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Abstract

The paper presents a quantization-theoretic framework for studying incremental Σ∆ quantization
systems. The framework makes it possible to efficiently compute the quantization intervals and hence
the transfer function of the quantizer, and to determine the mean square error (MSE) and maximum
error for the optimal and conventional linear filters for first and second order incremental Σ∆ modulators.
The results show that the optimal filter can significantly outperform conventional linear filters in terms
of both MSE and maximum error. The performance of conventional Σ∆ quantizers is then compared to
that of incremental Σ∆ with optimal filtering for bandlimited signals. It is shown that incremental Σ∆
can outperform the conventional approach in terms of signal to noise+distortion ratio (SNDR) and the
characteristics of the power spectral density (PSD). The framework is also used to provide a simpler and
more intuitive derivation of the Zoomer algorithm.

Index Terms: Sigma-Delta (Σ∆), incremental A/D converter, optimal filter, Σ∆ transfer function,
time-domain analysis.

1 Introduction

Σ∆ quantization systems, also known as scalar predictive quantizers or oversampling Analog-to-Digital
converters, are widely used in audio systems [1, 2] and communication systems [3, 4, 5]. These systems
can achieve very large dynamic range without the need for precise matching of circuit components. This
is especially attractive for implementation in scaled technologies where transistors are fast but not very
accurate. They are also among the most power efficient ADC architectures [4].

Exact analysis of Σ∆ quantizers is difficult due to their highly nonlinear structure. As a result, optimal
decoding (filtering and decimation) algorithms are generally not known, although there has been much work
on decoding schemes [6, 7, 8]. Conventionally, linear models with quantization noise modeled as additive
white noise have been used [9]. This noise model, however, was shown to be quite inaccurate for coarse
quantization. In [11], Candy derived a more accurate approximation of the noise power spectral density
showing that it is not white. Subsequently, Gray [6] derived the exact spectrum and determined the optimal
MSE linear filter for constant inputs. Gray’s framework was later used in multiple studies (e.g., [12]). This
type of exact analysis, however, is too complex for most practical Σ∆ systems and the conventional linear
method is still used and then verified and tweaked using time-domain simulations [9, 10].

Recently, Σ∆ quantization systems have become popular in sensing applications such as imaging [13, 14,
15] and accurate temperature sensing [16]. In such applications, the input signal is very slowly varying with
time, and as a result can be viewed as constant over the conversion period. Of particular interest is the special
case of incremental Σ∆ [17], where the integrator is reset prior to each input signal conversion. In this case,
the optimal filter with respect to the mean-squared error criterion denoted by Zoomer was found by Hein et
al. [18]. The approach used in [18], however, does not naturally lead to full characterization of the quantizer
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transfer function or the determination of the MSE or maximum error, especially for second and higher order
Σ∆ modulators. Knowledge of the exact transfer function of the Σ∆ quantization system can enable the
system designer to achieve the system requirements with a lower oversampling ratio. Moreover, as noted
by Markus et al. [17], data converters with high absolute accuracy are often required in instrumentation
and measurement. In [17], bounds on the maximum error of incremental Σ∆ using some conventional linear
filters was derived, but there is still a need to derive the maximum error of the optimal filter.

In this paper, we introduce a time-domain, quantization-theoretic framework for studying incremental
Σ∆ quantization systems. The framework allows us to determine the quantization intervals and hence the
transfer function of the quantizer, and to precisely determine the MSE and maximum error for the optimal
filter. For constant inputs, we demonstrate significant improvements in both MSE and maximum error over
conventional linear filters [17]. These results imply that an incremental Σ∆ with optimal filtering can achieve
the same performance as that of conventional Σ∆ systems at lower oversampling ratio and hence lower power
consumption. We show that incremental Σ∆ can outperform the conventional approach in terms of SNDR
in addition to not having the idle tones artifacts of conventional Σ∆. Using our framework we are also able
to compare the performance of conventional Σ∆ quantizers to that of incremental Σ∆ with optimal filtering
for bandlimited input signals. We also use our framework to provide a simpler and more intuitive proof of
the optimality of the Zoomer algorithm [18].

In the following section, we introduce our framework and use it to study first-order Σ∆ quantization
systems. In Section 3, we extend our results to incremental second-order Σ∆ quantization systems. In each
case, we compare the performance of the optimal filter to that of linear filters. In Section 4, we use our
results to compare the performance of the incremental Σ∆ modulator using optimal filtering to conventional
Σ∆ systems using linear filtering for sinusoidal inputs. We also show that incremental Σ∆ does not suffer
from the problem of idle tones.

2 Incremental first-order Σ∆

A block diagram of a Σ∆ quantization system with constant input is depicted in Figure 1. The figure also pro-
vides the correspondance between the terminology used in the circuit design literature and the quantization-
theoretic literature [20]. The Σ∆ modulator itself corresponds to the encoder in the quantization-theoretic
setting. It outputs a binary sequence of length m that corresponds to the quantization interval that the
input x belongs to. The set of such binary sequences is the index set in the quantization-theoretic setting.
The filter, which corresponds to the decoder, provides an estimate x̂ of the input signal x. Given an index,
the optimal decoder outputs the centroid, i.e., the midpoint, of the quantization interval corresponding to
the index.

Figure 1: Block diagram of a Σ∆ quantization system with constant input. The terms under the figure
provide the corresponding object names in quantization theory.

In this section we study the discrete time first-order Σ∆ modulator (see Figure 2). For simplicity we focus
on the single-bit case. However, our results can be easily extended to multi-bit Σ∆ modulators. Without loss
of generality, we assume that the comparator threshold value is 1 and the input signal x ∈ [0, 1]. The input
to the modulator is integrated, thus creating a ramp with a slope proportional to the constant input. At
time n = 1, 2, . . . ,m, the ramp sample u(n) is compared to the threshold value of 1 and the output b(n) = 1
if u(n) > 1, otherwise b(n) = 0. If b(n) = 1, a one is subtracted from the ramp value. Thus in effect the
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modulator is predicting the ramp value by counting the number of ones and subtracting off its prediction
via the feedback loop. This operation is illustrated in Figure 3, where the output of the integrator u(n) is
plotted versus time for a fixed input value.

The output of the integrator is thus given by

u(n) = x− b(n− 1) + u(n− 1) = nx−
n−1∑

0

b(i). (1)

We shall assume that the integrator is reset to zero at the beginning of conversion, i.e. u(0) = 0, which is
the case in incremental Σ∆.

In conventional Σ∆ quantization systems, the binary sequence generated by the modulator is decoded
using a linear filter, such as a counter or a triangular filter, to produce an estimate of the input signal
[17]. Such linear filters, however, are not optimal and result in significantly higher distortion compared to
the optimal filter. The optimal filter in the form of “Zoomer” implementation was derived in [18]. In [19]
McIlrath developed a nonlinear iterative filter that achieves significantly better performance compared to
linear filters.

Figure 2: Block diagram for the first-order Σ∆ modulator. D refers to the delay element and Q refers to the
one-bit quantizer.

Figure 3: First-order sample integrator output and the corresponding sequence.

We are now ready to introduce our framework for studying incremental Σ∆ quantization systems. Note
that to completely characterize a quantization system, one needs to determine the quantization intervals
induced by its encoder. Equivalently, one needs to determine the transition points between consecutive
quantization intervals.

The Σ∆ modulator can be viewed to be performing a sequence of effective comparisons, u(n) ≷ 1 which
are equivalent to x ≷ (1 +

∑n−1
0 b(i))/n. Clearly any encoder that produces bits corresponding to the same

effective comparisons is equivalent to the Σ∆ modulator. To find the transition points of the first-order
Σ∆ modulator, we define the following equivalent encoder. Referring to (1), it is clear that the sequence of
comparisons u(n) ≷ 1, 1 ≤ n ≤ m, is the same as the sequence of comparisons of the predictor 1+

∑n−1
0 b(i)

to the equivalent ramp nx, which is the line segment from the origin of slope x. Therefore, if the modulator
is replaced by an encoder that performs the comparisons to the equivalent ramp, its output sequence would
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be identical to that of the modulator for all input values. Note that this equivalence holds for all inputs
x ∈ [0, 1]. Figure 4 depicts this equivalence graphically; the dotted line is the integrator output, the solid
line is the equivalent ramp, and the dashed line is the predictor.

Sequence         0 0    1 0    1  0  1 0    1 0 0     1    0

2

1

1    2

Figure 4: The equivalent ramp and it’s corresponding predictor.

To find the transition points using the above equivalence, consider the square lattice shown in Figure 5

Lm =
{
(p, q) : p, q ∈ Z+, 1 ≤ q ≤ p ≤ m

}
.

We now show that the set of transition points is simply the set of slopes of the equivalent ramps that pass
through points of the square lattice, which we denote as

Sm =
{

q

p
: (p, q) ∈ Lm

}
.

The elements of Sm form the Farey sequence [21] of order m.
To show that Sm is the set of transition points, we first show that any element of Sm is a transition point.

Consider the equivalent ramp of slope q/p. It is not difficult to see that any equivalent ramp of higher slope,
i.e., any signal value x > q/p, generates a different sequence from q/p itself. Therefore, any q/p ∈ Sm is a
transition point.

To show that any transition point y belongs to Sm, we need to show that y = q/p for some integers
1 ≤ q ≤ p ≤ m. Since y is a transition point, the sequence corresponding to y and y + δ, for any δ > 0, must
differ in at least one sample time. Let such sample time be 1 ≤ p ≤ m, then there must be an integer q ≤ p
such that the predictor value is q at time p, which implies that y = q/p ∈ Sm.

The transition points can be computed simply by computing the elements of Sm or by parsing the Farey
or Stern-Brocot tree [21]. The worst case running time is O(m2).

The optimal filter produces the centroid of the quantization region corresponding to the sequence gener-
ated by the modulator. For example for the sequence 00101, which corresponds to x ∈ [2/5, 1/2], the optimal
filter produces the estimate x̂ = 9/20.

The equivalent encoder framework provides a simple and intuitive way to prove the optimality of the
O(m) Zoomer algorithm [18]. To prove the optimality of this implementation, note that a filter is optimal if
given any index sequence produced by the modulator, it outputs the centroid of the quantization interval to
which the input signal belongs. So, for any input x ∈ [0, 1], we need to show that the resulting UB and LB
are the transition points for the quantization interval of x. We show this by induction. Clearly, this is the
case for m = 1. Assume that this is also the case up to m− 1, i.e., for m− 1 samples, UB and LB are the
transition points of the quantization interval of x. Since any transition point is a point on the square lattice,
UB − LB ≤ 1/(m− 1) < 2/m. Therefore, at the mth sampling time, there can be only one new transition
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Figure 5: Lattice for first-order Σ∆.

Algorithm 1 Optimal Filtering Algorithm(Zoomer Implementation)
begin
SEQ← Modulator generated sequence
UB ← 1, LB ← 0
Predictor ← 1
for p = 1 : m do

if SEQ(p) = 1 then
LB ← max {LB, Predictor/p}
Predictor ← Predictor + 1

else
UB ← min {UB, Predictor/p}

end if
end for
return (UB + LB)/2
end

point between UB and LB. Let p be the predictor value at time m. Note that if p/m /∈ (LB, UB), then
the mth bit does not change the quantization interval for x from that at time m − 1 and hence (LB, UB)
remains as the quantization interval for x. On the other hand, if p/m ∈ (LB, UB), then it is a new transition
point and the quantization interval specified by (LB, UB) is split into two new quantization intervals with x
belonging to one of them. Specifically, if SEQ(m) = 1, then LB ← p/m and the new quantization interval
for x becomes (p/m,UB), and if SEQ(m) = 0, UB ← p/m and the new quantization interval for x becomes
(LB, p/m). In both cases the end points of the interval are transition points. This proves that algorithm 1
is indeed the optimal filtering algorithm.

The above procedures can be readily used to quantify the MSE of the optimal filter. In order to compare
the MSE of the optimal filter to conventional linear filters, we need to find the correspondence of estimates
produced by each filter to the quantization intervals. Figure 6 illustrates this correspondence for the counter
(i.e., rectangular), triangular and MSE optimal linear [6] filters. The figure depicts the quantization intervals
and their centroids, which are produced by the optimal filter, for m = 4, and the estimates for each filter and
their correspondence to the quantization intervals. The figure clearly illustrates the source of suboptimality
of linear filters as an interval is not necessarily mapped into its centroid and may in fact be mapped into an
estimate that is outside the interval itself.

The Mean Square Error (MSE) is a measure of average noise power, and implies the overall accuracy of
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(a) (b) (c)

Figure 6: Quantization intervals and corresponding estimations for m = 4 using (a) counter filter (b)
triangular filter and (c) optimal filter.
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Figure 7: (i) MSE and (ii) Maximum error behavior as a function of oversampling ratio m, with gain/offset
correction using (a) counter filter (b) triangular filter (c) optimal linear filter and (d) optimal filter.
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Figure 8: Transfer functions using (a) counter filter after gain/offset correction (b) triangular filter after
gain/offset correction (c) optimal linear filter after gain/offset correction and (d) optimal filter, for m = 7.

the quantization system. Figure 7(i) compares the MSE for the optimal filter to the MSEs for the counter,
triangular and optimal linear [6] filters. In plotting the MSE for each linear filter we corrected for its
systematic offset and gain biases using the minimum MSE affine transformation found by computing the
coefficients a and b that minimize

D = E
[
(x− x̂)2

]
=

n∑
i=1

(x∗i − ax̂i − b)2∆i,

where {x∗i }ni=1 and {∆i}ni=1 are the centroids and lengths of the quantization intervals, respectively, and
{x̂i}ni=1 are the estimates corresponding to the quantization intervals provided by the linear filter. Note
that the optimal filter does not suffer from any systematic offset or gain biases. Also note that the outputs
of all the filters considered here converge to the input value. Their convergence rates, however, differ. As
expected, the counter has the worst convergence rate. For small m, the triangular filter is worse than the
optimal linear filter, but as m increases, their MSEs become very close. Note that for example, in order to
achieve a performance similar to a 10-bit uniform ADC one can use the optimal filter and operate the Σ∆
quantization system with half the speed of the case when a conventional filter is used; this implies at least
a factor of 2 power saving in the modulator of the first-order Σ∆ quantization system.

Our framework can also be used to completely characterize the transfer function for first-order Σ∆
quantization systems, which can provide further insight into the behavior of various filters. As an example,
in Figure 8 we plot the transfer functions for first-order Σ∆ quantizers using the optimal filter, the optimal
linear filter and the rectangular filter for m = 7.

Note that the large distortion at the two ends of the Σ∆ quantization system can be intolerable in some
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applications. For example, in imaging applications [13], it is very important to achieve low distortion at low
input signal values (corresponding to low light).

Maximum error is another measure of distortion, which is very important when absolute accuracy is
needed. If the application allows the designer to adjust the input range to x ∈ [1/m, 1 − 1/m], instead of
[0, 1], the large distortion at the two ends of the range (see Figure 8) can be avoided, resulting in a factor
of two reduction in absolute error with very small decrease in the input range of 2/m. Figure 7(ii) plots
the maximum error in the range of x ∈ [1/m, 1− 1/m] for different filters versus the oversampling ratio m.
As can be seen from the plots, the optimal filter can achieve significantly lower absolute error than linear
filters for the same oversampling ratio. Alternatively, it can achieve the same absolute error at a much lower
oversampling ratio. For example, to achieve an absolute error equal to that of a uniform 10-bit quantizer,
a Σ∆ quantizer with optimal filtering requires half the oversampling ratio of a counter filter. It is also
interesting to note that the counter outperforms the optimal MSE linear filter in terms of absolute accuracy.
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Figure 9: Directed acyclic graph showing quantization in first-order Σ∆ quantizers.

Another consequence of our framework is the ability to characterize the Directed Acyclic Graph (DAG)
of the first-order Σ∆ encoder, i.e., the graph representing the sequence of “larger/smaller” comparisons
effectively performed by the encoder. This graph may help in studying the redundancy in sequences produced
by the encoder. It is useful for finding transition points for higher order Σ∆ quantizers, as we shall see in
the next section. The DAG can be found using O(m2) algorithm 2.

Figure 9 plots the DAG for m = 7. The horizontal axis corresponds to the sampling times and the
vertical axis corresponds to the comparison threshold. The nodes correspond to the effective comparisons
while the edges correspond to the outcomes of the comparisons (an upper edge corresponds to a 1, while a
lower edge corresponds to 0). For example, the path defined by 011101 corresponds to all 3/4 < x < 4/5, and
provides the following information about the input: x < 1, x > 1/2, x > 2/3, x > 3/4, x < 4/5, x > 2/3.
Note that there are two types of nodes, a solid node corresponding to a comparison where the outcome is
unknown, and a hollow node corresponding to a comparison with a known outcome given the previous bits.
To explain this difference, note that a path leading to a node defines an upper and a lower bound, UB and
LB, on the range of input signals that correspond to this path. If the predictor corresponding to the node
lies within the (LB, UB) interval, then the comparison has an unknown outcome. On the other hand, if
the comparison threshold lies outside the (LB, UB) interval, then the outcome of the comparison is already
known. For example, consider hollow node (4, 0.5). The paths leading to the node correspond to the input
ranges (0.5, 0.66) and (0.33, 0.5). In either case, the outcome of the comparison is known.

As explained earlier, given m comparisons, the first-order Σ∆ encoder generates O(m2) quantization
intervals, which is rather small compared to the possible 2m quantization intervals. Study of the DAG
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Algorithm 2 Generating the first-order Σ∆ Directed Acyclic Graph
begin
SEQ← [0]
UB ← 1, LB ← 0
q ← 1, s← 1
mark (q, s) as a hollow node on the graph
q ← 2
CALL DAG(SEQ, LB,UB, q)
end

FUNCTION DAG(SEQ, LB,UB, q)
if q ≤ m then

Predictor ←
∑q−1

i=1 SEQ(i) + 1
s← Predictor/q
if LB < s < UB then

mark (q, s) as a solid node on the graph
CALL DAG([SEQ; 1], s, UB, q + 1)
CALL DAG([SEQ; 0], LB, s, q + 1)

else if s ≥ UB then
mark (q, s) as a hollow node on the graph
CALL DAG([SEQ; 0], LB,UB, q + 1)

else
mark (q, s) as a hollow node on the graph
CALL DAG([SEQ; 1], LB,UB, q + 1)

end if
end if

clarifies this difference. The hollow nodes in the DAG do not create transition points and therefore do not
add to the number of quantization intervals. However, it is expected that this redundancy in the effective
comparisons improves the robustness of the system to errors. Higher order and multi-bit Σ∆ modulators
are usually used to increase the number of quantization intervals and therefore achieve improved error. In
the next section we extend the framework to second-order incremental Σ∆.

3 Second-order Incremental Σ∆

In this section we study the discrete time second-order Σ∆ quantizer. We focus on the second-order modula-
tor depicted in Figure 10. Our results, however, can be easily extended to a much broader set of architectures.
It consists of two integrators followed by a comparator, the output of which is fed back to the input of both
integrators. We assume that the comparator threshold is 0 and the input signal x ∈ [−1, 1]. Note that
unlike the first-order case the output of the comparator b(n) = sgn(u(n)) ∈ {−1, 1}. We also assume zero
initial states, i.e., u(0) = v(0) = 0, corresponding to an incremental second-order modulator. Note that the
first two bits generated by the modulator are 1 and −1, respectively, independent of the input. To achieve
good performance, the modulator gain parameters a1 and a2 are chosen so that the output of the second
integrator v(n) is as close to 0 as possible for all x and 1 ≤ n ≤ m. In the following discussion we assume a
conventional choice of a1 = 1/2, a2 = 2.

The outputs of the two integrators (the states) are given by

u(n) =
1
2

(x− b(n)) + u(n− 1),

v(n) = 2 (u(n− 1)− b(n− 1)) + v(n− 1). (2)
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QDD

Figure 10: Block diagram for the second-order Σ∆ modulator. D refers to the delay element and Q refers
to the one-bit quantizer.

which results in

v(n) = xn(n− 1)/2−
n−1∑

1

(n− i + 1)b(i). (3)
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Figure 11: The equivalent ramp and its corresponding predictor.

Similar to the first-order case we can characterize the second-order Σ∆ quantization system by de-
termining the quantization intervals induced by the encoder. This can be done by finding the transition
points using the following equivalent encoder. Referring to (3) the sequence of comparisons v(n) ≷ 0,
1 ≤ n ≤ m is the same as the sequence of comparisons of the predictor

∑n−1
i=1 (n − i + 1)b(i) to the equiv-

alent ramp xn(n − 1)/2, which is quadratic in n. They both represent the same effective comparisons,
x ≷ 2(

∑n−1
i=1 (n− i + 1)b(i))/(n2−n). Therefore the output of the modulator is identical to the output of an

encoder that performs comparisons between the predictor and the equivalent ramp. Figure 11 depicts this
equivalence graphically; the dotted line is the integrator waveform, the solid line is the equivalent ramp, and
the dashed line is the predictor.

The optimal filtering algorithm for the second-order modulator is essentially any filter that produces the
centroid corresponding to the quantization interval. Zoomer implementation is the same as Algorithm 1
with the updating of the predictor replaced with that for the second-order predictor.

At any sample time, n, the set of possible values the second-order predictor can assume consists of every
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Figure 12: Directed graph showing quantization in the second-order Σ∆ quantizer.

other integer in the interval [−(n − 1)(n − 2)/2 + 2, (n − 1)(n − 2)/2] on the square lattice as depicted
in Figure 11. However, unlike the first-order case, not all such integers correspond to transition points,
and therefore, to compute the set of transition points, we find and parse the directed acyclic graph of the
second-order Σ∆ modulator.

To find the DAG for the second-order modulator, we use Algorithm 3, which is similar to Algorithm 2.
We replace the predictor and the effective comparison for the first-order modulator in Algorithm 2 by that
for the second-order, taking into consideration the fact that the second-order modulator produces +1s and
−1s instead of 0s and 1s. Note that in Algorithm 3 q starts from 2 because of the two delay elements
before the quantizer. Figure 12 plots the second-order DAG for m = 8. For example, the path defined by
1,−1,−1,−1, 1,−1,−1,−1 corresponds to all −8/10 < x < −2/3, and provides the following information
about the input: x ≥ 0, x < 1, x < −1/3, x < −2/3, x ≥ −4/5, x < −3/5, x < −13/21, x < −9/14.
Again there are two types of nodes, a solid node corresponding to a comparison where the outcome is unknown
and a hollow node corresponding to a comparison with a known outcome given the previous bits. The solid
nodes correspond to transition points. Figure 13 plots all the transition points and their corresponding
equivalent ramps for m = 7.

As in the first-order case, the derivation of the transition points can be used to determine the transfer
function of the second-order quantizer. To compare the performance of filters such as the Kaiser or the
natural linear filter [17] to that of the optimal filter, in Figure 14 we plot the transfer functions using these
different filters. Note that the linear filters considered are again biased and we have corrected for the bias
as before. Although the outputs of the linear filters converge to the correct input, they perform poorly
compared to the optimal filter. In fact, as can be seen in Figure 14(b), the transfer function of the Kaiser
filter is not even monotonic in the input. Also note that there is a significant systematic gain error in the
natural filter shown in 14(a). Also in Figure 14 there is a large quantization interval at the high end for
all the filters considered. This large interval is due to the fact that the first two bits generated by the
modulator are 1 and −1 independent of the input and results in an asymmetric transfer function. Since this
is a systematic problem that causes large distortions, in what follows we shall eliminate this large interval.

The transition points can be used to quantify the MSE and maximum error of the optimal filter and
to compare it to that of conventional filters. Figure 15 plots the MSE and maximum error of the Kaiser
low pass filter with β = 2.5, the natural filter and the optimal filter as a function of m. Note that the
performance gain of the optimal filter over the non-optimal filters for second-order Σ∆ quantizer is more
than that of the first-order. For example, in order to achieve performance comparable to a 10-bit uniform
quantizer, a second-order Σ∆ quantizer with optimal filtering can be operated at 1/5th the speed of that
using a conventional filter, which implies over a factor of 5 reduction in power consumption.
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Algorithm 3 Generating the second-order Σ∆ Directed Acyclic Graph
begin
SEQ← [1;−1]
UB ← 1, LB ← 0
q ← 2, s← 1
mark (q, s) as a hollow node on the graph
q ← 3
CALL DAG(SEQ, LB,UB, q)
end

FUNCTION DAG(SEQ, LB,UB, q)
if q ≤ m then

Predictor ←
∑q−1

i=1 (q − i + 1)SEQ(i)
s← Predictor/q(q − 1)
if LB < s < UB then

mark (q, s) as a solid node on the graph
CALL DAG([SEQ; 1], s, UB, q + 1)
CALL DAG([SEQ;−1], LB, s, q + 1)

else if s ≥ UB then
mark (q, s) as a hollow node on the graph
CALL DAG([SEQ;−1], LB,UB, q + 1)

else
mark (q, s) as a hollow node on the graph
CALL DAG([SEQ; 1], LB,UB, q + 1)

end if
end if
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Figure 13: second-order transition points and their corresponding ramps
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Figure 14: Transfer functions using (a) natural linear filter without gain/offset correction (b) Kaiser filter
with β = 2.5 with gain/offset correction (c) natural linear filter with gain/offset correction and (d) optimal
filter, for m = 7.
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(i) (ii)

Figure 15: (i) MSE and (ii) Maximum error behavior as a function of oversampling ratio m, using (a)
natural linear filter without gain/offset correction (b) Kaiser filter with β = 2.5 with gain/offset correction
(c) natural linear filter with gain/offset correction and (d) optimal filter.

4 Application

In this section we use the results of the previous section to compare the performance of a conventional Σ∆
system with that of an incremental system with optimal filter by looking at their output spectrum. We
perform the comparison for a sinusoid input and also for a small constant input.

Figure 16 shows the two different systems. f1 and f2 are the frequencies of the clock signals CLK1

and CLK2. The input signal in the conventional system is sampled at rate f1, which is much faster than
the Nyquist rate of the input signal and fed into a Σ∆ modulator operating at the same rate. The output
sequence is decimated at rate f2, which is slightly higher than the Nyquist rate of the input signal. Thus, the
oversampling ratio is f1/f2. In the incremental Σ∆ system, the signal is sampled at rate f2 and each sample
is fed into the Σ∆ modulator, which operates at rate f1. The modulator is reset after each conversion, i.e.,
at rate f2. The output sequence is filtered using the optimal filter.

To compare the two systems, we first apply a sinusoidal signal to each system and generate the Power
Spectral Densities (PSD) of their outputs and compute the SNDR for each system. In Figure 17 we plot
the PSDs for a conventional second-order Σ∆ quantizer with 2500-tap Remez low pass filter with a cut-off
frequency of 40KHz and an incremental second-order Σ∆ quantizer using optimal filtering. The results are
for a sinusoidal input signal with amplitude a = 0.5 and frequency close to f = 3000Hz, modulator frequency
sampling rate f1 = 20MHz and Nyquist rate f2 = 200KHz. Note that the actual frequency was chosen to
be irrational but very close to f = 3000Hz. A Nuttall window is used. The SNDR for the incremental Σ∆
system is −97dB versus −90dB for the conventional system. Another performance measure of interest is the
maximum tone power, which is the power of the largest tone created by each system. The maximum tone
power of the incremental system is 5dB below that of the conventional system. This example demonstrates
that by employing more sophisticated digital signal processing it is possible to improve the performance of
the quantizer.

To study the idle tone difference, we apply a small dc input to the two systems. Figure 18 shows the
PSD of the output of the two systems. Note that as expected (see Figure 18(b)) the incremental system
inherently does not have any idle tones. This is because the same conversion is performed for all samples
and, therefore, all filtered values are the same. However, in the case of the conventional Σ∆ the residue of
the integrators vary for different samples, creating periodic distortion.
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Figure 16: (a) Conventional scheme (b) Incremental with optimal filter.

In summary, the incremental Σ∆ system with optimal filtering can significantly outperform conventional
Σ∆ even at moderate oversampling rates. As the oversampling rate is increased, the advantage of the
incremental system becomes even more pronounced.
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Figure 17: Example of power spectral density for a second-order Σ∆ modulator with sinusoid input used in
two different ways: (a) Conventional scheme (b) Incremental with optimal filter.
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Figure 18: Example of power spectral density for a second-order Σ∆ modulator with small DC input of .001
used in two different ways: (a) Conventional scheme (b) Incremental with optimal filter.

5 Conclusion

We introduced a quantization-theoretic framework for analyzing incremental Σ∆ quantizers and used it to
characterize the quantization intervals and hence transfer functions for first and second-order incremental
Σ∆ modulators. We then used the computed quantization intervals and their corresponding sequences
to characterize the performance of the optimal filter and conventional linear filters. We also showed that
incremental Σ∆ with optimal filtering can outperform conventional Σ∆ systems for bandlimited input signals
in terms of SNDR. Further, we showed that incremental Σ∆ systems do not suffer from idle tones. Even
though we considered only single-bit first and second modulators in this paper, our framework can be readily
extended to higher order and multi-bit modulators.

In practice, Σ∆ quantization system designers improve performance by increasing the oversampling
ratio and/or using more complex modulators. However, high oversampling ratio results in high system
power consumption. Our results show that the oversampling requirements can be relaxed by using optimal
filtering and that the gain is more pronounced for higher order incremental Σ∆. The optimal filter requires
more complex signal processing than linear filters; however, the additional power consumed in the digital
processing should be negligible compared to the savings in the analog front end, especially in scaled CMOS
implementations.

Our analysis has assumed ideal circuit components. In practice, nonidealities such as temporal noise,
offsets, and nonlinearities of the analog components limit the attainable performance. Temporal noise and
offset can be lowered by increasing the oversampling ratio. However, nonlinearities and gain-bandwidth
ultimately limit the performance for a given filter [22]. To achieve higher performance at lower power
consumption, better filters would be needed. The time-domain analysis carried out in this paper may prove
useful in deriving such filters.
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