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Abstract—This semi-tutorial paper considers the effect of com-
ponent mismatch on the static accuracy of analog-to-digital con-
verters (ADCs) and digital-to-analog converters (DACs) with dig-
ital correction. First, it is noted that the effective static resolution
of flash ADCs is not much reduced by component mismatch: with
proper digital correction, the loss due to mismatch is only about 1.3
bit, virtually independently of the mismatch level unless the mis-
match is very small. Second, it is noted that current steering DACs
may actually benefit from component mismatch. Moreover, with
proper digital correction, current steering DACs can achieve an
effective static resolution of m bits with as few as m -+ 2 near-unit
low-precision current sources.

Index Terms—Analog-to-digital converter (ADC), calibration,
digital-to-analog converter (DAC).

I. INTRODUCTION

N THIS PAPER, we point out some basic observations on the
I influence of component mismatch on the static accuracy of
analog-to-digital converters (ADCs) and digital-to-analog con-
verters (DACs) with digital correction. It is noted that, with
proper digital correction, the effect of mismatch in flash ADCs is
quite small, and mismatch may actually be beneficial in current
steering DACs. These observations suggest to allow arbitrarily
large mismatch in the design of such converters. While such an
approach to ADCs has been suggested by several authors (as
will be detailed below), its attractivity for current steering DACs
does not seem to have been noticed in the literature.

This paper is semi-tutorial in that most of its substance was
presented in [1] and [2]. However, the analytical results given in
the Appendix are new.

We begin with ADCs. Flash ADCs consist of a bank of
comparators, each with its own threshold [3]. Traditionally,
such ADCs are designed to have equidistant thresholds. This
is costly: in order to limit the effect of component mismatch
on the thresholds, the components (mainly transistors) must
be sufficiently large, which in turn requires sufficiently large
currents to achieve the required speed.

However, in many applications (e.g., in communications re-
ceivers), all that is really required is a sufficient density of com-
parator thresholds. Moreover, the value of the individual thresh-
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olds need not be predictable at design time and may vary from
chip to chip, provided they are known (with sufficient accuracy)
at run time. With proper digital correction (involving some sort
of measurement of each chip), it is thus possible to reduce both
the area and the power consumption of the analog circuits.

ADCs designed (more or less) in this spirit have been re-
ported in [4]-[8]. All of these papers consider flash ADCs with
low-precision comparators. In [5] and [6], only a fraction of the
comparators is actually used: during calibration, the compara-
tors with suitable thresholds are identified and the others are de-
activated. In [7], an effective resolution of 6 bits (at very high
speed) was obtained with 255 low-precision comparators. The
mathematical background of optimal ADC postcorrection was
addressed in [8] and illustrated with experimental ADC data.
The state of the art in error compensation in ADCs is summa-
rized in [9].

However, a basic observation (Fig. 2, shown later) seems to
be missing from the literature: with proper digital correction, the
loss in effective resolution due to misplaced comparator thresh-
olds is quite small (about 1.3 bits) and virtually independent of
the mismatch level unless the mismatch is very small. In conse-
quence, it seems attractive to deliberately use “cheap and dirty”
(i.e., small) comparators that are fast without consuming much
power. We illustrate this approach with measurements from an
integrated flash ADC with 256 low-precision comparators that
achieves an effective static resolution of almost 7 bits.

An analogous approach to DACs is perhaps even more in-
teresting. Specifically, we will consider current steering DACs
with digital correction. We will see that mismatch can actually
improve the resolution of such DACs, and we will demonstrate
that an effective resolution of about /n bits can be achieved with
as few as m + 2 imprecise near-unit current sources.

In this paper, we do not consider the actual calibration
methods for such ADCs and DACs. Such calibration methods
are a research area for themselves, for which the results of
this paper give further motivation. Also, the added cost (in
terms of area and power) in the digital part due to the digital
correction of such converters may offset the cost reduction in
the analog part in some applications; however, the balance of
these two effects depends on details of the application and of
the (ever-changing) technology. In contrast, the observations
of this paper (except for the measurements of Section IV) are
“information theoretic” and do not depend on the technology.

This paper is structured as follows. Flash ADC converters
with low-precision comparators are discussed in Sections II and
III. Measurements from an actual ADC chip are presented in
Section IV. Current steering DACs with low-precision compo-
nents are discussed in Sections V and VI. An asymptotic anal-
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Fig. 1. ADC with comparator mismatch. (a) Standard (uncorrected) digital
output. (b) Corrected digital output.

ysis of the performance of such DACs and ADCs is given in the
Appendix.

II. FLASH ADCS WITH LOW-PRECISION COMPARATORS

A flash ADC applies the analog input z € R in parallel to
K comparator circuits. Each comparator has its own threshold
,..., K, and computes the sign of z — 6. In order to
simplify the following discussion, we will assume 0 < x < 1,
and we define the two dummy thresholds fp = O and 01 = 1.
An ideal m-bit flash ADC has K = 2™ — 1 comparators with
thresholds 6, = kA, k= 1,..., K, with A = 2™, However,
in this paper, we allow arbitrary thresholds; we only assume that
the thresholds are ordered (or reordered, if necessary) such that
O < Opq1for0 <k < K.
If the analog input  lies in bin k, i.e., if 0 < & < 041, the
standard (uncorrected) digital output is

Fue = kA + A2 (1)

while the corrected digital output is

Ze= (0 +0r41)/2 2

the mean of the corresponding bin (see Fig. 1). For an ideal
ADC, (1) and (2) coincide.

In order to assess the performance of ADCs with imprecise
thresholds, we consider an ensemble of ADCs with random
thresholds 0, = kA+Ey,k=1,...,K,where E1,... Ex are
independent zero-mean Gaussian random variables with vari-
ance o2, The digital correction amounts to reordering the thresh-
olds such that 6, < 6.1 holds and then to use (2). (Thresholds
outside the allowed interval 0 < x < 1 are simply discarded.)
We will measure the quantization distortion by the mean squared
error (MSE)

1
MSE = / (de(z) — )2 da 3)
0

and by the effective resolution (in bits) defined as

Reseg = —logy V12 - MSE. @

Effective Resolution [bits]
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Fig. 2. Effective resolution versus o for digitally corrected ADCs with random
comparator thresholds. Solid lines: average effective resolution. Dashed lines:
the best ten percentiles and the worst ten percentiles.
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Fig. 3. Average effective resolution versus o for uncorrected ADCs with
random comparator thresholds (same thresholds as in Fig. 2).

The average performance of such random ADCs (with cor-
rection) is shown in Fig. 2. The figure shows the average effec-
tive resolution (in bits) as a function of o2 for K = 26, K =
28, K = 219 and K = 22, Also shown in Fig. 2 are the best
ten percentiles and the worst ten percentiles of the ensemble. As
claimed, the loss in effective resolution due to the threshold er-
rors does not exceed about 1.3 bits and is virtually independent
of o unless o is very small.

For comparison, the effective resolution of the same random
ADCs without the digital correction [i.e., with output (1)] is
shown in Fig. 3. Without correction, such converters are useless
unless o is very small.

Also, for comparison, Fig. 4 shows the performance of the
same random ADCs as in Fig. 2, but with the different digital
correction of [5] and [6]. In this example, only half of the com-
parators are actually used. It is remarkable that this alternative
(and perhaps somewhat simpler) correction scheme achieves al-
most the same MSE as the optimal correction (2).
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Fig. 4. Average effective resolution versus o for “random” ADCs (with the
same thresholds as in Fig. 2) with the digital correction according to Flynn et
al. [5] and [6].

Figs. 2—4 were obtained by simulations. The limiting value
(for large o) of the effective resolution [with the optimal correc-
tion (2)] may also be obtained analytically under the assumption
that the thresholds are uniformly distributed between 0 and 1. In
the limit of K — oo, the effective resolution in this case is

Reseg = logy K — log, V6
~ log, K — 1.29 bits.

(&)
(6)

The proof of (5) is given in Appendix I.

Figs. 2 and 4 clearly suggest to design ADCs without
spending resources to control the position of the individual
thresholds.

III. IsSUES WITH ADC CORRECTION

We briefly address some issues with the correction scheme of
Section II.

Correction by Look-Up Table: The correction (2) can
be stored in a look-up table. Digital circuitry is required to
compute the index %k to access the look-up table. This is a
well-known issue with all flash ADCs, and it is exacerbated by
the nonmonotonicity of “random” thresholds [7].

Precision of Digital Output: The corrected digital outputs Z
should be stored (in the look-up table) with more than log, K
bits; about log, K + 1.5 bits should suffice in most cases (cf.
Section IV). It follows that, for an effective resolution of m
(~log, K — 1.3) bits, it suffices to store Z. with a precision
of about m + 2.8 bits.

Calibration: The thresholds 85, must be measured. This could
be done, for example, by applying a ramp signal z(t) to the con-
verter input and measuring the switching times of all compara-
tors. However, such schemes are outside the scope of this paper.

Performance Measures Beyond MSE: The nonlinearity of
ADC:s is usually assessed by means of the differential nonlin-
earity (DNL) and the integral nonlinearity (INL) [3], which
measure the deviation of the thresholds from their ideal posi-
tions. These quantities do not appear to make sense for ADCs
that are corrected according to (2). However, it is obvious from
Fig. 1 that the linearity of such corrected ADCs is excellent.
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Fig. 5. Largest gap between thresholds of “random” ADCs as in Fig. 2. The
gaps are measured in terms of LSB-units = A. (In an ideal ADC, all gaps
equal 1 in these units.) Solid lines: average maximum gap. Dashed lines: the
best ten percentiles and the worst ten percentiles.
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Fig. 6. Comparator circuit. The numbers indicate the width and length of the
transistors.

This further suggests that the spectral distortion is very small,
which is indeed confirmed by the measurements in Section I'V.

However, “random” ADCs are likely to have a few large
gaps, i.e., exceptionally large differences between two suc-
cessive thresholds. For the ADCs of Fig. 2, the maximal gaps
are plotted in Fig. 5. Note that the relative magnitude of the
maximal gaps (relative with respect to the ideal threshold
difference A) increases with K.

IV. ADC DESIGN EXAMPLE WITH MEASUREMENTS

In order to demonstrate the approach of Section II, a flash
ADC with 256 comparators was implemented in a 0.25-pum
BiCMOS process IBM6HP) using only CMOS transistors. The
chip was designed for a supply voltage of V4q = 1.8 V. The chip
also contains a 256-to-8-bit multiplexer, but the digital correc-
tion is not part of the chip.

The comparator circuit (taken from [10]) is shown in Fig. 6.
Other than in [10], we use very small transistors (as indicated in
Fig. 6). For example, the two input transistors of the differential
pair have width W = 1 ym and length L = 0.5 pm, which
is only slightly larger than the minimum transistor size of the
process given by Wy, = 0.3 pm and L;, = 0.24 pm.
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TABLE I
MEAN m_. AND STANDARD DEVIATION . OF THE THRESHOLD ERRORS FOR
ALL COMPARATORS OF ONE CHIP

| Chip: || me [mV] | me [LSBs] | oc [mV] | o- [LSBs] |

1 1.29 0.33 14.74 3.77
2 -0.51 -0.13 16.26 4.16
3 -4.65 -1.19 16.36 4.19
4 -0.34 -0.09 15.59 3.99
5 -0.23 -0.06 14.77 3.78
6 -0.70 -0.18 1491 3.82
7 -1.17 -0.30 15.97 4.09
8 -0.81 -0.21 15.42 3.95
9 -1.29 -0.33 15.64 4.00
10 0.64 0.16 14.84 3.80
0.5 0.25
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Fig. 7. Distribution of threshold errors. (a) All ten chips individually. (b) All
ten chips together.

The reference voltages (V,.¢) for the comparators are gener-
ated by a resistor ladder made of p+ polysilicon resistors. The
width of each resistor is 6 pm and the length of each resistor is
3 pm. The nominal resistance of such a resistor is 143 {2 and
the resistance of the whole ladder is 36.6 k€. In all of our mea-
surements, the voltage across the resistor ladder is 1.0 V (with
end points at 0.5 and 1.5 V, respectively). The current through
the ladder is thus 27.3 pA.

Ten chips in DIL-24 packages
measurements.

were available for

A. Measurements of the Comparators

The thresholds of all comparators (of all ten chips) were
measured with a custom-built measurement device using 12-bit
ADCs. The measured thresholds 6, were compared with the
thresholds kA (with the appropriate A) of an ideal 8-bit ADC.
Table I shows the mean m,. and the standard deviation o of the
threshold error €, = 03, — kA for each chip. These numbers are
expressed both in volts and in LSBg (least significant bit) units
(= multiples of A). The histogram of ¢, is shown in Fig. 7,
both individually for each chip (left) and over all chips (right).

Averaged over all chips, we have

me = —0.78 mV = —0.20 LSBg
0. = 15.51 mV = 3.97 LSBg.

(N
)
It follows that, without the digital correction, the ADCs are very
bad indeed. According to a popular rule of thumb, o. < (1/6)

LSB is required in order to achieve a reasonable yield with an
uncorrected ADC [11]. From (8), the accuracy of our converters

TABLE II
QUANTIZATION ERROR AND EFFECTIVE RESOLUTION

| Chip: || Qraw [LSBs] | Quaiiv [LSBs] | eff. Res. [bits] |

1 1.97 0.64 6.84
2 5.49 0.67 6.79
3 4.63 0.72 6.68
4 5.99 0.65 6.83
5 3.85 0.64 6.85
6 451 0.57 7.01
7 4.29 0.60 6.95
8 4.83 0.63 6.86
9 3.08 0.58 6.99
10 5.86 0.60 6.94

would thus be adequate for a 4-bit converter, which is consistent
with Fig. 3. With digital correction, however, we expect from
Fig. 2 (with 0. = 0.0155) to achieve an effective resolution of
almost 7 bits, which is consistent with the measurements given
in Section IV-B.

B. Performance of the Corrected ADC

The manufactured chips do not contain any circuitry for the
digital correction: they simply provide the (digital) output of
all comparators (in multiplexed form). However, from the mea-
sured thresholds (as in Section IV-A), it is straightforward to
calculate the static accuracy that would be obtained with the
corrected digital output (2) [cf. (16) in Appendix I]. This cal-
culation was carried out for all 10 chips (after proper gain and
offset correction, and ordering of the tresholds), and the result is
shown in Table II. Also shown in Table II is the rms quantization
error Qc.5;p of the ADC with corrected digital output, as well
as the rms quantization error ),y of the ADC with conven-
tional uncorrected digital output. (The rms quantization error )
is defined as the square root of the MSE (3), here in units of
LSBs = A.) Note that the effective resolution varies from chip
to chip, but is close to 7 bits for all ten chips.

More detailed information about one chip (chip 4, which is
the worst chip) is shown in Figs. 8 and 9: Fig. 8 shows both the
corrected digital output and the uncorrected digital output, and
Fig. 9 shows the corresponding quantization error spectrum.

The effective resolution in Table II is based on a digital cor-
rection table with full measurement precision. In Table III, the
effective resolution (of chip 1) is shown for a (corrected) digital
output with L = 8,9, ..., 12 bits. Note that L, = 10 suffices to
achieve virtually the full effective resolution.

V. CURRENT STEERING DACS WITH LOW-PRECISION
NEAR-UNIT CURRENT SOURCES

A current steering DAC [3] consists of [V current sources that
produce the constant currents cq, . . . , ¢y . These current sources
are individually switched to form the output current

&)

N
Y=7Y $ncn
n=1

with s,, € {+1, —1} and with some scale factor . (In an alter-
native version, we have s,, € {0,1}.)
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Fig. 8. Input-output characteristics (top) and quantization error (bottom) of
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TABLE III
RMS QUANTIZATION ERROR FOR A DIGITAL OUTPUT WITH L = §...12 BITS

[ chipt [ @sv | Qob | Quov | Qi | Quzv | Quaiiv |
| 1[LsBs]: [] 0.70 [ 0.66 | 0.65 | 0.64 | 0.64 | 064 |

Let C be the set of all possible output currents (9) for fixed
c1,...,cn and fixed v. In an ideal binary-scaled m-bit current
steering DAC, we have ¢,, = 21 and C = Cigea With

Cideal :7{i1/i37i5/7i(2m - 1)} (10)
Note that the same set C is obtained with N = 2™ — 1 unit cur-
rent sources ¢c; = ¢ = ... = cy = 1. However, in this paper,
we allow arbitrary current sources c,, and correspondingly gen-
eral sets C.

In the most straightforward circuit realizations of current
steering DACs, the relative cost (both in chip area and in power
consumption) of the individual current sources cj,...,cy i8S
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proportional to their current c,. (The cost also depends, of
course, on the required precision.) If co = 2¢;, it is quite cor-
rect to think of current source 2 as two copies of current source
1 connected in parallel. In this rough analysis, the cost of the
mentioned ideal binary-scaled m-bit DAC (with ¢, = 2" 1)
equals the cost of 2™ — 1 unit current sources. (As we have
seen, a DAC with N = 2™ — 1 ideal unit current sources also
achieves a resolution of m bits.) However, we will see below
that essentially the same resolution can be achieved with as few
as m + 2 imprecise near-unit current sources.

Let = be the real number (available in digital form) that is
to be converted into the analog output y according to (9). The
conversion may be described as follows.

1) Round z to the nearest point in C.

2) Set the switches sy, ..., sy accordingly.

For an ideal m-bit DAC, both steps are trivial; for general cur-
rent sources ¢y, . .., cy (and corresponding C), these two steps
are the digital correction.

In the following, we will assume —0.5 < z < 0.5. The
performance of various DACs will be measured by the MSE

0.5
MSE = / (y(z) — x)*dx (11)

—0.5

or by the corresponding effective resolution — log, v 12 MSE.
The scale factor y in (9) will be adjusted to obtain the smallest
MSE. (This may result in unused points in C of magnitude larger

than 0.5.)
We consider several ensembles of DACs with random source
currents ci,...,cy given by ¢, = ¢pnom(l + E,), where

FE;, ... Ey are independent zero-mean Gaussian random vari-
ables with variance o2 [12].

In the first ensemble, we use only (imprecise) unit current
SOUICES: Cp nom = 1 for all n. The performance of this ensemble
as a function of ¢ is shown in Figs. 10 and 11 for N = 12
and for N = 14, respectively. As is obvious from these figures,
the performance of these (corrected) converters is surprisingly
good provided that the mismatch (measured by o) is sufficiently

large.
In the second ensemble of DACs, we use current sources with
nominal currents ¢, nom = 1.177 1 The performance of this

ensemble is shown in Figs. 12 and 13 for N = 12 and for N =
14, respectively. With this ensemble, the excellent resolution of
the first ensemble is now achieved at every mismatch level.

In the third and last ensemble of DACs, we use current
sources with nominal currents ¢, nom = 1+ 0.1(n — 1). The
performance of this ensemble is shown in Fig. 14 for N = 14.

In all of these examples, we achieve an effective resolution of
about N — 2 bits with N imprecise current sources.

The high-o regions in Figs. 10-14 are in good agreement with

Reser = N — 1.738 bits (12)
which follows from the asymptotic analysis in Appendix II. The
differences in the low-o regions of these figures can be partly
understood by considering the limit of the set C for o — 0. In
Figs. 10 and 11, C contains only NV + 1 points for 0 = 0; in
Fig. 14, the cardinality of C is still very limited for o = 0; but,
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in Figs. 12 and 13, C contains essentially 2V different points
even for o = 0.

Figs. 10-14 were obtained by simulations. The limiting value
(for large N and large o, and with optimized scale factor v) may
also be obtained analytically: in this limit, the mean effective
resolution is given by (12) independently of the particular en-
semble. A semi-rigorous proof of (12) is given in Appendix II.

VI. IssUES WITH DAC CORRECTION

We briefly address some issues with the correction scheme of
Section V.

Correction by Look-Up Table: The conversion of the real
number z (—0.5 < x < 0.5, available in digital form) into
the desired controls s1, ..., sy of the switches may be carried
out as follows. Let m be the effective resolution (in bits) to be
achieved. We first round z to, say, m + 2 bits. From there, we
use a look-up table to obtain s1,...,Sn.

Calibration: The following approach works in principle (al-
though its development into a practical method is not trivial):

2l max(SNR) =75.8 dB.... J1504
0 005 01 015 02 025 03 03 04 045 05
o

Fig. 13. Effective resolution versus ¢ for digitally corrected DAC with N =
14 random current sources with mean currents ¢, o = 1.1~ *, n =1,..., N.
Solid lines: average effective resolution. Dashed lines: ten best and ten worst
percentiles.

for any given configuration of switch positions si, ..., sy, the
output current ¥ may be measured by charging a capacitor and
measuring the time between two fixed voltages. The calibration
can also allow for the case where the output of the DAC is not y
as in (9) but some (deterministic) function of it. However, the in-
vestigation of practical calibration schemes is beyond the scope
of this paper.

Output Range: For “random” DACs as in Section V, the den-
sity of points in C is higher in the center (around zero) than at the
margins. For example, Fig. 15 shows a histogram of the density
of points in C for the DAC of Fig. 12 for ¢ = 0.5. (The central
limit theorem may be invoked to argue that the density tends to a
Gaussian distribution.) The optimization of the scale factor «y in
(9) is therefore important. With an optimized scale factor, only
a central region of C is actually used. In the example of Fig. 15,
less than 40% of the total output range (containing over 80% of
the points in C) is used.
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Fig. 14. Effective resolution versus o for digitally corrected DAC with NV =
14 random current sources with mean currents ¢,, o = 1 4+ 0.1(n — 1), n =
1,...,N. Solid lines: average effective resolution. Dashed lines: ten best and
ten worst percentiles.
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Fig. 15. Distribution of points in C and used range thereof for the DAC of
Fig. 12 with ¢ = 0.5.

In the limit of large NV and large o, the analysis in Appendix II
gives an optimal scale factor «y such that the standard deviation
of the distribution of the points in C (as in Fig. 15) is

oc ~ 0.361 (13)
independently of the particular ensemble. In this case, about
83.4% of the points in C are used, which is in good agreement
with the experimental results.

Performance Measures Beyond MSE: Both the linearity
and the spectral distortion are expected to be excellent. Occa-
sional large gaps between points in C may be an issue in some
applications.

VII. CONCLUSION

There is an increasing awareness that flash ADCs can be
built using low-precision comparators with virtually “random”
thresholds. We have noted that the loss in the effective static

resolution of such ADC:s is limited to about 1.3 bits virtually in-
dependently of the mismatch level unless the mismatch is very
small. This observation is confirmed by a chip with 256 low-pre-
cision comparators that achieves a static resolution of almost
7 bits.

For current steering DACs, we have shown that an effective
static resolution of m bits can be achieved with as few as m + 2
low-precision near-unit current sources. Such corrected DACs
may be attractive as components inside ADCs (e.g., such as suc-
cessive-approximation ADCs or sigma-delta ADCs) or for the
digital calibration of other analog circuits such as OTAs [13] and
analog filters made thereof.

In this paper, we have ignored the cost (in terms of chip area
and power) of the digital correction, and we have not addressed
practical calibration schemes. However, the promising results of
this paper suggest that the study of these issues is worthwhile.

APPENDIX 1
ASYMPTOTIC ANALYSIS OF ADCS: PROOF OF (5)

For fixed thresholds 6}, the MSE (3) is

1
MSE = / (#(x) — o) da (14)
0
~ K-—1 /'9k+1 M . . d.ﬁlﬁ' (15)
= . 2
k=0 Pk
_ N 0 01)° *
D) (k1 — Ok)". "
k=0

For an ideal quantizer with 6, = kA, A = 1/ K, we thus obtain
the textbook formula MSE = 1/(12K?) which underlies (4).

For random thresholds 6}, we define the random variables
Sk = Ok+1— 0. In the limit of very many thresholds (K — o)
that are uniformly distributed between 0 and 1, Sy, is exponen-
tially distributed with probability density f(s) = Ae™*® for
s > 0 (and f(s) = 0 for s < 0) and mean A~! = 1/K (in-
dependent of k). From (16), the expected MSE is

K-1
E[MSE] = % E[S}] (17)
k=0
K-1
_ 1 s
=3 kzo/o s°f(s)ds. (18)

The integral in (18) can be computed in closed form as

/ 3Ae M ds = [-A3e M (64 65 + 30252 + A3sP)| P
0

19)
=6A7". (20)
Inserting this into (18) yields
1
E[MSE] = EK/\_3 Q1)
1

Inserting (22) into (4) yields (5).
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APPENDIX 11
ASYMPTOTIC ANALYSIS OF DACs

Recall that C is the set of possible values of the output current

(23)

N
Y=7 sncn
n=1

with fixed positive currents ¢,, and s, € {41, —1}. Let by, k =
0,1,2,3,...,2Y — 1, be the points in C, which we assume to
be ordered such that 6}, < 6j41.

A. Decomposition of MSE
Recall that the MSE (11) is

0.5
MSE = / (y(x) — z)? da. (24)

—0.5
If the interval between 6, and 0,41 lies in the interval —0.5 <
z < 0.5, then its contribution to the integral (24) is

A Ort1
MSEy, :/ (y(z) — z)* dz (25)

0

Ok Okt1
= / 0y, — z)? dx +/ (Ori1 — )% dz (26)
0, O
with §ké(0k + 0r41)/2. Straightforward computation then
yields

1
MSE,, = E(e"'“ —0r)>. (27)

B. Gaussian Approximation of Point Density in C

In the subsequent analysis, we will assume, first, that C has
2NV different points, and second, that the density of points in C
is Gaussian

A 2N
ANz)= e
(z) V2mwoe

The first assumption is generically satisfied for general real
¢1,...,cn. The second assumption may be justified by the
central limit theorem [applied to (23)]. The assumption thus
holds rigorously in the limit N — oo, but it yields surprisingly
accurate results even for the small values of N considered in
Section V.

The variance o¢ in (28) may be computed as follows. Let
S1,-...,SN be independent random variables that are uniformly
distributed over {+1, —1}. Then

—1"2/(20'(27) )

(28)

o2 = Var[y] (29)
N
=9° Z 2 Var[s,] (30)
n=1
N
=7y . (31)
n=1
For fixed ¢4, ..., cn, we can thus compute v from o¢ and vice

versa.

C. Local Uniformity Assumption for Points in DAC Ensembles

We now consider an ensemble of “random” DACs (i.e., a
random choice of ¢y, ..., cy) as, e.g., in Section V, and we are
interested in the mean MSE over the ensemble. The difference
G =014+1 — 0, then becomes a random variable.

The key assumption in our derivation is that these random
variables Gy, are exponentially distributed with mean 1/ given
by (28). This assumption amounts to local application of the
global assumption in Appendix I and is essentially equivalent
to assuming that the points 6, in any small bin are uniformly
distributed inside the bin.

With this assumption, the contribution to the MSE (24) of
some bin of width A around z is

E[MSE in bin] ~ 1y > & (32)

12

points 6 in bin

Q

1
§E[number of points in bin] A7 (33)

L -3
5 (AN

Q

(34)
= %A)\_z (33)

where the step to (33) follows from E[G}] = 6A~2, which we
used and proved in Appendix I.

D. Total Expected MSE and Optimal Scaling
From (35), the expected value of the total MSE is

1 05
E[MSE] ~ = / MNz) ™2 da. (36)
2/ 05
Inserting (28) then yields
05 2/ 2
E[MSE] ~ 272N 2 02 / e” 19¢ dy; (37)
0
= 27N o 4h(0¢) (38)
with
A 05 1‘2/0'2
Y(oc) =og e’ 17 dx. (39)
0
By numerical minimization, we easily obtain
min ¢ (o¢) = 0.1476 (40)
at
oc ~ 0.361. (41)
From (38), we obtain the effective resolution
Reser = —logy /12 - E[MSE] 42)
1
~ N — 5 log,(12 - 2w 9(oc)) (43)
and inserting (40) yields
Resegr =& N — 1.738 bits. 44)

The approximations in (36) and (37) become exact in the limit
of large N and large o.
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