
1938 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 54, NO. 9, SEPTEMBER 2007

Adaptive Beamforming Using Frequency Invariant
Uniform Concentric Circular Arrays

H. H. Chen, Student Member, IEEE, S. C. Chan, Member, IEEE, and K. L. Ho, Senior Member, IEEE

Abstract—This paper proposes new adaptive beamforming
algorithms for a class of uniform concentric circular arrays
(UCCAs) having near-frequency invariant characteristics. The
basic principle of the UCCA frequency invariant beamformer
(FIB) is to transform the received signals to the phase mode rep-
resentation and remove the frequency dependence of individual
phase modes through the use of a digital beamforming or com-
pensation network. As a result, the far field pattern of the array is
electronic steerable and is approximately invariant over a wider
range of frequencies than the uniform circular arrays (UCAs). The
beampattern is governed by a small set of variable beamformer
weights. Based on the minimum variance distortionless response
(MVDR) and generalized sidelobe canceller (GSC) methods,
new recursive adaptive beamforming algorithms for UCCA-FIB
are proposed. In addition, robust versions of these adaptive
beamforming algorithms for mitigating direction-of-arrival
(DOA) and sensor position errors are developed. Simulation re-
sults show that the proposed adaptive UCCA-FIBs converge much
faster and reach a considerable lower steady-state error than
conventional broadband UCCA beamformers without using the
compensation network. Since fewer variable multipliers are re-
quired in the proposed algorithms, it also leads to lower arithmetic
complexity and faster tracking performance than conventional
methods.

Index Terms—Array processing, beamspace, broadband
adaptive beamforming, broadband direction-of-arrival (DOA)
estimation, frequency invariant, robust beamforming, target
tracking, uniform concentric circular arrays (UCCAs).

I. INTRODUCTION

BEAMFORMING using sensor arrays is an effective
method for suppressing interferences whose angles of ar-

rival are different from the desired looking direction. They find
important applications in radio communications, sonar, radar,
and acoustics [1]–[3]. Traditional adaptive broadband beam-
formers usually employ tapped-delay lines or linear transversal
filters with adaptive coefficients to generate appropriate beam
patterns for suppressing undesirable interferences. Since the
response of the array is frequency dependent, the number of
coefficients of the tapped-delay lines required will increase with
the signal bandwidth. In broadband adaptive beamforming, a
considerable number of adaptive coefficients will be required
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and it translates into increased convergence time and higher im-
plementation complexity. To overcome this problem, subband
decomposition technique, partial adaptation, and frequency
invariant beamformers (FIBs) [4]–[8] have been proposed to
reduce either the frequency band to be adapted or length of
the adaptive transversal filters. In FIB, a fixed beamforming
network is used to compensate for the frequency dependency
of the array and generate beam patterns that are approximately
invariant over the frequency band of interest, hence, the name
FIBs. There are several techniques for designing FIBs with
fixed beampatterns. In [6], the array aperture is discretized to
obtain FIB with fixed beampatterns using the scale-frequency
relationship of an array aperture. The design and implemen-
tation of such FIB for linear arrays have been reported in [7].
Because of the discretization process, the positions of the
sensors are usually nonuniform. In [4], it is observed that the
design of FIBs for uniform linear arrays (ULA) is equivalent to
the design of a 2-D fan filter with different orientations. Using a
set of fixed FIBs which cover different spatial angles of a ULA,
broadband directional interferences can be suppressed using a
generalized sidelobe canceller (GSC)-based [9] adaptive beam-
former with very few number of adaptive filter coefficients [5]
(one coefficient for each beam). Moreover, the convergence
speed is much faster and the steady-state signal to interference
ratio is slightly higher than the traditional broadband Griffiths
and Jim (GJ) GSC-based adaptive beamformer.

Traditionally, the design of FIBs is mainly focused on linear
arrays with fixed spatial-frequency responses [4]–[7], [10]. This
is attributed to the attractive linear geometry of the array, which
makes the design tractable and enables many efficient direc-
tion-of-arrival (DOA) estimation algorithms such as MUSIC
[11] to be applied. A related beamspace technique using dis-
crete Fourier transform (DFT), called the frequency-domain fre-
quency invariant beamformers (FDFIBs), for wideband DOA
estimation was also reported in [12].

Motivated by the potential advantages of FIB and the sym-
metric geometry of uniform circular arrays (UCA), Chan and
Pun [13] developed an electronic steerable UCA with frequency
invariant characteristics. Due to the circular symmetric geom-
etry of the UCA, the frequency invariant array can be obtained
by introducing a set of fixed compensated filters [14] and its spa-
tial response is governed by a set of variable coefficients, one per
each phase mode.

Unfortunately, the passband of a UCA is closely related to its
radius and exhibits a bandpass characteristic. In order to obtain
a frequency invariant characteristic over a large bandwidth, the
dynamic range of the compensation filters will become very
large and it leads to considerable noise amplification of the
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array. This problem can be overcome if uniform concentric
circular arrays (UCCA) are employed [15], [16]. Another ap-
proach to increase the usable bandwidth of frequency invariant
UCA beamformers for microwave applications is to employ
directional sensors with appropriate characteristics [17]. Com-
pared to the UCCA proposed in this paper, the directional
sensors should possess a frequency invariant beampattern
and the radius of the array has to be sufficiently large, while
employing fewer number of sensor elements. In [18], it was
shown that similar beampatterns of such a UCA can be realized
using a two-ring UCCA. Compared with ULAs, UCCAs have
the advantages of being able to cover 360 of the azimuth
angle and they can form electronic steerable beampatterns
that are relatively frequency invariant over a wide bandwidth.
Thus, they are more suitable for 2-D DOA estimation [19] and
adaptive beamforming.

In the proposed adaptive UCCA-FIB, signals at the element-
space are first transformed to the phase modes so that the
frequency response of the array can be equalized by a set of
compensation filters. The compensated phase mode signals are
then delayed, multiplied by a set of variable coefficients or
weights, and summed to get the beamforming output. Due to
the frequency invariant characteristic of the proposed UCCAs,
the variable beamforming weight of each phase mode can be
adapted as in a conventional narrowband adaptive beamformer
using, for example, the minimum variance beamforming
(MVB) [20] and GSC [9] to suppress the undesirable interfer-
ences. Therefore, the length of the tapped-delay line can be
drastically reduced (one per phase mode in our experiment). As
a result, the arithmetic complexity associated with the lengthy
variable tapped delay lines in traditional broadband adaptive
beamformers can be significantly reduced and the convergence
speed will also be greatly improved. In [18], the theory, design,
DOA estimation, and beamforming using the sample matrix
inversion (SMI) method are described.

In this paper, we shall further study the recursive and robust
implementation of the adaptive UCCA-FIB using the GSC al-
gorithm and compare its performance with traditional tapped-
delay line implementation. Simulation results show that the pro-
posed adaptive UCCA-FIB has much faster convergence speed
and much fewer number of adaptive beam weights than conven-
tional broadband adaptive beamformers using UCCAs without
the compensation filters. In addition, the performance of the pro-
posed adaptive UCCA-FIB in tracking moving sources is much
better than UCCAs using conventional tapped-delay line adap-
tive beamformers.

Due to DOA estimation and other implementation errors such
as calibration errors, the actual array response may derivate
from the assumed signal model. As a result, conventional beam-
forming methods such as GSC may suppress the desired signal
as well as the interfering signals, causing signal degradation
or even cancellation. Robust beamforming algorithms were
proposed to remedy this problem. A conventional approach is
to limit the norm of the adaptive weight vector [21], so called
norm constraint, to prevent the leakage signal coming from
the blocking matrix of the GSC from canceling the desired
signal in the fixed desired beam. For recursive least squares
(RLS) implementation of the adaptive beamformer, this norm

Fig. 1. UCCA with P rings. The pth ring has K equally spaced sensors.

constraints can also be realized by adding a small identity
matrix to the auto-correlation matrix of the sensor output.
Because of this operation, this method is also called diagonal
loading [22]. More recent approaches formulate the robust
beamforming problem as a convex optimization problem where
the worst-case performance is optimized subject to certain
models of uncertainty [23], [24]. In this paper, we shall develop
robust adaptive beamforming algorithms and diagonal loading
approaches for UCCA-FIBs because of their good performance
and low implementation complexity. The performance of the
proposed robust UCCA-FIB is evaluated in target tracking and
the presence of DOA estimation error or sensor calibration
error. Simulation results show that the robust UCCA-FIBs have
a better performance than its origin counterpart when there
are sensor location uncertainties. The algorithms proposed in
this paper are also applicable to the frequency invariant UCAs
as proposed in [13], though they, in general, have a narrower
bandwidth than frequency invariant UCCAs.

This paper is organized as follows. In Section II, the structure
and the design of the broadband UCCA-FIB will be briefly re-
viewed. The proposed broadband adaptive beamforming algo-
rithms using the UCCA-FIB are presented in Section III. The
robust UCCA-FIB beamforming algorithms are developed in
Section IV. The DOA estimation and target tracking algorithms
employing the UCCA-FIB are also described. Design examples
and simulation results are given to illustrate the usefulness of
the proposed methods. Conclusions are drawn in Section V.

II. FREQUENCY INVARIANT UCCAS

The structure and the design of the frequency invariant UCCA
[15], [16] is briefly reviewed in this section. The geometrical
structure of a -ring UCCA is shown in Fig. 1. There are
omni-directional elements in each ring and the sensor elements
are located along the circumference of a circle according to

with the center of the rings situated at the
origin of the Cartesian coordinate, where is the radius of the

th ring, , and
as shown in Fig. 2. With the sensor distance being fixed at half
of the smallest wavelength of the array to be operated, the
radius of the th ring of the UCCA is given by

(2.1)
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Fig. 2. Relationship between inter-sensor spacing and the radius of the pth ring
of the UCCA.

Fig. 3. Block diagram of a P -ring UCCA-FIB.

For convenience, this radius is represented as its normalized ver-
sion: . The steering vector of
the th ring of a UCCA can be written as

(2.2)

where , denotes the ratio of the sam-
pling frequency to the maximum frequency , is the an-
gular frequency, is the elevation angle that is measured from an
imaginary reference axis perpendicular to the horizontal plane,

is the azimuth angle measured from an imaginary reference
axis on the horizontal plane of the sensors and is the azimuth
angle of the th sensor. In this paper, we focus our design at an
elevation angle of , i.e., the horizontal plane.

The structure of the UCCA frequency invariant beamformer
(FIB) is shown in Fig. 3. After appropriate down-conver-
sion, low-pass filtering and sampling, the sampled signals
of the th ring from the antennas are given by the vector

, which is called a
snapshot at sampling instance . Each snapshot is inverse
discrete Fourier transformed (IDFT) to a set of Fourier co-
efficients, each coefficient is called a phase mode ,

, . Each phase mode is then
filtered or compensated by a compensation filter with impulse
response . The compensated signals are then input to the
adaptive beamforming network to form the output of the entire
adaptive UCCA-FIB. Since the compensated phase mode sig-
nals are relatively frequency invariant in the desired frequency
band, very few taps are required in the subsequent adaptive
beamforming network for extracting the desired signals and
suppressing the interferences. In our simulations, one tap per
phase mode is found to give satisfying performance. In other
words, the adaptive beamforming network is working like a

narrow band adaptive beamformer. We now briefly describe the
principle and design of the UCCA-FIB.

The phase mode signals of the th ring of the UCCA are ob-
tained by IDFT transforming the snapshot samples

(2.3)
and is the number of the phase modes,

which is assumed to be an odd number. Each branch of the IDFT
output is then filtered by the compensation filter with fre-
quency response , to compensate for the frequency de-
pendency of the phase mode. It is then multiplied by the variable
beamformer weight before combining to give the output of
the th ring as follows:

(2.4)

where denotes discrete-time convolution. To obtain the spa-
tial-temporal transfer function of the th ring, let us assume that
there is only one source signal with spectrum . Taking
DTFT on both sides of (2.4), we have

(2.5)

where we have used the fact that the Fourier transform of
is .

In a UCCA FIB, the outer rings have more phase modes than
the inner ones. For simplicity, we let the weighting vectors of the
rings be identical, i.e., , . The overall
output of the array is then obtained by summing the contribution
from each ring as given by (2.5). This gives

(2.6)

where

is the spatial-frequency response of the UCCA. To obtain a fre-
quency invariant response, the term inside the bracket, which is
a function of both and , should be independent of the fre-
quency variable . If the number of sensors is large enough,

can be approximated by [18]

(2.7)
To achieve a frequency invariant response over the desired
band, the term inside the bracket of (2.7) should be equal to 1.
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For a uniform circular array with one single ring in the array,
the compensation filters can be chosen as the inverse of the
Bessel functions . However, the value of the Bessel
function may be zero or nearly zero in the interested frequency
band, which may increase considerably the dynamic range of
the compensated filter and consequently lead to con-
siderable noise amplification at the array output. Fortunately,
by employing more rings, i.e., UCCA, it can be shown that

’s are required to compensate for the th phase mode
from all the rings. Since these responses, , from
different rings cover different frequency bands, i.e., not entirely
zero, it is possible to choose compensation filters with small
dynamic ranges in all the interested bands for most of the phase
modes available. On the other hand, some of the high-order
phase modes of the outermost ring do not have any counterparts
from other rings and they will be discarded. The number of
these usable phase modes will determine the length of , i.e.,

in (2.7). This will limit the ultimate performance of the
spatial beampattern. From (2.7), it can be seen that if the filters

are designed in such a way that

for (2.8)

where and are, respectively, the lower and upper frequen-
cies of interest, then the beamformer will be approximately fre-
quency invariant within and

(2.9)

From this equation, we can see that the far field beam pattern is
now governed by the spatial weighting alone and it can
be written as , which is similar to that of a dig-
ital finite duration impulse response (FIR) filter with impulse re-
sponse . Therefore, the beampattern can be designed
separately from the compensation filters by conventional filter
design algorithms such as the Parks–McClellan algorithm [26]
or second-order cone programming (SOCP), if convex quadratic
constraints are to be imposed [27]. Moreover, real-time adapta-
tion of the beam pattern through the spatial weighting to
suppress undesired interferences is also simpler than traditional
broadband UCCA adaptive arrays using tapped delay lines as
we will see later in Section III.

Since the left-hand side of (2.8) is a linear function of the
filter coefficients in ’s, the design problem in (2.8) can
be treated as a digital FIR filter design problem with all the filter
outputs adding up to the desired response, which is equal to one.
If the minimax error criterion is used, the filter coefficients for

can be determined by SOCP [27], [28]. Due to page
limitation, we only illustrate the principle and concept of the
UCCA-FIB by an example and refer interested readers to [18]
for more details.

1) Example 1: UCCA-FIB With Two Rings: In this example,
a two-ring UCCA is considered. The inner ring and the outer
ring have 10 and 18 omni-directional sensors, respectively. The

Fig. 4. Spatial response of the UCCA-FIB with two rings.

Fig. 5. Spatial-frequency response of the UCCA-FIB with two rings.

required bandwidth of the UCCA- FIB is .
The numbers of phase modes of the inner and outer rings
are 9 and 17, respectively. To avoid noise amplification, 9 out
of the 17 phase modes are chosen. The desired beam is tar-
geted at 60 and the beamwidth is 10 . The magnitudes of the
compensation filters in the inner ring and outer ring are con-
strained to be less than 0 and 26 dB, respectively. are
obtained from the Parks–McClellan algorithm according to the
beam direction and width with the same passband and stopband
ripples. The frequency responses are shown in Figs. 4 and 5.
For convenience, the frequency responses of the UCCA-FIB
for are discretized with 128 samples and are
plotted together in Fig. 4 to compare the array spatial responses
at different frequencies. It can be seen that the array responses
almost overlap each other, which illustrates that the array re-
sponse is approximately frequency invariant over the desired
band. Fig. 5 shows the perspective view of the beamformer.

III. ADAPTIVE BEAMFORMING USING UCCA-FIB

The UCCA-FIB designed in Section II can be used in broad-
band adaptive beamforming. With the FI characteristic, the
length of the variable weight vector in the beamformer can
be significantly reduced compared to conventional UCCAs
without employing the compensation network. A recursive
adaptive beamforming algorithm using the minimum variance
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distortionless response (MVDR) and the GSC is developed in
the following.

Consider broadband signals ,
which impinge a -ring UCCA, respectively, at azimuth
angles , . According to (2.6) and let

denote the spectrum of the
impinging signal , the output of the UCCA-FIB can be
written as

(3.1)

where

,

and is the frequency response of the additive
white Gaussian sensor noise at the th element of the

th ring. From Section II, we know that is designed
to be frequency invariant and hence

(3.2)

Also, for notation convenience, we shall replace the approxima-
tion sign in (3.2) by the equality sign and assume that the errors
are absorbed into the sensor noise. To be consistent with the no-
tation used in the literature, will be used
instead of the weight vector . Taking the IDFT of (3.1) and
using (3.2), one gets the time-domain expression as follows:

(3.3)

where is an
source direction matrix with ,

is the noise vector
containing the noises at the compensated phase modes of the
beamformer, and

(3.4)

is the compensated phase mode vector with
be the th compensated phase mode

signal.
Assume that the desired signal impinges the array at an az-

imuth angle . To recover the desired signal from the array
output, the classical MVB [20] (or minimum variance distor-
tionless response MVDR beamformer) is employed in [18]. The
basic idea of MVB is to choose the weight vector such that
the output energy of the array is minimized, while requiring
the response of the array in the looking direction to be 1.
The structure of the MVDR beamformer is shown in Fig. 6.
The input of the beamformer is the compensated phase mode

Fig. 6. Structure of the MVDR Beamformer.

vector , which is delayed and weighted to get the de-
sired signal. Each delay line is a linear transversal filter and is
called a tapped-delay line. The MVDR problem is

with (3.5)

where

. . .

, is the beamformer output,
is the weight vector and its

elements are arranged column by column as shown in Fig. 6.
is the number of the phase modes used in the array and

is the number of taps in each tapped delayline. Substituting
(3.3) and (3.4) into (3.5), the MVDR problem can be rewritten
as:

minimize subject to (3.6)

where is the auto-
correlation of the data matrix and

This constrained optimization can be solved analytically and the
optimal solution is

(3.7)

Given a series of snapshots , say ,
the auto-correlation matrix can be estimated as

. Thus, can be ob-
tained by inverting the matrix and substituting it into
the right-hand side of (3.7). This is called the SMI method.

The SMI method is computational expensive because it re-
quires the inversion of the autocorrelation matrix. Alternatively,
the weight vector can be solved recursively using adaptive
filtering algorithms such as the RLS algorithm and the least
mean squares (LMS) algorithm using a structure called GSC
[32]. Fig. 7 shows the structure of the GSC beamformer. The
weighting vector is decomposed into two parts: the fixed part

and the adaptive part . The fixed weight vector , as
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Fig. 7. Structure for GSC beamformer.

shown in the upper part in Fig. 7, forms a main beam that is
steered towards some assumed propagation direction. Normally,
the beam is designed to have a looking direction at zero degree
and the desired looking direction is obtained by delaying the
sensor inputs appropriately. In the proposed UCCA-FIB, since
the direction of the beam can be readily changed by modulating
the beam weight with an appropriate sinusoid, these delay
elements are unnecessary.

The adaptive part is continuously updated in order to re-
move any undesired signals other than that of at the looking di-
rection from appearing at the array output. A blocking matrix

is first employed to block or prevent the desired signal at the
looking direction from entering the adaptive part. Consequently,
the input to the adaptive part mainly consists of the undesirable
signals. The interference signal, after modifying by the adap-
tive weight vector , is then subtracted from the main beam
in order to cancel the interference that is present in the main
beam. This is achieved by minimizing the output energy of the
beamformer using either the RLS or LMS adaptive filtering al-
gorithms. Leakage of the desired signal through the adaptive
part will lead to the annihilation or attenuation of the desired
signal, i.e., signal cancellation. Robust beamforming techniques
are usually employed to avoid this problem, which will be dis-
cussed later in Section V.

Denote the coefficients of the adaptive part by ,
, as shown in the lower part of Fig. 7.

The array output of the GSC method can be written as

(3.8)

As mentioned in (3.8), the fixed weight part is chosen to
keep the beamformer response at the looking direction to be
undistorted. This yields the following constraint:

(3.9)

and can be expressed as the following form:

(3.10)

The adaptive weight vector can be solved by minimizing
the MSE function of the array output

(3.11)

In the LMS algorithm, the weight vector is updated in
the negative direction of the gradient of the MSE function

as

(3.12)

where is a stepsize parameter. It is called normal-
ized LMS (NLMS) algorithm when is determined by

, where is the normalized stepsize pa-
rameter and is a small positive constant to ensure is not very
large when the norm of the input is very small. Alternatively,
if (3.11) is solved using the RLS algorithm, the weight vector
is updated as [33]

(3.13)

where

is the Kalman gain, is the inverse of the autocorrelation
matrix and it can be updated as

with ,
is a small number to ensure that is nonsingular initially
and is the forgetting factor that controls the tracking ability
and steady-state error of the RLS algorithm. Also, (3.11) can be
solved using the decomposition algorithm.

Since the beamforming problem for UCCA is less studied
in the literature than ULAs, we also summarize in the fol-
lowing, the implementation of a conventional tapped delay
line-based broadband adaptive beamformer using the UCCA,
i.e., without the compensation network. The geometry of the
conventional UCCA is the same as the one shown in Fig. 1.
The signal obtained at the th sensor has a phase difference of

relative to the one at the origin. The
signal on the th sensor is delayed by
to get the aligned signal. These broadband fractional delays can
be realized using fractional delay digital filters, which in turn
can be realized using FIR filters and designed by SOC [34].
The structures of the SMI and the GSC methods of traditional
UCCA beamformers are analogous to those of the frequency
invariant UCCA beamformer. The difference is that the input
of the traditional UCCA beamformer is the aligned signals

, while the input of the frequency invariant beamformer is
the compensated phase mode signals . The aligned
signals are chosen in such a way that the signal at the desired
angle is summed constructively while interference signals
arriving at other angles will be suppressed [31]. The structures
of these two traditional beamformers with sensors are shown
in Figs. 8 and 9.

Similar to the one employing UCCA-FIB, the beamforming
problem can be formulated as

minimize subject to (3.14)
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Fig. 8. UCCA beamformer using the SMI method and tapped-delay lines.

Fig. 9. UCCA beamformer using the GSC method and tapped-delay lines.

where

. . .

is an matrix, is a 1 constant
vector, , ] consists of the aligned
signals and their delayed versions, and is a

constant vector. Again, the optimal solution of the weight
vector can be solved by the method of Langrage multipliers and
it is given by

(3.15)

For the GSC method with the LMS algorithm, the weight vec-
tors can be obtained as

(3.16)

We now present the simulation results for the various UCCA
beamformers.

1) Example 2: Adaptive Beamforming Using UCCA-FIB:
In this example, the UCCA-FIB is used to reconstruct the de-
sired signal from interfering signals arriving at the array. The
UCCA-FIB used in this example is the same as the two-ring
UCCA in example 1 of Section II except that the interested fre-
quency bandwidth is . Assume there are two non-
coherent signals impinging on the array at angles 0 and 50 ,
respectively. Here, we assume that the desired signal arrives the
array at angle 0 and the interference signal impinges on the

Fig. 10. Output SINRs of the two beamformers.

array at angle 50 . If the desired signal arrives the array at an
angle other than 0 , the array can be electronically steered to it.
Hence, the DOA of the desired signal can be assumed to be 0 .
In this example, the desired signal is composed of 53 sinusoidal
signals with frequencies ranging from 0.8 10 to 6 10 Hz at
an interval of 0.1 10 Hz. The interfering signal is also com-
posed of 53 sinusoidal signals but with frequencies ranging from
0.83 10 to 6.3 10 Hz at an interval of 0.1 10 Hz. The ad-
ditive white Gaussian noise at each sensor is assumed to have
the same power. The SINR is 20 dB and the number of the
snapshots is 2 10 .

The performance of the beamforming using MVB method de-
scribed in this section is first evaluated. The solid line in Fig. 10
shows the output SINR of the arrays versus different number of
taps per phase mode in the UCCA-FIB. It is obtained by aver-
aging 100 independent trials. A broadband beamformer using
the MVB principle and UCCA without the FI characteristic is
also implemented here for comparison. The specification of the
array, input signals and sensor noises are identical to those used
in the UCCA-FIB. The dotted line in Fig. 10 shows the beam-
forming result using the traditional UCCA without FI character-
istics. From Fig. 10, we can see that the performance of using
one tap per phase mode in the UCCA-FIB is much better than
that of the UCCA when the number of taps is less than 10. When
the numbers of the taps increase further, the performances of
these two arrays are comparable. In other words, the proposed
UCCA-FIB requires much fewer variable taps than the UCCA
and this in turns translates to lower complexity in adaptation and
shorter convergence time as will be shown in next example. The
performances of the UCCA-FIB and the conventional UCCA
level off as the number of taps is further increased. This is be-
cause the correlation matrix is very ill-conditioned when its di-
mension is increased to a very large value.

We now evaluate the performance of the adaptive UCCA-FIB
in real-time beamforming using the LMS-GSC and RLS-GSC
algorithms described previously. The stepsize of the LMS al-
gorithm is set to 0.1. Fig. 11 plots the output MSE against the
iteration number for the LMS-GSC algorithm. The simulation
results are obtained with 100 independent trials. The line labeled
“UCCA-FIB” shows the output MSE between the beamforming
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Fig. 11. Output errors of the two adaptive beamformers using the LMS-GSC
algorithm.

Fig. 12. Output errors of the adaptive UCCA-FIB with different algorithms and
parameters.

output and the desired signal for the adaptive UCCA-FIB with
one tap per phase mode. It converges approximately at the 800
snapshot and reaches a steady-state MSE of 30 dB.

For comparison, we also simulated the performance of a con-
ventional beamformer using the UCCA without the compensa-
tion network. The number of tap per sensor element is one and
the result is also shown in Fig. 11 with the line labeled UCCA 1
tap. From Fig. 11, we can see that the beamformer without the
compensation network converges rather slowly. If the length of
the tapped-delay is increased to 10, a lower higher output MSE
is obtained, as shown in Fig. 11 with the line labeled UCCA
10 taps. It can be seen that its convergence speed is also much
slower than the UCCA-FIB.

We now evaluate the performance of the UCCA-FIB using
LMS-GSC and RLS-GSC algorithms with different parameters,
both with one tap per phase mode. The simulation is shown in
Fig. 12. As expected, the MSE decreases with increasing value
of forgetting factors and decreasing value of stepsizes while the
convergence speed exhibits an opposite dependency. It is also
observed that the RLS algorithm convergences faster than the
LMS algorithm for the same steady-state MSE error.

IV. DOA ESTIMATION AND ROBUST BEAMFORMING

USING UCCA-FIB

A. DOA Estimation

In some situations such as wireless communication and
speech signal processing, the target may not be fixed. To obtain
the desired signal, one can locate the target by DOA estimation
and track its signal using the beamforming network. In this
section, we briefly describe the DOA estimation algorithm
[18] and evaluate the tracking performance of the proposed
UCCA-FIB. A set of robust adaptive beamforming algorithms
for the UCCA-FIB will also be developed and evaluated.

Broadband DOA estimation using frequency-invariant linear
arrays has been studied in [8]. It can be viewed as a beamspace
approach, where the outputs from a set of fixed beamformers,
each having a different looking direction, is used to determine
the DOA. This technique is also suitable to the proposed UCCA-
FIBs. In particular, a set of fixed UCCA FIBs with different
looking directions are designed by modulating the weight vector
of a UCCA-FIB with looking direction at the zero degree. Then,
the MUSIC algorithm is applied to its outputs to estimate the
DOAs of the broadband sources. Here, we only briefly summa-
rize the DOA estimation method and the detail derivation can
be found in a companion paper [18].

Consider broadband signals with frequency response
impinge a -ring UCCA, re-

spectively, at azimuth angles , . According to
(3.1), the frequency response of the beamformer output can be
written as

(4.1)

where , with
, ,

and . To estimate the DOA’s, we
use such beamformers to uniformly cover a given angular
sector , where the sources are assumed to lie in. Denote the
output of these beamformers by ,
and stack them together, one gets from (4.1) the following:

...
...

(4.2)

where are the gain of the signal in (4.1) and
are noise for the th beamformer. Taking the IDFT of (4.2), one
gets the beamformer output in time domain as follows:

(4.3)

and the following covariance matrix of :

(4.4)
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Since has been designed to be approximately fre-
quency invariant in the interested band, we have

, . Following the derivation in [8], the
DOAs of the sources can be estimated using the beamformer
outputs by computing the following MUSIC spectrum:

(4.5)

where is the array response at angle in the interested
band and is the eigen-vector of the noise subspace that can
be obtained from by generalized eigen-decompostion.

B. Robust Beamforming

As mentioned earlier, due to DOA estimation and other
implementation errors, the actual array response may derivate
from the assumed signal model. As a result, conventional
beamforming methods such as GSC may suppress the desired
signal as well as the interfering signals. Robust beamforming
algorithms were required to remedy this problem.

In the method of diagonal loading [22], the norm of the weight
vector is constrained in order to avoid severe signal cancellation.
Adopting this idea in our UCCA-FIB yields the following robust
adaptive beamforming problem:

minimize

subject to (4.6)

where is a constant norm bound for the weight vector. Using
the Lagrange multiplier technique, the analytical solution to this
problem can be written as

(4.7)

where is the Lagrange multiplier or loading factor. In practical
implementation, it is sometimes difficult to set the value of
to satisfy the norm constraint. In [22], Cox proposed a scaled
projection (SP) method for updating the weight vector directly
from . This algorithm can also be applied to the UCCA-FIB
and the resulting algorithm is given in the following.

For the LMS-GSC algorithm, the fixed weight vector does
not depend on the covariance matrix of the beamformer input,
and it has the same solution as in (3.10). The adaptive part
is adapted with the following scaled projection algorithm [22]:

for

for
(4.8)

The SP method makes the LMS updating simple and effec-
tive under the quadratic constraint in (4.6), however, it does
not appear effective for RLS algorithm due to the difficulty in
choosing the diagonal loading term. Recently, Z. Tian et al. pro-
posed a variable loading method for the RLS algorithm under
quadratic constraint [35]. In this method, the update in (3.12) is
first treated as a tentative updating

(4.9)

Fig. 13. MSE results of the various adaptive UCCA-FIB algorithms with DOA
estimation error.

The weight vector is further modified as follows [35]:

for
for

(4.10)

where ,
, , ,
, and means real part.
1) Example 3: Robust Beamforming Using UCCA-FIB: In

this example, the target is assumed to be moving to evaluate the
tracking ability of the proposed UCCA-FIB. In addition, DOA
and calibration errors are included to evaluate the effectiveness
of the robust beamforming techniques for the UCCA-FIB.

DOA Errors: The angle of arrival (AOA) of the desired signal
and the interference are assumed to be 0 and 50 , respectively.
The desired signal and interference signal are assumed to be
Gaussian. The performance of multisinusoidal signals is com-
parable to that of Gaussian signal. The result is omitted here
due to page limitation. The SNR is set to 20 dB and the SINR is

14 dB. The normalized stepsize and the forgetting vector
are, respectively, set to 0.8 and 0.999. Fig. 13 shows the beam-
forming results when the DOA estimation error of the desired
signal is 5 . Significant signal cancellation occurs in the RLS
and NLMS algorithms. With diagonal loading (DGL), the beam-
pattern is broadened and the desired signal is better preserved.
However, there is no performance improvement in the SP algo-
rithm, the output MSE of the SP algorithm is almost identical to
NLMS algorithm. The simulation results are obtained by aver-
aging 200 independent trials and the MSE curves are obtained
by temporal smoothing using a window size of 10 samples.

Calibration Errors: For simplicity, it is assumed that there is
no sensor error in the elevation angle . The crosses and circles
in Fig. 14 denote, respectively, the ideal and actual locations
of the sensors. The deviation is generated randomly using a
white Gaussian distribution with a variance of 0.25. The signal
model is the same as in the first part of this example. The
normalized stepsize and the forgetting vector are, respec-
tively, set to 0.03 and 0.999. Fig. 15 shows the MSE results
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Fig. 14. Ideal and actual locations of the sensors.

Fig. 15. MSE results of the adaptive UCCA-FIB algorithms with calibra-
tion errors.

for the UCCA-FIB adaptive algorithms. Due to the diagonal
loading, the RLS-DGL algorithm better preserves the desired
signal than the RLS algorithm. The NLMS and SP algorithms
converge slower than the RLS-DGL algorithm and they yield
higher steady-state errors.

Tracking Performance: The third case is on tracking a
moving target using UCCA-FIB. The DOA of the target is
assumed to change at every interval of 4000 snapshots, and
its values are , respectively. The angles of
the interference are varied in the same way and the angles are

. The signal model is set to the same
as the one in the first part of this example. The lines labeled
NLMS and SP in Fig. 16 are the tracking results that employ
the NLMS-GSC and NLMS algorithms with scaled projection,
respectively. Due to the robust characteristic of the UCCA-FIB,
these two methods have almost the same performance. The
MSEs converge after several hundreds of snapshots. The lines
labeled “RLS” and “RLS-DGL” are, respectively, the tracking
results for the RLS algorithm and RLS algorithm with diagonal

Fig. 16. Tracking performances of the various UCCA beamforming
algorithms.

loading. They have a faster initial convergence speed than the
NLMS algorithms. However, the NLMS algorithm tracks the
moving target better than the RLS and RLS-DGL algorithms.
Due to diagonal loading, RLS-DGL method tracks the target
better than the RLS algorithm. The tracking result using a
UCCA without the compensation network and with one tap per
sensor is also shown in Fig. 16 as the line labeled “UCCA 1
tap”. It can be seen that the tracking results are unsatisfactory.
Since the target is varying every 4000 snapshots, it is unable
to follow the moving target, unlike its frequency invariant
counterpart.

Before drawing the conclusions, we now roughly com-
pare the arithmetic complexity of the adaptive beamformers
using UCCA FIB and the one employing conventional UCCA
without compensation filters. The arithmetic complexity of a
digital beamformer usually consists of the complexities for the
fixed filtering and the adaptive filtering parts. The order of the
arithmetic complexity per sample for the fixed filtering part is
usually linear in the filter length, while the order of arithmetic
complexity per unit time for the adaptive filtering part will
depend on the algorithm used. Let denote the number of
adaptive coefficients, if SMI algorithm is used, the arithmetic
complexity per unit time is of order . If the blocking
matrix has dimension of , the arithmetic complex-
ities per unit time for LMS-GSC and RLS-GSC are of order

and , respectively.
In robust beamforming, the arithmetic complexity for the scaled
projection LMS and diagonal loading RLS algorithms are of
order and ,
respectively. For example, in RLS-GSC, let denote the length
of the adaptive tapped-delay line and denote the length of the
compensation filters in a UCCA FIB, the complexity of the fixed
and adaptive parts are, respectively, and

,
where , , is the number of the usable phase
modes of the th ring and the size of the blocking matrix
is . Let denote the length of the broad
band fractional delay filters used in the traditional UCCA,
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TABLE I
ARITHMETIC COMPLEXITIES OF DIFFERENT BEAMFORMING ALGORITHMS USING UCCA-FIB AND TRADITIONAL UCCA

the complexity of the fixed and adaptive filtering parts are,
respectively, given by and

where , , is the number of the sensors in the
th ring and the size of the blocking matrix is

. In the simulation of this example, the numbers
of sensors in the two rings of the UCCA are 10 and 18, respec-
tively. The length of the compensation filters required is 31
and the number of usable phase modes is 9. On the other hand,
the length of the broadband fractional delay filters used
in the traditional UCCA is 121. Therefore, the arithmetic com-
plexity of this UCCA-FIB is ,
while that of a traditional UCCA is

. In addition, the output signal to interference plus
noise ratio (SINR) of the UCCA-FIB with is better
than that of the traditional UCCA with for broad-
band Gaussian as well as multisinusoidal inputs tested. There-
fore, the proposed UCCA-FIB is a good alternative to tradi-
tional UCCAs because of its lower arithmetic and implemen-
tation complexities, higher output SINR and faster convergence
speed. The comparison between the arithmetic complexities of
the proposed UCCA-FIB and the traditional UCCA is summa-
rized in Table I.

V. CONCLUSION

New recursive adaptive beamforming algorithms for a class
of uniform concentric circular arrays with frequency invariant
characteristics using MVDR and GSC methods are presented.
The proposed adaptive UCCA-FIB is obtained by compen-
sating the frequency dependency of individual phase modes
using a digital beamforming network and it involves a small
set of adaptive coefficients. Robust versions of these recursive
beamforming algorithms to mitigate the adverse effect of DOA
and sensor location errors are presented. The DOA estimation
and target tracking methods based on the UCCA-FIB are
also proposed. Computer simulation results are presented to
illustrate the performance of the proposed methods. It was
found that the new adaptive UCCA-FIB offers improved con-
vergence speed, arithmetic complexity and steady-state error
than conventional broadband beamformers without employing
the compensation network.
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