiver

Binary decoders convert symbol-wise APPs to bit-wise
APPs. Two common approaches are bit-metric decoding [37]
and MLC/MSD [18]; we focus on the latter. Replacing 𝑉𝑠,𝑡
by 𝑏(𝑉𝑠,𝑡 ), we write (15) as

𝐼𝑛,SIC = 𝐼𝑛,MSD

=
1
𝑆

∑︁
𝑠,𝑙

1
𝑁

∑︁
𝑡

𝐼

(
𝑏𝑙 (𝑉𝑠,𝑡 ); Y,V𝑠−1, 𝑏𝑙−1

1 (𝑉𝑠,𝑡 )
)

︸                                             ︷︷                                             ︸
:= 𝐼 (𝑠,𝑙)

𝑛,MSD

(23)

where 𝐼 (𝑠,𝑙)
𝑛,MSD is the information rate of bit level 𝑙 in SIC stage

𝑠. We have 𝑚 binary MSD decoding stages for every SIC stage
and work successively through the bit levels. Binary decoding
stage 𝑙 computes the conditional APP of bit level 𝑙:

𝑃
(
𝑏𝑙 (𝑣𝑠,𝑡 ) |y, v̂𝑠−1, �̂�𝑙−1

1 (𝑣𝑠,𝑡 )
)
, 𝑙 = 1, . . . , 𝑚 (24)

where �̂�𝑙−1
1 (𝑉𝑠,𝑡 ) are the bit estimates from the previous 𝑙 − 1

bit levels of 𝑉𝑠,𝑡 , and given the symbol estimates V̂𝑠−1
from

previous SIC stages. The APPs are passed to a decoder, and the
resulting maximum a posteriori probability (MAP) bit estimate
�̂�𝑙 (𝑉𝑠,𝑡 ) is passed to the next decoding stage.
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TABLE II: Algorithmic complexity for channel memory 𝐾 .
The parameter 𝑁par refers to the number of parallel samplers.

Algorithm Multiplications per Iteration Iterations

FBA O
(
𝑛 · 𝑆 · |A |𝐾+1

)
1

Gibbs (b-SIC) O
(
𝑛 · 𝑆 · 𝑚 · 𝐾2 · 𝑁par

)
60

Stage 𝑠 Within stage 𝑡

Bit-level 𝑙

...

Fig. 5: Binary SIC with 𝑚 = 4 bit levels.

Encoding the bit levels 𝑏𝑙 (𝑉𝑠,𝑡 ) with rate less than

𝐼
(𝑠,𝑙)
MSD = lim

𝑛→∞
𝐼
(𝑠,𝑙)
𝑛,MSD (25)

allows reliable decoding of 𝑏𝑙 (𝑉𝑠,𝑡 ) as the block length grows.
By successively decoding over the bit-levels 𝑙 = 1, . . . , 𝑚 and
SIC stages 𝑠 = 1, . . . , 𝑆, we assume that �̂�𝑙 (𝑉𝑠,𝑡 ) = 𝑏𝑙 (𝑉𝑠,𝑡 )
and V̂𝑠−1

= V𝑠−1. MSD thus achieves the rate 𝐼SIC in (14).

VI. GIBBS SAMPLING DETECTOR

The FBA computes the 𝑃(𝑣𝑠,𝑡 |y, v̂𝑠−1) and 𝑃(𝑣𝑠,𝑡 |y)
for (12) and (13), respectively, and the complexity is expo-
nential in the channel memory 𝐾 . Gibbs sampling reduces
the complexity to quadratic in 𝐾 , see Table II, by generating
samples from the joint PMFs 𝑃(v𝑠 |y, v̂𝑠−1) and 𝑃(v|y). The
𝑃(𝑣𝑠,𝑡 |y, v̂𝑠−1) and 𝑃(𝑣𝑠,𝑡 |y) can then be estimated accurately
through many such samples. Likewise, the bit-wise APPs (24)
for SIC with MSD may be computed using bit-wise sam-
pling [38], [39].

A. SIC with Blocks of Bits (b-SIC)

For SIC, we propose to sample from different APPs
than (24), namely the APPs

𝑃
(
𝑏𝑙 (𝑣𝑠,𝑡 ) |y, v̂𝑠−1, �̂�𝑙−1

1 (v𝑠)
)
, 𝑙 = 1, . . . , 𝑚. (26)

Instead of conditioning only on the first 𝑙−1 bits of the symbol
𝑣𝑠,𝑡 as in (24), we condition on the first 𝑙 − 1 bits of all the
symbols v𝑠 from the current stage 𝑠.

Consider the illustration in Fig. 5 with 𝑆 = 4 SIC stages,
𝑁 = 5 symbols per stage, and 𝑚 = 4 bit-levels per symbol,
e.g., 16-ASK modulation. Consider the APP of the third bit
𝑏3 (𝑉1,3), marked in red. From (24), we must condition on
the previous bits (𝑏1 (𝑉1,3), 𝑏2 (𝑉1,3)) marked in shaded red.
According to the new APPs (26), we condition on the bits in
shaded blue. The advantage of using (26) is twofold: the new

APPs are easier to estimate with sampling, as discussed in the
next section, and the achievable rates improve.

To show the rate improvement, observe that for the
APPs (26), we have

𝐼𝑛 (V; Y) = 1
𝑛

∑︁
𝑠,𝑙

𝐼
(
𝑏𝑙 (V𝑠); Y,V𝑠−1, 𝑏𝑙−1

1 (V𝑠)
)

≥ 1
𝑆

∑︁
𝑠,𝑙

1
𝑁

∑︁
𝑡

𝐼
(
𝑏𝑙 (𝑉𝑠,𝑡 ); Y,V𝑠−1, 𝑏𝑙−1

1 (V𝑠)
)

︸                                                   ︷︷                                                   ︸
:= 𝐼𝑛,b-SIC via (26)

(27)

≥ 1
𝑆

∑︁
𝑠,𝑙

1
𝑁

∑︁
𝑡

𝐼
(
𝑏𝑙 (𝑉𝑠,𝑡 ); Y,V𝑠−1, 𝑏𝑙−1

1 (𝑉𝑠,𝑡 )
)

︸                                                     ︷︷                                                     ︸
:= 𝐼𝑛,SIC via (24)

. (28)

The bound (28) gives the improved rate

𝐼b-SIC := lim
𝑛→∞

𝐼𝑛,b-SIC ≥ 𝐼SIC. (29)

Note that 𝐼𝑛,b-SIC depends on the bit mapping, and one may
use the FBA to compute the APPs (26).

B. Gibbs Sampling with b-SIC

Consider SIC stage 𝑠 and bit stage 𝑙 for 𝑡 = 1, . . . , 𝑁 . To
approximate the APPs (26), we sample from the joint posterior
PMF of the bits that are not already decoded:

𝑃

(
b̃𝑠,𝑙

�� y, 𝑏(v̂𝑠−1), �̂�𝑙−1
1 (v𝑠)

)
(30)

where

b̃𝑠,𝑙 = 𝜋
(
𝑏𝑚𝑙 (v𝑠), 𝑏(v

𝑆
𝑠+1)

)
(31)

has a total of 𝑊 = 𝑛𝑚− (𝑠−1)𝑁𝑚−𝑁 (𝑙 −1) bits, namely the
(𝑚 − 𝑙 + 1)𝑁 bits of bit-levels 𝑙, . . . , 𝑚 of SIC stage 𝑠 and the
(𝑆 − 𝑠)𝑚𝑁 bits of SIC stages 𝑠 + 1, . . . , 𝑆. The permutation 𝜋
sorts the bits in the order they are transmitted over the channel,
and this reflects our choice of sampling order; see (33) and
the footnote below. Empirically, this ordering results in faster
convergence than other orderings.

To simplify notation, we assume that 𝑠, 𝑙 are fixed and
replace b̃𝑠,𝑙 with b̃. We further assume the conditional values
are fixed and define

Φ(b̃) := 𝑃(b̃
�� y, 𝑏(v̂𝑠−1), �̂�𝑙−1

1 (v𝑠)). (32)

At iteration 𝑖 = 0, we initialize with a realization b̃(0) of
u.i.i.d. bits. At iteration 𝑖, 𝑖 ≥ 1, the sampler successively
draws realizations from the distributions

�̃�𝑤 (𝑖) ∼ Φ(�̃�𝑤 |�̃�𝑤−1 (𝑖), �̃�𝑊𝑤+1 (𝑖 − 1)) (33)

for 𝑤 = 1, . . . ,𝑊 . Observe that we use samples from iteration
𝑖 for �̃�𝑤−1 (𝑖) and samples from iteration 𝑖 − 1 for �̃�𝑊

𝑤+1 (𝑖 − 1)
when sampling �̃�𝑤 (𝑖).1 The algorithm stops after 𝑁iter iter-
ations; for 𝑁iter → ∞ the distribution of b̃(𝑁iter) tends to
Φ(b̃) [21, Ch. 29.5].

1This sampling structure is the reason for choosing the permutation 𝜋

in (31). The samples of 𝑏𝑤−1 (𝑖) , 𝑏𝑊
𝑤+1 (𝑖 − 1) ) are ordered as the bits affect

the channel.
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We remark that the expression in (33) is

Φ
(
�̃�𝑤 |�̃�𝑤−1 (𝑖), �̃�𝑊𝑤+1 (𝑖−1)

)
=

1
𝐴1
𝑝

(
y| x(�̃�𝑤)

)
(34)

with differentially-encoded symbols

x(𝐵𝑤) = 𝑓diff
(
𝑏(V̂𝑠−1), �̂�𝑙−1

1 (V𝑠)�̃�𝑤−1 (𝑖), 𝐵𝑤 , �̃�𝑊𝑤+1 (𝑖−1)
)

(35)

that depend on �̃�𝑤 , and where the normalization constant 𝐴1
ensures that (34) is a PMF. One may readily sample from (34)
because the channel (6) is Gaussian. When using 𝑓diff (·) with
binary inputs, we place a bit-to-symbol mapping before the
differential phase coding.

Finally, we explain the complexity advantage of (26)
over (24). The modified sampling algorithm runs 𝑁iter iter-
ations through b̃𝑠,𝑙 for 𝑠 = 1, . . . , 𝑆 and 𝑙 = 1, . . . , 𝑚, i.e.,
it runs 𝑆𝑚 times. This is because the conditioning in (26)
is independent of the index 𝑡, and we can use the same joint
PMF (30) for each 𝑡. Instead, the conditioning of the APPs (24)
changes for each 𝑡, and we must sample from 𝑁 joint PMFs,
which requires 𝑆𝑚𝑁 runs of the sampling algorithm.

C. APP Estimation and Stalling

The bit-wise APPs may be written as

Φ(�̃�𝑤) =
∑︁
b̃[𝑤 ]

Φ(b̃) = E
[
Φ(�̃�𝑤 |B̃[𝑤 ])

]
. (36)

One can approximate the expectation from the sampling
strings b̃(0), . . . , b̃(𝑁iter) via empirical PMF estimation or
importance sampling [27]. A simple estimate is

Φ(�̃�𝑤) ≈
1
𝑁iter

𝑁iter∑︁
𝑖=1

Φ(�̃�𝑤 |b̃[𝑤 ] (𝑖)). (37)

The estimate (37) is accurate at low SNR, and decoding
achieves near-MAP performance [27]. However, the estimate
can be inaccurate at high SNR if the sampling stalls because
the conditionals (33) are overconfident, e.g., due to poor
initialization or a bad current state of the Gibbs sampler [27],
[40]–[42]. For instance, consider Φ(�̃�𝑤 = 0) ≈ 1 and
Φ(�̃�𝑤 = 1) ≈ 0 so the iterations in (33) are nearly determinis-
tic. In this case, a large 𝑁iter is required to obtain good APP
estimates.

To address stalling, one may use several samplers in parallel
that are initialized with different bit strings. This makes
stalling less likely but increases computational complexity.
Alternatively, one can reduce confidence by increasing the
variance of the channel likelihood; see [40, Sec. III] and [27],
[43], [44]. Consider sampling from a modified posterior PMF

Ω(b̃) = 1
𝐴2
𝑝(y|b̃, 𝑏(v̂𝑠−1), �̂�𝑙−1

1 (v𝑠))
1
𝜂 (38)

where 𝜂 ∈ [1,∞) is a confidence parameter and 𝐴2 is a
normalization constant. For Gaussian channels, 𝜂 is a mul-
tiplicative factor for the noise variance.

The conditionals of (38) for Gibbs sampling are

Ω
(
�̃�𝑤 | �̃�𝑤−1 (𝑖), �̃�𝑊𝑤+1 (𝑖 − 1)

)
=

1
𝐴3

(
𝑝

(
y| x(�̃�𝑤)

)) 1
𝜂 (39)

where 𝐴3 is again a normalization constant. We may insert
the modified conditionals (39) into (33). As 𝑁iter → ∞ the
distribution of b̃(𝑁iter), b̃(𝑁iter+1), . . . tends to Ω(b̃). We use
importance sampling to estimate (36) as

Φ(�̃�𝑤) ≈
1
𝑁iter

𝑁iter∑︁
𝑖=1

Φ(b̃[𝑤 ] (𝑖))
Ω(b̃[𝑤 ] (𝑖))︸        ︷︷        ︸

Importance weights

Φ(�̃�𝑤 |b̃[𝑤 ] (𝑖)) (40)

where the b̃(𝑖) are provided by the sampler and approximate
Ω(b̃) and not the true posterior PMF. The importance weights
resolve the mismatch. For 𝜂 = 1, (40) becomes (37). For 𝜂 > 1,
one can avoid stalling at high SNR and the estimate (40) is
significantly better than (37) in general [40, Fig. 2]. Finally,
one may optimize 𝜂 for every SNR by a line search with the
corresponding rate expression as the cost function.

D. Mismatched Decoding

To further reduce complexity, we choose 𝐾 to be smaller
than the actual channel memory, i.e., we use mismatched de-
coding. Mismatched decoding is a standard tool for computing
information rates for fiber-optic and wireless channels; see [45,
Ex. 5.22], [46]–[48], and also [49, Sec. 1.3-1.4] that reviews
Gaussian auxiliary models.

The detector in [10] replaces (6) with

𝑞(y|u) = N
(
y − |𝚿′x̃′ |◦2; µQ, CQQ

)
(41)

where the matrix 𝚿′ is constructed as 𝚿, but with a smaller
memory 𝐾 . We optimize µQ and CQQ of the auxiliary chan-
nel (41) according to [10, Sec. III. C].

Let 𝑞(y) = ∑
u 𝑃(u) 𝑞(y|u) and consider the rates

𝐼𝑞,𝑛 (U; Y) :=
1
𝑛

E
[
log2

𝑞(Y|U)
𝑞(Y)

]
(42)

𝐼𝑞,JDD := lim
𝑛→∞

1
𝑛
𝐼𝑞,𝑛 (U; Y) (43)

where the expectation is over the actual 𝑃(u)𝑝(y|u). We then
have (see [10, Sec. III. B] and [50])

𝐼𝑞,𝑛 (U; Y) ≤ 𝐼𝑛 (U; Y), 𝐼𝑞,JDD ≤ 𝐼JDD. (44)

We likewise compute the limiting rates 𝐼𝑞,SDD, 𝐼𝑞,SIC = 𝐼𝑞,MSD,
and 𝐼𝑞,b-SIC as lower bounds on the respective 𝐼SIC = 𝐼MSD,
𝐼SDD, and 𝐼b-SIC based on (12), (13), (23) and (27); see [50,
Eq. (44)] or [51, Eq. (39)].

VII. NUMERICAL RESULTS

We simulate blocks with 𝑛 ≥ 20×103 transmit symbols over
𝐿 = 0 km or 𝐿 = 30 km of standard single-mode fiber without
attenuation (0 dB/km). The symbol rate is 𝐵 = 35 GBaud in
the C band at carrier wavelength 1550 nm. The group velocity
dispersion is 𝛽2 = −2.168×10−23 s2/km. The average transmit
power is

𝑃tx =
E
[
∥𝑋 (𝑡)∥2]
𝑛 · 𝑇s

(45)
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and the variance of the noise samples after filtering is 𝑁0𝐵 = 1
so we define SNR = 𝑃tx; see [10, Sec. V]. The spectral
efficiency (SE) of FD-RC pulses is

SE = 𝑅/(1 + 𝛼) [bit/s/Hz] (46)

where 𝑅 is the information rate in bpcu. We estimate 𝑅 using
𝐼𝑞,JDD, 𝐼𝑞,SIC, and 𝐼𝑞,b-SIC, that we compute via Monte Carlo
simulation. The channel state s′0 (cf. Sec. VI-D) is known at
the receiver.

We use the 𝑀-ary modulation formats of [10]:
• unipolar 𝑀-PAM with A = {0, 1, . . . , 2𝑚 − 1};
• bipolar 𝑀-ASK with A = {±1,±3, . . . ± (2𝑚 − 1)};
• complex-valued 𝑀-star-QAM (𝑀-SQAM) with A =

{±𝑎,±j𝑎 | 𝑎 = 1, 2, . . . , 𝑀/4}.
We approximate the combined filter 𝜓(𝑡) with a discrete filter
𝜓𝑘 with 𝐾 = 𝑁os ·101+1 taps, resulting in a system memory of
𝐾 = 101. This choice has 𝜓𝑘 containing 99.8% of the energy
of 𝜓(𝑡).

A. SIC rates via FBA

We use the FBA when the complexity is feasible. Fig. 6
shows the rates 𝐼𝑞,JDD and 𝐼𝑞,SIC for 𝐿 = 30 km of fiber and
with sinc pulses. The rates increase with the number of SIC
stages 𝑆. Observe that 𝐾 = 9 suffices to achieve nearly 2 bpcu
for all 4-ary alphabets and large SNR; see also [10, Fig. 8a].
For 𝑀 = 4, SDD achieves good rates for large SNR; see
also [10, Fig. 1] for BPSK. For medium SNR, SDD exhibits
larger losses for ASK and SQAM. For 𝑀 = 8 and 𝐾 = 7, the
rates are limited by interference and saturate before 3 bpcu.
Increasing 𝐾 would thus achieve higher rates. Likewise, SDD
shows large losses for ASK and 8-SQAM for medium SNR
due to the small auxiliary memory.

Fig. 6 shows that SIC approaches the JDD rates for large
𝑆. The performance with 𝑆 = 4 agrees with JDD at low-to-
medium SNR. For large 𝑆, the energy gains for ASK, PAM,
and SQAM are similar to those in [10].

B. Polar-Coded SDD and SIC with the FBA

Practical communication systems can achieve the SIC rates
in Fig. 6. To show this, we use polar codes [52] combined
with MLC/MSD [53]. We further use successive cancellation
list (SCL) decoding [34] that passes a list of the most likely
codewords between stages. The detector of the next stage uses
this list to generate a list of APPs for the next decoder [35],
[36], i.e., we pass a list of possible bit strings to the next stage
instead of only one hard-decision string.

We simulate 106 frames that each have 1024 4-PAM/ASK
symbols. For MSD with 4-ASK/PAM (2 bit-levels), we use 2𝑆
binary polar codes of length 2048/(2𝑆) bits each. We set the
rate (21) to 𝑅 = 1 bpcu, i.e., there are 𝑘 = 1024 data bits per
transmitted frame. The SCL list size is eight, and we use an
outer 16-bit cyclic redundancy check (CRC) code; see [34].
The polar codes are designed using Monte Carlo methods [52],
[54], and the code rate of all component codes (𝑆 SIC levels,
𝑚 bit levels) is simultaneously optimized. One can find the
least reliable bit positions, i.e., the frozen bits, by decoding
many frames to estimate the reliability of every bit position.

Fig. 7a shows 𝐼𝑞,SIC for 𝐾 = 5 and a FD-RC pulse with
𝛼 = 0.2 so SE ≈ 0.83 bit/s/Hz. For SDD, the 4-ASK and
4-PAM rates almost coincide. Using SIC with 𝑆 = 2, 4, ASK
gains approximately 0.59 dB and 0.75 dB in SNR over PAM,
respectively, at 0.83 bit/s/Hz. Comparing SIC with 𝑆 = 4 to
SDD (𝑆 = 1), PAM and ASK gain 1.14 dB and 1.86 dB in
SNR, respectively. Fig. 7b shows the FERs for which the SNR
gains closely match those of Fig. 7a at FER 10−3.

We remark that fiber-optic applications often require end-
to-end FERs below 10−15. One can achieve this by serially
concatenating a soft-decision inner code, such as a low-
density parity-check or trellis code, with an interleaver and
a powerful outer code to reduce the FER to the desired level,
e.g., a Reed-Solomon code, a Bose–Chaudhuri–Hocquenghem
(BCH) code, or a staircase code; see [55]–[58]. Serial concate-
nation with a soft-decision inner code is also part of the 5G
wireless standard, e.g., with a polar inner code and a CRC
outer code as described above; see [59].

C. SIC rates via Gibbs sampling

This section presents results for 𝐼𝑞,b-SIC where the APPs are
approximated by Gibbs sampling. The results are compared to
𝐼𝑞,SIC where the APPs are computed via the FBA. To avoid
stalling at high SNR, we use 𝑁par = 20 parallel samplers and
perform 𝑁iter = 60 iterations per sampler. The first few (here,
ten) iterations are discarded (the so-called burn-in period). For
every SNR, we use a line search with a training set of 10×103

symbols to optimize the confidence parameter 𝜂 with respect
to 𝐼𝑞,b-SIC. We use a binary reflected Gray code to label the
elements in the alphabet A.

Fig. 8 shows results for 𝐿 = 30 km and sinc pulses and plots
the SIC rates 𝐼𝑞,b-SIC for 4-ASK, 8-ASK, and 𝑆 = 1, . . . , 4,
where the APPs are estimated via sampling. Using (29), we
have 𝐼SIC ≤ 𝐼b-SIC, and for a sufficiently large 𝐾 this should
be reflected in Fig. 8. The figure shows that 𝐼𝑞,SIC ≤ 𝐼𝑞,b-SIC
for 𝑆 = 1 and low SNR. The sampler still stalls at high SNR,
and the rates saturate. PAM and SQAM behave similarly when
comparing 𝐼𝑞,SIC computed via the FBA to 𝐼𝑞,b-SIC computed
via Gibbs sampling. These results are omitted. As 𝑆 increases,
the rates 𝐼𝑞,b-SIC via Gibbs sampling approach the JDD curve
at low and medium SNR, but not at high SNR. Remedies for
this behavior include more iterations and parallel samplers.

Fig. 9 shows the SIC rates 𝐼𝑞,b-SIC with Gibbs sampling for
𝐾 = 9. Complexity prohibits using the FBA to create reference
plots. ASK and PAM constellations achieve the maximum SE
of log2 𝑀/(1 + 𝛼) for 𝑀 = 8, 16. For 𝑀 = 32, both curves
saturate due to ISI; this can be resolved using 𝐾 > 9. ASK
gains up to 2.6 dB over PAM for 𝑀 = 32. 𝑀-SQAM saturates
at lower rates, likely because it is difficult to distinguish the
phases. Two options to improve performance are increasing 𝐾
and using modulations that avoid phase ambiguities.

Fig. 10 shows SIC rates for 𝑆 = 4, 𝐾 = 9, and 4-ASK
when using Gibbs sampling with 𝑁iter = 1, 2, 5, 10, 20, 50
iterations after the burn-in period. Observe that more iterations
are needed for high SNR and that 𝑁iter can be reduced at the
cost of only slightly lower rates.
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D. Complexity and Latency

A practical complexity comparison requires hardware con-
siderations, which is beyond the scope of the paper. Table II
compares the number of multiplications required: the FBA
complexity is exponential in the memory 𝐾 , while the Gibbs
sampling complexity is quadratic in 𝐾 . Similarly, the FBA
complexity is exponential in the number 𝑚 of bit levels since
|A| = 𝑀 = 2𝑚, while the Gibbs sampling complexity is linear
in 𝑚. We remark that the complexity of Gibbs sampling may
be reduced at intermediate SNRs; see Fig. 10.

SIC increases latency by approximately a factor of 𝑆 as
compared to SDD; see Sec. IV-B. One may reduce the
detection latency by precoding or choosing transmit pulses
with small memory; see [6], [8].

VIII. CONCLUSION

Three receiver architectures were compared for DD re-
ceivers with oversampling: JDD, SDD, and SIC. SDD exhibits
significant rate loss compared to JDD, especially for BM. SIC

with MLC/MSD can approach JDD performance with only
a few SIC stages. Simulations with polar codes showed that
BM can significantly outperform intensity modulation (IM)
for practical receivers. Gibbs sampling reduces the detector
complexity as compared to the FBA. Simulations at low SNR
showed that a few iterations suffice to achieve rates close to
the JDD rates. At high SNR, Gibbs sampling can stall.

There are many open research problems. For example,
symmetric constellations exhibit phase ambiguities that mo-
tivate the use of asymmetric constellations, pulse shaping, or
probabilistic constellation shaping. Similarly, one may analyze
performance with noise before DD, e.g., shot noise or noise
from transmitter components.

APPENDIX

This appendix treats phase ambiguities for pulses symmetric
about 𝑡 = 0, such as FD-RC with CD, and symbol alphabets A
with phase symmetries, such as 𝑀-ASK. A similar discussion
can be found in [6, Sec. II]. Our main interest is high SNR,
so consider the noise-free SLD output

𝑦′ (𝑡) =
�����∑︁
𝜅

𝑋𝜅 𝑔tx (𝑡 − 𝜅𝑇𝑠)
�����2 (47)

At 𝑡 = 0, we have

𝑦′ (0) = |𝑋0 |2 · |𝑔tx (0) |2 (48)

and similarly for all even samples; at 𝑡 = 𝑇𝑠/2 we have

𝑦′ (𝑇𝑠/2) =
�����∑︁
𝜅

𝑋𝜅 𝑔tx (𝑇𝑠/2 − 𝜅𝑇𝑠)
�����2

=

�����∑︁
𝜅≥1

(𝑋𝜅 + 𝑋1−𝜅 ) 𝑔tx (𝑇𝑠/2 − 𝜅𝑇𝑠)
�����2 (49)

and similarly for all odd samples. One loses the phase infor-
mation in the even samples (48), and there is symmetric ISI
in the odd samples. This symmetry can be problematic if A
has a ±1 phase symmetry, for example.

To illustrate, consider BPSK with A = {±1} and a mis-
matched receiver that accounts for only the first pulse values
𝑔tx (±𝑇𝑠/2) in (49). Suppose the initial and final states are 𝑥0
and 𝑥𝑛+1, respectively. The resulting approximation of (49) is

𝑦′ (𝑇𝑠/2) ≈ 2 (1 + 𝑋0𝑋1) |𝑔tx (𝑇𝑠/2) |2 (50)

and we obtain the string of normalized odd samples{
𝑦′ (𝜅𝑇𝑠 + 𝑇𝑠/2)
2|𝑔tx (𝑇𝑠/2) |2

− 1
}𝑛+1

𝜅=0
≈ 𝑥0𝑋1, 𝑋1𝑋2, . . . , 𝑋𝑛𝑥𝑛+1. (51)

The expression (51) shows that the SLD operates similarly
to a differential detector on the odd samples, which explains
why differential coding is useful. In fact, without differential
coding, SDD is useless if 𝑥0 = 𝑥𝑛+1 = 0 because 𝑃𝑋𝜅 |Y (𝑎 |y) =
1/2 for 𝑎 = ±1. Moreover, SDD is severely hampered for large
𝑛 if 𝑥0 ∈ {±1} and 𝑥𝑛+1 ∈ {±1}, since SDD must first detect
𝑋1 or 𝑋𝑛, and then successively the remaining symbols.
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N. Hanik, and G. Kramer, “Achievable rates for short-reach fiber-optic
channels with direct detection,” J. Lightw. Technol., vol. 40, no. 12, pp.
3602–3613, 2022.

[11] A. Sheikh, A. Graell i Amat, and G. Liva, “Achievable information rates
for coded modulation with hard decision decoding for coherent fiber-
optic systems,” J. Lightw. Technol., vol. 35, no. 23, pp. 5069–5078,
2017.

[12] G. Liga, A. Alvarado, E. Agrell, and P. Bayvel, “Information rates of
next-generation long-haul optical fiber systems using coded modulation,”
J. Lightw. Technol., vol. 35, no. 1, pp. 113–123, 2017.

[13] H. Pfister, J. Soriaga, and P. Siegel, “On the achievable information rates
of finite state ISI channels,” in IEEE Global Telecommun. Conf., vol. 5,
2001, pp. 2992–2996 vol.5.

[14] R. Müller and W. Gerstacker, “On the capacity loss due to separation
of detection and decoding,” IEEE Trans. Inf. Theory, vol. 50, no. 8, pp.
1769–1778, 2004.

[15] C. Douillard, M. Jézéquel, C. Berrou, D. Electronique, A. Picart, P. Di-
dier, and A. Glavieux, “Iterative correction of intersymbol interference:
turbo-equalization,” Eur. Trans. Telecommun., vol. 6, no. 5, pp. 507–511,
1995.

[16] X. Wang and H. V. Poor, “Iterative (turbo) soft interference cancellation
and decoding for coded CDMA,” IEEE Trans. Commun., vol. 47, no. 7,
pp. 1046–1061, 1999.

[17] S. Ten Brink, G. Kramer, and A. Ashikhmin, “Design of low-density
parity-check codes for modulation and detection,” IEEE Trans. Com-
mun., vol. 52, no. 4, pp. 670–678, 2004.

[18] U. Wachsmann, R. F. Fischer, and J. B. Huber, “Multilevel codes:
Theoretical concepts and practical design rules,” IEEE Trans. Inf.
Theory, vol. 45, no. 5, pp. 1361–1391, 1999.

[19] J. B. Soriaga, H. D. Pfister, and P. H. Siegel, “Determining and
approaching achievable rates of binary intersymbol interference channels
using multistage decoding,” IEEE Trans. Inf. Theory, vol. 53, no. 4, pp.
1416–1429, 2007.

[20] L. Bahl, J. Cocke, F. Jelinek, and J. Raviv, “Optimal decoding of
linear codes for minimizing symbol error rate,” IEEE Trans. Inf. Theory,
vol. 20, no. 2, pp. 284–287, 1974.

[21] D. J. C. MacKay, Information Theory, Inference and Learning Algo-
rithms. Cambridge University Press, 2003.

[22] V. Buchoux, O. Cappé, and É. Moulines, “Turbo multiuser detection for
coded DS-CDMA systems: A Gibbs sampling approach,” in Asilomar
Conf. Signals, Sys., Computers, vol. 2, 2000, pp. 1426–1430.

[23] X. Wang and R. Chen, “Adaptive Bayesian multiuser detection for
synchronous CDMA with Gaussian and impulsive noise,” IEEE Trans.
Signal Process., vol. 48, no. 7, pp. 2013–2028, 2000.

[24] T. M. Schmidl, A. Gatherer, X. Wang, and R. Chen, “Interference
cancellation using the Gibbs sampler,” in IEEE Vehic. Technol. Conf.
Fall 2000, vol. 1, 2000, pp. 429–433.

[25] Z. Shi, H. Zhu, and B. Farhang-Boroujeny, “Markov chain Monte Carlo
techniques in iterative detectors: a novel approach based on Monte Carlo
integration,” in IEEE Global Telecommun. Conf., vol. 1, 2004, pp. 325–
329.

[26] Z. Yang and X. Wang, “Turbo equalization for GMSK signaling over
multipath channels based on the Gibbs sampler,” IEEE J. Sel. Areas
Commun., vol. 19, no. 9, pp. 1753–1763, 2001.

[27] B. Farhang-Boroujeny, H. Zhu, and Z. Shi, “Markov chain Monte
Carlo algorithms for CDMA and MIMO communication systems,” IEEE
Trans. Signal Process., vol. 54, no. 5, pp. 1896–1909, 2006.

[28] R.-H. Peng, R.-R. Chen, and B. Farhang-Boroujeny, “Markov chain
Monte Carlo detectors for channels with intersymbol interference,” IEEE
Trans. Signal Process., vol. 58, no. 4, pp. 2206–2217, 2009.

[29] ——, “Low complexity Markov chain Monte Carlo detector for channels
with intersymbol interference,” in IEEE Int. Conf. Commun., 2009, pp.
1–5.

[30] F. M. Kashif, H. Wymeersch, and M. Z. Win, “Monte Carlo equalization
for nonlinear dispersive satellite channels,” IEEE J. Sel. Areas Commun.,
vol. 26, no. 2, pp. 245–255, 2008.

[31] G. Agrawal, Fiber-Optic Communication Systems, 4th ed. John Wiley
& Sons, Inc., Hoboken, NJ, USA, 2010.

[32] D. Plabst, F. J. García-Gómez, T. Wiegart, and N. Hanik, “Wiener filter
for short-reach fiber-optic links,” IEEE Commun. Lett., vol. 24, no. 11,
pp. 2546–2550, 2020.
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