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Hardware Reduction in Digital Delta–Sigma
Modulators Via Error Masking—Part I:

MASH DDSM
Zhipeng Ye, Student Member, IEEE, and Michael Peter Kennedy, Fellow, IEEE

Abstract—Two classes of techniques have been developed to
whiten the quantization noise in digital delta–sigma modulators
(DDSMs): deterministic and stochastic. In this two-part paper, a
design methodology for reduced-complexity DDSMs is presented.
The design methodology is based on error masking. Rules for
selecting the word lengths of the stages in multistage architectures
are presented. We show that the hardware requirement can be re-
duced by up to 20% compared with a conventional design, without
sacrificing performance. Simulation and experimental results
confirm theoretical predictions. Part I addresses MultistAge noise
SHaping (MASH) DDSMs; Part II focuses on single-quantizer
DDSMs.

Index Terms—Digital delta-sigma modulators (DDSMs), error
masking, MultistAge noise SHaping (MASH).

I. INTRODUCTION

D IGITAL DELTA–SIGMA modulators (DDSMs) are
often found in consumer communications and entertain-

ment products including cellular telephones, wireless LANs,
modems, and MP3 players. The fundamental operation of the
DDSM is to quantize an oversampled discrete-amplitude input
signal coarsely within a feedback loop such that the power of the
resulting quantization noise is shaped within some frequency
band of interest. Popular DDSMs are based on two classes
of DSMs called MultistAge noise SHaping (MASH) DDSMs
and single-quantizer (SQ) DDSMs [1]. MASH DDSMs have
a feedforward structure and are inherently stable. SQ DDSMs
typically incorporate one or more feedback loops and must be
designed with care to ensure stability.

Careful DDSM design is also important because modulator
spectrum imperfections directly affect the purity of the output
spectrum of the system in which they are used. One of the most
challenging issues is the tonal behavior of the DDSM [2]. Often-
cited causes of the tonal behavior in a DDSM are the cycles that
are particularly likely to occur with slowly varying or dc inputs.
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The underlying problem is that the randomization of the out-
puts by the DDSM is often insufficient and the resulting quan-
tization error forms short and repeating patterns (called cycles);
this gives rise to strong unwanted tones in the output spectrum
[2].

Two classes of techniques have been developed to whiten the
quantization noise: deterministic and stochastic. The determin-
istic approach to whitening the quantization noise is to guar-
antee maximum cycle lengths by design. Kozak and Kale [3]
and, more recently, Borkowski et al. [4], [5] have shown that the
MASH 111 DDSM does not exhibit large spurs when the input
is constant and the initial condition of the first stage is odd, due
to the inherent whitening of the quantization error spectrum.

The “stochastic” approach to maximizing cycle lengths is to
use a “random”1 dither signal to disrupt periodic cycles [6].
Dithering breaks up the cycles and increases the effective cycle
length, resulting in smooth noise-shaped spectra. Although the
stochastic solution inherently adds noise to the spectrum, it is
particularly effective when the word length of the DDSM is
short, in which case the deterministic technique cannot guar-
antee a sufficiently long cycle to whiten the quantization error.

In an earlier work [7], we proposed a reduced-complexity
(RC) MASH DDSM which maximizes cycle lengths in a
deterministic way without dithering. In this paper, we extend
this idea, develop the method theoretically, and show how error
masking can be used to reduce the hardware consumption (HC)
of MASH DDSMs, using either deterministic or stochastic
techniques. In Part II, we will focus on SQ DDSMs [8], [14].

In Section II, we review a typical architecture for a MASH
DDSM. In Section III, we explain the design methodology for
the DDSM using the deterministic technique. In Section IV,
a design example for the DDSM using the deterministic tech-
nique is shown. In Section V, the design methodology for
MASH DDSMs using the stochastic technique is presented. In
Section VI, a design example for the stochastic technique is
shown. Finally, we draw some conclusions in Section VII.

II. MASH ARCHITECTURES

Before we explore our design methodology in detail, we first
review a conventional MASH DDSM architecture. The structure
we consider is based on the digital accumulator model shown in
Fig. 1.

In this model, represents the carry-out signal of a digital
accumulator, and the quantizer block corresponds to the over-

1The dither signal is typically produced by a finite state machine. In this case,
it is pseudorandom rather than random.
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Fig. 1. Digital accumulator model.

flow operation. The signal is the sum of the digital words
and . When is greater than , the quantizer over-

flows, and the output signal will be 1 (i.e., truncating quan-
tizer). On the other hand, when is less than , the quan-
tizer does not overflow, and will then be 0. Mathematically,
we write

(1)

The function of the digital accumulator is to distribute the
power of the quantization error (noise) preferentially toward
higher frequencies, thus noise shaping the spectrum.

The effect of the quantizer is usually modeled as an additive
quantization noise source . In the Z-domain, we can write the
output in terms of and as follows:

(2)

where , , and are the transforms of , and ,
respectively.

The output contains not only the input signal but also the
quantization error shaped by a filter with transfer function

. Ideally, the quantization noise is white and is shaped by
the filter so that its power is pushed to the higher frequencies
and moved away from the input signal. However, this is not the
case for a first-order DDSM. The output signal of the first-order
DDSM contains a strong periodic structure, regardless of the
output cycle length [9]. A simulation result for a 20-bit first-
order DDSM is shown in Fig. 2.

The quantization noise can be whitened and shaped more
effectively by a higher order MASH structure. A MASH
DDSM uses a cascade of lower order blocks to construct a
high-order modulator; it typically comprises first-order modu-
lators or a combination of first- and second-order modulators.
The topology of the MASH DDSM is straightforward, and it
is stable for all inputs [10]. The simulation result for a 20-bit
third-order DDSM is shown in Fig. 3. Note that the power
spectrum more closely matches the white-noise approximation
in this case and has less tonal behavior. This is because the
system has long cycles and the quantization error has been
randomized sufficiently.

A. Conventional MASH

The block diagram of an -bit accumulator of the type shown
in Fig. 1 is shown schematically in Fig. 4, where the notation (1,

, , 1) represents a first order, -bit input, -bit quantization
error output, and 1-bit carry output, respectively.

Since higher order DSMs are widely used in frequency syn-
thesis applications, we consider, in this paper, the third-order

Fig. 2. Simulated power spectrum of a 20-bit first-order DDSM; the input is
104 857. Note the strong tonal behavior resulting from the inadequate whitening
of the quantization noise. The smooth curve shows the ideal behavior of the
20-bit first-order DDSM, assuming that the quantization noise is white.

Fig. 3. Simulated power spectrum of a 20-bit third order DDSM; the input is
104 857. The smooth curve shows the ideal behavior of the 20-bit third-order
DDSM, assuming that the quantization noise is white.

Fig. 4. Block diagram of an � -bit accumulator.

MASH 111 DDSM shown in Fig. 5. This consists of three iden-
tical -bit accumulators of the type shown in Fig. 4 and an error
cancellation network. MASH 111 indicates that it comprises
three first-order accumulators.

The output of the MASH 111 DDSM can be expressed in the
Z-domain as

(3)
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Fig. 5. Block diagram of a MASH 111 DDSM using the accumulator notation
of Fig. 4.

Fig. 6. Block diagram of the � -bit accumulator with an � -bit interstage
quantizer.

where , , , and are the trans-
forms of the input, the quantizer error of the third stage, and
the signal and noise transfer functions of the modulator, respec-
tively. In this example, , and the noise transfer
function is given by

(4)

Note that the error cancellation network completely removes
the quantization errors of the first two stages.

B. RC MASH

In our RC MASH DDSM [7], only the first accumulator has a
full-width -bit word. By setting the least significant bit (LSB)
of the input to “1”, this stage sets the cycle length of the modu-
lator’s quantization error to [5].

The error signal of the first stage passes through an -bit
interstage quantizer before being fed forward to the next
( -bit) stage. The corresponding block diagram of the first
accumulator incorporating an interstage quantizer is shown in
Fig. 6.2 The other accumulators use fewer bits to perform the
noise shaping. This allows us to reduce the word lengths in the
following stages without reducing the cycle length.

The block diagram of our RC MASH 111 DDSM [7], [11] is
shown in Fig. 7. The error cancellation network is as in Fig. 5.

2The interstage quantization may be realized simply by discarding the �� �
�� LSBs.

Fig. 7. RC MASH 111 DDSM using the notation of Fig. 6.

Fig. 8. Linearized model of the RC DDSM shown in Fig. 7.

In this case, it does not remove the quantization errors com-
pletely, as we will show.

A linearized model which illustrates all the quantization error
sources is shown in Fig. 8; its output can be expressed in the
Z-domain as

(5)

where and are the signal and noise transfer
functions, as before. is the transform of the error in-
troduced by the 1-bit quantizer in the third stage. and

are the transforms of the quantizer errors introduced
by the - and -bit interstage quantizers between the first and
second and second and third accumulators, respectively.

Note that (5) differs qualitatively from (3) in that it contains
two additional shaped noise terms resulting from the errors in-
troduced by the interstage quantizers. By choosing the values
of and appropriately, these contributions can be masked
spectrally by the shaped term. The guidelines for choosing

and are presented in Section III.

Authorized licensed use limited to: UNIVERSITY COLLEGE CORK. Downloaded on March 26,2010 at 12:10:11 EDT from IEEE Xplore.  Restrictions apply. 



YE AND KENNEDY: HARDWARE REDUCTION IN DIGITAL DELTA–SIGMA MODULATORS VIA ERROR MASKING—I 717

Fig. 9. Power spectrum of a third-order 6-bit MASH DDSM; the input is 7. The
DDSM has the structure shown in Fig. 5. The cycle length is � . The smooth
curve � is an estimate of the power spectrum obtained by assuming that the
quantization noise is white.

III. DESIGN METHODOLOGY (DITHERLESS CASE)

A. Cycle Length and Tone Location of the DDSM

The guaranteed minimum cycle lengths for MASH DDSMs
with identical first-order stages have been found empirically by
extensive simulation [4] and proven theoretically [5]. For first-,
second- and third-order DSMs, the results are , , and

, respectively, where is the word length of the accumu-
lator in the DSM, provided that the input is odd in the first-order
DDSM and the initial condition is odd in the case of the second-
and third-order DDSMs [4], [5].

The quantization noise power is spread over a number of
tones that is determined by the cycle length, resulting in a tone
spacing of , where is the sampling fre-
quency and is the cycle length. If is less than the res-
olution bandwidth of the measuring equipment, the resulting
discrete spectrum is indistinguishable experimentally from a
continuous spectrum [4]. However, when the cycle length of a
DDSM output is not sufficiently large, one can observe discrete
tones clearly in the power spectrum. The locations of these tones
are given by

(6)

where is the index of the tone.
Fig. 9 shows the output power spectrum of a third-order 6-bit

DDSM whose output cycle length is ; this is confirmed
by the autocorrelation in Fig. 10, which is periodic with period
128. The discrete power spectrum of the output of the
DDSM shown in Fig. 9 is defined by

(7)

where is the discrete-time Fourier series [12] of the output
of the DDSM with its dc term removed.3

3In this work, we remove the dc component of the output for illustrative pur-
poses as we are concerned primarily with the spectrum of the quantization noise
contribution.

Fig. 10. Autocorrelation result for the third-order 6-bit DDSM; the input is 7.

Fig. 11. Masking (dashed) � and (dotted) � below (solid) � . The lowest
frequency tone in � is at � �� � �� �; the lowest frequency tone in
� is at � �� � �� �.

Note that the power spectrum of the shaped quantization noise
contains discrete tones, as predicted; these

are located at , with . In particular,
the lowest frequency tone appears at . Note that the
axis is normalized to in Fig. 9.

Assuming a cycle of length and additive uniformly dis-
tributed white quantization noise, the idealized power spectrum
of the shaped noise is given by

(8)

Throughout this paper, we will use the power spectrum ,
which is obtained by assuming that the quantization noise
is white, to estimate the power spectrum of the actual shaped
quantization noise component .

B. Additional Noise Contributions of the Interstage Quantizers

For notational convenience, let us rewrite (5) as follows:

(9)
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where is the shaped contribution
from the quantizer in the third accumulator,

is the shaped contribution of the first interstage
quantizer error, and is the shaped
contribution of the second interstage quantizer error.

Assuming that all quantization noise terms can be modeled
by independent white sources, we estimate the power spectrum
of as

(10)

where is the cycle length.
In the same manner, the spectra obtained by assuming white

error sources and are given by

(11)

(12)

where and are the quantization steps of the - and
-bit interstage quantizers, which are and ,

respectively. We denote by and the cycle lengths (pe-
riods) of the error signals from the interstage quantizers. We will
show in the following how these lengths can be determined.

Let us express the dc input to the DDSM in binary form,
which is , and separate it into its upper and
lower pieces as follows:

(13)

Since the LSBs of are 0, they do not con-
tribute to . Therefore, alone determines . Since
the most significant bits are 0, the error output for
feeding through the -bit accumulator is the same as that
feeding through an -bit accumulator. Consequently,
the cycle length of is the same as the output cycle length
of an -bit word feeding through an -bit
accumulator. If we set the LSB of the input to “1,” the cycle
length in this case is [5]. In the same manner, the
cycle length for is . Thus

(14)

The correlation function , shown in the following equation,
can be used to quantify the interdependencies of , , and

:

(15)

We have performed extensive simulations for different com-
binations of , , and , and the correlation results are below
0.02 in each case. Therefore, we conclude empirically that ,

, and can be made almost independent of each other.

By assuming independence, the noise power spectrum at the
output of the RC MASH DDSM can be approximated by

(16)

C. Error Masking Strategy

The idea of our word-length selection strategy [11] is to mask
the contributions of the intermediate quantizers by hiding the
noise components and below the component.

The idea is shown graphically in Fig. 11. The spectral en-
velopes and due to the interstage quantizers should lie
below the envelope. Since all are discrete spectra, the con-
straints apply at a finite number of points.

In particular, we require that

(17)

(18)

Recall that, for a DSM with an output cycle length of , the
lowest frequency tone is at . Therefore, since the cycle
lengths for and are and , the lowest
frequency tones in the power spectra of and are at

and , respectively.
Additionally, at the output of the RC DDSM, since and

are first- and second-order shaped, respectively, while is
third-order shaped, if the levels of the lowest frequency tones
in and are below that of , the overall power of
and should always be below the envelope. Based on this
idea, the constraints can be rewritten as

(19)

(20)

Since

(21)

for (22)

we can approximate , , and at low frequencies by

(23)

(24)

(25)

Substituting (23), (24), and (25) into the constraints (19) and
(20), we obtain

(26)
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Fig. 12. Autocorrelation result for � in a 20–14–12 MASH DDSM when
the input is 104 857. The cycle length is � �� ���.

(27)

which reduce to

(28)

(29)

Based on (28) and (29), in order to design an RC
MASH DDSM with the same cycle length and similar power
spectrum as a conventional -bit MASH DDSM, the design
procedure is as follows.

1) Choose to ensure that the output cycle length
of the RC MASH DDSM is the same as that of the conven-
tional -bit MASH DDSM.

2) Choose [from (28)] to ensure
that the power of the first tone of is less than at
the frequency , where means the smallest
integer greater than .

3) Choose [from (29)] to ensure that
the power of the first tone of is less than at the
frequency .

D. Hardware Requirements

Since the accumulators consume most of the hardware in the
DDSM and the HC of the accumulators is proportional to their
word lengths, we can estimate the relative HC (RHC) of our RC
MASH DDSM compared with the conventional MASH DDSM
as

% (30)

where the word length of the reference MASH DDSM is ,
and we choose , , and as in Section III.C. Asymptoti-
cally, RHC approaches 82% for large 's. When ,
(30) predicts that our RC implementation will require 20% less
hardware than a conventional implementation with identical
accumulators.

Fig. 13. Simulated power spectrum for � when � � ��, � � ��, and
� � ��; the input is 104 857. The first spur is at � �� . The smooth curve is
� (11).

Fig. 14. Autocorrelation result for� ; the input is 104 857. The cycle length
is 256.

IV. DESIGN EXAMPLE

In order to verify the design methodology in Section III.C,
we present a design example for a 19-bit MASH DDSM. The
optimum word lengths of the first, second, and third stages of
the RC MASH DDSM are 20, 14, and 12, respectively.

First, we simulate the 20–14–12 RC MASH DDSM to show
typical contributions , and . In Fig. 12, the auto-
correlation result confirms that the cycle length of is .
Fig. 13 shows the power spectrum of . The power spectrum

based on the white-noise approximation (11) is overlaid
as well. As expected, the quantization powers are spread over

discrete tones, while the location and power of the
lowest frequency tone are and approximately 146 dB,
respectively. In addition, is shaped by 20 dB/dec, which is
the same as for a first-order DDSM.

In Fig. 14, the autocorrelation calculation confirms that the
cycle length of is . Fig. 15 shows the simulated
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Fig. 15. Simulated power spectrum for � when � � ��, � � ��, and
� � ��; the input is 104 857. The first spur is at � �� . The smooth curve is
� (12).

Fig. 16. Autocorrelation result for � ; the input is 104 857. The cycle length
is 1 048 576.

output power spectrum with the overlaid white-noise pre-
diction (12), from which we can see that is shaped by
40 dB/dec, as expected. The lowest frequency tone is located at

, at approximately 178 dB.
In Fig. 16, the autocorrelation result for confirms that the

cycle length is . Fig. 17 shows the simulated
power spectrum for and the white-noise estimate .

A. Simulations

To compare the conventional and RC modulators, we present
simulation results. The inputs of the DDSM are selected as the
odd numbers that set the normalized input as close as possible
to the value 0.1, i.e., in this case. The simu-
lated output power spectrum of the conventional 19-bit MASH
DDSM is shown in Fig. 18. Its cycle length of is confirmed
by Fig. 19.

The output power spectrum for the 20–14–12 RC MASH
DDSM is shown in Fig. 20. Note that the and com-

Fig. 17. Simulated power spectrum for � when � � ��, � � ��, and
� � ��; the input is 104 857. The smooth curve is � (10).

Fig. 18. Simulated output power spectrum for a conventional 19-bit MASH
111 DDSM; the input is 52 429. The dc term has been removed. The smooth
curve is � (10).

ponents lie below the spectral envelope of and are there-
fore masked by it, as expected. Consequently, and do
not adversely affect the overall performance of the DDSM. On
the contrary, the additional quantization error sources serve to
whiten the error, resulting in a smoother spectrum overall.

The cycle length of is confirmed by Fig. 21.

B. Experimental Results

We constructed an experimental demonstration system on
a Xilinx Spartan-2E field-programmable-gate-array board
clocked at MHz. The modulator output was con-
verted to continuous time using an Analog Devices AD5445
12-bit DAC with a zeroth-order hold and a low-pass filter with
a bandwidth of 10 MHz. Spectral measurements were made
using an Agilent E4402B Spectrum Analyzer.

Experimental measurements of the power spectrum of the
conventional 19-bit MASH DDSM are shown in Fig. 22.

Note that the power spectrum of the conventional 19-bit
MASH DDSM is relatively spiky compared to that in the RC
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YE AND KENNEDY: HARDWARE REDUCTION IN DIGITAL DELTA–SIGMA MODULATORS VIA ERROR MASKING—I 721

Fig. 19. Autocorrelation result for a conventional 19-bit MASH DDSM; the
input is 52 429.

Fig. 20. Simulated output power spectrum for an RC 20–14–12-bit MASH 111
DDSM; the input is 104 857. The dc term has been removed. The smooth curve
is � (10) (Compare with Fig. 18).

case, due to the poorer whitening of the quantization noise, as
shown in Fig. 19.

Experimental measurements of the power spectrum of the
20–14–12 MASH modulator are shown in Fig. 23. As expected,
the noise is shaped at 60 dB/dec. Moreover, the spectrum of the
new structure is smoother, as expected, due to the more effec-
tive whitening of the quantization noise spectrum, as shown in
Fig. 21.

The spectrum of the new structure is smoother and closer to
the ideal, even with the same cycle length as the conventional
DDSM, due to the more effective whitening of the quantization
noise spectrum.

C. HC

The hardware requirements for 1) a conventional 19-bit
MASH 111 DDSM and 2) the 20–14–12-bit RC DDSM
without dither are summarized in Table I. The HC is reported
as the number of flip-flops and the number of four-input lookup
tables which represent the synchronous and the asynchronous
logic, respectively. The total-equivalent-gate (TEG) count for

Fig. 21. Autocorrelation result for RC MASH DDSM when � � ��, � �

��, and � � ��; input is 104 857. The cycle length is � .

Fig. 22. Measured power spectrum of the output of a 19-bit MASH 111 DSM;
the input is 52 429.

the design is given as well. These results are based on the
map report from the Xilinx ISE program [13]; a full custom
implementation could potentially do better.

The 20–14–12 RC MASH DDSM has a marginally better
spectral performance than the 19-bit conventional MASH
DDSM, with 20% less hardware (TEG); this agrees with our
prediction (30).

V. DESIGN METHODOLOGY (WITH DITHER)

A. Additional Noise Contributions of the Interstage Quantizers

In the case of additive input dithering of a MASH system [6],
a 1-bit dither pseudorandom signal filtered by a shaping filter

is added to the LSBs of a desired signal as shown in
Fig. 24.

With dithering, the minimum cycle length of the DDSM is
guaranteed to be at least as large as that of the dither gener-
ator. This can be significantly larger than the cycle length in a
ditherless DDSM. Consequently, the tone spacing is typically
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Fig. 23. Measured power spectrum of the output of the RC MASH DDSM
when � � ��,� � ��, and � � ��; the input is 104 857.

TABLE I
HC OF THE CONVENTIONAL 19-BIT MASH 111 DDSM AND THE 20–14–12-BIT

RC DDSM WITHOUT DITHER SYNTHESIZED USING XILINX ISE

Fig. 24. LSB dithering in MASH DDSM.

very small. When the tones are spaced sufficiently closely, the
discrete spectrum tends toward a continuous spectrum. In this
case, the discrete power spectrum representation can be approx-
imated by a power spectral density (PSD) expressed in units
of decibels relative to the carrier per hertz [4]. By convention
[4], can be determined by summing the discrete tones of
that fall into the th bin with bandwidth . Thus

(31)

The phase noise can be estimated using the tradi-
tional linear model, assuming white quantization noise [1]

(32)

Comparing with (10), (11), and (12), the PSDs of the filtered
error signals , , and can respectively be expressed as

(33)

(34)

(35)

By once again assuming independence, the PSD of the error
signal at the output of the dithered RC MASH DDSM can be
expressed as

(36)

where is the contribution due to the dither signal, and
we have assumed that .

B. Zeroth-Order Dither

Because of dithering, the cycle lengths of and are
so long that it is hard to find the locations of their first tones.
Therefore, (19) and (20) cannot be used as constraints to select
the DDSM word lengths. Nevertheless, we can still mask the

and components below .
It can be shown that, for a DDSM with dithering, the low-

frequency noise floor is typically dominated by the dither signal.
In the case of a zeroth-order shaped dither, the level of the noise
floor is

(37)

In this case, we need to hide the components and
below the contributions of and the noise floor . The
largest frequency at which the PSD of the dithering is larger
than the contribution from can be calculated as

(38)

Assuming

for (39)

as before results in

(40)

for a sufficiently large . Therefore, we apply the following
constraints: and for , and

and for .
As and are first- and second-order shaped, respec-

tively, and at implies that
and for . Therefore, we need only to check
the constraint at the boundary. In particular, the constraints can
be written as

(41)

(42)

as shown in Fig. 25.
We approximate , , and at low frequencies by

(43)

(44)
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Fig. 25. Masking � and � below � at � .

(45)

Substituting (43), (44), and (45) into the constraints (41) and
(42), we obtain

(46)

(47)

which reduce to

(48)

(49)

Based on (48) and (49), if the word length of the first stage
of the DDSM is determined, the optimum word lengths and

of the second and third stages can be calculated as

(50)

(51)

C. First-Order Dither

If a first-order shaped dither is applied to the input of the
DDSM, its noise floor is defined by

(52)

The largest frequency at which the PSD of the dither compo-
nent is larger than that from can be calculated as

(53)

Fig. 26. Masking � below � at � .

which results in

(54)

Since is first-order shaped, just like the dither, we require
that , which can be expressed as

(55)

which reduces to

(55)

Therefore, . Since our objective is to reduce the
overall hardware requirement, we choose . Next,
needs to be masked by , as shown schematically in Fig. 26.

Thus, the word-length selection strategy for the third accu-
mulator requires that

(57)

This can be expanded as

(58)

which gives

(59)

If we want to ensure that is further below , we can
impose a guard band of 3 dB, for example. In this way, we force

to be half of at , and the constraint becomes

(60)
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Fig. 27. Simulated PSD for � when � � ��, � � ��, and � � �; the
input is 104 857. The smooth curve is � (34).

Fig. 28. Simulated PSD for � when � � ��,� � ��, and � � �; the
input is 104 857. The smooth curve is � (35).

D. Hardware Requirements

The RHC of our RC MASH DDSM designed with the zero-
order dither technique compared with the conventional DDSM
is

(61)

approaches 67% for large 's. However, due to the
fact that dithering consumes some additional hardware, the
percentage hardware saving of the DDSM plus dither generator
is less.

In the same manner, the of our RC MASH DDSM de-
signed with first-order dither and a 3-dB guard band compared
with the conventional DDSM is

(62)

Fig. 29. Simulated PSD for � when � � ��, � � ��, and � � �; the
input is 104 857. The smooth curve is � (33).

Fig. 30. Simulated PSD at the output of a zeroth-order dithered 20-bit MASH
111 DDSM; the input is 104 857. The dc term has been removed. The solid
curves are � and � .

Asymptotically, approaches 83% for large 's. For
the 14-bit case, (62) predicts that our RC implementation will
require 15% less hardware.

VI. DESIGN EXAMPLE (WITH DITHER)

A design example for a zeroth-order dithered 20-bit MASH
DDSM is discussed in this section. Applying design equations
(50) and (51), the appropriate word lengths of the second and
third stages of the RC DDSM are 14 and 7, respectively. A
20–14–7 RC DDSM is simulated to show typical contributions

, , and (see Figs. 27–29). The dither cycle length is
.

A. Simulations

The simulated PSD for a conventional zeroth-order dithered
20-bit MASH 111 DDSM is shown in Fig. 30.

The PSD of the RC 20–14–7-bit equivalent is shown in
Fig. 31. Note that the and components lie below the
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Fig. 31. Simulated PSD at the output of a zeroth-order dithered RC 20-14-7-bit
MASH 111 DDSM; the input is 104 857 (Compare with Fig. 30).

Fig. 32. Simulated PSD at the output of a conventional first-order dithered
14-bit MASH 111 DDSM; the input is 1639. The dc term has been removed.
The solid curves are � and � .

spectral envelope of and are therefore masked by it, as
expected. Consequently, and do not affect the overall
performance of the RC DDSM.

The simulated PSD for a conventional 14-bit MASH 111
DDSM with first-order additive input dither is shown in Fig. 32.

Applying the design (60), the word length of the third stage of
the RC DDSM is eight. The simulated PSD for the RC 14–14–8
MASH 111 DDSM is shown in Fig. 33. As expected, the RC
DDSM achieves an almost identical PSD compared to the con-
ventional 14-bit DDSM.

B. RHC

The hardware requirements for: 1) a conventional 20-bit
MASH 111 DDSM with zeroth-order dither; 2) an RC 20–14–7
DDSM with zeroth-order dither; 3) a conventional 14-bit
MASH 111 DDSM with first-order dither; and 4) an RC
14–14–8 MASH DDSM with first-order dither are summarized
in Table II.

Fig. 33. Simulated PSD for a first-order dithered RC 14–14–8-bit MASH 111
DDSM; the input is 1639 (Compare with Fig. 32).

TABLE II
HC OF THE CONVENTIONAL 20-BIT MASH 111 DDSM AND THE 20–14–7-BIT

RC DDSM WITH ZEROTH-ORDER DITHER AND THE 14-BIT MASH 111 DDSM
AND THE 14–14–8-BIT RC DDSM WITH FIRST-ORDER DITHER

The 20–14–7 RC MASH DDSM with zeroth-order dither
achieves an almost identical PSD to the 20-bit conventional
DDSM with dithering, but with 29% less hardware. If we
subtract the HC for the dither block for both MASH DDSMs,
which is 266 TEG, our RC MASH DDSM has an RHC of
67%, as predicted by (61). For the first-order dither case, our
14–14–7 DDSM consumes 89% hardware compared with the
conventional 14-bit RC DDSM. In the same manner, if we
exclude the consumption of the dither block, the RHC for our
RC DDSM is 86% of the conventional DDSM, as predicted by
(62).

VII. CONCLUSION

In this paper, we have presented a design methodology for
MASH DDSMs based on error masking. We have shown that,
starting with a conventional DDSM, it is possible to find an op-
timized word length for each stage of the DDSM, which allows
a reduction in the HC by up to 20%, without degrading the spec-
tral performance. Our simulation and experimental results con-
firm our analytical predictions. In the second part of this paper,
we will extend our methodology to SQ DDSMs [14].
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