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Abstract—Transient stability of power systems with dc trans-
mission is an important problem for planing and operation of
future power networks. A differential-algebraic equation (DAE)
system is proposed for transient stability analysis of a practical
ac/dc power system which includes one synchronous generator
operating onto both ac and dc transmissions. When transient
stability analysis is performed using the DAE system, its solutions
that represent dynamics of the ac/dc power system become
discontinuous. This is because a constraint set, which is a set
of variables satisfying algebraic equations of the DAE system,
discontinuously changes at the onset of fault occurrence and
clearing. We numerically and analytically examine such discon-
tinuous solutions of the DAE system and associated transient
dynamics of the ac/dc power system. The discontinuous nature
of solutions shows that enhancement of transient stability via
dc transmission is characterized by a dynamical system on
constraint set or manifold controlled by input as installation of
dc transmission.

Index Terms—power system, dc transmission, transient stabil-
ity, differential-algebraic equation, discontinuous solution, singu-
lar perturbation

I. INTRODUCTION

DC TRANSMISSION systems or dc links have been
widely applied to conventional electric power systems

[1], [2]. They have been traditionally utilized in areas where
there is a clear financial advantage or where they are techni-
cally the only solutions. The references [3]–[5] note that dc
links are nowadays adopted in much larger areas of power
system operation and planning such as stabilization of power
systems, high voltage (HV) transmission, and long distance
transmission. The Kii channel HVDC Link in Japan [6] is a
well-known modern installation of dc links. DC-based power
technology also plays a key role in future systems under
competitive markets to deliver electricity between different
asynchronous areas [3].

The problem of estimating transient stability in electric
power systems with dc transmission is of fundamental im-
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portance for power system planning and operation. Transient
stability is concerned with a power system’s ability to reach
an acceptable (steady-state) operating condition following an
event disturbance [7], [8]. The stability is governed by nonlin-
ear transient dynamics [9] of power systems. As stated above,
dc links are expected to stabilize conventional ac power sys-
tems. One of their potential abilities is to eliminate operating
constraints of ac power systems caused by transient stability.
Another is to enhance transient stability of ac power systems
using dc links [10]–[13]. Both the effects of dc links have
great significance for operation and planning of future power
systems. However, these mechanisms have not been fully
understood from an analytical point of view. This provides
a motivation to analytical studies on transient dynamics and
stability of ac/dc power systems.

Transient stability of ac/dc power systems is mainly ana-
lyzed via the two different approaches. One is numerical sim-
ulation with analog or digital computers, e.g., [10], [14], [15].
The numerical approach is applicable to estimating transient
stability with considering detailed behaviors of ac/dc power
systems. The other is direct analysis of transient stability:
energy functions approach [16]–[19] and dynamical systems
methods [20]. The analytical approach has a potential to
clarifying the mechanisms of transient stability of ac/dc power
systems and stabilization via dc links.

As one of the analytical studies on transient stability, in
this paper, discontinuous transient dynamics is examined for
an electric power system with dc transmission. A differential-
algebraic equation (DAE) system is proposed in [21]–[23]
for transient stability analysis of a practical ac/dc power
system which includes one synchronous generator operating
onto both ac and dc transmissions. When transient stability
analysis is performed using the DAE system, its solutions
that represent dynamics of the ac/dc power system become
discontinuous. This is because a constraint set, which is a set
of variables satisfying algebraic equations of the DAE system,
discontinuously changes at the onset of fault occurrence and
clearing. This paper focuses on such discontinuous solutions
of the DAE system and associated transient dynamics of the
ac/dc power system. The purpose of this paper is twofold.
One is to exhibit discontinuous solutions of the DAE system.
The other is to analyze transient stability of the ac/dc power
system through discontinuous solutions. The analysis provides
an important clue for clarifying the mechanism of transient
stabilization via dc link. A preliminary discussion for this
paper is presented in [24] which does not have any content
in Sections V and VI.
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Fig. 1. Electric power system with dc transmission

Investigating transient stability of power systems based on
discontinuous solutions is not a new approach. For a structure
preserving model [25], the existence of discontinuous solutions
has been reported. Sastry and Varaiya [26] analyze such
discontinuity appearing in transient stability analysis. Chu
[9] investigates detailed features of discontinuous solutions
and calls them external jumps. Zho et al. [27] propose a
controlling UEP (Unstable Equilibrium Point) method for
transient stability analysis with considering external jumps.
We apply the above results to analysis of a practical ac/dc
power system.

This paper is organized as follows. Section II introduces
a DAE system for transient stability analysis of an ac/dc
power system and provides some remarks on the DAE system.
In Sections III and IV, discontinuous solutions of the DAE
system are addressed numerically and analytically. Section III
exhibits several numerical results of discontinuous solutions
and also shows an application limit of the DAE model for
transient stability analysis. Section IV examines the discontin-
uous solutions using singular perturbation, thereby validating
them analytically. Section V numerically investigates transient
stability of the ac/dc power system through discontinuous
solutions. Section VI provides several interpretations of dis-
continuous transient dynamics of the ac/dc power system and
transient stabilization via dc link. Section VII concludes this
paper with a summary and future directions.

II. DAE SYSTEM

The second section presents a model system of electric
power systems with dc transmission and a DAE system for its
transient stability analysis. Some remarks of the DAE system
are also arranged.

A. Model system and mathematical formulation

Figure 1 shows a model configuration of electric power
systems with dc transmission. The model consists of single
synchronous generator-infinite bus system and one dc link
which is connected onto the bus of synchronous generator. An
infinite bus is a source of voltage constant in phase, magnitude,

and frequency, and is not affected by the amount of current
withdrawn from it [7]. The simple configuration of Fig. 1 is
based on a practical power system in Japan [6]. This paper
investigates transient stability of the ac/dc power system, in
other words, electro-mechanical dynamics of the synchronous
generator following an accidental fault.

The following DAE system is derived in [21]–[23] as a
mathematical model for transient stability analysis of the ac/dc
power system in Fig. 1:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
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Idc,

(1)
where

α = Gα(Idc(ref) − Idc). (2)

The physical meaning of variables and parameters is shown
in Tab. I. All variables and parameters of the DAE system (1)
are in per unit except for angles which are in radians. vr and
δr are defined as

ed = vr sin δr eq = vr cos δr, (3)

where ed and eq denote d-axis and q-axis voltages of generator
terminal. vr therefore stands for terminal voltage at generator
bus. It is here assumed that the value of terminal voltage
is positive, that is, vr > 0. The assumption is valid for
the practical power system. The direct product set X × Y
of variables in the DAE system (1) is defined as X �
R × S

1 × R × R � (v′q, δ, ω, Idc)T and Y � {vr | vr >
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TABLE I
PHYSICAL MEANINGS OF VARIABLES AND PARAMETERS IN THE DAE

SYSTEM (1)

v′
q voltage behind transient reactance

δ rotor position with respect to synchronous reference axis

ω rotor speed deviation relative to system angular frequency

Idc dc current: averaged value of current in dc lines

vr terminal voltage at generator bus

δr angle related to terminal voltage vr: see eq. (3)

ϕr power factor angle of rectifier

t normalized time

Ld, Lq d- and q-axis synchronous reactance

L′
d d-axis transient reactance

T ′
d0 open-circuit transient time constant

V0 field excitation voltage

pm mechanical input power to generator

H inertia constant

D damping coefficient

V∞ terminal voltage at infinite bus

Ldc reactance of dc lines

Rdc resistance of dc lines

Vi terminal voltage at inverter bus

KV , KI coupling coefficients of ac and dc transmissions

Xc commutate reactance in rectifier

Gα gain constant of rectifier controller with ACR

Idc(ref) set-point value of rectifier controller with ACR

γ margin angle of inverter controller with AγR

0} × S
1 × S

1 � (vr, δr, ϕr)T. The symbol T denotes the
transpose operation of vectors.

The DAE system (1) is, needless to say, a combination of
differential and algebraic equations. The first differential equa-
tion stands for dynamics of flux decay in the generator. The
second and third equations show electro-mechanical dynamics
of the generator, called swing equation. The fourth equation
denotes dynamics of dc current which is represented by Kirch-
hoff’s current law. The equation for dc current includes basic
control setup of dc link: automatic current regulation (ACR)
scheme for rectifier and automatic margin angle regulation
(AγR) scheme for inverter. On the other hand, the first and
second algebraic equations represent active and reactive power
balance in the ac power system. The last equation denotes
active power relationship between the ac power system and
the dc link.

Next, we rewrite the DAE system (1) via structure pre-
serving model [28]. The following transformation reveals
analytical features of transient stability of the ac/dc power
system in Sections IV-VI. A variable transformation from
(vr, δr) to (θr, Vr) is introduced as

θr � δ − δr, Vr � ln vr. (4)

The new variable θr is the phase difference between terminal
voltages at generator and infinite buses system. Here, smooth

functions Uac(v′
q, δ, ω, θr, Vr) and Udc(Idc) are defined as⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
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− (L′
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2

−v′
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e2Vr

2L∞
− V0

Ld − L′
d

v′
q +

Ld

L′
d(Ld − L′

d)
v′2

q

2
,

Udc � 1
2
RdcI

2
dc.

(5)

The original DAE system (1) is then re-formalized as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

T ′
d0

Ld − L′
d

dv′
q

dt
= −∂Uac

∂v′
q

,

dδ

dt
= ω,

2H
dω

dt
= −Dω − ∂Uac

∂δ
,

Ldc
dIdc

dt
= −∂Udc

∂Idc
+ KV (eVr cos α − Vi cos γ),

0 = −∂Uac

∂θr
− KIeVrIdc cos ϕr,

0 = −∂Uac

∂Vr
− KIeVrIdc sin ϕr,

0 = KIeVrIdc cos ϕr

−
(

KV eVr cos α − 3
π

XcIdc

)
Idc.

(6)
The simple description of transformed DAE system (6) is often
used as follows: ⎧⎨

⎩ M
dx

dt
= f(x,y),

0 = g(x,y),
(7)

where x � (v′q, δ, ω, Idc)T ∈ X = R × S
1 × R × R, y �

(θr, Vr, ϕr)T ∈ S
1×R×S

1, and f stands for right-hand sides
of differential equations in the DAE system (6) and g right-
hand sides of algebraic equations. M is the positive-definite
diagonal matrix:

M � diag
(

T ′
d0

Ld − L′
d

, 1, 2H,Ldc

)
. (8)

B. Remarks

The mathematical formulation of transient stability in ac/dc
power systems via DAEs is not new. Various DAEs have been
used for stability analysis of power systems, e.g., [25], [26],
[28]–[35]. The previous works present some basic charac-
teristics of DAEs, with which the DAE system (1) can be
examined analytically. Several researchers have also modeled
the dynamics of ac/dc power systems via DAEs. Padiyar et
al. [1], [19] derive a structure preserving model for transient
stability analysis of ac/dc power systems. Cañizares et al. [36]
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also use a DAE-based voltage stability model for ac/dc power
systems.

The model used in this paper is a simplified one, because
only constant dc current control and margin angle one are
adopted, when in reality there are also firing and extinction
angle controls and VDCOL scheme [1], [2]. It is now neces-
sary to consider whether the DAE system (1) is applicable to
analysis of the ac/dc power system. Peterson et al. [14] note
that there are the two main different points of the analysis of
ac/dc power systems from those of ordinary ac power systems:

1) Transients on the dc line are of a much lower frequency
than those on the ac line because of the large inductances
connected in the dc line. Therefore, they should be
considered when the transient stability of the composite
system is studied.

2) The speed of response of the dc control equipment
can be expected to be faster by orders of magnitude,
when compared with the power-swing. (The possibility
of inverter commutation failure should also be taken into
account.)

Through the above two points, we now consider whether
the DAE-based model is tractable for the present analysis. The
first point is achieved by considering dynamics of dc current.
The DAE system (1) includes their mathematical model. Here,
transients on ac lines are of a much faster frequency than
those of electro-mechanical swing of the generator. Dynamics
of the ac transmission can be therefore eliminated. The second
point is also implemented by considering control setup of
dc link. The equation (2) shows a simple description of
ACR scheme. There is also no need to consider a possibility
of inverter commutation failure in the ac/dc power system,
because dynamics of ac power systems on the inverter side is
not modeled in Fig. 1. Here, time frame of transient stability
is from around a second to several seconds [7]. Interrupted
voltage and current by ac/dc converters can be therefore
expressed with these time-averaged values, which are used in
the DAE system (1). Transient dynamics of the ac/dc power
system can be hence modeled using the DAE system (1).

III. NUMERICAL SIMULATIONS OF DISCONTINUOUS

SOLUTIONS

This section exhibits several discontinuous solutions of
the DAE system (1). Two fault conditions in the ac power
system are fixed for numerical simulations. The concepts of
discontinuous solutions are also reviewed.

A. Fault conditions and external jumps

Two fault conditions for numerical simulations are as fol-
lows. One is a three-phase fault in the ac transmission, and
the generator as a result operates onto only the dc link during
the fault duration. The other is a three-phase fault near the
infinite bus, and thereby the infinite bus voltage is fixed at
zero during the fault duration. Suppose that all variables of
the DAE system (1) are at a known stable equilibrium point
(EP) at time t = 0−. This implies that the ac/dc power system
exists on a steady state at time t = 0−. Also suppose that a
large fault occurs at time t = 0 and that the fault is cleared at

TABLE II
PARAMETER SETTING IN THE DAE SYSTEM (1)

Ld 1.79 Lq 1.77 L′
d 0.34

T ′
d0/(120π s−1) 6.3 s V0 1.7 pm 0.5

H/(120π s−1) 0.89 s D 0.05 L∞ 0.883

V∞ 1.0 Ldc 4.2 Rdc 0.014

Vi 1.0 KV 1.19 KI 1.19

Xc 0.12 Gα 30.0 Idc(ref) 1.0

γ 23.0 deg

time t = tcl(> 0) by system operation such as protective relay.
The fault duration is confined to the time interval [0+, t−cl ].
It is also assumed for simplicity that the pre-fault and post-
fault DAE systems are consistent. Thus, the above two fault
conditions can be formulated during the time interval [0+, t−cl ]
using the ac line reactance L∞ and the infinite bus voltage
V∞ as follows: ⎧⎨

⎩
1

L∞
= 0 : case-1,

V∞ = 0 : case-2.
(9)

Two constraint sets are apparently different between the pre-
fault (or post-fault) and fault-on DAE systems. The difference
is the origin of discontinuous solutions in the DAE system
(1) at time t = 0 and tcl. They are called external jumps [9]
and have been discussed for power system models [9], [26],
[27]. The external jumps are qualitatively different from jump
behavior caused by singularity [37], [38]. The previous works
[9], [26] characterize the discontinuous solutions via boundary
layer (BL) systems. The following sections use some of the
previous results to validate numerical external jumps of the
DAE system (1).

Note that actual power systems do not hold such discon-
tinuous states and that they therefore originate from modeling
over-abstraction. However, it should be emphasized that the
analysis of ideal discontinuous solutions is of great signif-
icance due to the two facts. One is that in actual power
systems rapid change of power flows by protective relay
operations is often observed. Such rapid dynamics can be
approximately modeled with the discontinuous solutions. The
other is related to computational aspects of power system
analysis. Abstraction is an inevitable task for computer-aided
analysis of massively complex power systems. As stated
above, general DAEs provide a fruitful mathematical model
for power system transient stability analysis. Understanding
the discontinuous solutions is thus important from both the
phenomenological and engineering points of view.

B. Numerical simulations

Numerical simulations are performed for the above two fault
conditions. Tab. II shows the parameter setting in the DAE
system (1). L∞ and V∞ in Tab. II are adopted except the fault
duration [0+, t−cl ]. The parameters are obtained for a practical
power system [6]. This paper adopts the 3rd-stage Radau-IIA
implicit Runge-Kutta method [39] to integrate the DAE system
numerically.
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Fig. 2. Discontinuous solution of the DAE system (1) with case-1 fault
condition. The fault-clearing time tcl/(120π s−1) is fixed at 8/(60 Hz).
The solution converges to a post-fault stable equilibrium point (EP) as time
passes.

Figure 2 shows the transient behavior of ω, Idc, and Vr

with case-1 fault condition. The fault clearing time is 8 cycle
of a 60 Hz sine wave: tcl/(120π s−1) = 8/(60 Hz). The
solution converges to a post-fault stable EP as time passes.
In Fig. 2, ω and Idc in the variable x of differential equations
are continuous. On the other hand, Vr in the variable y of
algebraic equations is discontinuous at t/(120π s−1) = 0 s
and 8/(60 Hz). The distinctive feature of continuity is clarified
via singular perturbation in Section IV.

Figure 2 also describes the active and reactive power swing
of generator and infinite bus outputs, and dc input. The active
and reactive power also includes the discontinuous points
at t/(120π s−1) = 0 s and 8/(60 Hz). During the fault
duration, the active power output from infinite bus is zero.
The active power output from generator and input to dc link
are therefore consistent. Since the active power output from
generator during the fault duration is greater than that at the
pre-fault time, the generator is decelerated in Fig. 2(a). After
the fault is cleared at t = tcl, both the active power output
from generator and infinite bus shows oscillatory motions and
converges to constant values at the stable EP. Here it should
be noted that rapid transients of active and reactive power
are reported in [14] with numerical simulations of detailed
model of an ac and dc parallel transmission system. These
rapid transients are well approximated by the discontinuous
solutions presented here.

Figure 3 shows the transient behavior with case-2 fault
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Fig. 2. (continued)

condition. The solution converges to the singular surface [40]
of fault-on DAE system in a finite time. For the system (7),
the singular surface S is defined as

S � {(x,y) ∈ X × Y | g(x,y) = 0,

det(Dyg)(x,y) = 0}. (10)

The solution which reaches the singular surface becomes
possibly discontinuous [37], [38]. The discontinuity here is
qualitatively different from external jumps [9] and implies the
loss of causality of the DAE system as a power system model
[30], [31]. On the singular surface we cannot predict transient
stability of the ac/dc power system by the DAE system (1). The
transient behavior in Fig. 3 therefore suggests that the present
DAE system (1) is not relevant to clarifying the transient
stability with respect to case-2 fault condition. This shows an
application limit of the DAE system (1) for transient stability
analysis.

Note that the simulations above are some examples of
discontinuous solutions in the DAE system (1). The behavior
of discontinuous solutions qualitatively changes depending on
fault conditions which include initial states and parameters.
The following sections discuss some aspects of global nature
of the discontinuous solutions with application to validation
of numerical solutions and analysis of transient stabilization
via dc link.

IV. ANALYTICAL VALIDATION OF DISCONTINUOUS

SOLUTIONS

The preceding section numerically showed several discon-
tinuous solutions of the DAE system (1). This section validates
the numerical solution with case-1 fault condition from an
analytical point of view. The validation is performed using
singular perturbation technique and BL formulation.
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Fig. 3. Discontinuous solution of the DAE system (1) with case-2 fault
condition. The solution reaches the singular surface of fault-on DAE system
in a finite time.

A. Singular perturbation approach

The discontinuous solution in Fig. 2 is considered using
singular perturbation. The corresponding singularly perturbed
(SP) system to the DAE system (7) with a small positive
parameter ε is introduced:⎧⎪⎪⎨

⎪⎪⎩
M

dx

dt
= f(x,y),

ε
dy

dt
= g(x,y).

(11)

Dynamics of the SP system (11) has the similarity to those
of the transformed DAE system (7) in some conditions and
of the original DAE system (1) with additional assumptions.
This important property is well known as Tihkonov’s theorem
[41]. Fig. 4 shows the projected trajectories of the DAE and
corresponding SP systems onto θr−Vr plane. The perturbation
parameter ε is fixed at 0.5. Note that trajectories of the SP
system at ε = 0.01 and 0.1 show the same behavior as that
at ε = 0.5. The solid line is for the DAE system (1): The
transformations θr = δ − δr and Vr = ln vr are used. The
broken line is for the SP system (11) which initial condition
is identical to that for the DAE system (1). Fig. 4 implies that
the solution of the SP system (11) traces the discontinuous
solution of the DAE system (1). The SP system (11) thus pro-
vides an overall approximation of the discontinuous solution
in Fig. 2.
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Fig. 4. Projected trajectories of the DAE and SP systems with case-1 fault
condition onto θr −Vr plane. The perturbation parameter ε is set at 0.5. The
solid line denotes the trajectory of the DAE system (1) shown in Fig. 2, for
which the transformations θr = δ − δr and Vr = ln vr are used. The broken
line shows the trajectory of the SP system (11).

B. Boundary layer approach

Next the external jumps for case-1 fault condition are
analytically validated. To confirm the projected discontinuous
solution in Fig. 4, the following two-dimensional BL system
is adopted via the scaling transformation s = t/ε and under
additional assumptions vr > 0, Idc �= 0, sinϕr > 0, and
KI > 0:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dθr

ds
= −∂Uac

∂θr

(
v′

q, δ, θr, Vr

)
−

(
KV eVr cos α − 3

π
XcIdc

)
Idc,

dVr

ds
= −∂Uac

∂Vr

(
v′

q, δ, θr, Vr

)

−
√

K2
I e2Vr −

(
KV eVr cos α − 3

π
XcIdc

)2

· Idc.

(12)

The derivation of the BL system (12) is given in Appendix.
The variables v′q, δ, and Idc are assumed constant when the
variables θr and Vr change. The BL system (12) is regarded as
a dynamical system that represents dynamics of the variables
θr and Vr.

A remark on characterization of external jumps is now
introduced. It is stated from [9], [26] that if the DAE system
(1) admits of an external jump at t = t∗, then the trajectory of
the BL system (12) with the initial point (θr(t−∗ ), Vr(t−∗ )) con-
verges to the point (θr(t+∗ ), Vr(t+∗ )) as time passes, satisfying
x(t−∗ ) = x(t+∗ ). This implies that the point (θr(t−∗ ), Vr(t−∗ ))
is on a stable manifold of the EP (θr(t+∗ ), Vr(t+∗ )) in the
BL system (12). It also suggests that global phase structures
of the BL system play an important role in examining the
detailed features of external jumps. In the following, the points
(θr(t−∗ ), Vr(t−∗ )) and (θr(t+∗ ), Vr(t+∗ )) are called the starting
and exit points of external jumps at t = t∗.

The numerical simulation in Fig. 2 is now reconsidered
via the above characterization. The coincident property of the
variable x holds in Figs. 2(a) and (b) at t = 0 and tcl. Fig. 5
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Fig. 5. Projected trajectory of the DAE system, and trajectories of the
pre- and post-BL systems with case-1 fault condition. The solid line denotes
the trajectory of the DAE system (1) shown in Fig. 2, for which the
transformations θr = δ − δr and Vr = ln vr are used. The dotted and broken
lines show the trajectories of the BL systems (12) at t = 0 and tcl.

describes the trajectories of the pre-BL and post-BL systems,
and the projected trajectory of the DAE system (1), for which
the transformations θr = δ − δr and Vr = ln vr are used.
The trajectories of the BL systems converge to EPs of the
BL systems. The EPs coincide with the exit points of external
jumps at t = 0 and tcl. The analytical characterization hence
validates the numerical discontinuous solution including the
external jumps.

Note that the global aspect of characterization is not fully
used in the above validation. Fig. 5 numerically validates at
t = 0 and tcl that one trajectory of each BL system exists
on a stable manifold of each EP. There is no discussion of
global structures of the BL system (12). The global structures
are investigated in Section V. The next section shows that all
trajectories of the BL system (12) at t = tcl converge to a
common stable EP.

V. TRANSIENT STABILITY ANALYSIS BASED ON

DISCONTINUOUS SOLUTIONS

This section performs transient stability analysis of the ac/dc
power system based on discontinuous solutions. As stated
above, transient stability is concerned with a power system’s
ability to reach an acceptable operating condition following an
event disturbance. The previous sections investigated several
discontinuous solutions and provided some analytical methods
for validating them. It is therefore and now possible to examine
transient stability of the ac/dc power system through discon-
tinuous solutions. This section investigates the effects of fault
clearing time and dc current control on transient dynamics and
stability of the ac/dc power system.

A. Effect of fault clearing time

The effect of fault clearing time tcl is considered for case-
1 fault condition. Fig. 6 shows transient behavior of the
DAE system (1) at 9 cycle and 10 cycle of a 60 Hz sine
wave: tcl/(120π s−1) = 9/(60 Hz) and 10/(60 Hz). The
setting of numerical simulations is identical to that in Fig. 2.
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Fig. 6. Discontinuous solutions of the DAE system (1) under
tcl/(120π s−1) = 9/(60 Hz) and 10/(60 Hz) with case-1 fault condition.
The discontinuous solution with tcl/(120π s−1) = 9/(60 Hz) converges to
a stable equilibrium point as time passes. The discontinuous solution with
tcl/(120π s−1) = 10/(60 Hz) reaches the singular surface of the post-fault
DAE system in a finite time.

The discontinuous solution with tcl/(120π s−1) = 9/(60 Hz)
converges to a stable EP. This is qualitatively identical to the
discontinuous solution with tcl/(120π s−1) = 8/(60 Hz) in
Fig. 2. On the other hand, the discontinuous solution with
tcl/(120π s−1) = 10/(60 Hz) reaches the singular surface S
of post-fault DAE system in a finite time. This implies that
by the DAE system (1) we cannot predict transient stability
of the ac/dc power system after the fault clearing, and that the
ac/dc power system has a possibility of reaching undesirable
operations due to the decrease of dc current and system
voltage. Note in [42] that the qualitative difference between the
discontinuous solutions originates from stability boundaries of
the DAE system (1).

B. Effect of dc current control

Next, the effect of dc current control is addressed. The
present investigation is performed for case-1 fault condition.
Fig. 7 shows transient behavior of the DAE system (1) under
the set-point value Idc(ref) = 1.000, 0.885, and 0.750. The
behavior is obtained by adopting a stable EP of the pre-fault
DAE system as initial condition. The same parameter setting is
also used as in Fig. 2. The solutions converge to stable EPs.
That is, the generator settles down an acceptable operating
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Fig. 7. Discontinuous solutions of the DAE system (1) under Idc(ref) =
1.000, 0.885, and 0.750 with respect to case-1 fault condition. The fault-
clearing time tcl/(120π s−1) is fixed at 8/(60 Hz). The solutions converge
to stable EPs of the post-fault DAE system (1) as time passes. The figure
shows accelerated state of the generator, almost steady state, and decelerated
state, for the decrease of Idc(ref).

condition for case-1 fault condition. The transient behavior in
Fig. 2 shows accelerated state of the generator, almost steady
state, and decelerated state, for the decrease of Idc(ref). The dc
current control hence affects transient dynamics of the overall
power system.

Section IV mentioned that phase portraits of the BL system
(12) characterized the detailed features of external jumps.
Now the relationship between the effect of dc current con-
trol and phase portraits of the post-fault BL system (12) is
considered. Fig. 8 shows phase portraits of the post-fault
BL system (12) under Idc(ref) = 1.000, 0.885, and 0.750
with case-1 fault condition. Every phase portrait has one
EP which corresponds to an exit point of external jump at
tcl/(120π s−1) = 8/(60 Hz). All trajectories in Fig. 8 con-
verge to the EPs as time passes. Every broken line shows the
important trajectory which connects the starting and exit points
of external jumps. In Fig. 8(b) the starting and exit points
are almost same, and the corresponding transient behavior in
Fig. 7 does not therefore show any oscillatory motion after
the fault clearing. The phase portraits hence show the effect
of dc current control to external jumps. This provides an
analytical clue to considering transient stabilization via dc link
in Section VI.

VI. DISCUSSION

Sections III–V showed several numerical and analytical
results on discontinuous solutions in the DAE system (1).
Through the discontinuous solutions, we offer mathematical
and physical explanations of transient dynamics and stability
of the ac/dc power system.
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Fig. 8. Phase portraits of the post-BL system (12) under Idc(ref) = 1.000,
0.885, and 0.750 with respect to case-1 fault condition. The fault clearing
time tcl/(120π s−1) is fixed at 8/(60 Hz). Every broken line shows the
important trajectory which connects the starting and exit points of external
jumps. All the trajectories in the figure converge to the EPs of the post-fault
BL system as time passes.

A. Analytical description of installation of dc link

This paper uses a DAE-based model on transient dynamics
of the ac/dc power system. The used model offers an an-
alytical viewpoint about the installation of dc link into ac
power system. Both the original DAE system (1) and the
transformed one (6) imply that dynamics of the ac power
system and the dc link interacts each other through active
and reactive power relations. Here, without the interaction, in
other words, KV = KI = 0, the transformed DAE system (6)
implies that dynamics of the ac power system is represented
by a gradient-like system. The function Uac(v′

q, δ, ω, θr, Vr)
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becomes a candidate of energy function [28], [40] which leads
to characterization of stability boundaries of the ac power
system. Hence, from the transformed DAE system (6), the
installation of dc link into ac power system is mathematically
represented by a perturbation to the gradient-like system. This
analytical viewpoint is held for general ac/dc composite power
systems, because their dynamics can be also represented by
DAE systems with structure preserving model [28].

B. Mechanism of discontinuous solutions

Section III gave several numerical results on discontinuous
solutions. The origin of discontinuous dynamics is physically
conservation law of power and is mathematically a set of
algebraic equations. The DAE system (1) contains active and
reactive power relations which are described by the algebraic
equations. The power relations stem from the conservation law
of active and reactive power at the connecting point of ac
power system and dc link. At the onset of fault occurrence, the
conservation law of power is held; on the other hand, the net-
work topology of ac/dc power system instantaneously changes.
Both these properties are compatible if the algebraic equations
instantaneously change at the onset of fault occurrence. This is
why the discontinuity of solutions occurs in the DAE system
(1).

C. Geometry of transient stabilization via dc link

Section V discussed the effect of dc current control via
the BL system (12). The phase portraits in Section V offer
a dynamical viewpoint about the transient stabilization of ac
power systems via dc link. Fig. 8 implies that the effect
of dc current control appears in phase portraits of the BL
system (12). Assigning the phase portraits is therefore a key
to regulating transient behavior of the ac power system. Here,
if the ac power system and the dc link do not interact, in
other words, KV = KI = 0, then the BL system for the
ac power system becomes a gradient system with a potential
function Uac(θr, Vr). The system is operationally derived by
putting KV = KI = 0 and Xc = 0 in the BL system (12).
The installation of dc link into ac power system is therefore
regarded as a perturbation of the gradient BL system. Namely,
the transient stabilization via dc link can be investigated using
the gradient controlled BL system with input as installation
of dc link. This provides a dynamical viewpoint about the
transient stabilization.

Note that transient stabilization via dc links is reported in
[10]–[13] and is adopted in practical power systems [1], [2].
Unfortunately, the mechanism of stabilization has been not
analytically clarified. Fig. 8 also implies that transient behavior
of the ac power system is regulated by changing the set-point
value Idc(ref) of dc current. The set-point value Idc(ref) is one
control parameter that is included in the algebraic equations.
Hence it is said that the transient stabilization is the regulation
of the constraint set, which is a set of variables satisfying
algebraic equations, in the DAE system (1). Fig. 8 describes
one aspect of regulating the constraint set through the BL
formulation.

D. Comments to general ac/dc power systems

Last of all, generalization of the obtained results on a
practical ac/dc power system is discussed for two different
points. The first point is for general ac/dc power systems
containing many synchronous machines and dc links. The
general systems show the similar discontinuous dynamics,
because their dynamics is analyzed by general DAE systems
[16]–[19]. The discontinuity of solutions provides the same
analytical viewpoint about transient stabilization via dc links
as the ac/dc power system in Fig. 1. The second point is
whether the analytical viewpoint based on the simplified model
is valid if detailed models of dc controllers are considered such
as firing angle controls and VDCOL scheme. An integrated
model of transient dynamics is then required to investigate this
point. The integrated model is represented by a hybrid dynam-
ical system, because it contains both continuous dynamics of
generator/transmissions and discrete events of firing control.
Understanding the connection of simplified and hybrid models
is therefore central to solving the second point. This is our
forthcoming work which is also mentioned in Section VII.

VII. CONCLUSION

This paper studied discontinuous transient dynamics of an
electric power system with dc transmission. The analysis
was numerically and analytically performed based on a DAE
system. Several discontinuous solutions were numerically pre-
sented for concrete fault conditions and were analytically
validated using singular perturbation. These results exhibit an
example of discontinuous solutions of the DAE system (1) and
imply that they can be handled numerically and analytically.
Transient stability analysis based on discontinuous solutions
was also performed. Through the analysis, we show that
transient stabilization via dc transmission is characterized by
a dynamical system on constraint set or manifold controlled
by input as installation of dc transmission.

Many research subjects follow the present study on discon-
tinuous dynamics of the ac/dc power system. As mentioned
in Section III, the DAE-based model has great importance
for stability analysis of power systems. An energy function
method for DAE-based power system models has been de-
veloped in [8], [9], [27], [34]. A controlling UEP method
with considering the discontinuous solutions is particularly
proposed in [27]. This paper provides some characteristics
of discontinuous solutions for the DAE system (1). Applying
the proposed method in [27] to the ac/dc power system is
therefore a next work. The application depends on how an
energy function is constructed for the DAE system (1).

Transient discontinuous dynamics is analyzed from a view-
point of hybrid systems. Hybrid systems are interacting dy-
namical systems of continuous and discrete-valued variables.
Analysis and control of hybrid systems have recently attracted
a lot of interest of many researchers: see e.g. [43]. Again
note that discontinuous solutions in the DAE system (1) occur
when network structure of the ac/dc power system changes
due to fault occurrence and clearing. The topology change is
modeled as a transition of discrete-valued variables in hybrid
systems: see [44] for modeling hybrid voltage dynamics in a
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power system. Hybrid system-based models can also combine
the simplified model and detailed one of dc controllers such
as firing angle controls and VDCOL scheme. Analysis of
discontinuous solutions based on hybrid systems theory is of
great importance for not only validating the obtained results
in real situation of ac/dc power systems but also exploring
stability problems of complex power networks.
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APPENDIX: DERIVATION OF BOUNDARY LAYER SYSTEM

This appendix derives the two-dimensional BL system (12).
To do this, a reduced DAE system is first induced. From the
last equation of (6) and trigonometric functions, the following
equalities are derived:⎧⎪⎪⎨
⎪⎪⎩

KIeVrIdc cos ϕr =
(

KV eVr cos α − 3
π

XcIdc

)
Idc,

KIIdceVr sinϕr =
√

K2
I e2Vr − (KIeVr cos ϕr)2 · Idc,

(13)
where it is here assumed that Idc �= 0, sin ϕr > 0, and
KI > 0 in the DAE system (6). This is relevant to considering
the transient stability of the practical ac/dc power system.
Substituting (13) to (6) makes it possible to eliminate the
variable ϕr from the DAE system (6). Thus, the following
reduced DAE system is derived:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

T ′
d0

Ld − L′
d

dv′
q

dt
= −∂Uac

∂v′
q

,

dδ

dt
= ω,

2H
dω

dt
= −Dω − ∂Uac

∂δ
,

Ldc
dIdc

dt
= −∂Udc

∂Idc
+ KV (eVr cos α − Vi cos γ),

0 = −∂Uac

∂θr
−

(
KV eVr cos α − 3

π
XcIdc

)
Idc,

0 = −∂Uac

∂Vr

−
√

K2
I e2Vr −

(
KV eVr cos α − 3

π
XcIdc

)2

· Idc,

(14)
where x = (v′q, δ, ω, Idc)T ∈ X = R × S

1 × R × (R \
{Idc | Idc = 0}), y = (θr, Vr)T ∈ Y = S

1 × R. It should
be noted that dynamics of the reduced DAE system (14) is
identical to that of the DAE system (6) under the conditions
Idc �= 0, sin ϕr > 0, and KI > 0. In addition, by introducing
a small positive parameter ε, the corresponding SP system is

derived:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

T ′
d0

Ld − L′
d

dv′
q

dt
= −∂Uac

∂v′
q

,

dδ

dt
= ω,

2H
dω

dt
= −Dω − ∂Uac

∂δ
,

Ldc
dIdc

dt
= −∂Uac

∂Idc
+ KV (eVr cos α − Vi cos γ),

ε
dθr

dt
= −∂Uac

∂θr
−

(
KV eVr cos α − 3

π
XcIdc

)
Idc,

ε
dVr

dt
= −∂Uac

∂Vr

−
√

K2
I e2Vr −

(
KV eVr cos α − 3

π
XcIdc

)2

· Idc.

(15)
Applying the variable transformation 1/s = ε/t to the SP
system (15) and freezing ε = 0 induce the two-dimensional
BL system (12).
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