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Linear Model-Based Testing of ADC Nonlinearities

Carsten Wegener and Michael Peter Kennedy

Abstract—In this brief, we demonstrate the procedures of linear model-
based testing for the example of a 12-b Nyquist-rate analog-to-digital con-
verter (ADC). In a production test environment, we apply this technique to
two wafer lots of devices, and we establish that the model is robust with re-
spect to its ability to reduce the uncertainty of the test outcome. Reducing
this uncertainty is particularly beneficial for higher resolution devices, for
whichmeasurement noise increasingly corrupts themeasured “signal” that
is the nonlinearity of the device under test.

Index Terms—Linear modeling, noise-induced test uncertainty, specifi-
cation test, test cost reduction.

I. INTRODUCTION

Testing the static linearity specifications of an N -bit ADC requires
one to estimate the integral nonlinearity (INL) at each of the 2N con-
verter codes. Traditionally, this estimate is obtained from an all-codes
measurement of the INL characteristic.
When developing a production test for an ADC, a tradeoff between

the measurement uncertainty and the data acquisition time has to be
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Fig. 1. Linear model-based testing of an N -bit converter: take a (noisy)
measurement ~b of the device characteristic to obtain the least-squares estimate
~x of the model parameter vector that is used to predict ^b, an approximation of
the unknown noise-free device characteristic b 2 .

performed. For an uncertainty � prescribed as a fraction of the least
significant bit (LSB), the IEEE Standard 1241 [1] provides the fol-
lowing relationship:1

Ns �
1

�2
(1)

between the desired value of � and the number Ns of converter sam-
ples to be acquired. Thus, in order to halve the uncertainty �, the
number of acquired samples needs to be quadrupled, which, for high-
resolution parts, soon exhausts the typical test time budget [3].
Linear model-based testing has been proposed as an alternative ap-

proach to lower the test uncertainty without the need to increase the
number of acquired samples [4]. An overview of this approach is de-
picted in Fig. 1. The all-codes INL measurement result, denoted by a
vector~b 2 2 is used to estimate themodel parameter vector ~x 2 n,
where n denotes the number parameters in the model. Based on the es-
timated model parameter vector ~x, the INL characteristic of the device
is predicted as b̂ 2 2 .
Note that the estimate ~x is obtained by solving a linear system of 2N

equations in n unknowns and, in the (typical) case of n < 2
N , the solu-

tion is obtained in the least-squares sense which provides the noise-re-
duction capability of model-based testing. Thus, the uncertainty of the
predicted all-codes INL characteristic b̂ can be lower than the uncer-
tainty of the measured characteristic ~b.
Reducing the uncertainty of the test outcome by model-based testing

comes at a computational premium for estimating the model parame-
ters and predicting the all-codes INL. In the N = 12-b case study
presented in the remainder of this brief, the uncertainty is, by a factor
of four, reduced for an additional computation time equivalent to half
the data acquisition time. Achieving this reduction in uncertainty of the
test outcome without model-based testing, one would need to increase
the number of acquired samples by a factor of 16 based on (1).
The contributions of this brief are as follows:

• we quantify the influence of measurement noise on the test out-
come and demonstrate the capability of the linear model to reduce
this influence;

• we distinguish between contributions to the uncertainty of the
predicted INL characteristic by the model’s lack-of-fit and by the
measurement noise;

• we develop an approach to reduce the dominant noise-induced
contribution; and

• we verify the robustness of the model-based approach in a pro-
duction test environment.

1For the 12-b test vehicle used here, we have verified this relationship exper-
imentally as reported in [2].
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II. TEST UNCERTAINTY AND LINEAR MODELING

As the aim of model-based testing is to reduce the uncertainty of the
test outcome, we first quantify the noise-induced uncertainty associ-
ated with the test measurements. Then we build a linear model of the
manufacturing process-induced INL-causing mechanisms. This model
allows us to predict a device’s all-codes INL characteristic from a noisy
test measurement. Finally, we quantify the uncertainty associated with
this prediction and compare this uncertainty with the previously deter-
mined measurement uncertainty.

A. Quantifying Test Uncertainties

LetB0 denote a set of test characteristics, where b0 2 B0 is a column
vector whose elements represent the INL characteristic determined for
a converter under test; thus, for an N = 12-b analog-to-digital con-
verter (ADC), b0 2 4096. Furthermore, letB denote a set of reference
characteristics with b 2 B being the noise-free characteristic corre-
sponding to b0 2 B0.
A performance test for a min/max-type data sheet specification limit

b� rejects all devices for which

kb0k1 +� > b� (2)

is determined. With a guard-band [5] of � � kb0 � bk1, this test
implies that the device reference characteristic b meets the data sheet
performance specification kbk1 < b�. In the following, we quantify
the uncertainty � based on

emax(B
0
; B) = mean8(b ;b)2(B ;B) kb0 � bk1

+3 � std8(b ;b)2(B ;B) kb0 � bk1 : (3)

The initial test implementation produces a histogram of 218 converted
samples applied to the 12-b ADC under test. From this histogram, the
INL characteristic ~b 2 4096 is determined as described in [6]. In order
to obtain a reference characteristic b for the tested device, we perform
a second measurement with the number of histogrammed samples in-
creased by a factor of two hundred.2 For a sample set of w = 191
devices, we measure the test and reference characteristics in order to
form the columns of two matrices ~B andB, respectively. This notation
allows us to determine emax( ~B;B) which characterizes the measure-
ment uncertainty, denoted as ~emax = 260 mLSB, for the given mea-
surement setup.
Note that the larger the test uncertainty �, the more devices which

meet the data sheet performance limits kbk1 < b� are rejected based
on (2). Thus, it is desirable to reduce the test uncertainty � which, in
the case of a test being based on the measured characteristic ~b, evalu-
ates to ~emax = 260 mLSB. In order to halve the value of ~emax, the
number of samples in the histogram needs to be quadrupled, which
is costly in terms of test time. An alternative approach to reducing the
test uncertainty is linear model-based testing described in the following
subsection.

B. Linear Modeling

The nonlinearity characteristic of a device is approximated as fol-
lows:

b � Ax + b
0 (4)

where b0 denotes the “nominal” device characteristic, the deviation
from which is modeled as a weighted sum of the columns of the model

2Note that, by increasing the number of samples two-hundred fold, the mea-
surement uncertainty reduces, according to (1), by a factor of more than 14 and
is thus negligible compared to the uncertainty associated with ~b.

Fig. 2. Lack-of-fit �e versus model order n evaluated over the set of
modeling devices B; �e = 49:3 mLSB for n = 46.

matrix A. The weights are the elements of the model parameter vector
x.
The nominal characteristic b0 is determined as the average of the

reference characteristics contained in the sample set of devices, i.e., b0

denotes the row-mean of the matrix B. For convenience, we form a
matrix B0 of the same shape as B, but whose columns represent the
nominal device characteristic b0.
With this notation, the model matrix A is derived from the first n

columns of U which is a result of singular value decomposition (SVD
[7])

(B �B
0) = U�V T

: (5)

This choice of the model matrix minimizes, for a particular value of
n, the lack-of-fit in the rms norm [7]. However, we are testing for
min/max-type specifications and thus the required model order n
should be determined based on the lack-of-fit in the maximum-norm
k � k1.
To determine the model’s fitted characteristic �b for a device charac-

teristic b 2 B, we derive the model matrix A from B n fbg, solve (4)
in the least-squares sense for x 2 n, and compute

�b = Ax + b
0
: (6)

Iterating this delete-one-cross-correlation procedure [8] for all the de-
vices b 2 B, we obtain amatrix �B of fitted characteristics which allows
us to determine the lack-of-fit �emax = emax( �B;B).
As the lack-of-fit depends on the model order n, we graph in Fig. 2

the value of �emax versus n. The plot shows that, with increasing model
order n, the lack-of-fit decreases as the model is increasingly able to
represent the INL-causing error mechanisms. However, for n > 46,
the lack-of-fit levels off; this leads us to choose n = 46, for which
�emax evaluates to 49.3 mLSB.
In production testing, the model parameter vector can be estimated

by solving

~b � A~x+ b
0 (7)

in the least-squares sense for ~x 2 n. The predicted device charac-
teristic b̂ = A~x + b0 is an approximation of b, the uncertainty of
which we refer to as “prediction error” êmax = emax(B̂; B). For
n = 46, this error evaluates to 81 mLSB, which establishes the po-
tential of model-based testing to reduce the measurement uncertainty

Authorized licensed use limited to: UNIVERSITY COLLEGE CORK. Downloaded on March 26,2010 at 09:50:00 EDT from IEEE Xplore.  Restrictions apply. 



IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 51, NO. 1, JANUARY 2004 215

~emax = 260mLSB to the smaller uncertainty êmax associated with the
model’s prediction.

III. REDUCING THE PREDICTION ERROR

There are two primary contributions to the model’s prediction error
êmax: one is the model’s lack-of-fit �emax and the other is the noise-in-
duced uncertainty of the estimated model parameter vector ~x. In this
section, we develop an approach to reducing the dominant noise-in-
duced contribution.

A. Prediction Error Contributions

For a device, the prediction error is characterized by (b̂� b), which
we can also write as

b̂� b = (b̂� �b)

=A(~x�x)

+ (�b� b)

lack-of-�t

: (8)

From this notation, it becomes obvious that the prediction error is due
to two contributions: one from the lack-of-fit and another from the un-
certainty of the model parameter estimate ~x. Using (4) and (7), we de-
termine that this uncertainty

(~b� b) � A(~x� x) (9)

is merely due to the measurement noise contribution (~b� b).
In the following, we refer to �x = (~x � x) as the noise-induced

uncertainty of the model parameter estimate which gives rise to the
noise-induced prediction error �emax = emax(A �X; 0), with �X being
the solution of ( ~B � B) � A �X . For the model of order n = 46
derived previously, the value of �emax is 67 mLSB, which is larger than
�emax = 49:3 mLSB and, therefore, dominates the model’s prediction
error êmax = 81 mLSB.
An obvious way of reducing the noise-induced prediction error is to

reduce the measurement uncertainty ~emax. This approach is costly in
terms of test time, however, due to the required increase in the number
of acquired samples. An alternative is to adapt the model in order to
reduce the measurement noise-induced uncertainty of the model pa-
rameter estimate.

B. Measurement Noise Influence

When estimating the model parameter vector by solving (7) in the
least-squares sense, the assumption is that the measurement noise-in-
duced INL values are independent and identically distributed. In this
case, the least-squares solver performs optimally in reducing the mea-
surement uncertainty (~b � b) to the uncertainty (~x � x) of the model
parameter estimate.
This reduction becomes explicit in (9), which we can write for all

devices b 2 B as follows: ( ~B�B) � A �X: In order to test the validity
of the Gaussian noise assumption on ( ~B � B), we perform SVD as
follows:

( ~B �B) = ~U ~�~V T (10)

and we denote the singular values, i.e., the diagonal elements of ~�, as
~�1; ~�2; . . . ; ~�w . The Gaussian-noise assumption leads to an estimate
~�0

1 for the first (and largest) singular value. Withm = 4096 and w =
191 denoting the number of rows and columns of ( ~B�B), respectively,
the estimate ~�0

1 is given in [9] as follows:

~�0

1 = ~� 1 +
w

m
with ~� =

1

w

w

i=1

~�i: (11)

Fig. 3. First ten singular values ~� of the measurement noise (marked by
crosses) and estimated singular value ~� for pure Gaussian noise assumption
(marked by horizontal dashed line).

In Fig. 3, we show the first ten singular values of themeasurement noise
matrix ( ~B � B) and indicate by a horizontal dashed line the estimate
~�0

1 of the first singular value.
That the first two singular values ~�1 and ~�2 are significantly above

the maximum singular value ~�0

1 expected for the Gaussian measure-
ment noise assumption indicates that the elements in (~b�b) are not in-
dependent; this degrades the noise reduction achievable when solving
(9). In the following, we present a method to whiten the noise by first
estimating and subsequently removing these dependencies from (~b �
b) before estimating the model parameters using the weighted least-
squares method [10].

C. Whitening Measurement Noise

Using SVD in (10), we can extract the two components in the mea-
surement noise matrix ( ~B�B) for which the singular values are above
~�0

1. The associated singular vectors, i.e., the first two columns of ~U , are
shown in the top and middle plot of Fig. 4.
The columns of ~U that are associated with singular values which are

significantly above the noise floor are abbreviated byD. WithD being
orthogonal by construction, DT is the pseudo-inverse of D. Thus, we
can extract from a given measurement noise vector (~b � b) the non-
Gaussian noise components by computingD(DT (~b�b)). Subtracting
these non-Gaussian components from (~b� b) results in

b
� = (~b� b)�D(DT (~b� b)) (12)

whose elements are independent.
The standard deviation of the elements in b� versus code is shown

in the bottom part of Fig. 4. The bow-shape can be explained by the
pdf of the sinewave signal histogrammed for deriving the INL charac-
teristics of the devices. At mid-scale of the sinewave, the pdf assumes
its minimum, causing a maximum of the measurement uncertainty, i.e.,
the standard deviation of the noise. At either end of the code range, the
pdf of the sinewave approaches its maximum and, thus, minimizes the
measurement noise-induced uncertainties.
The method of weighted least-squares [7] equalizes the standard de-

viation at each code before estimating the least-squares solution for the
model parameters. For the ith element in b�, we assign

si =
1; if std (b�i ) = 0

1

std(b�)
; otherwise (13)
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Fig. 4. First two singular vectors of measurement noise matrix ( ~B �B) and
standard deviation of b versus code.

and denote S = diag(s1; s2; . . . ; s4096). Each element in b� is scaled
by si, i.e., we multiply S �b� with the result that the standard deviations
of the elements in the column vector (S � b�) are equalized. Thus, the
vector

S � ((~b� b)�D(DT (~b� b))) (14)

approximates the white-noise assumption of the least-squares method
more closely than the measurement noise vector (~b� b).
The model extraction method (5) needs to be extended to account

for the impact on the model parameter estimation of our method of
whitening the measurement noise. Instead of (5), we perform SVD as
follows:

B �B0

S � [(B �B0)�D(DT (B �B0))]
= U�V T (15)

and extract the model that is an (8192 � n)-matrix from the first n

columns of U . From this matrix, we form two matrices
 �
A and

�!
A by

taking the top and bottom 4096 rows, respectively.

The noise-induced prediction error is computed as �b =
 �
A �x based

on �x, the least-squares solution of

S � [(~b� b)�D(DT (~b� b))] �
�!
A �x: (16)

For n = 46, the noise-induced prediction error evaluates to �emax =
43 mLSB, which is significantly lower than the value of 67 mLSB we
obtained without whitening the noise.
On the production line, a device measurement is performed, denoted

by ~b. The model parameter vector ~x is estimated by solving

S � [(~b� b0)�D(DT (~b� b0))] �
�!
A ~x (17)

in the least-squares sense. Then, the predicted device response b̂ =
 �
A ~x + b0 is computed.
Since the noise-induced uncertainty of the estimated model

parameter vector ~x is reduced, the prediction error reduces to
êmax = 64 mLSB, which constitutes a 20% improvement compared
to the 81 mLSB for the prediction error without whitening the
measurement noise.

Fig. 5. Probability density versus INL performance for wafers 1 and 2 (shown
as histograms) and for the modeling set (shown as a solid curve).

IV. IMPLEMENTATION IN PRODUCTION TEST

A. Test Program Implementation

For the 12-b ADC, a test program was available that performed the
linearitymeasurement based on histogramming 22 periods of a low-fre-
quency sinewave. Based on this measured INL characteristic, denoted
by a vector ~b 2 4096, the predicted device characteristic b̂ is com-
puted. Then, the worst-case INL value, i.e., kb̂k1, is determined and,
in order to pass or fail the device under test, the test condition (2) is
applied as follows:

kb̂k1 +� < b� (18)

with� = êmax = 64 mLSB accounting for the prediction error.
The computations required to derive b̂ from a measurement ~b add,

in our implementation, half the time required for taking the measure-
ment ~b. Equating the measurement time to T , the test time using the
model-based approach is 1:5T , which achieves a reduction of the test
uncertainties to êmax = 64 mLSB.
When targeting the same reduction of the test uncertainty by accu-

mulating more samples in the histogram, the measurement time would
increase by a factor of (260=64)2 � 17, thus resulting in a total test
time of 17T . With our implementation of model-based testing, we ob-
tain a speed-up by a factor of 17T=1:5T � 11 for the same test accu-
racy of � = 64 mLSB.

B. Verification of Model Performance

We have applied the modified test program to two wafer lots of ap-
proximately 8000 devices each. In each device lot, we found six devices
whose measured characteristic ~b violated the customer INL specifica-
tion limits b� = 1:5 LSB by more than ~emax = 260mLSB, thus failed
the test even before the linear model was applied.
Excluding devices that grossly violate the INL specifications, we

show in Fig. 5 histograms of the probability density versus the exhib-
ited most positive and negative INL values. We can compare these his-
tograms to the pdf we obtain for the modeling set by overlaying this
pdf as a solid curve in the figure. This comparison indicates that wafer
1 has an INL performance spread close to the modeling set, while the
histogram for wafer 2 indicates a significantly wider spread of the ex-
hibited INL values.
That wafer 2 is “different” from wafer 1 is also indicated by the

results for another test that was performed on the devices. In contrast
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TABLE I
LACK-OF-FIT �e AND PREDICTION ERROR ê FOR A

MODEL OF ORDER n = 46 AND REFERENCE MEASUREMENTS
b USING p SINEWAVE PERIODS

to wafer 1, half of the devices from wafer 2 failed the SINAD test [1],
a linearity test performed under dynamic conditions, i.e., with a high-
frequency sinewave input.
The question arises whether themanufacturing process excursion ex-

perienced by wafer 2 degrades the model performance we derived ear-
lier for the modeling set of devices. Such a degradation can be caused
by error mechanisms that were not present or were of minor signifi-
cance in the set of devices used for model building [11].
In order to verify that model performance is sustained, we took a

subset of 203 devices from wafer 2 and measured the INL characteris-
tics twice: once at normal production accuracy, denoted by ~b, and once
with twenty-five times as many histogrammed samples to derive the
reference characteristic b. From these measurements, we can estimate
the model’s lack-of-fit and the prediction error, the results of which are
summarized in Table I.
For the prediction error, we determined in Section III-C that êmax =

64mLSB. From the measurements of the 203 devices fromwafer 2, we
determine this prediction error to be 85 mLSB. The gap between these
two results can be explained by the uncertainties of the measurements
used as the reference b.
Recall that, in the model building stage, the reference measurement

b was obtained by histogramming 4400 periods of the sinewave, i.e.,
200 times as many periods as used in production to obtain ~b. Since
the measurements for the 203 devices from wafer 2 were taken during
the production test run, measurement time was limited, and only
550 sinewave periods were histogrammed. The smaller number of
histogrammed samples leads to significant noise-induced uncertainties
in the reference b which tends to increase the numbers we obtain for
the lack-of-fit �emax and the prediction error êmax, respectively.
In order to estimate the magnitude of this increase, we deter-

mined “reference” characteristics for the modeling set of devices
by histogramming 550 periods only. Recomputing the prediction

error êmax for the model yields 82 mLSB. This value is comparable
to the 85 mLSB we obtain for the 203 devices from wafer 2 and,
therefore, the results in Table I do not suggest a degradation of the
model performance for wafer 2. This sustained model performance
is achieved despite the fact that wafer 2 experienced an abnormal
manufacturing process excursion that led to a 50% drop in yield.

V. CONCLUSION

For the example of a 12-b Nyquist-rate ADC, we establish that the
uncertainty of the test outcome can be reduced by model-based testing.
We implemented the test procedure in an industrial test environment
and achieve this reduction in one eleventh of the test time it takes with
the traditional approach of increasing the number of acquired converter
samples. Furthermore, by applying the model-based technique to two
wafer lots of devices, we established that the model is robust to signif-
icant manufacturing process excursions.
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