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Feedback Control of Limit Cycles: A Switching
Control Strategy Based on Nonsmooth

Bifurcation Theory
Fabiola Angulo, Mario di Bernardo, Member, IEEE, Enric Fossas, and Gerard Olivar, Member, IEEE

Abstract—In this paper, we present a method to control limit
cycles in smooth planar systems making use of the theory of
nonsmooth bifurcations. By designing an appropriate switching
controller, the occurrence of a corner-collision bifurcation is
induced on the system and the amplitude and stability properties
of the target limit cycle are controlled. The technique is illustrated
through a representative example.

Index Terms—Bifurcations, control, limit cycles, piecewise-
smooth dynamical systems.

I. INTRODUCTION

ONE OF THE most common sources of instability in ap-
plications is the onset of unwanted oscillatory behavior.

For instance, recent progress in nonlinear dynamics has shown
that so-called Hopf bifurcations can lead to the onset of such
oscillatory motion in a variety of different systems. Undesirable
stable oscillatory motion has been observed in aircraft systems
[1], mechanical devices, control systems and electrical circuits
[2], [3]. It has been shown that limit cycles associated to these
oscillations are usually locally stable and can, at times, coexist
with the desired steady-state behavior.

Classical control techniques can be used to suppress these un-
wanted oscillations by means of feedback control actions aimed
at changing the system dynamics over the entire region of in-
terest [4]. Thus, in the case where two or more different attrac-
tors exist, the controller objective is that of eliminating them,
taming the system dynamics onto a desired stable equilibrium
point. Many authors (see, for example, [5], [6] and the refer-
ences therein) have studied the problem of controlling bifurca-
tions within a smooth feedback framework. Examples include
the method based on manifold reduction presented in [6] and the
use of smooth nonlinear control laws discussed in [7] to tame a
limit cycle occurring in a flutter problem.
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Recently, it has been proposed that results from bifurcation
theory can be used to synthesize ad hoc control strategies for
nonlinear systems [8]–[10]. The main aim of this paper is to
present a novel approach to control limit cycles in planar dy-
namical systems. Namely, an appropriate switching controller
is synthesised by using results from the theory of bifurcation
in nonsmooth system. Rather than aiming at changing the entire
dynamics of the system of interest, we shall seek to design a con-
troller acting in a local neighborhood of the target limit cycle.
(For a review of the theory of nonsmooth bifurcations in dynam-
ical systems we refer the reader to [11], [12]). The analysis is
based on the study of the Poincaré map associated to the limit
cycle and relies on the theory of corner-collision bifurcations re-
cently presented in [13]. Namely we will show that it is possible
to control the amplitude of an oscillatory motion, or even sup-
press it (if unwanted) by means of a switching controller acting
in a relatively small neighborhood of the limit cycle. By appro-
priately selecting the switching manifolds and the control ac-
tion, it is possible to move the fixed point corresponding to the
target limit cycle on the Poincaré map and hence control the
cycle itself. In so doing, the control effort is low as control is
only activated in a small neighborhood of the cycle. To synthe-
size the controller, we will proceed in two separate stages. A
control law, based on cancellation, is used as a first step toward
the synthesis of a controller which instead will not rely on can-
cellation. To select the features of the limit cycles in a controlled
way, we will use the strategy to classify so-called border colli-
sions (or C-bifurcations) of fixed points of nonsmooth maps re-
cently presented in [14].

Note that we are not designing a controller to change the bi-
furcation properties of the system, but rather choosing a local
control strategy to place the system close to a known bifurcation
phenomenon. We will then use our analytical understanding of
such phenomenon to achieve the control goal, i.e., suppress or
modify the limit cycle of interest. Namely, the controller applied
to the system flow will be based on a switching action which is
designed by taking into account a nearby nonsmooth bifurca-
tion of the cycle under control and then influence the properties
of the associated Poincaré map in order to change its proper-
ties according to the classification strategy presented in [14]. In
so doing, we will do explicit use of the technique to derive the
approximate Poincaré map of the system analytically during the
control design stage. It is worth to note that although the method
also works to even suppress the limit cycle and obtain an equi-
librium point (nonlocal action) our analytical understanding of
the bifurcation phenomenon can only explain local changes (the
cycle amplitude variation, for example).
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The rest of the paper is outlined as follows. In Section II,
the proposed method to control limit cycles is presented. In
Section III, a brief description of corner collision is made. In
Section IV controller synthesis is explained. In Section V, an
example of application is shown. In the example the system
presents a limit cycle and the technique was successful. Finally,
the conclusions are presented in Section VI.

II. CONTROLLING LIMIT CYCLES THROUGH

CORNER COLLISION

Let us consider a general system of the form

(1)

where is a sufficiently
smooth and differentiable vector field over the region of interest,
say . For the sake of clarity, we assume that is
the identity (note that this assumption is not necessary for the
strategy presented here to be valid). Also, we suppose that, at
some parameter value, the system exhibits a stable limit cycle
of period , i.e., . We want to design a feed-
back controller to suppress such periodic oscillations or, alter-
natively, to select its characteristics (periodicity, amplitude etc.).
Note that while the control action will be applied on the con-
tinuous-time system, the aim is to change the properties of its
Poincaré map.

For this purpose our aim is to synthesise a controller based on
the theory of nonsmooth bifurcations. Namely, we will select a
switching feedback controller in order to vary the main fea-
tures of the local Poincaré map associated to the limit cycle of
interest. This in turn will allow the variation of the properties of
such local map and hence the local control of the cycle.

As it will be seen in Section III, locally to a corner collision
bifurcation point the Poincaré map can be estimated analyti-
cally as a piecewise-linear one. Thus, the main idea is for the
controller to put the system close to a corner collision bifurca-
tion event of the cycle of interest with an appropriately defined
switching strategy in state-space. In so doing, the controller
will switch from one configuration to the other whenever the
system trajectories cross the boundaries defining a corner-like
switching manifold in phase space. By varying the functional
form of the control signal, we will change the properties of the
local map and hence the main features of the fixed point corre-
sponding to the cycle of interest.

In so doing we need to:

1) choose an appropriate Poincaré section and define the
Poincaré map for the system under investigation;

2) synthesize a feedback controller to change the properties
of this map, i.e., choose (i) the corner region in phase
space and (ii) the controller functional form;

3) validate the effectiveness of the controller through numer-
ical simulations

First, we give a brief overview of the theory of corner-colli-
sion bifurcations.

Fig. 1. Scheme of a border-collision bifurcation which destroys a limit
cycle. (a) Original limit cycle. (b) Border-collision bifurcation. (c) Limit cycle
destroyed.

III. CORNER-COLLISION: A BRIEF DESCRIPTION

In many control systems and electronic switching devices,
switching conditions may be governed by several overlapping
inequalities. A generic feature of such examples is that the dis-
continuity boundary has a corner-type singularity formed by the
intersection between smooth codimension one surfaces

and at
a nonzero angle.

The locus of corners will in general be a -dimen-
sional subset of the phase space . The passage of a trajectory
through a point in is a nonsmooth bifurcation event be-
cause, in a neighborhood of the corner, there are distinct trajec-
tories that do not behave similarly with respect to regions and

on either side of (the border of regions and ), which
is a subset of . If such a corner-colliding trajectory is
part of an isolated periodic orbit , we shall refer to this as
a corner-collision grazing bifurcation, or ‘corner collision’ for
short (this is the case, for example, of dc/dc buck converters [2]).
Fig. 1 illustrates the geometry that we are considering.

Here, there are two different regions, namely and . In
each zone the system presents a different dynamical behavior
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described by different vector fields. Whenever the boundary be-
tween the two regions is crossed (i.e., whenever the trajectory
crosses the corner), the system vector field looses continuity.

We assume that the system of interest is planar and can be
described as

if
if

(2)

As some parameter is varied, a corner collision can occur
where a limit cycle hits the tip of the corner region. Further
parameter variations can lead to several different scenarios. To
classify the possible scenarios following a corner collision the
key issue is to be able to construct the Poincaré normal form map
of the cycle undergoing the bifurcation. Recently, it was shown
that a local map describing the dynamics of the system close to
a corner-collision point can be derived by using the concept of
discontinuity map [13].

Namely, suppose we want to construct a Poincaré map for
the cycle of interest. Then, in the absence of the corner, the map
would be defined by considering the system flow from some
suitable Poincaré section back to itself. The discontinuity map
is a local map that describes the correction that needs to be made
to trajectories that pass through region close to the corner in
order to solve the global Poincaré map. It was shown that such
map is locally piecewise linear so that a corner-collision bifur-
cation of the flow implies a border collision of the associated
fixed point of the map [15].

Next, we calculate the Poincaré section and the discontinuity
map.

A. Poincaré Map

As our analysis is concerned with a planar dynamical system,
the Poincaré map is one-dimensional. In the following, we will
determine the behavior of the fixed point associated to a limit
cycle undergoing a corner-collision event. Initially, we calcu-
late the Poincaré map, assuming that the evolution of the whole
system in state space is through the flow associated to the
vector field . The point at which corner collision occurs will
be identified as and corresponds to the intersection of and

. Without loss of generality, we assume that

(3)

(4)

and that the flow is transversal to . A convenient subset
is therefore chosen as a suitable Poincaré section for

the flow. We consider also
. Clearly, the tip of the corner is located at the point

.
Say a fixed point of the map defined on associated

to a limit cycle of the whole flow in . To construct the map
from back to itself, we consider a perturbation of such point

for a small . Note that if the limit
cycle evolves entirely in region while, if , then
the cycle penetrates the corner for some time.

Let us first consider the case where the limit cycle lies entirely
to the left of the corner (i.e., assume to be such that

Fig. 2. Scheme of the discontinuity map.

). Let be the minimum time for which the system
evolves from until it hits again. Then

is fulfilled. To leading order, we can then write that the Poincaré
map can be written as

(5)

where

(6)

Now we construct the Poincaré map when the cycle interacts
with the corner, i.e., . We follow the same pro-
cedure first discussed in [13]. As it is schematically shown in
Fig. 2, to obtain the Poincaré map in this case, we need to com-
pose as derived above with the so-called discontinuity map
(i.e., a map that makes the appropriate corrections to in order
to take into account the fact that the system trajectory is now
crossing into region ).

To obtain such correction, from initial conditions on
we first solve the equations given by until is
reached, at a point . This map from to will be

. Then, from we solve the equations for the reverse
flow until we hit again . In this case the map from

to will be denoted by . The correction that needs
to be made to , i.e., the discontinuity mapping, is then given
by .

Finally, to obtain the Poincaré map from back to itself, in
this case, we compose the three maps, i.e.,

Concretely, let and be the minimum times
verifying

and
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Hence, we have

(7)

and

(8)

As shown in [13] and discussed below, it is possible to obtain
an analytical estimate of the discontinuity mapping by consid-
ering a set of appropriate approximations.

B. Discontinuity Map

Equipped with the definition of the map given above, we
can now compute the discontinuity map analytically in order
to obtain the analytical expression of the global Poincaré map.
Following the methodology presented in [13], when the trajec-
tory in collides with the corner zone we solve the equations
through a first order approximation of the flow. Hence, if and

are the components of the vector field in region we have

with , and is evaluated at the
corner point. The intersection of the flow with yields

(9)

This implies that

(10)

With this time, the intersection point is

(11)

Now we proceed to find the time that has to be spent for the
original system in reverse time starting at the point
until the surface is crossed. Doing an expansion to first order
of the original flow, being and the components of the
vector field at the corner point, we have

Considering the second component only, we have

then, taking into account that

the reverse time can be found as

(12)

Hence, the discontinuity map is given by

or equivalently as

(13)

Note that the condition is always fulfilled with an ap-
propriate choice of the Poincaré section .

The discontinuity map can be written in a compact form as

if
if (14)

where

(15)

and

Hence, the Poincaré map is given by

if
if (16)

where is defined as in (6).
The derivation for the case of -dimensional nonsmooth sys-

tems undergoing corner collisions can be found in [13].

IV. CONTROL SYNTHESIS

According to the theory of corner collisions, as confirmed by
the derivations reported above, the Poincaré map of a limit cycle
undergoing such a bifurcation is piecewise-linear and dependent
on the vector fields inside and outside the corner. The corner is
also supposed such that sliding on its boundaries is not possible.
As before, we label the region inside the corner while the
region outside of it.

Without loss of generality, we select as the switching con-
troller defined by

if
if

(17)

with being the region (corner) limited by the manifolds
defined by and as depicted in Fig. 1.

With this choice of , the controlled system becomes

if
otherwise.

(18)

The control effort can be calculated in analytical form. Since
the rms value for a periodic signal is given by the -norm
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we can evaluate the rms value for the control signal in stationary
state once the amplitude of the limit cycle has been changed and
the system has stabilized. Taking into account that the signal
control acts during a time given by (10), then the rms value is

(19)

where is calculated from (10). Since is independent of
, the expression can be simplified to

(20)

A. Step 1: Choosing the Switching Strategy

In order for the control to be effective we need to select the
boundaries of regions and , i.e., define the corner in phase
space. According to the theory of corner collision, the corner
must be such that: 1) sliding or Filippov solutions are not pos-
sible on its boundaries; 2) it penetrates the cycle to be con-
trolled as one of its defining parameters is changed so that at
some critical parameter value the target limit cycle undergoes a
corner-collision bifurcation.

In order to avoid sliding mode [13] we choose and
so that

(21)

For simplicity, we suppose counterclockwise direction of the
vector field in neighborhood of corner collision point. We select

and as in Section II, with and being real constants.
It is easy to see that it is possible to rescale the system coordi-
nates so that a corner collision occurs when at the point
(0, 0). Therefore, varying , we can move the tip of the corner
and hence yield a corner-collision bifurcation. Without loss of
generality, we assume therefore that the corner collision bifur-
cation occurs at the point (0, 0).

From (14), we then have that the local interaction of the cycle
with the corner can be described by using the local mapping
given by

if

if (22)

where and are the components of the vector field evaluated
at the corner collision point (0, 0). Note that in order for the
mapping to be well defined we must have

(23)

(24)

Also, in order for the control to have an influence on the map
properties we must have

(25)

These conditions represent an important set of constraints on
the control design. The quantities above can be computed ana-

lytically by means of any algebraic manipulation software (see
Section V for a representative example of such computation).
The next step is to choose the control signal .

B. Choosing

1) Perfect Knowledge of : In the most general case, a
first choice for in (18) can be expressed as

(26)

where is a generic control function to be appropriately
chosen. This means that the control signal contains two actions:
the first compensates the nonlinear dynamic terms acting on the
system; the second, instead, allow us to select the desired dy-
namics within the corner.

The main disadvantage of this controller is that it relies on
perfect knowledge of the system vector field . This is a
rather strong assumption that can hardly be satisfied in realistic
applications. Thus, in Section IV-B2), we will show that control
can also be achieved successfully by removing the need for a
perfect cancellation of the nonlinear dynamics.

In what follows, to illustrate the main idea, we detail the
derivation of the controller, starting with the assumption that
cancellation of nonlinear dynamic is possible. With this choice
of the controller, the closed-loop system is given by

if
otherwise

(27)

where must be chosen so that (23)–(25) are satisfied. No-
tice that this excludes the case where is chosen as a purely
proportional action. In fact, in this case, and, there-
fore, the control would not affect the map to leading order but
introduces higher order effects which are beyond the scope of
this paper and will be discussed elsewhere.

In general, from the theory of corner collision and the expres-
sion of the local map (13), we see that must be chosen so
that if we want the control to cause first order vari-
ations of the map. Thus, we choose

(28)

where is an appropriately selected constant vector. According
to (17), the controller is then defined as

if
if

(29)

In this case

(30)

Then, with fixed and , the amplitude of the limit cycle de-
pends on the corner penetration and the point which cor-
responds to the first coordinate of the limit cycle in stationary
state, when it enters .

Notice that the control strategy given by (29) is indeed a feed-
back control strategy. Namely, even if the control action is de-
termined by the addition of two state-independent constants
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and , its switching is determined by state-dependent boundary
conditions. As we will show in Section V, this results in a se-
quence of short carefully selected additions of constant pertur-
bations of the vector field which steer the trajectory toward the
desired goal.

In this case, each component of is such that in the region
the system evolves according to the following:

(31)

where and are two suitably chosen constants. With this
choice of the vector field, the system inside the corner will
follow the trajectory given by

(32)

It is necessary to take into account that sliding needs to be
avoided. According to conditions (21), we must then have:

1) , and ; or
2) .
If we construct the map for this planar system, using (16), we

have

if noncrossing
if crossing

(33)

where .
Here, we observe the explicit dependence on and of the

Poincaré map, confirming that by varying the control constants
we can effectively change the properties of the map and hence
those of the fixed point associated to the limit cycle of interest.
Namely, the fixed point of the map is

and so the amplitude of the limit cycle can be changed. An ex-
ample will be discussed in Section V.

Now, let us assume that we have no a priori knowledge of the
system vector field for feedback.

2) Unknown: We now remove the assumption that the
vector field system is perfectly known. In this case, the
control signal in a simplified form becomes

if
if

(34)

where is defined as above; and the closed-loop system takes
the form

if
otherwise.

(35)

In this case, the rms value of control effort can be calculated
as

(36)

Now, it is possible to consider points near the origin and to
proceed to analyze the vector field with the aim of guaranteeing
a change in this field, according with the objectives. We con-
sider the Poincaré map in the corner collision zone. In this case,
according to (16), we have

if noncrossing
if crossing

(37)

where

Hence, the main features of the Poincaré map are again ex-
plicitly dependent on and and, therefore, it is possible to
change the behavior of the fixed point associated to the limit
cycle by appropriately selecting the control action. With the pre-
vious value for , the fixed point of the map is

and so the amplitude of the limit cycle can also be changed
in this case. The effectiveness of the control action presented
above will be discussed using a representative example in what
follows.

C. Changing the Properties of the Local Map:
Feigin’s Strategy

The next step is now to choose the control constants and
in order to vary the properties of the local map associated to the
corner collision of the cycle and hence change its features. The
main idea is to use the fact that the corner collision of the cycle
implies a border collision of the corresponding fixed point of
the local map [15]. Thus, controlling the cycle can be achieved
by changing the properties of the map in order to control the
scenario following a border collision.

To this aim, we use the strategy for the classification of
border collisions presented in [13]. Namely, according to such
a strategy, different scenarios are possible at a border collision
which can be classified using the slopes of the map on both
sides of its discontinuity boundaries. In particular, if we say
the slope of the map when noncrossing and its slope when
crossing, according to Feigin’s strategy we have the following
three possible simplest scenarios (for a list of all possible
scenarios we refer to [13]).

• Persistence: the bifurcating fixed point (limit cycle)
crosses the boundary, changing continuously into a fixed
point (limit cycle) lying on the other side of the boundary
which may or may not have the same stability properties
if and , or otherwise and .

• Nonsmooth Saddle Node: a stable fixed point (limit
cycle) collides with an unstable point (cycle), on the
boundary and they both disappear if and do not fulfill
any of the conditions above.

• Nonsmooth Period Doubling: a two-periodic point of
the map characterized by having one iteration on
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each side of the boundary is involved in the bifurcation
scenario. Note that according to a given set of conditions
this might either result into a period-two orbit arising from
the bifurcation point or being annihilated through it. (This
case is obviously impossible in planar cases as flip bifur-
cations of cycles are not possible in .)

Thus, by carefully choosing and in the controller equa-
tion, we can change the slope of the map when crossing and in
turns select the scenario following the border collision. For ex-
ample, selecting a value for such that a nonsmooth saddle node
occurs at the corner collision, corresponds to selecting a con-
troller that suppress locally the oscillatory motion in the system.
On the other hand, selecting so that persistence is observed
correspond to changing the amplitude of the cycle etc.

We will now better illustrate the strategy by means of a rep-
resentative example. In what follows we will indicate by the
fixed point associated to the original limit cycle we want to con-
trol and by the cycle of the controlled system. We will use
and to indicate unstable cycles and to indicate the occur-
rence of a corner collision.

V. 2-D REPRESENTATIVE EXAMPLE

Next, we show a simple example to illustrate the stages of the
control design presented above. We choose the planar normal
form of a Hopf bifurcation, described by

(38)

This system exhibits a limit cycle, which is a perfect circle
of radius centered in . The system flow
moves in an anticlockwise direction as time increases and hence
crosses the line upwards.

We choose the region as the phase space set (corner)
bounded by and

, which satisfies the relations involving in (21). Note
that when and a corner collision occurs, as the
limit cycle of radius 1 hits the tip of the corner defined above
at the point (0, 0). Varying the control parameter will cause
the corner to penetrate the limit cycle and hence change its
properties.

In what follows, we suppose without loss of generality, that
, and .

A. Perfectly Known,

In this case, according to the development made in
Section IV.B.1, and in order to fully satisfy (21) we need
to choose and such that:

1) , and ;
2) and .
Taking into account that in the case under investigation

, and , the equation describing the
local piecewise-linear map, in a Poincaré section, is

if noncrossing

if crossing (39)

with , which is computed with (6) and small.
As discussed above, the fixed point of this map associated

to the limit cycle undergoing a corner collision as is varied,
undergoes a border-collision bifurcation. Hence, we shall seek
to control the cycle by varying and in order to change the
properties of the map and hence affect the nature of the border
collision of its fixed point.

Taking into account the slope of the map at the fixed point,
and Feigin conditions [14], we can deduce some interesting re-
sults regarding the control design of the system.

The slope of the map at the fixed point (39) is given by
on one side and

on the other.
Thus, using Feigin’s conditions we can distinguish two cases

as follows.

1) .
2) .
1) Case I: : According to Feigin conditions,

in this case we have persistence of the fixed point and hence
of the cycle. As discussed above, to avoid sliding on the corner
boundaries, we must choose either:

1) , and ; or
2) .

Note that for both cases, . Thus, to have persistence, we
want , i.e.,

As is certainly positive, whatever the choice of and ,
we want to have

(40)

Thus, the limit cycle will persist with a different amplitude
if and are chosen so that (40) is satisfied. For example, if

and , and thus , these conditions
are fulfilled, and the possibilities according to [14] (with Feigin
notation) are

Stable fixed point to unstable fixed point

Unstable fixed point to unstable fixed point

Stable fixed point to stable fixed point

Unstable fixed point to stable fixed point (41)

Since before the bifurcation, we have a stable fixed point in
the Poincaré map (corresponding to the stable limit cycle in the
system), and after the bifurcation, the slope in this case is such
that (which corresponds to a stable fixed point), we
can deduce that the bifurcation scenario is

Fig. 3 shows the analytical piecewise linear map [only is
numerically computed through (6)], the numerically computed
Poincaré map, and the line for
and , and for and . It can be observed
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Fig. 3. Case F(x) perfectly known. Evolution of fixed point for several constant values. The corner collision point is (�0:1; 0). Other bifurcation scenarios are
not possible.

that the piecewise-linear map is a very good approximation of
the numerically computed one, specially at the corner point. By
varying , and we can move the fixed point of the map
and therefore change the amplitude of the limit cycle. Namely
the fixed point of the map when trajectories cross the corner can
be derived from (39) as

Note that the location of is related to the amplitude of the
corresponding cycle in phase space. Thus, varying , and
one can control locally the amplitude of the cycle. For example,
for , the limit cycle is shown in
Fig. 4(a). The cycle exhibited by the close-loop system has a
smaller amplitude. Note that a further exploration of the effects
of varying the control parameters on the amplitude of the limit
cycle will be reported in Section B for the more realistic case of

being unknown.
2) Case II: : Following a similar derivation, we can

now select and in order to have . In this case, ac-
cording to Feigin’s condition, we should observe the occurrence
of a nonsmoothsaddle node and hence the disappearance of the
limit cycle when control is activated. If we choose

, and , we then have that at the border collision induced
by the controller we have

Stable and unstable fixed points merge and disappear

Hence, the fixed point disappears in a border-collision bifur-
cation. Note that this result is local; thus, the cycle is suppressed
locally to the corner collision point. The existence of other cy-
cles might be possible according to the global properties of the

map that cannot be studied analytically and must therefore be
validated by appropriate simulations.

For example, for and , Fig. 3
shows the analytical piecewise-linear map, the numerically
computed Poincaré map, and the line .

Fig. 4(b) shows the evolution of the continuous system in
the case considered here. We see that the control is successful
in suppressing the cycle of the open-loop system [16]. As ex-
pected, the strategy is local and a larger limit cycle is detected
in Fig. 4(b). This is due to the fact that the map shown in Fig. 3
eventually intersects the identity line for larger values of .
Thus, the control is only effective in suppressing the limit cycle
in the region of interest. Global control strategies should instead
be used to achieve global results.

B. Unknown,

Now, each component of the control signal in region is
defined as . In this case, the controlled system
inside the corner is described by

(42)

and knowing that , and ,
the Poincaré map is given by

if noncrossing

if crossing (43)

with .
In this case, the slope of the map when crossing is given by
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Fig. 4. Evolution of the system controlled withu = �F(x)+cwith different
control parameters. Subfigures (a) and (b) are in the same scale. Subfigure (c)
shows the behavior of the maximum effort control in case (b). (a) c = �1 and
c = 1. (b) c = 0:5 and c = 1. (c) Control signal.

Fig. 5. Evolution of the system controlled with u = c Subfigures (a) and
(b) are in the same scale. Subfigure (c) shows the behavior of the maximum
effort control in case (b). (a) c = �2 and c = 1, (b) c = 2 and c = 3,
(c) Control signal.
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Fig. 6. Case F(x) unknown. Evolution of the fixed point for several constant values. The corner-collision point is (�0:1; 0). Other bifurcation scenarios are not
possible.

Fig. 7. Piecewise-linear map with a high slope. c = 2:8 and c = 3. As can be seen, far from the corner, the approximation loses validation.

Again, we need to choose and in order to avoid sliding.
Following derivations similar to those outlined above, we find
that for all and satisfying (21). Note that now

and so the amplitude of the limit cycle can be controlled with
parameters , and .

Thus, as before, we can use the controller to achieve two dif-
ferent aims.

1) Case I: : Some algebra shows that this case can be
possible when

For example, with and the slope is
. This means that fixed point in a neighborhood continues
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Fig. 8. Relation between amplitude of the limit cycle and rms value when the desired oscillation has an amplitude lower than the original. The solid line corresponds
to numerically computed values, while the points are computed with the analytical formula deduced in Section IV.

existing after the bifurcation. Fig. 5(a) shows the behavior of the
continuous-time system with and without control. We see that
the limit cycle persists as expected with a minor change of its
amplitude. This can be emphasised by selecting different values
of and and hence moving further the fixed point of the map.

2) Case II: : Now we have

and the limit cycle disappears locally in a border collision bi-
furcation. This case is possible too. It can be easily checked that
the conditions on and are given by

For example, with and the slope is .
Fig. 5(b) shows the behavior of the continuous-time system.
We observe that the target cycle has disappeared locally after
a border collision bifurcation; the evolution of the map moving
toward another fixed point outside the range where the local de-
scription is valid. Such a fixed point corresponds to the large-
amplitude limit cycle depicted in the figure. Fig. 6 shows the an-
alytical and numerical maps for Cases I and II confirming the ex-
cellent agreement between the analysis and the numerics. (Note
that, for the sake of brevity, to obtain an analytical approxima-
tion of the Poincaré map, we have truncated the discontinuity
map to its linear terms.).

It is worth to note that in all the cases, if the slope of the
piecewise-linear map is very high, the map based on the linear
approximation becomes representative of the system behavior
in a relatively small neighborhood of the bifurcation point (see
Fig. 7).

3) Control Effort: In this subsection, the analytical formulas
derived to estimate the control effort, when is unknown,
are compared with the numerical values obtained. Constants
and are varied to obtain different lower or bigger amplitude

TABLE I
AMPLITUDES OF LIMIT CYCLES AND RMS VALUES

limit cycles. Once the constants have been fixed, the corner pen-
etration is varied to obtain different amplitudes. There is no uni-
fied measure of an amplitude of a limit cycle. The original limit
cycle is a circle and a natural measure can be its radius. Since the
obtained limit cycles (after the control is applied) are approxi-
mately circles also, which are centered at point , we take

(being the first coordinate when the limit cycle enters
) as a measure of the amplitude. We have also computed an-

other measure of the amplitude, given by

with equivalent results.
Table I shows the numerically computed rms value for cycles

with amplitudes bigger than the amplitude of the original limit
cycle (in this case and ). Also, Fig. 8 shows the
relation between amplitude of the limit cycle and the numerical
(solid line) and analytical (dots) rms value when the desired
oscillation has an amplitude lower than the original (in this case

and ).
As can be seen from Fig. 8, the limit cycle can disappear (the

amplitude is decreased to zero). Thus, the method can also con-
trol the appearance and disappearance of limit cycles, though
this fact is nonlocal and cannot be explained by the theory in
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Fig. 9. Different values for the corner penetration give different meaningful
amplitude reductions, even suppressing the limit cycle. (a) Corner penetration
is set to�0:6. A small reduction in the amplitude of the limit cycle is obtained.
(b) Corner penetration is set to �0:99. A considerable reduction of the
amplitude is observed. (c) Corner penetration is set to �1, and the limit cycle
turns into an equilibrium point. Also, the control effort is reduced to zero at the
stationary point.

this paper. Fig. 9 shows different limit cycles when the corner
penetration is varied far from the nonsmooth bifurcation.

VI. CONCLUSION

In this paper, we have shown that it is possible to synthesize
a switching control law to suppress or change the main features
of a target limit cycle in planar smooth dynamical system. Other
authors [5], [6] have studied the bifurcation control problem
from a smooth feedback framework. Our approach is different
since switching (and thus nonsmooth) control laws are pro-
posed. In so doing, the theory of nonsmooth bifurcations was
explicitly used in the design process. Namely, by appropriately
selecting the control constants and the switching manifolds,
it is possible, to change the properties of the Poincaré map
associated to the cycle of interest. The resulting control action
is acting on the system in a relatively small neighborhood of the
corner-collision point and hence guarantees the achievement of
the control goal with a minimal control expenditure. We wish
to emphasize that rather than being a technique for the control
of bifurcations in nonlinear systems, the strategy presented
here aims at exploiting the theory of nonsmooth bifurcations
for control system design.

Ongoing research is aimed at further exploring the ideas pre-
sented in this paper and establish formal links between the con-
troller gains and the properties of -limit set of the closed-loop
system. Also, the extra degrees of freedom corresponding to the
control law parameters and (chosen here by using the addi-
tional constraint of avoiding sliding) can be further exploited to
obtain, for example, a given slope of the map when crossing,
or to have solutions satisfying certain performance criteria. Fu-
ture work will investigate this further and will also be concerned
with the experimental validation of this control strategy.
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