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Multi-Plet Two-Channel Perfect Reconstruction
FIR and Causal Stable IIR Filter Banks
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Abstract—This paper proposes a new class of two-channel struc-
tural perfect reconstruction (PR) finite-impulse response / infinite-
impulse response (FIR/IIR) filter banks (FBs) called the multi-plet
FBs. It generalizes the structural PR FBs proposed by Phoong et al.
and the conventional triplet FB in that it employs multiple lifting
steps similar to the conventional lifting structure. Apart from the
important structural PR property, the multi-plet FB can be sys-
tematically designed to meet a given specification on the passband/
stopband ripples and transition bandwidth: a low-order prototype
PR FB with a much wider transition band is first designed using
nonlinear optimization in order to obtain a symmetric frequency
response and prescribed passband and stopband ripples. As only
a few variables are required, its performances can easily be con-
trolled. A subfilter is then designed using second-order cone pro-
gramming (SOCP) so that the prototype FB can be warped by
means of frequency transformation to meet the desired transition
bandwidth, while preserving the PR condition, passband/stopband
ripples and lifting structure of the prototype FB. The design proce-
dure is very general and it applies to both linear-phase/low-delay
FIR and IIR multi-plet FBs. By formulating the K -regularity con-
ditions as a set of linear equality constraints on the subfilter coeffi-
cients, multi-plet-based wavelet bases can easily be designed under
the SOCP framework. Design examples show that the proposed ap-
proach offers more flexibility in controlling the frequency charac-
teristics of the PR FBs and lower design complexity than conven-
tional methods.

Index Terms—Causal stable infinite-impulse response (IIR), fi-
nite-impulse response (FIR), K -regularity, lifting structure, low-
delay, multi-plet, perfect reconstruction (PR) filter banks (FBs),
second-order cone programming (SOCP), structural PR, wavelet
bases.

1. INTRODUCTION

ERFECT reconstruction (PR) filter banks (FBs) have im-

portant applications in signal analysis, coding, and the de-
sign of wavelet bases. An efficient structure of two-channel fi-
nite-impulse response (FIR)/allpass FBs, which structurally sat-
isfies the PR condition, was the structural PR FB proposed by
Phoong et al. [1]. Subsequent works for the design of low-delay
FIR and infinite-impulse response (IIR) structural PR FBs and
wavelet bases can be found in [2]-[6]. One limitation of this
structure is that the magnitudes of the low-pass and high-pass
analysis filters at w = 7 /2 in the linear-phase case are respec-
tively restricted to 0.5 and 1, or vice versa, which make the fre-
quency response of the FB asymmetric. In another structural PR
FBs called triplet FBs [7], a generalization of the structure in [1],
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more symmetric frequency responses can be obtained by prop-
erly choosing the parameters in the structure. The triplet FBs
are parameterized by three subfilters and three delay parame-
ters. To meet different design specifications, these subfilters can
be chosen as arbitrary functions such as linear-phase FIR [7]-[9]
and low-delay FIR [10], [11] functions. Because of the structural
PR property, the design of PR FBs can be simplified to general
filter design problems.

The flexibility and effectiveness of the abovementioned struc-
tural PR FBs motivate us to study further a new class of
two-channel structural PR FBs with multiple lifting steps called
the multi-plet FBs. The proposed approach can be regarded as
an extension of the structural PR FBs [1]-[6] and the triplet
FBs [7]-[11], which are based on the lifting structure with two
and three lifting steps [12], [13], respectively. Furthermore,
it is shown later in this paper that the design of the proposed
multi-plet FB is closely related to the concept of frequency
transformation of digital filters studied by Saramaki [14] and
Kaiser et al. [15]. As a result, the frequency characteristics
of the multi-plet PR FB can be varied online by varying the
subfilter or the transformation kernel. More precisely, if an
two-channel PR FB is expressed in certain ladder or lifting
structure having the same subfilter of the form (1+27')/2 in
all the lifting steps, then appropriate frequency transformation
similar to the approach in [14] and [15] can be applied di-
rectly to the lifting structure to obtain another PR FB with the
same number of lifting steps having the same passband and
stopband ripples but an arbitrary sharp transition bandwidth.
Thus, the design of the multi-plet FB can be divided into two
sub-problems: i) the design of a prototype PR FB to meet
a certain specification on the passband and stopband ripples;
and ii) the design of a subfilter which determines the cutoff
frequency of the final multi-plet FB after transformation.

The proposed multi-plet FB is particularly useful in de-
signing two-channel PR FB with narrow transition bandwidth.
To design such narrow transition band FBs, a prototype PR
FB with a much wider transition bandwidth is first designed
using nonlinear optimization in order to obtain a symmetric
response and given passband and stopband ripples. As only
a few variables are required, its performances can easily be
controlled. By properly designing the subfilter, the frequency
response of the prototype FB can be warped by means of
frequency transformation to meet the desired transition band-
width, while preserving the PR condition. The transformed
multi-plet FB can also be implemented as a lifting structure
with the same number of lifting steps as its prototype. Like the
structural PR and triplet FBs, the PR condition is preserved
under coefficient quantization. Another important advantage
of this structure is that the lengths and the passband delays
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of the analysis/synthesis filters can be made closer to each
other, which simplifies practical implementation and reduces
the number of additional delay elements required to process
the subband signals. Moreover, a systematic design procedure
and design formulae for the proposed method are available
to meet a given specification on the passband and stopband
ripples and transition bandwidth of the final PR FB.

The major difficulty in step i) of the design of multiplet PR FB
is the determination of the lifting coefficients in the lifting struc-
ture. For the conventional triplet FBs [7] with three lifting steps,
the prototype PR FB has relatively fewer degree of freedom than
the multi-plet FB and the lifting coefficients can be determined
by considering the responses at certain frequency points, say
w = 0, 7/2 and 7. In the multi-plet case, the determination of
these coefficients becomes a nontrivial task since the lifting fac-
torization using Euclidean factorization [12], [13] is in general
nonunique and there are many possible choices of these coeffi-
cients. To overcome this problem, a prototype PR FB with type
1 FIR linear-phase analysis filters (i.e filters with odd length and
symmetric impulse response) is employed so that it can be fac-
tored uniquely into a ladder or lifting structure [16], [17] and
subsequently transformed to the meet the desired specifications
using the techniques in [14] and [15].

Apart from designing linear-phase PR FBs, we found that
the proposed design approach is also applicable to the design
of low-delay multi-plet FBs. For FIR linear-phase subfilters,
the transformed multi-plet FB is a FIR linear-phase FB and its
system delay is governed by the length of the subfilter and the
number of lifting steps (i.e., the length of the prototype FB). To
reduce the system delay, approximately linear-phase FIR sub-
filters can be used instead of linear-phase FIR subfilters as in
[2], [4], [10] and [11]. Design results show that the proposed
low-delay multi-plet FB offers a comparable performance as,
but considerably lower system delay than, their linear-phase
counterparts. In addition, we also extend this method to the de-
sign of causal stable IIR subfilters using the model reduction
technique in [18] and [19]. The idea is to determine initially the
denominator of the IIR function given the target FIR subfilter,
and then optimally design the numerator using second-order
cone programming (SOCP) given the denominator determined
at the first stage. This approach has the advantages of simple de-
sign procedure and the ability to preserve properties of the target
FIR subfilter. Moreover, the stability of the IIR subfilter so ob-
tained is guaranteed. Additional constraints, such as prescribed
K -regularity or peak ripple constraints, can be readily imposed
to improve the frequency characteristics of the resulting IR
multi-plet FB. Consequently, causal stable IIR multi-plet FBs
and wavelet bases can be obtained. Similar to the works in [1]
and [20], the proposed multi-plet FB can also be extended to
multi-dimensional FBs [21].

For the design of the FIR/IIR subfilters in step ii) above,
we formulate the design problem as a convex programming
problem and solve it using SOCP [22]-[25]. Alternatively,
another flexible convex optimization tool called semidefinite
programming (SDP) [4], [10], [11], [26] can also be used. The
main advantage of using SOCP and SDP is that the problem
is convex and the global optimal solution, if it exists, is guar-
anteed. Furthermore, a wide variety of constraints such as
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Fig. 1. Two-channel maximally decimated FB.

linear equality and inequality constraints and convex quadratic
inequality constraints can be imposed readily to meet different
design objectives and constraints. Interested readers are referred
to [22]-[25] for more details of SOCP and its application to
filter design problems. Using the SOCP formulation, it is also
possible to impose prescribed K -regularity constraints on the
multi-plet FBs in order to obtain muti-plet-based wavelet bases.
The required K -regularity condition is a set of linear equality
constraints on the subfilter. Interestingly enough, the trans-
formed multi-plet FBs can be used to construct wavelet bases
by an appropriate transformation, even though the prototype
FB is not a wavelet FB.

It should be noted that there are previous works on the de-
sign of two-channel PR FBs using frequency transformation
[6], [20], [27]. The present work extends the frequency transfor-
mation concept in [14] and [15] to the lifting structure, which
was also pointed out in the conclusion of [28, section V, 2nd
paragraph]. In the proposed frequency transformation approach,
it is possible to derive a systematic procedure and design for-
mulae to meet a given design specifications of passband and
stopband ripples and transition bandwidth. These relations be-
tween the prototype FB and the transformed FB were not dis-
cussed in detail in [6], [20] and [27] so that it is not clear how
to control the frequency characteristics of the latter precisely.
In addition, we also study low-delay FIR PR FBs in this work,
while [20] and [27] mainly focus on linear-phase FIR PR FBs.
The paper is organized as follows: the proposed multi-plet FBs
and the concept of frequency transformation are introduced in
Section II. Section III is devoted to the design of the proto-
type FBs and the factorization of the prototype FBs into mul-
tiple lifting steps. The FIR/IIR subfilter design problems are ad-
dressed in Sections IV and V, where the proposed SOCP formu-
lations are given. The derivation of the prescribed K -regularity
constraints and a method for imposing these constraints will also
be introduced. The effectiveness of the proposed approach is
then demonstrated by several design examples in Section VI,
and finally, conclusion is drawn in Section VII.

II. MULTI-PLET TWO-CHANNEL PR FIR FBS

Fig. 1 shows the general structure of two-channel maximally
decimated FB. The z-transform of the output is

X(z) = [Ho(2)Fo(2) + H1(2)F1(2)] X (2)
+[Ho(—2)Fo(z) + Hi(—2)F1(2)] X (—2).

The two-channel FB is PR if Hy(z)Fo(z) + H1(2)Fi(z) =
cz7" and Ho(—2)Fo(z) + Hi(—2)F1(2) = 0, where ng is
an integer and c is a nonzero constant. Therefore, the input and
output of the PR FB are identical up to a time delay of n4 sam-
ples and scaling, i.e., £(n) = cx(n — ny).
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Fig. 2. General structure of the two-channel multi-plet FB. Analysis bank: (a)
before and (b) after the application of noble identity. (c) Synthesis bank.

A. Lifting Structure

The general structure of the multi-plet two-channel analysis
FBs is shown in Fig. 2(a). It is parameterized by L subfilters
Qm(2), L delay parameters N,,, L lifting coefficients p,,, and
2 scaling constants Cy and C; for m = 0,1,...,L — 1. For
convenience, let us consider Fig. 2(b), which is obtained from
Fig. 2(a) by moving the decimators to the right of the subfilters
using the noble identity [29]. The z-transform of the interme-
diate filter H(™)(z) after the mth lifting step can be written as
the following recursion:

HO(z) =272~ 4 po - Qo(2%)
HV(z) =27M 4 p1 - Q1 (z)HO(2)
H™(2) =27 2N HO2)(2) 4 py - Quu(2)H 1 (2)
(2-1)
form = 2,3,..., L— 1. Forreasons to be apparent later (please

see Section II-B), we assume that the lengths of Hy(z) and
H,(z), denoted respectively by L and L, are odd integers with
Ly > Ly. Hence, the z-transforms of the resultant analysis and
synthesis filters in the lifting structure can be written as follows:

Ho(z) = CoHE=2(2) and Hy(z) = C;HTV(2) (2-2a)
Fo(Z) = — Hl(—Z) and Fl(Z) = HO(—Z). (2-2]3)
It can be verified that the synthesis filters can be realized using

the structure in Fig. 2(c). Next, we shall consider a special case
of lifting with identical subfilters

Qr-1(z") =+ = Q1(2*) = Qo(z*) = Q(z?).

For causal implementation of such FB, the delay parameters IV,
should be chosen as follows:

(2-3)

G-1
NL_1:...:N2:N1:GandN0:% (2-4)
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where G is the passband group delay of Q(z?). As a result, the
group delays of the analysis filter pair, Hy(z) and H;(z), are,
respectively, given by

Goz(L—l)-GandGlzL-G. (2-5)

It will be seen later in Section III that an odd-length linear-phase
PR FB can always be factored in such a form, called lifting
structure, using Euclidean factorization.

B. Transformation of the Lifting Structure

If the lifting coefficients are properly chosen, multi-plet FBs
with good frequency characteristic can be obtained and they are
structural PR for arbitrary choice of the subfilters, which in-
cludes linear-phase/low-delay FIR and IIR filters. However, the
determination of these coefficients is a nontrivial task since the
lifting factorization using Euclidean factorization [12], [13] is
in general nonunique and there are many possible choices of
these coefficients. To overcome this problem, a prototype PR
FB with type 1 FIR linear-phase analysis filters (i.e., filters with
odd length and symmetric impulse response) is employed. Fur-
thermore, assume that the lengths of the analysis filters differ by
two, then the prototype PR FB can be factored uniquely into a
ladder or lifting structure having the same subfilter of the form
(1+271)/2in all the lifting steps. In the proposed approach, the
variable 7 = (z+271)/2, which is derived from the above term
(1 4+ 271)/2 in the lifting step, will be transformed to obtain
a new FB. To avoid any confusion, all the symbols associated
with the prototype FB before transformation are augmented by
the symbol “~”. For instance, the z-transform variable z and its
associated variable x as mentioned above for the prototype FB
are now denoted by z and Z, respectively. Similarly, the various
z-transforms of the prototype filters H;(z), H (m)( ) Qm(2)
and Q(z) are now respectively replaced by Hi(%), H™)(3),
Q. (%) and Q(Z). For filters and FBs after transformation, and
other common parameters such as IV,,,, p,, and C;, the conven-
tional notations without the symbol “~” will be employed.

Let the zero-phase responses of H(™(%), denoted by
R(m)( Z),form =0,1,...,L — 1 be given by

RO%) =zHO(2) = 1 + poit
ROG) =2HD(Z) = 1+ p17 - RO@E)
R™ (%) =zt H™) () = RO"=2(%) 4 pp - R™D (7).

(2-6)
In general, the zero-phase responses of the analysis filters can
be expressed as follows:

Ro(7) = Cy

L—1
1+ Z ao(n)fnl
1 + Z 011 ] .

For the sake of presentation, the causal counterparts of ﬁo(i)
and Ry () are denoted respectively by H(z) and H;(z), and
are referred to as the prototype FB. With the following substi-
tution of variable:

Ry (%) 2-7)

T = Rg(z) = 2Q(2?) (2-8)
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Fig. 3. General relations and specifications of the prototype FB, the subfilter and the multi-plet transformed FB.

where R (z) is the zero-phase response of the subfilter Q(2?)
for some positive integer GG, we obtain from (2-7) the zero-phase
response of a new analysis filter pair as follows:

L-1
Ro(x) =Co [14 ) ao(n)[RQ(z)]"] and
,:1
Ri(z)=Cy |1+ ) al(n)[RQ(m)]n] . (2-9)

We call the corresponding causal FB the transformed FB of the
prototype. Since the transformed FB is obtained by using the
substitution in (2-8), it can also be implemented by the same
number of lifting steps as the prototype.

To analyze the effect of the transformation, let us express
the z-transform variable of the prototype (transformed) FB as
Z = e9(z = eI¥), where w(w) is the digital radian freq-
uency of the prototype (transformed) FB. From (2-8), the dig-
ital frequencies before and after transformation are related by
z = cos(w) = Rg(z) = Rg(cos(w)). Fig. 3 shows graph-
ically the relationship of the various quantities in the transfor-
mation. It can be seen that x varies monotonically from 1 to —1
as w varies from O to 7, and the transition band of the prototype
FB lies in the interval around @ = 7/2 or £ = 0. Therefore,
if Rg(x) is appropriately designed to have a sharper character-
istics than 2 = cos(w) around w = 7/2, then the transformed
FB will have much narrower transition band. Furthermore, if we
want to preserve the passband and stopband ripples of the proto-
type FB in the transformed FB, R, (z) should map respectively
the values of = cos(w) in the passband and stopband of the
prototype FB to the new passband and stopband of the trans-
formed FB. It should be noted that the characteristics of R (z)

need not be monotonic in these regions, while it is better to
maintain a monotonic characteristic in the transition band of the
final FB. Here, we shall employ an equiripple characteristic for
R (z) in the passband/stopband of the final FB. This is similar
to frequency transformation approach of designing odd-length
two-channel linear-phase FIR FBs [6], [20], [27], except that we
are now operating directly on the lifting structure of the proto-
type FB. It should be noted that  and Rg(z) can lie outside
the interval [—1, 1] without affecting the PR condition of the
transformed FB. However, one should check the magnitude re-
sponse of the prototype FB outside the range [—1, 1] to ensure
that significant degradation of the frequency characteristic of the
transformed FB will not be introduced . For simplicity, we shall
assume that z lies inside the interval [—1, 1] in the rest of the
paper.

Using these results, the design of a two-channel PR FB can
be split into two much simpler sub-problems, namely the design
of the prototype PR FB and the subfilter Rg(z). The advan-
tage of this approach is that the length of the prototype PR FB,
which is targeted to have rather wide transition bandwidth, are
relatively short. Therefore, the number of variables, and hence
the design complexity of the prototype FB can be greatly re-
duced, as compared to the direct design of the target FB using
nonlinear constrained optimization with large number of vari-
ables in order to satisfy the tight specifications. On the other
hand, the transformed FB can achieve a much narrower and pre-
scribed transition bandwidth by properly designing the subfilter
using conventional filter design technique as we shall see later
in Sections IV and V, while preserving the passband/stopband
ripples of the prototype FB. Next, we shall determine the spec-
ifications of the prototype FB and the subfilters.
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C. Design Specifications and Methodology

Obviously, the target specifications are identical to those of
the transformed FB. Suppose that the specifications of the latter
are as follows:

J1=bp0 < Ro(z) <1+6p0, 0Lw < we
Low-Pass.{650<R0( ) < be0, r—w. <w<m
. J1=6p1 < Ri(z) <1+6p1, T—we<w<m
ngh-PaSS.{ésl <R1( )<5sl7 OSWSWC

(2-10)

where w,. specifies the cutoff frequency; é,; and é,; are respec-
tively the passband and stopband ripples of the analysis filters
H;(z) and hence R;(x), for i = 0,1. As mentioned earlier, the
given specification can be met by first designing a prototype FB
with the given passband and stopband ripples but with a wider
transition band. After appropriate frequency transformation in
(2-8), the given transition bandwidth can be achieved, while
preserving the lifting structure, PR property, and passband/stop-
band ripples. Therefore, the specifications of the prototype FB
can be expressed as

Low-Pass:{ <R0( ) < 1+5p0 OSi}Swj
550<R0() b0 T—weLwT
High-Pass:{ — 1 < Ri(#) < p MW S~w <
5S1SRl()§6s1, 0<& <@
2-11)

where w, is the cutoff frequency of the prototype FB. On the
other hand, it can be seen from Fig. 3 that to transform the rip-
ples of the prototype FB at the w-domain to the frequency of in-
terest at the w-domain, the subfilter should satisfy the following
specifications:

{COS(GC) < Rg(z) < 1,~
—1 < Ry(z) < — cos(w,),

0<w<w,
T—we<w<T (2-12)
If the prototype FB is monotonic decreasing at the stopband, say
a maximally-flat function in [27], then an arbitrary small stop-
band attenuation can be achieved by choosing an appropriate
subfilter that maps the value of the prototype FB near z = +1
to the stopband. The basic idea is similar to the design proce-
dures of the structural PR FB in [1]-[4] and the triplet FB in
[7]-[11], except that the prototype FBs in those FBs are fixed
and have simple coefficients. In addition, since the design of
those FBs is not viewed as a transformation, each subfilter is
usually designed independently in order to obtain better perfor-
mance. Alternatively, a set of prototype PR FBs with different
passband/ stopband ripples can be designed offline. The subfilter
can then be designed so that the transformed FB will be able to
achieve a narrower transition bandwidth, while preserving the
ripples of the prototype FB. Optimized prototype FBs usually
lead to a better performance. It should be noted that the cutoff
frequency of the prototype FB, w,, in (2-11) and (2-12) can
be freely chosen as long as it is larger than the desired cutoff
frequency. Therefore, numerous combinations of the prototype
FBs and the subfilters can be employed so as to satisfy the spec-
ifications in (2-10). The optimal combination can be determined
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by designing prototype PR FBs with different orders and select
the one that yields the lowest complexity.

III. FACTORIZATION OF PROTOTYPE FBS

A. Design of PR Prototype FBs

As discussed in Section II, we can start with the design of a
two-channel odd-length linear-phase PR FB (H((z) and H; (2))
which has a sufficiently high stopband attenuation but rather
wide transition bandwidth. Therefore, the order of the anal-
ysis filters and the number of design variables required will be
relatively small, making the nonlinear optimization much less
complicated. With the choice of synthesis filters in (2-2b), the
two-channel FB is PR if

Ho(=2)H\(2) = Ho(2)H1(=2) = 27" (3-D

where ng = (LO + Ll)/2 — 1 for linear-phase FBs; Lo and
L, are respectively the lengths of Hy(z) and H 1,(z). From the
discussion in Section II-B, we shall consider Ly = Lo + 2.
In order to obtain a prototype FB with symmetric frequency
responses, we consider the following objective function ®:

mai'n O =06+ (1—-0)s
subject to PR condition in (3-1), (3-2)
S ~ o~ 2 . -~ 2
where 6o = [, ‘1 — ‘HO e) ’ dw+ [ iy ’HO )| dw;

Q. is the cutoff frequency of the prototype FB;
fo HHO eJ“ ‘Hl (ed(m= “) H dw; 0 < o < 1 con-

trols the degree of similarity between Hy(Z) and H 1,(z); and
a is the vector containing the filter coefficients of HO(A) and
H,(Z) (i.e., their impulse response coefficients). Here, €.
is different from w,. defined in (2-10) since larger sidelobes
usually occur near the band edges. Moreover, to design wavelet
FBs, appropriate factors can be incorporated into Hy(z) and
H,(Z) as shown in the following form:

Ho(3) = (1 + z—l)ffopo(z) and
H(z)=01-2"P(3)

where K, o and K are the number of zeros to be imposed respec-
tively atw = m and @ = 0 for Hy(2) and H;(Z). The above de-
sign problem is a constrained nonlinear optimization problem,
which can be solved by the NCONF/DCONF subroutine in the
IMSL library. Since Ho(%) and Hy (%) are linear-phase FIR fil-
ters, the number of variables can be reduced approximately by a
factor of two. In addition, because of the relaxed specifications
(i.e., wide transition bandwidth), the performance of the proto-
type FBs can easily be controlled although the design problem
still requires nonlinear optimization. It should be noted that a
set of prototype FBs can be designed offline so that they can be
transformed to meet different specifications.

S =

(3-3)

B. Factorization Using Euclidean Algorithm

For completeness, we shall briefly summarize the factoriza-
tion of the linear-phase prototype PR FB using the Euclidean
algorithm [16], [17]. The factorization of general two-channel
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PR FB can be found in [12], [13]. Suppose that the z-transform
of H;(Z),i = 0,1, is given by

(3-4)

=hi(M;) + > 2hi(M; = n)Ty[cos(@)], (3-5)

n=1
where M; = (L;—1)/2,7"+2"" = 2cos(n@) = 2T}, [cos(@)]

and T, [e] is the nth-order Chebyshev polynomial. Substituting
7 = cos(w) into (3-5), one gets

7) = Z bi(n)F

where b;(n) is related to h;(n) and the coefficients of the
Chebyshev polynomials. Comparing (3-6) with (2-7), we ob-
tain C;a;(n) = b;(n) forn = 1,2,...,M;, and the scaling
constants are given by

(3-6)

C; = b;(0). (3-7)

To simplify notation, we normalize Ro (%) and R: (%) by Cp and
C1, respectively, and let

(3-8)

From the PR condition in (3-1), Ho(—2)Hy(Z) (or
Ho(2)H,(—%)) has to be a halfband filter and hence
Ao(Z)A1 (=) (or Ag(—Z)A1(Z)) is also a zero-phase half-
band filter. In other words, all even-indexed coefficients of
Ao(z)A1(—x) (or Ag(—z)A1(Z)) are zero except for its con-
stant term. To illustrate the idea of the Euclidean Algorithm,
consider the zero-phase halfband filter Ag(2)A(—x), where
(ieg[Rl(~)] — deg[Ro(z)] = 1 (.e., M\ — My = 1 and
Ly — Lo = 2). According to (3-8), suppose that A;(Z) is given
by 4;(2) =1+ Efylf a;(n)a", for i = 0,1, then one obtains

a()(MO + l)al(MO — 1) — a()(Mo)al(M()) =0 (3-9)

because the coefficient of 222 (the second largest power of )
of Ao(Z)A1(—2) must be zero. Now consider another polyno-

mial Ay(7) = Ag(Z) — T A1(Z) with a constant 3 such that

ao(MO + 1) - ,Bal(Mo) =0 (3-10)

(i.e., the term 2+ is removed), then, using (3-9) and (3-10),
the coefficient of zM° is equal to

ao(My) — far(My — 1) = 0 (3-11)
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and hence deg[A2(Z)] = deg[A1(Z)] — 1 = deg[Ao(Z)] — 2.
Also, it can be seen that Ax(Z)A1(—z) = [Ao(Z) —
BxA1(z)]A1(—2) (or Ay(—z)A; (7)) form another zero-phase
halfband filter because of the fact that all the even-indexed
coefficients of ZA;(Z)A;(—2) are zero. Consequently, similar
results can also be applied to the division of A;(7) by Aa(T).
Repeating this procedure gives rise to the Euclidean algorithm.
More precisely, the basic idea of the algorithm is summarized
as follows:

Am(%):Am-l-l(g)Vm(%)+Am+2(%)7 m = 0717'-'7L_1
(3-12)
where V,,,(z) and A,,2(Z) are respectively the quotient and

remainder; and L is the number of lifting steps

L = My + 1 = deg[Ro(Z)] + 1. (3-13)

Note that in the last step (m = L — 1), the division
in (3-12) should read Ap_1(z) = Vp_1(Z) + 1 (..,
Ar(z) = Ap41(Z) = 1). The lifting coefficients p,, and
the quotients V,,,(z) are related by

Vi—1-m(%) =

Once the constant parameters Cy, C7 and p,, for m =
0,1,...,L — 1 are obtained, the prototype FB can be imple-
mented as the lifting structure shown in Fig. 2. As an example,
consider the structure of the PR FB used in [1]. With identical
subfilters of the form (1 + 27')/2, the z-transforms of the
analysis filter pair are given by Ho(2) = (1/4)(1+22714+272)
and Hq(z) = (1/8)(=1—-2z"1 4+ 6272 — 2273 — 2=*). From
these, we obtain Ag(7Z) = 1 + 0.57 + 0.522, A(7) = 1 + 7,
Co = 0.5 and C; = 1. Using the abovementioned Eu-
clidean algorithm, two division steps can be performed as
follows: Ag(z) = —0.5241(Z) + 1 = p1741(T) + A2(7)
and Al(i) = 5A2( ) +1 = p(].CEAQ( ) + Ag( ), where
AQ(%) = Ag(%) = IL})O =1 and P11 = —0.5

__In general, if deg[R:(7)] — deg[Ro(7)] = 2d —1(or L, =
Ly + 4d — 2), where d is a positive integer, then the quotient
Vin(Z) becomes

Pm - T, form=0,1,...,L—1. (3-14)

Vo(Z) = i v(n)z?" ! and V,, (2)

n=0

=prL-1-m-T (3-15)
form = 1,2,...,L — 1. An example for d = 3 can be found
in [16]. Since V() is also a function of Z, extension of our
approach to this case is straightforward. For simplicity, only the
case in (3-14) (i.e., d = 1) is considered in this paper. Next, we
shall consider the design of the subfilters using SOCP.

IV. DESIGN OF FIR SUBFILTERS USING SOCP

A. SOCP Formulation

Although our discussion so far regarding the subfilter is
focused on linear-phase FIR filters, we found that the pro-
posed transformation method works well for approximately
linear-phase subfilters. More precisely, Z in (2-8) is now trans-
formed to Rg(x), which is a complex quantity. However, it
has a higher order than a linear-phase subfilter with the same
passband delay in order to give a better approximation to the
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transformation characteristics. This is similar to the low-delay
structural PR FBs in [2] and [4], and the triplet FB in [10] and
[11], where the subfilters are chosen as low-delay, instead of
linear-phase, FIR filters. The advantage over their linear-phase
counterparts is that the overall system delay of the transformed
FBs can be reduced.

To begin with, denote the transfer function of the FIR subfilter
to be designed by

> an)zm

n=0

Qz) = (4-1)

where L and g(n) are respectively the length and the impulse
response of the subfilter. By introducing a delay term e ~7“< into
(2-12), the desired response of the subfilter can be rewritten as

Qu(w) =m-e7%C/2 0<w<2w. (42
where m = [1+cos(@..)]/2 with the maximum allowable ripple
8o = [1 — cos(@.)]/2. From (4-1) and (4-2), we can see that G
is given by

G=Lo—-1-D 4-3)
where D is a delay reduction parameter. When D = 0, the sub-
filter is an even-length linear-phase FIR filter with symmetric
impulse response because of the specification in (2-12). Con-
sequently, G has to be an odd positive integer. Moreover, it is
observed that ((z) is related to a linear-phase halfband filter
A(z) of the form A(z) = 0.5[m™1Q(2?) + z~¢] with identical
passband and stopband ripples. Since d¢ is twice of the ripple
error of A(z), the Kaiser’s formula [30] can therefore be used
to estimate the length of A(z) (denoted by L) and L¢

—20logy, (%@) ~13

L=~
AT 324 (- 2w,)

+1

(4-4)

and hence we have Lo =~ (L4 + 3)/2. This provides a good
starting point to determine L to meet a given specification as
shown in (2-12). For the low-delay case, Lg can be chosen as
either odd or even integer, provided that GG is an odd integer, and
D is a positive integer corresponding to the amount of delay re-
duction. From (4-4), the estimated value of L, is increased until
the required specification is met, since slightly longer subfilter
length is usually required as compared to its linear-phase coun-
terparts with the same specification.

For a given subfilter length, the design problem is to approx-
imate the desired response Q4(w) by Q(e’*) in the minimax
sense by minimizing

Eo = max |Q(e) — Qa(w)|, w € [0, 2w,]. (4-5)
We shall formulate this problem as a convex programming
problem and solve it using SOCP [22]-[25]. The advantage of
formulating the objective function as a convex problem such as
SOCEP is that the resulting problem is convex and the optimal
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solution, if it exists, can be found. In addition, other linear
equalities can easily be incorporated to obtain wavelet bases, as
we shall illustrate later in this Section. Alternatively, (4-5) can
be formulated as a semi-definite programming (SDP) problem
[4], [10], [11], [26], which may provide more flexibility but
requires a longer design time. For simplicity, only the SOCP
formulation is considered below. To formulate the minimization
problem of E, as a SOCP problem, Q(e’*) is first expressed

in terms of the design variables ¢ = [¢(0),...,q(Lg — 1)]T as
Lo—1

Q™) = 3 am)e " = g"{e(w) +js(w)}  @-6)
n=0

where ¢(w) = Rele(w)], s(w) = Imle(w)]; Rele]
and Im[e] denote respectively the real and imaginary
parts of the elements inside the square bracket; and
e(w) = [l,e7¥..., e 7La=D<]T Hence, (4-5) can be
rewritten as follows:

mqin § subjectto § — [a%(w) + 2(W)Y2 >0  (47)

for w € [0,2w,.], where ag(w) = ¢’ c(w) — Re[Qa(w)] and
ar(w) = g¥'s(w) —Im[Qq(w)]. Discretizing the frequency vari-
able w over a dense set of frequencies {w;,1 <14 < K} in the
range of interest, the constraints in (4-7) becomes § — [a% (w; ) +
a2(w;)]'/? > 0. Moreover, by defining the augmented vari-
abley = [6 qT]7, (4-7) can be cast to the following standard
SOCP problem:

rrgn d"y subjecttod’y > |Uiy -,  (4-8)

where d =

Re[Qa(ws)]
Im[Qq4(w;)]

~ 1s a N x 1 zero vector. A similar formulation for the least
squares (LS) criterion can also be derived.

1 oL, U = [8 EE‘:;HU _

}; [| - |l2 denotes the Euclidean norm; and

B. Imposing the K-Regularity Condition

To construct a wavelet FB, the analysis filter pair Ho(z) and
H(z) should possess at least one zero at w = 7 and w = 0,
respectively. Let Ky and K; (called the K-regularity) be the
number of zeros to be imposed respectively atw = mandw = 0
for Hy(z) and Hy(z) with Ky > K; > 1. Hence, the K -regu-
larity condition can be written as follows:

do o
[dw—koHo(eJ )} = [mHl(eJ )]

forkg =0,...,Ko—1land k; =0,..., K1 — 1. Furthermore,
let 79 and 71 be the roots of Ry(z) = 0 and Ry () = 0, respec-
tively. In general, more than one such solution may exist. We
are only interested in those roots which lie inside the stopband
region of the prototype FB. More precisely, we have

=0

w=0

(4-9)

-1 <7y < —cos(w,), and cos(w.) <7y < 1.  (4-10)
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After the transformation of variable, the number of zeros im-
posed for the analysis filters is closely related to the filters with
the following form:

Hgo(z) = Q(22) — roz=% and Hg1(2) = Q(22) — r127C.

“4-11)
Therefore, the K -regularity condition in (4-9) is equivalent to
dk‘o o dkl i

forkog =0,...,Kg—1land k; =0,..., K; — 1. However, it is
noticed that the constraints in (4-12) are contradictory to each
other due to the upsampling operation and odd positive integer
G. For example, imposing one zero on Hgo(#) atw = m implies
that Q(22) + 792~ also have one zero at w = 0. Since ¢ and
ry are of different signs according to (4-10), the constraints in
(4-12) cannot be satisfied simultaneously. As a result, we further
require 7o and r; to satisfy the following condition:

(4-13)

To = —Tr1 =T1T.

Equations (4-10) and (4-13) give us the general conditions for
constructing a wavelet FB, even if the prototype FB is not a
wavelet FB. It should be noted that the prototype FBs considered
in [1]-[10] are indeed wavelet FBs with K -regularity of certain
orders. In this case, we have r = —1, and are able to construct
a wavelet FB by imposing a flatness of prescribed order to each
subfilter (since the subfilter at each lifting step may be different)
atw = 0. With (4-10) and (4-13), the K -regularity condition can
be simplified to

d* .
Etal@)] =0

w=T

fork=0,...,Ko—1 (4-14)

where Ho(z) = Q(2%) — r2~%. It can be seen that if Hg (/)
has K zeros at w = , then Hy(z) and H;(z) also have K, =
Kg and K1 = Kq zeros at w = 7 and w = 0, respectively.
Expanding (4-14) and after slight manipulation, one gets a set
of linear equality constraints as follows:

Z (271)’“(](77,):—1(?’“7 k=0,...,Kg—1 (415)
n=0

and its matrix form is given by

Ag=b (4-16)
where [A], = (2n)* and [b]y = —rG* fork =0,...,Kg—1
andn =0,...,Lg — 1. Here, [A]., denotes the (k, n)th entry

of matrix A. Under the SOCP framework, these additional linear
equality constraints can be easily incorporated.

V. DESIGN OF FIR SUBFILTERS USING SOCP

In this section, the subfilter is assumed to be the following IIR
function:

Lo m—1
gm(n)z™"
Rm(z):GD"E(;;)_ = d(0) =1 (5-1)
> d(n)zm"
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where Lg ,, and Lp are, respectively, the lengths of numerator
and denominator of R,,(z) with Lg,, > Lp. To satisfy the
specification in (2-12), we shall employ the SOCP-based model
reduction technique proposed in [18] and [19], which extends
the method in [31], to convert the desired FIR subfilter Q(2)
to an IIR filter R,,,(z) in the form of (5-1). More precisely, the
common denominator D(z) is first determined using a simple
iterative design procedure, given a target FIR function. Once
the denominator is obtained, the numerator G,,,(z) is then de-
signed in LS sense optimally using convex programming, say
SOCP, where linear equalities or convex quadratic constraints
can easily be imposed to further improve the frequency charac-
teristic of the resulting IIR filter. Apart from its simple design
procedure, the advantage of the model reduction approach in
[18] and [19] is that the resulting IIR filter is guaranteed to be
stable, and the frequency characteristics such as the magnitude
and phase responses of the FIR prototype filter is well preserved.
In order to approximate ()(z) with small enough errors using the
technique in [18] and [19], we found that the length of the de-
nominator of R,,(z) should satisfy the following condition:

Lp > [grd(Q)] + 1 (5-2)

where grd(y) is the passband group delay of the FIR function
y(z) and [w] denotes the integer just larger than or equal to w.
In other words, according to (4-3), we have

(G+1)
2

Lp > +1. (5-3)
This tells us that the savings in number of multiplications and
additions would be substantial if model reduction is applied to
FIR functions with lower system delay. Therefore, it is prefer-
able to use IR filters when low system delay and low arithmetic
complexity are of interest. In what follows, we shall mainly
focus on the design of the numerator. Interested readers are re-
ferred to [18], [19] and [31] for the determination of D(z).
After D(e’*) is designed, R,,(e’*) in (5-1) can be rewritten
more compactly in matrix form of the design variables g,, =

Ron(€7) = giulem (@) + j8m(w)] (5-4)

where ¢, (w) = Relen(w)/D(e™)], sm(w) = Im[em,(w)
/D(e’*)] and e, (w) = [1,e77¢ ... e IFam=12T To ap-
proximate the response of Q(z) by G, (2), given D(z), in the
LS sense, we have

Rin(€7°) = gp[em(w) + jsm(w)] (5-5)

™

where Uy, = [7 [ (w)en (w) + s (w)sm (W) ]dw, v, =
ffﬂ {em(w)Re[Q(e7)] + 8m (w)Im[Q(e?“)]}dw, and k,, =
[ |Q(ej‘“)|2dw. To formulate the minimization problem of

Ers(g,,) as a SOCP problem, (5-5) is rewritten as follows:

2

Frs(9,) = U9, U5 v, = LU 00 = o).
2

56)
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Moreover, by defining the augmented variable z,, =
[6,m gL 1%, the LS design problem can be reformulated
as the following SOCP:

min Al z,, subjecttohl z,, > Uz —ﬁmHZ (5-7)
where h,, = [1
Uy, = U;l/ 2'um.

As discussed in Section IV-B, it is possible to construct
wavelet bases by imposing certain zeros at w = = to the filter
Hg(z) associated with the subfilter Q(z). Replacing Q(z)
in (4-14) by R,,(z), one gets the following condition for the
transformed FB to satisfy the K -regularity condition:

01, 1" Un = [0L,, U}/’]and

La,m

d* ;
{WHRm(ej )} o =0 (5-8)
fork=0,...,Kr, —landm =0,...,L — 1. It can be seen
that if Hg, (e/) has Kg, zeros at w = 7, then Hy(z) and
H,(z) also have Ky = min{Kg, ,m = 0,1,...,L — 2} and
Ki = min{Kg,,m = 0,1,...,L — 1} zeros at w = 7 and
w = 0, respectively. To impose K, zeros on Hp,_ (e*) at
w = m, the coefficients of G,,(z) should satisfy the following
linear equality constraints:

Lg,m—1 Lp—1
> @n)fgmm)=—r > (G+2n)kd(n)  (5-9)
n=0 n=0

fork=0,...,Kgr_ —landm =0,..., L—1. Using the SOCP
framework, it is very effective and convenient to impose these
additional linear constraints on the subfilters because d(n) are
known. To construct causal stable IIR multi-plet wavelet bases,
identical subfilter satisfying (5-8) can be employed.

However, since the numerator is designed with LS design cri-
terion after determining the denominator, larger ripple error is
usually encountered near the band-edge of the model-reduced
filter, which in turn degrades the stopband attenuation of the
transformed FB. Therefore, to improve the frequency character-
istic, additional constraints on the stopband ripples are imposed

|Hi(e)| < e, for w in the stopband, i = 0,1 (5-10)
where ¢; is the prescribed peak stopband ripple to be imposed
on the analysis filters H;(z). To simplify the design, the first
L — 2 subfilters (denoted by R,,,(z) = R(z) = G(z)/D(z),
m = 0,1,..., L — 3) are obtained by model reducing its FIR
counterpart using the model reduction technique in [17], while
the numerators of the remaining two subfilters are separately de-
signed to satisfy the constraints in (5-10). Replacing @,,(z) in
(2-1) with R,,(z) and substituting into (2-2), the peak stopband
constraint in (5-10) can be rewritten as follows:

i — hi(w) + 'y%,i(w)]l/z > 0, win the stopband (5-11)

where Vpi(w) = g7_, ;Rely;(w)] + Re[e 72Nr-2+i .
HE=440) (39 yp i (w) =97y Imy;(w)+Im[e2Ne -2+
H(L—4+i)(ejw)], y,(w) = e I2eNi-2t ,H(L—3+i)(ejw)

er_24i(2w); and e _o4;(w) is defined in (5-4). Note, Hy(2)
and H,(z) are designed in turn, i.e., # = 0 and then ¢ = 1 in
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(5-11). Moreover, in the design problem for each value of i,
Gm(z),m = 0,1,...,L — 3 + 4, and hence HZ—4+7)(eiv)
and H(E—3%9) (¢7%) are known. Therefore, (5-11) is a quadratic
inequality constraint in g; o, and can be rewritten as the
following SOCP constraint:

gi > |Ri(w)xr—24i + fi(w)]ly, win the stopband (5-12)

T

where R;(w) = [8 {:Bﬁig” and f;(w) =

Re[e*jQNL—z-H‘ . H(L*4+i)(e]'w)]

Im[e=72Ne—2+i . FE=440)(eiw))
in the stopband region, these constraints on the peak ripples
can be augmented to the existing SOCP constraints in (5-7) for
determining G',_o4;(z). Note that it is also possible to obtain
a wavelet base if G(z), Gr_2(z) and G_1(z) are designed
to satisfy (5-9) simultaneously. A similar formulation for the
minimax criterion can also be derived. We now present several
design examples.

}. By discretizing (5-12)

VI. DESIGN EXAMPLES

In all the design examples, the frequency variable w in the
band of interest was uniformly digitized into K, = 500 evenly
spaced samples. The SOCP optimization was carried out using
the SeDuMi Matlab Toolbox [32] and it took less than 20 sec-
onds to obtain the solution on a Pentium 4 1.8 GHz personal
computer.

A. Example 1: Structural PR Two-Channel Linear-Phase FIR
Multi-Plet FBs

In this example, two-channel linear-phase FIR multi-plet FBs
with the following specifications are designed using the pro-
posed approach: cutoff frequency w. = 0.47, passband ripples
6p0 = 0,1 = 3.45394 x 1075 (i.e., 3 x10~* dB passband devi-
ation) and stopband ripples 659 = 651 = 0.00316 (i.e., —50-dB
stopband attenuation). For these specifications, a low-order pro-
totype FB with Ly = 7 and L; = 9 is first designed as de-
scribed in Section III-A. The specifications of this prototype FB
are summarized in Table I and the corresponding frequency re-
sponse is shown in Fig. 4(a). For the sake of presentation, we
refer it to as prototype FB 1. After applying the Euclidian algo-
rithm, it can then be realized as the lifting structure with L = 4
lifting steps. The corresponding lifting coefficients and scaling
constants are listed in the second column of Table II. From
Fig. 4(a), it can be seen that w,.. should be chosen as 0.047 so as
to satisfy the prescribed passband and stopband ripples. In other
words, we extract these passband and stopband regions of the
prototype FB I and transfer their magnitudes to the transformed
FB. In order for the subfilter to satisfy (2-12), its filter length
L is chosen to be 16 according to (4-4). The corresponding
frequency response of the transformed FB derived from proto-
type FB I is shown in Fig. 4(b). The specifications of the sub-
filter and the design results in this example are summarized in
Tables III and IV, respectively. To illustrate the flexibility of
the proposed transformation method, Fig. 4(c) and (d) show
the frequency responses of the subfilters with different cutoff
frequencies and the corresponding multi-plet FBs derived from
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Fig. 4. Design results of linear-phase FIR multi-plet FB in Example 1. (a) Frequency responses of the analysis filter pair of prototype FB I. (b) Frequency re-
sponses of the analysis filter pair of the transformed FBs derived from prototype FB I with w. = 0.47. (c) and (d) Magnitude responses of the subfilters and the
corresponding frequency responses of the analysis filter pairs of the transformed FBs with different cutoff frequencies (dotted line: w. = 0.3 7., dash-dotted line:

w. = 0.367, and solid line: w,. = 0.457).

TABLE III
SPECIFICATIONS OF THE SUBFILTERS IN EXAMPLES 1, 2 AND 3

TABLE I
SPECIFICATIONS AND DESIGN RESULTS OF THE PR PROTOTYPE FBS
Prototype FB I Prototype FB II
o 0.3 0.3
(K,. K)) (0.0) 2.2)
(Nlt 017 0.1z
Fig. 4a 5d (dash-dotted line)
TABLE II

LIFTING COEFFICIENTS AND SCALING CONSTANTS OF THE PR PROTOTYPE FBS

Prototype FB 1 Prototype FB II Triplet FB [8]-[11]
Do 0.23987556667257 | 0.28888910640732 1- ﬁ
D -0.54571527976115 | -0.58891192726239 1/42
D, 0.54045911345798 | 0.50121153781230 1-JE
Ds -0.23167459250035 | -0.17093207303270 N/A
C, 0.71237102180672 | 0.70252205657753 1/42
C, 0.71401331291255 | 0.69752360032606 l/\/z

prototype FB 1. It can be seen that the passband and stopband
are equiripple and the frequency response is very symmetric.
Furthermore, by realizing the subfilter as variable digital filters
[33], the cutoff frequencies can be varied online. This illustrates
that the proposed approach is very flexible and effective in con-
trolling the frequency characteristics of the multi-plet FBs. As
a comparison, we also consider the design of the conventional

Example 1 Example 2 Example 3
Prototype FB I I II I

L, 16 32 36 32

D 0 0 0 12

K, 0 4 (r=-0.9961) | 4 (r=-0.9961) | 2 (r=-0.9961)
o, 0457 0457 0457 0457

o, 0.047 0.047 0.0247 0.047

TABLE 1V

DESIGN RESULTS OF THE TRANSFORMED FBS IN EXAMPLES 1 AND 2

Example 1 Example 2
Prototype FB I I I1
Group Delays of H,(z), H,(z) 45, 60 93, 124 105, 140
Passband deviation of H,(z) /10°dB| 0.2950 0.3051 0.4642
Stopband attenuation of H,(z) /dB 53.0565 53.3028 53.1323
Passband deviation of H,(z) /10°dB| 0.2965 0.3120 0.4858
Stopband attenuation of H (z) /dB | 53.0219 53.2724 529142

triplet FB proposed in [10], [11]. The general design procedure
of the triplet FB requires three separate designs of the subfil-
ters and their lengths have to be chosen properly so as to sat-
isfy different specifications. By a number of trials and errors, we
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Fig. 5. Design results of linear-phase FIR multi-plet wavelet bases in Example 2 () -regularity constraint: Ky = K; = 4). (a) Frequency responses of the analysis
filter pair. (b) Analysis scaling function. (c) Analysis wavelet function of the transformed FBs derived from prototype FB I with w. = 0.45x. (d) Frequency
responses of the analysis filter pair (dash-dotted line: frequency response of prototype FB II). (e) Analysis scaling function. (f) Analysis wavelet function of the

transformed FBs derived from prototype FB II with w, = 0.457.

found that the lengths of these three subfilters have to be 22 so
as to satisfy the same specifications as above with the minimum
arithmetic complexity. For the proposed approach, a similar re-
sult can be obtained by designing a single subfilter of length
22 using the prototype FB in the triple structure as listed in the
forth column of Table II. The results are similar and are therefore
omitted for simplicity. This conventional triplet FB has compa-
rable arithmetic complexity and performance as the abovemen-
tioned multi-plet FB. On the other hand, it has a larger difference
in the system delays of the analysis filters, which would be un-
desirable in practical implementation. In the multi-plet FB with
multiple lifting stages, a longer prototype FB can be designed to
have a wider passband/stopband width (i.e., narrower transition
band) so that a shorter subfilter is able to transform it to meet
the same specifications. As a result, the system delays of the
analysis filters can be made closer to each other. This might be
useful in real time applications, where their implementations are
likely to be pipelined, because less additional delay elements are
required to process two subband signals. Moreover, since there
is no systematic design procedure for determining the subfilter
lengths, one would have to try every combination of the subfilter
lengths in order to meet the specification. This is rather time
consuming and makes the design inefficient. For the proposed
approach, the frequency response of the prototype PR FB, such
as the passband and stopband ripples, can be controlled through
optimization with few variables. Identical subfilters can then be
designed separately to meet the specification. In summary, the
proposed multi-plet FBs employ frequency transformation of
appropriate optimized prototype filters to simplify the design
to a single subfilter, which reduces the delays between the two

analysis filters as well as the design complexity. Moreover, the
same design procedure is applicable to multiple lifting steps.
Next, we shall illustrate the incorporation of prescribed K -reg-
ularity constraints into the transformed FBs to realize wavelet
bases.

B. Example 2: Structural PR Two-Channel Linear-Phase FIR
Multi-Plet Wavelet Base

In this example, two-channel linear-phase FIR multi-plet FBs
with prescribed order of K -regularity are designed. The spec-
ifications are: 5 x10~* dB passband deviation, —50 dB stop-
band attenuation, w. = 0.457 and Koy = K; = 4. It was
found that a subfilter with w. = 0.047 and Ly = 32 is able to
meet the required specifications for prototype FB 1. According
to Section IV-B, a prescribed order of K -regularity can be im-
posed to the multi-plet transformed FB by finding the value of
7 in (4-15). To this end, one can verify that one of the roots of
Ro(Z) = 0 and R1(Z) = O are respectively given by 1o =
—0.9961 and r; = 0.9961. Since both of them satisfy the con-
ditions in (4-10) and (4-13), the constraints in (4-15) with r =
—0.9961 can be imposed to the subfilter so that a wavelet FB
can be obtained although prototype FB I is not a wavelet FB.
The frequency response, analysis scaling function and analysis
wavelet function of the multi-plet transformed FB so obtained
with Kg = 4 are shown in Fig. 5(a)—(c), respectively. From
Fig. 5(a), it can be seen that the prescribed zeros are properly im-
posed. This demonstrates the usefulness of the proposed SOCP
method in imposing the K -regularity conditions.

As mentioned in Section II-C, different combinations of pro-
totype PR FBs and subfilters can be employed to satisfy the
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Fig. 6. Design results of low-delay FIR and IIR multi-plet wavelet bases in Example 3 (X -regularity constraint: Ky = Ky = 2). (a) Frequency responses of the
analysis filter pair. (b) Group delay response. (c) Zeros of the analysis filters. (d) Analysis scaling function. (e) Analysis wavelet function of the low-delay FIR
transformed FBs derived by the prototype FB I with w. = 0.457 and D = 12. (f) Frequency responses and enlarged stopband details of the analysis filter pairs
of the model-reduced FIR FB (dash-dotted line) and the proposed IIR FB (solid line).

given specifications. For illustrative purpose, another prototype
FB (we call it prototype FB II for convenience) is also consid-
ered and designed to be a wavelet FB with Ky = K; = 2. The
specifications, and the lifting coefficients and scaling constants
of the prototype FB II are summarized in Tables I and II, re-
spectively. The corresponding frequency response is plotted as
dash-dotted line in Fig. 5(d). In order to satisfy the given specifi-
cation for prototype FB II, w. and L of the subfilter, as shown
in the forth column of Table III, are chosen to be 0.0247 and
36, respectively. Since longer subfilter is required, the corre-
sponding transformed wavelet FB has slightly higher arithmetic
complexity and system delay than that of the wavelet FB derived
by prototype FB 1. The solid line in Fig. 5(d) shows the fre-
quency response of the wavelet FB obtained from prototype FB
IT with » = —1 and K = 4. The analysis scaling and wavelet
functions so obtained are shown in Fig. 5(e) and (f), respec-
tively. From the last two column of Table IV, both multi-plet
transformed FBs satisfy the overall specifications although they
are transformed by different prototype FBs.

C. Example 3: Structural PR Two-Channel Low-Delay FIR
and IIR Multi-Plet Wavelet Bases

This example illustrates the flexibility of the proposed ap-
proach in designing low-delay multi-plet PR FBs and wavelets.
Again, we consider the transformation of PR prototype FB I. It
is shown in Table III that the specifications of the subfilter are
identical to those in Example 2 except that the parameters DD and
K g of the subfilter are now set to 12 and 2, respectively. In other
words, the multi-plet transformed FB is a wavelet basis and,

from (2-5), the group delays of the desired analysis low-pass
and high-pass filters are significantly reduced to 57 and 76 sam-
ples, as compared with 93 and 124 samples for the linear-phase
case with D = 0 in Example 2, respectively. The frequency
and group delay responses of the multi-plet wavelet FB are re-
spectively shown in Fig. 6(a) and (b). It can be seen that the
low-delay multi-plet wavelet FB is approximately linear-phase
in the passband with peak group delay errors of 0.0098 sam-
ples for Hy(z), and 0.0081 samples for H;(z). The regularity
of the analysis filter pair, Ko = K; = 2, was verified from
the pole-zero plot of Hy(z) and H, (%) in Fig. 6(c). The anal-
ysis scaling and wavelet functions are, respectively, shown in
Fig. 6(d)—(e). They are rather smooth, but not symmetric due to
the low-delay constraint. The performances of the analysis filter
pair are summarized in Table V. It can be seen that the passband
and stopband ripple errors are slightly increased, as compared
with its linear-phase counterpart in Example 2, in exchange for
a much lower system delay.

Alternatively, IIR subfilters can be employed to further lower
the arithmetic complexity. As discussed in Section V, the model
reduction technique in [18] and [19] is applied to obtain the de-
sired IIR subfilters from the designed FIR subfilter above. With
Lgm =Lp =13,m=0,...,L—1,the number of multipliers
and adders are respectively 100 and 96, which are about 78% of
those required for the FIR case. However, it can be seen from
the dash-dotted lines in Fig. 6(f) that the LS solution exhibits
significant ripples near the band edges and the stopband attenu-
ation is significantly worsen. To improve the perfomance, peak
stopband constraints of 50 dB and K -regularity constraints are
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TABLE V
DESIGN RESULTS OF THE TRANSFORMED FBS DERIVED FROM PROTOTYPE FB
I IN EXAMPLE 3

Lovl\;-I(::lay 30] Lov;i(lilelay

Group Delays of H,(z), H,(z) 57,76 57,76 57,76

Group delay error of H,(z) /samples 0.0098 0.0096 0.0126

Passband deviation of H,(z) /10°dB 0.3964 0.28 0.3629
Stopband attenuation of H,(z) /dB 50.34 48.08 50

Group delay error of H (z) /samples 0.0081 0.0078 0.0111

Passband deviation of H,(z) /10°dB 0.3916 0.28 0.3881
Stopband attenuation of H,(z) /dB 50.42 49.08 50
Number of multipliers 128 100 100
Number of adders 124 96 96

imposed during the model reduction of the above FIR subfilter.
From the solid line in Fig. 6(f), it can be seen that the maximum
stopband attenuation of the proposed IIR FB is now increased
from 48.08 dB and 49.08 dB to 50 dB for Hy(e?) and Hy (e7%),
respectively. Also, as depicted in Fig. 6(f) and the pole zero plot
(not shown here due to page limitation), Hy(z) and H;(z) have
two zeros at w = 7 and w = 0, respectively. The design results
in this example are summarized in Table V. Finally, it should
be noted that the multi-plet FB can be efficiently implemented
using sum-of-power-of-two (SOPOT) coefficient and the mul-
tiplier block technique. This gives rise to very efficient multi-
plier-less realization. Interested readers are referred to [4] for
more information in the multiplier-less realization of the struc-
tural PR FB in [1]. Furthermore, like the triplet FBs in [11], the
proposed multi-plet FB can be cascaded to form M -channel PR
FBs where M is an integer power of two.

VII. CONCLUSION

A new class of two-channel structural PR FIR/IIR FBs called
multi-plet FBs is presented. It generalizes the structural PR FBs
and triplet FBs by employing multiple lifting steps as in con-
ventional lifting structure. The design of the multi-plet FBs can
be done in two separate steps: i) a low-order prototype PR FB
with a much wider transition band is first designed using non-
linear optimization in order to obtain a symmetric frequency re-
sponse and prescribed passband/stopband ripples; and ii) a sub-
filter is then designed using SOCP so that the prototype FB can
be warped by means of frequency transformation to meet the
desired transition bandwidth, while preserving the PR condi-
tion, passband/stopband ripples and the lifting structure. Under
the SOCP framework, linear equalities such as the K -regularity
constraints can be easily incorporated in the design of the sub-
filter to obtain muti-plet-based wavelet bases. To further reduce
the system delay of the proposed multi-plet FBs, the design of
low-delay FIR and causal stable IIR subfilters is also consid-
ered. Design examples show that the proposed approaches pro-
vide more flexibility in controlling the frequency characteristic
of the PR FBs and lower design complexity than conventional
methods.
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