
This document is downloaded from DR‑NTU (https://dr.ntu.edu.sg)
Nanyang Technological University, Singapore.

Contention resolution : a new approach to
versatile subexpressions sharing in multiple
constant multiplications

Xu, Fei; Chang, Chip Hong; Jong, Ching Chuen

2008

Fei, X., Chang, C. H., & Jong, C. C. (2008). Contention Resolution : a New Approach to
Versatile Subexpressions Sharing in Multiple Constant Multiplications. IEEE Transactions on
Circuits and Systems Part 1 Regular Papers, 55(2), 559‑571.

https://hdl.handle.net/10356/93572

https://doi.org/10.1109/TCSI.2007.913707

© 2008 IEEE. Personal use of this material is permitted. However, permission to
reprint/republish this material for advertising or promotional purposes or for creating new
collective works for resale or redistribution to servers or lists, or to reuse any copyrighted
component of this work in other works must be obtained from the IEEE. This material is
presented to ensure timely dissemination of scholarly and technical work. Copyright and
all rights therein are retained by authors or by other copyright holders. All persons copying
this information are expected to adhere to the terms and constraints invoked by each
author's copyright. In most cases, these works may not be reposted without the explicit
permission of the copyright holder. http://www.ieee.org/portal/site This material is
presented to ensure timely dissemination of scholarly and technical work. Copyright and
all rights therein are retained by authors or by other copyright holders. All persons copying
this information are expected to adhere to the terms and constraints invoked by each
author's copyright. In most cases, these works may not be reposted without the explicit
permission of the copyright holder.

Downloaded on 29 Mar 2024 18:14:08 SGT



IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 55, NO. 2, MARCH 2008 559

Contention Resolution—A New Approach to
Versatile Subexpressions Sharing in

Multiple Constant Multiplications
Fei Xu, Chip-Hong Chang, Senior Member, IEEE, and Ching-Chuen Jong

Abstract—Multiple constant multiplications (MCM) have been
a core operation in many digital signal processing applications.
In this paper, an efficient generalized contention resolution algo-
rithm (CRA) is proposed to eliminate three broad categories of
reusable common subexpressions in MCM. The idea is to revert
a precedential decision of suboptimal common subexpressions by
a localized cost function evaluation when there is a conflict be-
tween two competitive subexpressions. The proposed derivatives
of the basic CRA are versatile in that they are capable of satisfying
search for both intra- and intercoefficient subexpressions, in any
legitimate composition of horizontal, vertical and oblique subex-
pressions. As the algorithms expand the common subexpressions
to higher-weight only when there is cost saving, the logic depth can
be controlled by constraining the weights of the subexpressions.
The variants of CRA follow an important tenet of good heuristic
that significant improvement in the solution quality is attained with
increased problem size but the computational time remains well
bounded. Experimental results with both benchmark filters and
randomly generated coefficient sets are analyzed and compared
with a number of well known common subexpression elimination
methods to demonstrate the effectiveness and efficiency of our pro-
posed approach.

Index Terms—Canonical signed digit (CSD), common subex-
pression elimination (CSE), finite-impulse response (FIR) filter,
multiple constant multiplication (MCM).

I. INTRODUCTION

EFFICIENT multiplierless realization of digital filters with
constant fixed point coefficients has been an area of per-

vasive research interest due to its widespread applications [1],
[3]–[5], [7]–[9], [15]–[26]. The trend towards increasing sam-
pling rates and resolutions of analog to digital converters has
tightened the design constraints of digital frondend of wire-
less communication functions [6], making application-specific
digital filters preferable to programmable filters implemented
on digital signal processor core. One of the popular applica-
tion-specific filter structures is the transposed direct form where
the input is fed to all the coefficient multipliers in parallel and the
regularity of the linear accumulation makes it highly amenable
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to implementation through a silicon compiler [2]. The core op-
eration of the transposed direct form finite-impulse response
(FIR) filter can be modeled as a multiple constant multiplica-
tions (MCM) problem [17], [19], and its area-time optimization
has often been accomplished through the substitution of multi-
plications with a reduced number of shift-and-add operations.

A common denominator in methods used for reducing the
number of adders (subtractors) of MCM block is the common
subexpression elimination (CSE) [8], [17]–[19]. These al-
gorithms search for the most frequently occurred common
subexpressions and then maximize the reuse of the products
of the input and common subexpressions. In the graph-de-
pendence (GD)-based algorithms [1], [3]–[5], partial sums
are symbolically encapsulated in the nodes of the graph and
the shift amounts of the partial sums are annotated on the
edges. GD algorithms involve the synthesis of a set of minimal
cardinality connected graphs from the unity source to the sinks,
which are the coefficients to be synthesized. The fundamentals
in GD algorithms play the same role as the common subexpres-
sions in CSE algorithms except that the redundancy detection
and elimination are value based. Most CSE algorithms use
canonical signed digit (CSD) [7], [8], [17], [18], [22], [23]
representation of filter coefficients to detect the frequency of
occurrences of bit patterns. On the contrary, GD algorithms use
integer representation [1], [3]–[5] that makes no assumption on
the number format. Hence, they may generate more possible
compositions of the coefficients from the intermediate partial
sums (also called fundamentals). However, as the search space
enlarges, the already complex problem becomes daunting with
the additional dimension of decision trade-offs. A common way
of managing this level of complexity is to use pre-computed
lookup table containing the best compositions of partial sums
over a range of integer numbers. As the lookup table is designed
based on minimal logic complexity and the table size has to be
constrained, the MCM block optimized by conventional GD
algorithms are likely to yield long critical path [24], unless
some depth control is instilled in the process [3], [16].

By representing the set of CSD coefficients in a two-dimen-
sional table [8], common subexpressions can be extracted by
identifying horizontal (intra-coefficient), vertical and oblique
(intercoefficient) groups of identical pattern cells. Due to the
computational complexity and the symmetry of linear-phase
FIR (LPFIR) filter, the search for redundant computations
in MCM block is normally confined to horizontal common
subexpressions [7], [8], [17]–[19], [22]. Inter-coefficient
common subexpressions, which necessitate the insertion of
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delay elements into the generator of common subexpressions,
are seldom considered. Hartley [8] was one of the pioneers to
exemplify the use of horizontal, vertical and oblique common
subexpressions in digital filter design. However, due to the
limited computing power of the machine at that time, he re-
stricted the algorithm to seek for maximal sharings of the two
most common subexpressions, 101 and . Recently, Jang
and Yang [11] showed by means of specific filter example that
vertical common subexpressions transcend horizontal common
subexpressions in LPFIR filters as adjacent coefficients have
similar pattern in the most significant bit (MSB) portion.
However, Vinod et al. [27] argued that elimination of vertical
common subexpressions alone does not guarantee greater hard-
ware savings over the conventional horizontal CSE methods in
most practical LPFIR filters. They proposed the extraction of
the four most common horizontal subexpressions of hamming
weight-2 before the remaining nonzero digits are considered for
vertical common subexpressions. None of the algorithms has
simultaneously utilized all intra- and intercoefficient common
subexpressions, including the oblique common subexpressions
and the higher-weight common subexpressions of all sorts to
reduce the adder costs of MCM block.

Optimal subexpression sharing algorithms for CSD coeffi-
cients based on integer linear programming (ILP) model [7],
[25] have high computational complexity. Since exact optimal
solution is intractable, many algorithms are heuristic in nature
and they [8], [18], [24] use weight-2 subexpressions as the
primitive elements for reuse and then search for higher-weight
common subexpressions from existing lower-weight common
subexpressions. However, this process tends to discriminate
the higher-weight subexpressions from being selected as
their nonzero digits have already been preoccupied by the
lower-weight common subexpressions. On the contrary, some
algorithms [17], [19] search for the highest-weight common
subexpressions at the outset followed by splitting them into the
lower-weight common subexpressions for further sharing. This
is to insure that the higher-weight common subexpressions do
not always give in to the lower-weight subexpressions when
they are overlapped. We note from experimental results that
admission of higher-weight common subexpressions does not
always lead to the reduction of total adder cost. Some algo-
rithms [8], [19] enhance the optimization by including more
factors and enlarging the search scope, but the qualities of the
solutions improve only marginally. This is because gradient
decent approaches, though efficient, are sensitive to the order
of execution. There is no feedback and back tracking to allow
efficient resubstitution of lower cost common subexpressions
in case of conflicts arising from the nullification of potential
subexpression elimination caused by early decisions in the
process.

The notion of contention resolution was first introduced
by us in [22]. A preliminary contention resolution algorithm
(designated as CRAH-2 in this paper) was developed to elimi-
nate only weight-2 horizontal common subexpressions. In this
paper, contentions between subexpressions of higher weights
are introduced and the contention resolution algorithm (CRA) is
generalized to handle horizontal, vertical and oblique common
subexpressions of any weight and derivatives of CRA are pro-

posed to trade goals of logic depth (LD) and logic complexity
versus the algorithmic efficiency. The proposed algorithms
take the CSD coefficients [2], [10], [12]–[14], [23] to reduce
the logic complexity of MCM block without escalating its
LD. The admissibility graph (AG) is devised to dynamically
model the contentions arising in the pursuit of most profitable
common subexpressions. The contentions are resolved through
differential adder cost appraisal of localized pattern graphs to
retain good subexpressions or replace inferior subexpressions
in conflict. Weight unconstrained and weight constrained CRAs
are proposed and all types of common subexpressions can
be exploited simultaneously in the AG for optimization. The
effects of sharing intercoefficient common subexpressions are
also studied.

II. CONTENTION RESOLUTIONS ON AG

To facilitate identification and resolution of contentions, a
unique AG is proposed in [22]. For completeness we briefly re-
view this data structure and introduce additional terminologies
that are useful in explaining the extended contention resolutions
presented in this paper.

Definition 1: Every vertex in an AG, respre-
sents a nonzero digit. The vertex set is a collection of all the
nonzero digits of the coefficient set and is the vertex set
for the th coefficient in the subgraph, . A signed/unsigned
vertex corresponds to the digit . Each vertex, is associated
with a unique non-negative integer, , determined by its
position in the fixed point coefficient.

Definition 2: A weight-2 CSD subexpression, , where
and is a string of zeros, is encoded by four parameters

. if the leading I is “1”
and otherwise; if the leading and trailing I
are identical, and 1 if they are different; is the number
of zeros in ; is the position of the leading I in the CSD
coefficient where the subexpression is found.

Subexpressions with the same and are
common subexpressions and are assigned the same
number that ranks its frequency of occurrence in the coefficient
set. for common subexpression with the highest
frequency of occurrence.

Definition 3: An edge , is a connection of
two vertices and of its endpoints. An edge,
forms a weight-2 subexpression with

. The edge set, of an AG is a collection of all
weight-2 subexpressions of the coefficient set. Two edges inci-
dent with a common vertex are said to be adjacent. The degree
of a vertex , denoted by , is its number of incident edges.

Definition 4: A path is a succession of adjacent edges. A path
of weight- consists of vertices and

edges . A path , denoted
by , is an alternative sequence of vertices and edges,

if the endpoints of the path,
is and , and successive vertices and are endpoints
of the intermediate edge .

Definition 5: A precedence edge, is used to
link two vertices, to admit a common subexpres-
sion and a contention edge, is used to indicate a
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Fig. 1. Basic scenarios of contention resolution.

subexpression that is denied admission as a common subexpres-
sion by another subexpression that has already been admitted as
common subexpression. The sets of precedence and contention
edges are denoted by and , respectively. Both precedence
and contention edges are annotated with their order numbers
upon labeling on the AG. A vertex is if it is not connected
by a precedence edge (or path) and on the contrary, vertices con-
nected by precedence edges (or paths) are fixed.

Definition 6: Two edges are said to be equivalent if
their subexpressions have the same . Two paths

and are said to be
equivalent, denoted as if they have the same
weight and all their corresponding edges are equivalent,
i.e., .

Definition 7: A path, is a precedence (or contention) path
if all its edges are precedence (or contention) edges. Otherwise

is called a hybrid path. Precedence paths in the solution AG
are higher weight common subexpressions.

A simple four-vertex AG [22, Fig. 1] has well illustrated
some of the above terminologies. An AG is constructed by
connecting vertices with precedence or contention edges. A
contention is defined as a conflict between two or more different
common subexpressions. It can be identified by the existence of
a common vertex between two or more edges. When it occurs,
only one edge can be a precedence edge and all other edges
connected to the same common vertex have to be labeled as
contention edges. This is to indicate that selection of one edge
into the final common subexpression list will automatically
nullify the admissibility of the others.

Two basic contentions are illustrated in Fig. 1. These two
types of contention occur frequently. The first scenario occurs
when both endpoints of a precedence edge are connected to con-
tention edges, and the other endpoints of the adjacent contention
edges are free. The second scenario happens whereby one end-
point of the precedence edge is connected to at least one con-
tention edge.

These two types of contention are most fundamental and
other complicated contentions may be reduced to these two
types and resolved accordingly. The contention resolution
decides if the pattern graph should remain as it is or to promote
the contention edge(s) to precedence edge(s) and downgrade
the precedence edge to contention edge. A cost metric
(acronym of number of adders saved) is defined to evaluate
if the status of the precedence edge and contention edge(s)
need to be swapped whenever a contention is encountered.

can be interpreted as an anticipated minimal number of

Fig. 2. Generation of weight-4 precedence path.

adders saved due to swapping based on a localized model. Let
be the precedence edge, and and
be the two contention edges of the first type [see

Fig. 1(a)]. Assume that a coefficient is represented by a simple
pattern graph of only these four vertices, , , and . If

is chosen as the final common subexpression, two adders
are required to realize the coefficient for the two free vertices

and . On the other hand, if and replace to be
the final subexpression, there is no free vertex but an adder
is required to sum the two subexpressions. Therefore, we set

initially for this simplistic case and adjust the cost by
considering other edges in and . If there exists equiva-
lent precedence edges of and , i.e., , with

and , then
the adders required for the partial sums of and have
already been allocated elsewhere. remains unchanged at
this stage as no additional adder is incurred. Otherwise, the
number of equivalent precedence edges of , and are
independently examined. If there is no edge in equivalent
to , then one adder is required to realize this subexpression
and . The same evaluation is carried out for

. If there is no other equivalent precedence edge of , then
because we assume that there are at least

one precedence edges equivalent to at the outset. If the final
value of is greater than zero, it will be profitable to change
the status of the edges from the left pattern graph to the right
pattern graph of Fig. 1.

As higher weight subexpressions evolve, the notion of con-
tention resolution needs to be extended to include precedence
path. The generation of a precedence path is by itself a conse-
quence of contention resolution. A weight- precedence path
will be generated from a weight- precedence path and an
adjacent edge if it is profitable. Fig. 2 shows two possible gen-
erations of a weight-4 precedence path.

Any hybrid path that has potential to become a precedence
path is called a candidate path. When it is decided that a candi-
date path be converted to a precedence path, some adders will be
saved. In some situations, more complicated contention resolu-
tions are needed when there are precedence edges emanating
from the candidate path, and the resolution may require that
the precedence edges be abandoned by changing them to con-
tention edges to avoid conflict. This is illustrated by an example
in Fig. 3. The precedence edge emanating from an endpoint

of the candidate path is converted to a contention
edge if there is adder saved in forming a precedence path
of weight-3. The calculation of for the candidate paths is
more complicated because all equivalent paths corresponding to

Authorized licensed use limited to: Nanyang Technological University. Downloaded on February 25,2010 at 21:35:54 EST from IEEE Xplore.  Restrictions apply. 



562 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 55, NO. 2, MARCH 2008

Fig. 3. Contention resolution in path generations.

higher weight common subexpressions in the entire AG need to
be considered simultaneously.

The optimality of CSE algorithms relies on the identification
of good common subexpressions. The frequency of occurrence
is commonly adopted to appraise the quality of a subexpres-
sion but there exist different types of common subexpressions
whose frequencies of occurrence are interdependent. Many
heuristic CSE algorithms [1], [4], [8], [15], [17]–[19] suffer
from a common problem that once a subexpression is identified
as the most profitable common subexpression, the decision
cannot be reverted. With contention resolution, the number
of occurrences of every common subexpression needs to be
numerated only once at the beginning and it is used to order
the precedence of common subexpressions so that lower order
edges corresponding to the most frequently occurred common
subexpression are admitted into the AG first. The common
subexpressions are orderly admitted as either precedence or
contention edges or paths, and contentions are identified by
shared (overlapping) vertices and resolved through differential
adder cost evaluations of localized pattern graphs described
above. The resolution of contention may downgrade certain
precedence edges to contention edges depending on the gross
effect of conflict. The frequencies of occurrence of the prece-
dence edges or paths are updated dynamically as they are
admitted and when they have been changed as a consequence of
contention resolution. This will ensure that every admission of
a common subexpression into an AG in construction will tend
to improve the solution globally. Depending on the number of
contentions and the frequency of downgradings, some common
subexpressions may eventually end up with one or no prece-
dence edge along the contention resolution process and are no
longer common subexpressions. In what follows, we propose
several algorithms that apply contention resolution to eliminate
various types of common subexpressions based on the AG.

III. DERIVATIVES OF CRA

By incorporating the considerations of different types and
weight constraints of the common subexpressions, variants of
CRA algorithms are classified with the abbreviations given
in Table I. The weight-2 algorithms aim at mininizing the
adder cost with the lowest LD. They only search for quality
common subexpressions of weight-2. CRAH-2, proposed in
[22], outperforms many CSE algorithms in terms of LD. Some
results reported in [3] have revealed that reducing the LD of a
circuit could potentially reduce the switching activities due to
the shortening of paths via which glitches propagate. There-
fore, reducing the LD has an added incentive of minimizing
the power-delay product. Since higher-weight subexpressions
are evolved from lower-weight subexpressions, the CRAs
can be weight-constrained to control the LD. The weight-
algorithms are designed to flexibly limit the weight of the

TABLE I
CLASSIFICATION OF CRAS

common subexpressions to only . The weight- ( denotes
don’t care) algorithms impose no constraint on the weights
of the common subexpressions. The algorithms in this class
strive for the maximal adder cost reduction by sharing most
profitable common subexpressions regardless of their weights.
Including all types of subexpressions into consideration will
generally but not always enhance the probability of getting the
least cost solution. The competitive effects of the simultaneous
elimination of all three types of common subexpressions are
intricate. Oblique common subexpressions are generally not
repeatable in the symmetrical structure, and their elimination
will devastate the symmetry. For filters with high number
of repeated coefficients, intercoefficient CSEs tend to inhibit
the reuse of these coefficients. Different CRA algorithms are
provided for different applications of MCM transformation.

The main steps involved in the basic CRA can be summarized
as follows.
Step 1) A list of common subexpressions based on their

recurrences in the target coefficient set is extracted.
The common subexpressions are sorted in de-
scending order of their frequencies of occurrence.
The vertices of an unconnected AG corresponding
to the nonzero digits of the coefficient set are gen-
erated.

Step 2) The first common subexpression is removed from the
sorted list. All its equivalent edges are labeled as
either precedence edges or contention edges onto the
AG.

Step 3) If there is any contention, is evaluated to re-
solve the contention.

Step 4) Steps 2 and 3 are repeated until the common subex-
pressions in the list have been exhausted.

Step 1 is the preparation step and is evoked only once. Let
be the set of unique CSD coefficients. A list of all possible

common subexpressions of weight-2 is generated from . For
every subexpression, its frequency of occurrence in is com-
puted. In computing the frequency, we do not differentiate the
sign of the subexpressions. Equivalent overlapping subexpres-
sions (e.g., 101 of 10101) are counted only once. Let S de-
notes the ordered list of distinct subexpressions sorted in de-
scending order of frequency. When there is a tie, the subex-
pressions are further sorted in the order of horizontal, vertical
and oblique types, and for the same type, in ascending order of

. Subexpressions of unity frequency are excluded from
. A unique order number is assigned to each distinct subex-

pression according to their sorted order in the list. Subexpres-
sions of have the highest precedence. In this way, no
common subexpression will be neglected because of the con-
sideration of overlapping subexpressions. Equivalent common
subexpressions are uniquely identified by their order numbers
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which remain intact throughout the process but their reuse sta-
tistics can be updated upon contention resolution. Once the or-
dered list is established, , which is the AG for each
coefficient , , can be constructed. The pro-
gram goes into Step 2 and starts the contention resolution itera-
tively. This portion has its diversity according to the types and
weight control of common subexpressions of Table I. The gen-
eral procedure of weight-2 CRA has been described in [22] for
CRAH-2. It can be extended to vertical, oblique and any combi-
nation of subexpressions by allowing precedence and contention
edges to bridge across vertices of two different coefficients. The
uniqueness of CRAs for the weight- and weight- categories
will be further elaborated in the following subsections.

A. CRAs for Weight- Subexpressions

Compared with weight-2 common subexpressions, elimina-
tion of higher-weight common subexpressions offers greater
potential savings in adder cost. In weight- CRAs, although
there is no weight limit imposed on the common subexpres-
sions, precedence paths are only formed when there is reduc-
tion in adder cost. The weight- algorithms comprise two parts
of contention resolutions. In the first part, contentions among
edges are resolved and no new path is generated. In the second
part, paths are extended from edges and contentions involving
paths are resolved. Precedence paths of progressively increased
weights are evolved when there is saving in adder cost. Fig. 4
gives the generic pseudocode of the weight- CRAs.

The lists and have the same meanings as before.
is the number of distinct order edges. The prece-

dence and contention edges for the construction of AG are
stored in the lists, and , respectively. In addition, a
separate order list of equivalent candidate paths, and an
order list of precedence paths, are similarly created. The
variable is the number of distinct order
paths. and are initially empty and they are updated in
the second part on every iteration (line 21). Hybrid paths are
generated by construction. A candidate path is then identified
by a contention edge adjoined with a precedence edge (or
path). It has potential to form higher weight precedence path
upon contention resolution. The frequencies of the equivalent
paths are accounted each time a path is generated or an existing
path is degraded. These paths are sorted dynamically by their
weights and frequencies.

Edge contention identification and resolution, including con-
current edge contentions have been explained in [22]. Here the
contention path resolution is elaborated. Let and be
the subgraphs comprising the candidate path and its emanating
paths before and after the conversion. is equal to the differ-
ence in adder costs between and . We need to consider
only those precedence edges and paths emanating from the can-
didate path that have their attributes changed after the conver-
sion. Each additional contention edge generated by the conver-
sion induces an adder. Breaking an emanating precedence path
creates a hybrid path and introduces an adder. Let be the
number of precedence edges in that have been changed to
contention edges in . Let be the number of emanating
precedence paths in that have been changed to hybrid paths

Fig. 4. Pseudocode of weight-X CRA.

in . If is the number of contention edges of the candi-
date path , we have

(1)

Equivalent candidate paths with positive cost metric
will be converted to precedence paths by promoting their con-
tention edges to precedence edges if their aggregate saving of
adders is greater than the cost of generating the final precedence
path, , i.e.,

(2)

where is the set of equivalent candidate paths that have posi-
tive . The threshold for promoting the equivalent candi-
date paths, to precedence paths is given by

and

(3)
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At the end of the process described in Fig. 4, the precedence
edges and paths in and form the common subex-
pressions. The adder cost can be determined from ,
and . The calculation can be divided into two parts: 1)
Common subexpression implementation: Each unique common
subexpression of weight-2 requires an adder. Let denote
the number of distinct common subexpressions in , then
the cost of realizing the weight-2 common subexpressions,

. The number of adders required to implement a
path is not fixed since the weight-2 common subexpressions
generated may be reused. Let be the set of distinct order
precedence paths of weight- . Further, let denote the
number of adders required to construct the precedence path,

. A subexpression represented by a weight- path,
may require from one to adders to construct depending
on whether there exists other lower-weight paths equivalent to
some segments of . From experiment, we observe that ma-
jority of the precedence paths are of weight-3 and weight-4. For
weight-3 subexpressions, originally, two adders are needed to
form this type of subexpressions, one for forming an edge from
two of the three connected vertices and one for adding this edge
to the remaining vertex. There are only three possibilities of
generating the edge from a weight-3 path. From the order num-
bers of the edges, it is easy to identify which formation actually
contains a precedence edge that has already been implemented
so that an adder can be saved. For weight-4 path, and
will be checked to see if there exist precedence edges with the
same orders. If so, only one adder is needed for the generation
of this path and its LD remains minimal. Otherwise, a more
general method is used. For higher-weight precedence paths

with , we look for from two decompositions
of and . If
and have not been generated, their decomposition
to continue while . If no lower-weight paths are
found, the number of possibilities to realize an adder tree for
the required subexpression is formidable. Hence, only two
different decompositions are considered, either all odd or all
even indexed edges are evaluated for the first level of adders.
For a weight- path , the odd decomposition
consists of a set of subexpressions corresponding to all edges,

with odd index while the even decomposition contains
edges of even . These two decompositions are evaluated in
conjunction with the existing partial sums. The set of edges with
the lower adder cost is chosen. Let denote the number of
adders used to implement paths in , then . (2)
Coefficient implementation: Nonzero digits of each coefficient
that are not parts of the final common subexpressions need
to be summed with the subexpressions to produce the final
coefficient. This cost per coefficient is equal to the number of
precedence edges (paths) plus the number of free vertices per
subgraph less one. Let denote the number of precedence
edges, denote the number of precedence paths for the
coefficient set and is the number of
free vertices. The total number of adders required for this part
is .

Thus, the total number of adders of the final is given by

(4)

TABLE II
ORDER LIST OF COMMON SUBEXPRESSIONS OF WEIGHT TWO OF EXAMPLE 1

Since minimizing the LD under a fixed minimal number of
adders offered by , and is itself an optimization
problem, especially for vertical and oblique subexpressions, it
is not likely to provide a closed form estimation of the exact
minimal LD until the implementation of the precedence paths
is fixed. The following equation gives the upper bound of the
LD from circuits synthesized by CRAH

(5)

Example 1: A small coefficient set is used to illustrate how
CRAH works towards its solution. Consider the coefficient
set, , the
coefficients in are decomposed into weight-2 subexpressions.
The order list of subexpressions, , encoded in ( , ,

, ) is tabulated in Table II. The italic subexpres-
sions are overlapping subexpressions of the same order, which
will be labeled as contention edges in the AG, .

The allocation of subexpressions is carried out on the sub-
graphs starting from order 1 subexpressions. In every iteration,
all precedence and contention edges of current order number
are labeled in the AG, . There is no contention resolution
with positive until the fifth iteration when .
For , there are two equivalent candidate paths,

, as shown in Fig. 5(a).
At this time, the precedence edges of are recorded as

while the contention edges as

. The candidate paths are
. If they are promoted to

precedence paths, their adjacent precedence edges
and will be broken into contention edges. Thus, the
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Fig. 5. Execution trace of CRAH for Example 1. (a) Iteration 5 of CRAH.
(b) Results of promoting the candidate. (c) Final AG.

NAS evaluation accounts for the attribute changes of
and as well. Since there is one contention edge in
each candidate path, is 1 for both . Due to the
conversion of to contention edge, for the
candidate path in . On the other hand, since is the
only order 2 precedence edge, its conversion to contention
edge costs no additional adder. The adder required to add
has already been accounted and for . Since
no precedence path has been created yet, for both
candidate paths. Using (1),
and . The
promotion threshold according to (3). Since

, and
are promoted to precedence paths as shown in

Fig. 5(b). The attribute changes of and make
their transitive edges, and precedence. The
successful path resolutions lead to positive for successful
contention resolution of and resolution procedure
from Line 22 of Fig. 4 is used to swap the status of the
precedence edge, with its adjacent contention edges,

and in Fig. 5(b). All subexpressions have been
labeled and no further contention resolution is required. The
final AG is shown in Fig. 5(c).

The total number of adders used can be calculated from (4).
Since , , , and

, adders is required to implement this set
of coefficients. The circuit implementation is shown in Fig. 6. It
is noticed that Tap 2 is the critical path and the LD is 3.

It should be noted that due to the following considerations,
the already formed precedence path will not be decomposed or
broken into shorter path in subsequent iterations. First, from rig-
orous experimental simulation, it has been found that the prob-
ability of saving adder costs and the amount of savings are very
low by breaking the established precedence paths. Second, the

Fig. 6. Circuit implementation.

Fig. 7. Exceution traces of CRA for Example 2. (a) AG after labeling of order
1. (b) AG after labeling of order 2 subexpressions. (c) Final AG.

complexity for evaluating if a precedence path shall be decom-
posed in this case is high and because of the first reason, most
of these extra computations end out to be useless.

Example 2: When vertical and oblique subexpressions
are taken into consideration, contention resolution becomes
more complicated. The execution of CRA is illustrated on a
small coefficient set,

. First, the order list of subexpres-
sions, is generated. There are two subexpressions appearing 5
times in the set, one horizontal and one oblique subexpressions
given by and ,
where denotes the value of after sample delays
and the left shift of digits. As mentioned before,
horizontal subexpressions have higher precedence. Order 1
edges are labeled in Fig. 7(a). There is no contention at this
stage. The precedence edges of the AG, are recorded as

and .
For order 2 subexpressions, Fig. 7(b) is obtained after

labeling the 5 oblique edges. All five order 2 edges are
contention edges but three of them are constituents of candi-
date paths. The candidate paths are highlighted in Fig. 7(b),

.
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Fig. 8. Solution of CRA.

For the three candidate paths, the is calculated using
(1) ,

and .
The promotion threshold according to (3). Since

,
the candidate paths will be promoted to precedence paths except

because no adder will be saved by converting the can-
didate path to precedence path. The newly generated
path is .
The same set of precedence edges and paths remains unchanged
to the end of the process and the final AG is shown is Fig. 7(c).

There are two common subexpressions found in CRA
and . The total number

of adders used can be calculated from (4). Since ,
, , and , adders

are required to implement this set of coefficients. The common
subexpressions are circled in the coefficient set shown in Fig. 8.

Direct implementation of Example 2 from CSD uses 14
adders. In comparison, 5 adders are saved by CRA solution and
the expression,

, is
more succinct.

To map the AG of Fig. 7(c) to hardware architecture, we
need to generate the weight-2 common subexpressions corre-
sponding to the distinct precedence edges first. For precedence
edges that bridge across two subgraphs, and , unit
delay elements are inserted before the adder. Higher-weight
common subexpressions are generated with endeavor to use
shorter subexpressions. Finally the free vertices are summed
with the generated subexpressions to complete the MCM block.
The adder tree of the subexpressions and the free vertices are
balanced to have minimum depth. Fig. 9 shows the mapping of
Fig. 7(c) to an adder tree following the above strategy.

CRAH and CRAHV produce the same solution as shown in
Fig. 10(a) since there are not many vertical common subexpres-
sions and they are inferior to the available horizontal common
subexpressions in this example.

CRAs can also be applied on other representations
such as binary and MSD since they are pattern matching
based algorithms. For this example, has three
MSD representations and has two MSD represen-
tations. Of the six different sets of MSD coefficients.

produces a lower adder cost solution than the
CSD coefficient set using CRAH, as shown in Fig. 10(b).

Although a diversity of representations can be explored, the
number of combinations to represent a coefficient set with non-
canonical representations grows exponentially with the length

Fig. 9. Mapping of solution AG to adder tree.

Fig. 10. Solutions obtained by: (a) CRAH and CRAHV and (b) CRAH with
MSD representation.

of the filter and the coefficient wordlength. Any CSE algorithm
that attempts to find the best solution from different represen-
tations is difficult to extricate from the curse of dimensionality.
Hence, we will deal with the CSD coefficient set.

B. CRAs for Weight- Subexpressions

With weight constraint, CRA algorithms for weight-
subexpressions will check the weight of each candidate path
and process it only if it is less than . The procedures for
weight- CRAs are similar to those for weight- . These
algorithms are useful for evaluating the tentative benefits of
higher-weight subexpressions and the hypothetical relationship
between MCM block characteristics, LD and different types
of subexpressions. The maximum allowable LD, can be
used to calculate the corresponding weight constraint,
to be imposed on each coefficient . The weight limit,
for the whole coefficient set can be used to constrain the subex-
pression weights of CRAs accordingly in order to limit the
LD of their solutions. For horizontal common subexpressions,
the LD of the MCM block can be constrained by limiting
the maximum weight of the common subexpressions for each
coefficient according to Table III.

Table III is obtained by an exhaustive exploration of all pos-
sible adder tree topologies of CSD numbers with 2 to 8 nonzero
digits. For a coefficient with two or three nonzero digits, the LD
is fixed irrespective of how the coefficient is synthesized. Hence,
the permissible weight of the precedence path is set equal to the
hamming weight of the coefficient. As the hamming weight of
the coefficient increases, adder trees of different depths can be
used to synthesize the coefficient. If a coefficient is bounded by
the LD given in the second column of Table III, the weights of
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TABLE III
MAPPING BETWEEN LD AND PATH WEIGHT

the precedence paths synthesized for that coefficient will not ex-
ceed the corresponding numbers given in the last column. For
example, according to Table III, if the LD is constrained to 4, co-
efficients of hamming weight 5 are allowed to have a precedence
path of up to weight-5, and for higher hamming weight coeffi-
cients, only weight-4 or lower-weight precedence paths are al-
lowed. Coefficients of hamming weights lower than 5 need not
be considered as their LDs can never exceed 4. Fig. 11 shows
three different adder tree topologies for a CSD coefficient with
7 nonzero digits. In Fig. 11(a), represents a weight-4
precedence path, which is generated from a precedence path

. Fig. 11(b) shows a weight-4 precedence path,
generated from two weight-2 edges, and of the AGs.
Although the coefficient of hamming weight 7 can also be syn-
thesized at a lower LD of 3 as in Fig. 11(b), it will refrain
the weight-3 precedence path from being reused if one exists
and can be expanded to the desired weight-4 precedence path.
Therefore, the maximum permissible path weights stipulated in
Table III are stringent enough to guarantee the fulfillment of the
LD constraints but some slacks are allowed for the reduction of
adder costs. The topology of Fig. 11(b) can also be used to il-
lustrate the only exceptional case of Table III corresponding to
the synthesis of a weight-7 coefficient under a LD constraint of
3. In this case, only one weight-3 precedence path is allowed (as
annotated by “ 1” in Table III) even if there exist two weight-3
precedence paths. If there is no LD constraint, two weight-3
precedence paths, and , can be fitted into either
adder tree topologies of Fig. 11(a) or (c). Hence, by mapping
the LD constraint to the maximum permissible weight of the
precedence paths for each coefficient according to its hamming
weight in Table III, CRAH optimization can be driven by the
LD constraint.

IV. EXPERIMENTAL RESULTS AND DISCUSSIONS

The most popular application of MCM transformation is FIR
filters. In this section, the performances of CRAs are evaluated
and compared against practical filters and randomly generated

Fig. 11. Adder tree topologies for a weight-7 coefficient.

coefficient sets. Based on the experimental results, the pro and
con of these CRAs are analyzed and discussed.

Nine filters of different orders and coefficient wordlengths
are used to compare the performances of CRAs. FIR1 and FIR2
are the coefficient sets in Section III illustrating the operations
of CRAH and CRA. FIR3 and FIR4 are used in [26] to de-
scribe the HCSE and VCSE algorithms. FIR5 [17], [20] is a
25-tap lowpass filter with normalized passband and stopband
edge frequencies of 0.15 and 0.25 respectively, and unity ripple
weighting factor. The passband and stopband ripples are 0.005
(or 46.0 dB). FIR6 [17], [20] is a 60-tap filter with normal-
ized passband and stopband edge frequencies of 0.021 and 0.07,
respectively. The passband ripple and stopband attenuation are
0.2 and 60 dB, respectively. FIR7 [13] is 121-tap highpasss
filter with normalized stopband and passband edge frequencies
of 0.37 and 0.4, passband peak-to-peak ripple of 0.080 dB and
peak stopband ripple of 80.3 dB. FIR8 [26] is a LPFIR filter
in the filter bank channelizer of the Digital Advanced Mobile
Phone Systems (D-AMPS) with the sampling rate of 34.02 MHz
chosen according to [28]. The channel filter extracts 30-kHz
D-AMPS channel from the input signal after downsampling by
a factor of 350. The passband and stopband edges are 30 and
30.5 kHz, respectively. The peak passband ripple is chosen to
be 0.1 dB. The filter stopband attenuation is 24 dB and the
number of taps is 200. FIR9 [26] is a channel filter generally de-
signed for the personal digital cellular (PDC) standard. The sam-
pling rate of the wide-band signal is 25.6 MHz, which covers
1024 channels of 25.5-kHz spacing. It has a stopband attenua-
tion of 30 dB and the number of taps is 230.

The number of logic operator (LO) and logic depth (LD) of
the multiplier blocks of the FIR filters obtained by our pro-
posed CRAH algorithm are compared with the existing algo-
rithms as shown in Table IV. is the total number of taps and
is the wordlength of the coefficients. Harley, BHM, RAG- , C1,
Paško and NRSCSE in the table refer to the Harley’s [8], Mod-
ified Bull and Horrock’s [4], the -dimensional reduced adder
graph [4], C1 [3], Paško’s [17] and nonrecursive signed CSE
[18] algorithms, respectively. Those entries marked “ ” are re-
sults unavailable due to unknown errors generated by executing
the original programs from the authors.

Table IV shows that CRAH provides a good balance in the
tradeoff of LO and LD. It exhibits the lowest adder cost for
more than half of the filters. Comparing with the CSD-based
algorithms, which are Hartley, NRSCSE and Pasko, CRAH pro-
vides the least LO for almost all the filters. Thanks to the guiding
principle of CRAs that the LD is allowed to increase only when
there is adder saving, CRAH’s solutions achieve near optimal
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TABLE IV
COMPARISON OF LO AND LO OF CRAH WITH OTHER METHODS

LD. Even when it is compared with NRSCSE, which employs
only weight-2 subexpressions and is expected to have the min-
imal LD, CRAH has the same LD in all filters except for FIR8,
where it achieves 24% adder cost saving at the expense of one
additional adder depth. CRAH has significantly lower adder cost
than NRSCSE for long filters. Comparing with the GD algo-
rithms like BHM and C1, CRAH has the shortest LD with com-
parable LO. CRAH and RAG- produce comparable LO and
LD for the benchmark filters. It is not surprising that the GD
algorithms outperform CSD-based algorithms in terms of LO
in some cases due to its much larger search space. As opposed
to CSD-based algorithms, GD algorithms are not restricted by
the fixed number representations. In principle, they have an un-
limited number of potential patterns from which better common
subexpressions can be selected. The disadvantages are the long
computation time and that the statistics of the common subex-
pressions for the entire coefficient set is not known in advance
before the coefficients are fully composed from the fundamen-
tals, which accounts for their poorer results in some cases. GD
algorithms generally perform poorer in terms of LD. Even with
control optimization on LD, as in C1, the partial sums grow with
the composition of the coefficients. The side effect of LD con-
straint is it has somewhat limited the GD algorithms to achieve
better results. Since LO and LD are two conflicting optimiza-
tion factors, neither CRAs nor other heuristic algorithms can
promise the solutions they synthesized have the least LD as well
as the lowest LO. Nevertheless, the results obtained by CRAH
are asymptotically close to the minimal achievable LO mod-
eled and solved by the ILP algorithms [7], [25] for coefficients
represented in CSD form. For example, for the three examples
given in [7], CRAH-2 [22] gives exactly the same LO as [25]
which uses only weight-2 common subexpressions, and CRAH
produces the same results as [7] which considers higher weight
common subexpression as well. In short, CRAs promise good
overall performance in view of its achievable LD for solutions
generated with commensurate optimality of logic complexity.

CRA exploiting intercoefficient common subexpressions is
also compared in Table V. As mentioned in Section III, the
adder cost of repeated coefficients will be aggravated by the
intercoefficient subexpressions. The annihilation of the repeti-
tive patterns by the intercoefficient common subexpressions is
more likely to offset the benefits it gained. This effect can be
mitigated by a restriction imposed on CRA that no intercoeffi-
cient common subexpressions are searched or evaluated in re-
peated coefficients. For the purpose of demonstrating the com-

TABLE V
HALF FILTER ADDER COST COMPARISON OF CRA WITH OTHER METHODS

plexity reduction by the elimination of common subexpressions
of all types and weights, only the adder costs of the half fil-
ters of D-AMPS and PDC including the tap accumulators are
shown. To provide a thorough evaluation, four different transi-
tion bandwidths are chosen for each of D-AMPS and PDC so
that varies from 200 to 940 for D-AMP, and from 230 to
800 for PDC. and 16 bits are chosen based on popular
analog-to-digital converter resolutions.

It is clear from Table V that CRA yields the least LO. The
savings over other algorithms are prominent as the coefficient
wordlengths increases. For some cases, CRA shows great as-
cendency even with attributable to the fewer number of
nonzero digits in each coefficient and some of them are located
in the least significant bits. Horizontal common subexpressions
cannot be formed from these weight-1 coefficients, but inter-
coefficient common subexpressions can be formed by making
them a part of the vertical or oblique subexpressions.

For more general comparisons, the performances of
CRAH-2, CRAH, CRA-2, CRA, NRSCSE , and Pasko al-
gorithms were tested on randomly generated data. Every data
set used in this test was taken from 50 sets of randomly gener-
ated coefficients. The word length of the coefficients is fixed
at 11. The adder costs normalized by the cost of CSD direct
implementation shown in Fig. 12 give an insight into the rela-
tive hardware savings achievable by different algorithms. The
results show that CRA is capable of generating better solutions
with lower number of LOs especially for large filters. The
advantage of CRA over CRAH is its effectiveness in harnessing
the sharing of intercoefficient common subexpressions. The
random simulation results are still indicative of the benefits of
sharing intercoefficient common subexpressions for general
MCM problems that can be solved by CRA.

Due to the nature of the algorithms, the LD can be indirectly
constrained on CRAs if desired. CRA- will only generate
common subexpressions of weight . To the best of our
knowledge, there is only a few LD constrained CSE algorithms
[8], [16]. Unlike the LD constrained CSE algorithm of [16], our
CRA- incurs no overhead to the general CRA. Thus, it is of
interest to analyze how the adder cost changes as the maximal
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Fig. 12. Comparison of average adder cost.

TABLE VI
SIMULATION RESULTS OF CRAH-W WITH VARYINGW

permissible weight of the common subexpressions in-
creases. The results are tabulated in Table VI. 50 randomly gen-
erated coefficient sets for each combination of and were
tested. The number of coefficient sets that have the minimum LO
from each is recorded. The percentage of the least adder
cost solutions obtained from each is listed for every filter
combination. For example, for the coefficient sets of
and , only 2% of the 50 randomly generated coefficient
sets have the least adder cost when the maximum LD is con-
strained to two. This means that for this particular coefficient set,
no better result can be achieved by allowing the LD to increase.
There exist filter sets that exhibit a critical turning point at some

value beyond which the average adder cost will increase
by relaxing the LD. This is an interesting phenomenon con-
trary to conventional belief and the experimental results shown
in [17]. The number of coefficient sets that display this critical
descend phenomenon (CDP) for each combination of and
are accounted and its percentage is recorded in the last row of
Table VI labeled . The simulation results of Table VI
show the following general trends. For the same word length,
the larger the coefficient set, the higher the weight limit to ob-
tain the least adder cost solution whereas for the same number
of taps, the longer the word length, the higher the weight limit
needed to achieve the best cost solution. The percentage CDP
also increases as the order and precision of the filter increases.
In Table VI, blank entry denotes zero precentage.

It should be noted that CRAH- uses the same strategy
when building higher-weight subexpressions within the con-
straint of . That is, higher-weight subexpressions are only
created when it leads to a reduction in adder cost. From the
%CDP of Table VI, we conjecture that higher-weight subex-
pressions may not always foster adder cost reduction, as one

TABLE VII
PERCENTAGE OF VCS, OCS AND HCS IN CRA-2

Fig. 13. Distribution of the heights of ICS.

would expect. The problem may occur when the elimination
of higher-weight common subexpressions prevent the more
beneficial elimination of some lower-weight common subex-
pressions whose number of occurrences may be outweighing.
Although the ways to obtain higher-weight subexpressions
vary from algorithm to algorithm, this local minimum exists,
especially for CSE algorithm that starts the search from the
highest-weight subexpressions.

To demonstrate the extent of redundancy that can be ex-
ploited from intercoefficient common subexpressions (ICS)
in comparison with intra-coefficient common subexpressions,
statistic data are collected from randomly generated coefficient
set of word length 11 and filter orders ranging from 10 to
80. The statistical results obtained from CRA-2 are shown in
Table VII. The total number of vertical and oblique common
subexpressions (VCS and OCS) generated by CRA-2 is around
half the number of overall common subexpressions.

Fig. 13 presents the distribution of the heights of ICS for co-
efficient sets of 80 taps and word length 11. The height and
length defines an ICS, in a 2-D matrix represen-
tation. It is evident that most of the selected ICS have height
below 20. Although not plotted, it is also found that the distri-
bution of ICS’s lengths has a narrow spread centered at 0, most
of the ICSs have their lengths fall within the interval [ 2, 2].
For coefficient sets of word length 11, the longest ICS is 8 bits.
This information provides useful hints on how to lower the com-
putation complexity of CRA.

The MATLAB programs of CRAH-2, CRAH, NRSCSE and
Pasko algorithms were run on a Pentium IV 1.9-GHz personal
computer with 256 MBytes of system memory. Their average
computation time in seconds for randomly generated filters
with varying number of taps, and fixed word length are
compared in Fig. 14. CRAH-2 and CRAH are chosen for this
comparison because the two algorithms with which they are
compared consider only horizontal common subexpressions.
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Fig. 14. Comparison on computation times.

CRAH-2 uses the least CPU time in all the test cases. CRAH
requires more computation time than Pasko algorithm on small
coefficient set. This is because for smaller coefficient sets,
more time is spent on the contention path resolution than the
search for the most common subexpressions at each iteration.
As the coefficient set increases, the computation time of Pasko
exacerbates while that of other algorithms remain relatively
constant. Pasko algorithm transforms the MCM block into a
multiplier free linear transformation of dimension . More
potential subexpressions are present with increasing values of

and due to the increase in filter taps, but the increase in
the value of also causes a drastic increase in computation
effort. For CRAs, the number of iterations is dependent on
the maximum order number of the subexpression list, which
is limited by the word length. As the word length is fixed, the
iteration time is relatively stable. That explains why the com-
putational time increases only marginally as the coefficient set
grows. CRAs generate common subexpression list only once at
the very beginning, which saves a lot of computational effort.
This comparison shows that CRAs possess the attribute of good
heuristic that achieves quality solutions for large problem size
with well-bounded computational time.

V. CONCLUSION

In this paper, several new CRAs based on an AG represen-
tation of the coefficient set are proposed. The benefit of the
variants of CRA is derived from their ability to appraise and
substitute the chosen subexpressions when better alternatives
emerge. With the core technique of contention resolution,
derivatives have been devised to permit sharing of composite
types of common subexpression for different MCM charac-
teristics. Among the proposed algorithms, CRAH-2 yields the
shortest LD architecture with substantially reduced number of
LOs. The most versatile variant of CRA has no constraint on
the weights of the common subexpressions and it searches for
all horizontal, vertical and oblique subexpressions. It leads to
a significant reduction in the number of arithmetic operations
required to implement the MCM block. Evidence of the prof-
itability of intercoefficient common subexpression extraction
has been demonstrated. The LD driven synthesis option is
important as lowering the LD improves the throughput rate

and minimizes spurious switching activities through the crit-
ical path. Moreover, our algorithms are also computationally
efficient. The runtime of CRAH-2 is comparatively lower than
NRSCSE and the computation efficiency of CRAH is signifi-
cantly higher than Pasko algorithm as the problem dimension
grows. In short, logic complexity, LD and computational ef-
ficiency are conflicting goals to be optimized simultaneously.
For any single factor, at least one variant of CRA stand up. The
overall performances of CRAH-2 and CRAH are promising
in view of its achievable LD for solutions generated with
commensurate optimality of logic complexity. CRAs can be
extended to deal with other constant representations like MSD
and binary coefficients. MSD is promising for its polymorphism
but an exhaustive enumeration of all possible MSD coefficient
sets to find the best solution is formidable. Our future research
will look into the search space reduction for MSD-based CRAs.
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