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Oscillator Phase Noise: A Geometrical Approach
Torsten Djurhuus, Viktor Krozer, Senior Member, IEEE, Jens Vidkjær, Member, IEEE, and

Tom K. Johansen, Member, IEEE

Abstract—We construct a coordinate-independent description
of oscillator linear response through a decomposition scheme
derived independently of any Floquet theoretic results. Trading
matrix algebra for a simpler graphical methodology, the text
will present the reader with an opportunity to gain an intuitive
understanding of the well-known phase noise macromodel. The
topics discussed in this paper include the following: orthogonal
decompositions, AM–PM conversion, and nonhyperbolic oscillator
noise response.

Index Terms—AM–PM, Floquet theory, noise, nonlinear cir-
cuits, oscillators, phase macromodel, phase noise.

I. INTRODUCTION

T HE PHASE macromodel is a fast and highly compu-
tationally efficient numerical algorithm aimed at phase

noise characterization of free-running oscillators, perturbed by
noise. The model, which was introduced by Demir et al. in [1]
(see also [2] and [3]), follows the earlier work by Kaertner [4],
[5] on the subject. The scheme takes outset in a numerically de-
rived periodic steady state with its corresponding monodromy
matrix and is hence completely independent of circuit topology
and parameters. Using Floquet theory, a noise-forced oscillator
phase differential equation is derived and subsequently solved
using stochastic integration techniques. The approach described
in [1]–[5] is the mathematically correct way of treating the
posed problem up to the second order in the noise response.

As could be expected, all this mathematical rigor comes at the
price of increased complexity, and the theoretical prerequisites
required to fully understand the various derivations leading up
to the main results in [1]–[5] are indeed substantial. This could
also be the reason why these papers have not received the same
level of attention afforded to other more phenomenological con-
tributions on the subject (e.g., [6] and [7]).

This paper seeks to reinterpret this general oscillator noise
response model by formulating it in a geometrical context.
Avoiding the one-sided algebra-based approach employed in
the papers by Demir and Kaertner, our model is based on the
simple premise of the following two sets of invariants, which
are known to exist for hyperbolic periodic solutions of an
autonomous ordinary differential equation (ODE):

1) the limit cycle;
2) the isochrone foliation of the oscillator stable manifold.
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The structure following from these basic geometric constructs
allows us to partition the state space, leading naturally to the
construction of an oscillator coordinate system. The introduc-
tion of a proper frame of reference constitutes the premise for
the construction of a coordinate-independent model. Using this
geometric approach, the oscillator linear response is derived in a
very organic and self-contained manner; relying only on what is
standard results from differential geometry and linear operator
theory while dispensing with the cumbersome Floquet theoret-
ical machinery. The representations used in [1] and [5] will then
be derived as a special case, thus furthermore providing an inter-
pretation of the Floquet methodology in a geometrical context.

Having introduced the main topological issues in Section II,
Sections III and IV are concerned with deriving a decomposition
scheme for vectors and linear maps on the oscillator manifold.
The main challenge in this respect comes from the nonorthog-
onal, or oblique, oscillator coordinate basis. One of the aims of
this text will be to investigate this oblique structure of the model
in order to better understand its consequences on the oscillator
noise response.

Section V contains a short discussion of the inherent coordi-
nate independence of the model which, except for a short note in
[5], has not received any significant attention in any of the ear-
lier publications on the subject. We also offer a physical inter-
pretation of the so-called perturbation projection vector (PPV)
as a phase differential form. Then, in Section VI, we set out
to discuss some interesting topics regarding oscillator noise re-
sponse inspired by examples taken from the literature, including
the validity of an orthogonal decomposition [8], AM–PM con-
version [9], [10], and nonhyperbolic oscillator noise response
[11]. Finally, Section VII includes a derivation of the asymp-
totic oscillator phase statistics. In [1], this exercise involved long
and somewhat tedious calculations. Following our objective to
clarify the formulation, we recapture the main characteristics in
a simplified manner.

II. GEOMETRY OF A LIMIT CYCLE SOLUTION

We consider an autonomous ODE

(1)

where defines a vector field on , with
being the state vector and supporting

all the usual smoothness conditions that are necessary for exis-
tence and uniqueness of solutions1. The flow, representing the
mapping of phase space points along the solution trajectories,
is written as , where de-
notes a time interval, with being the absolute time parameter
while denotes an arbitrary initial time. With this notation, we

1More specifically, we assume a� vector field where a vector function is of
class� if the partial derivatives, of order � and less, of the vector components
all exist and are continuous.
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then have and being the usual
group property of autonomous flows. With the aforementioned
specification of a smooth vector field, the flow becomes a dif-
feomorphism, i.e., a continuous and smooth map with a likewise
continuous and smooth inverse.

In what follows, we assume that (1) contains an attracting and
hyperbolic limit cycle2, which we shall denote . This compact
set is, by definition, mapped invariantly by the nonlinear flow,
implying the relation

(2)

The oscillator steady-state solution, , is then a special
orbit corresponding to an initial condition in this set,

, with being the oscillator period.
There exists a tubular region , topologically equivalent

to and referred to as the oscillator stable manifold,
or simply the oscillator manifold, where, for any

(3)

Considering hyperbolic limit cycles, it is well known that
can invariantly be foliated into codimension-1 submani-

folds, also known as hypersurfaces, diffeomorphic to and
referred to here as isochrones, with the individual leaves of the
foliation crossing the limit cycle transversely [12]–[14]. In this
paper, we shall denote these sets as , where the subscript de-
notes the point of intersection (i.e., ). The terminology
invariantly foliated refers to the fact that the different leaves are
permuted by the flow

(4)

From (4), , implying that the flow is a
diffeomorphism of into , a time- return map also known
as the Poincaré map.

In the following, we shall also refer to as a constant phase
set, implying that every point contained herein is referenced by
the same oscillator phase. This geometric construction then al-
lows for the concept of an oscillator phase to be extended to
points off the limit cycle (i.e., to points in ). Con-
sider two orbits where one has an initial condition in ,
while the other starts in the corresponding isochrone, .
From (3) and (4), it follows that

(5)

As shown in Fig. 1, (5) expresses that points on the same
isochrone eventually meet on , with this limit point being the
asymptotic phase of points in the set .

The oscillator stable manifold is thus naturally di-
vided into two proper submanifolds : 1) the 1-D limit cycle and
2) the -dimensional hypersurfaces . As divides
the state space into constant time/phase “slices” and since time
is the parameter of the oscillator integral curve, , the afore-
mentioned topological constructions introduce the first step to-
ward an oscillator coordinate system on . The second

2A short discussion of nonhyperbolic oscillator noise response is given in
Section VI.D.

Fig. 1. Assuming a hyperbolic and asymptotically stable limit cycle � , there
exists an invariant foliation of the oscillator stable manifold � ���, a tubular
region illustrated here with dashed lines. Points on the same leaf of the foliation,
known as an isochrone, will converge to the same point on the limit cycle �
asymptotically with time, giving rise to the notion of an asymptotic phase. This
construction allows for the specification of an oscillator coordinate system.

and final step would then entail the parameterization of the
isochrone foliation . This construction parallels the way
one would create a standard planar Cartesian coordinate system
by drawing the -coordinate curves along constant -lines and
vice versa. However, unlike the simple Cartesian example, the
oscillator coordinate system is generally nonlinear, i.e., the
time parameterization on the limit cycle curve is nonlinear.

We are dealing with submanifolds embedded in , and their
tangent spaces are well defined as affine (translated) subspaces
of [15]. In the following, the tangent space of a point
is written as . The limit cycle tangent space then becomes3

, while refers to the tangent space of the isochrone leaf
at . It then follows that and are 1-D and

-dimensional affine subspaces of , respectively. Extending
the aforesaid definitions of tangent spaces to all points in the
limit set leads to the definition of the tangent bundles and

, which are written as4

(6)

(7)

where denotes the tangent bundle vectors
also referred to here as modes. From the previous discussion, it
should then be clear that, for a hyperbolic oscillator,
represents a set of linearly independent -periodic vectors
forming a basis for at each point . This
is the natural basis/coordinate basis on the oscillator manifold

, with base space .
The flow on the tangent bundle is governed by the linear re-

sponse map5 , and as both
the limit cycle and the isochrone foliation are invariants of the

3It is standard notation to refer to the invariant manifold � as .
4A more technically correct definition of the tangent bundle would include

the specification of a projection � � � . Here, we do not specify a
projection operator explicitly but instead include the index �, referencing the
base space as � � � ���

5Here, �� is to be understood as the flow resulting from the linearization
of the nonlinear flow � �� �, with � � � . It is a diffeomorphism since � is
a diffeomorphism.
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nonlinear flow , it follows that their respective tangent spaces
are invariantly mapped by

(8)

(9)

In the following, we let the set in (7) refer to the
eigenvectors of the rank return map .

State-space points contained in must contract, and we
have

(10)

with being the contraction function for the th
mode. The bundle is invariant under the linear response
flow, and (10), together with the group property of the linear
response , which follows from the group
property of the nonlinear flow, yields

(11)

a group definition for the contraction function. Inserting
in (11)

(12)

then reversing the order in which the intervals are mapped (i.e.,
)

(13)

and equating (12) and (13)

(14)

which says that the mode contraction over one period is indepen-
dent of the initial condition. The constants , which are known
as the characteristic multipliers [15] are uniquely defined by the
flow.

The mapping of vectors in the phase bundle by the linear
response corresponds to trajectories contained entirely in . It
follows from (2) that this set can neither contract nor expand
under the flow, implying that must display a neutrally
stable response

(15)

and from (14), we then get while for
, which follows from the hyperbolic and asymptoti-

cally stable nature of .
Finally, it should be apparent from the previous discussion

that

(16)

since is, by definition, the identity map.

At this point, we turn to consider the explicit form of the
contraction functions , in (10), and we also say that
we choose a representation for the oscillator linear response.
Inspecting the group property in (11), it should be clear that
must be some kind of exponential.

The original formulations in [1]–[3] and [5] use the so-called
Floquet representation/decomposition that specifies a uniform
exponential contraction

(17)

which is easily seen to obey (11)–(16) , with the
Floquet characteristic exponents uniquely defined through

. As an example of a different class of represen-
tations, we consider the planar vector field and the
contraction function

(18)

with referring to the divergence of the
vector field [16]. Note that, in order for (18) to obey (14), we
must have

(19)

and as the divergence is an indicator for oscillator dissipation,
we see that the second Floquet exponent represents the time-
average oscillator dissipation. Although we shall not pursue the
topic further here, we note that it should be possible to extend
this result to higher dimensional systems, thus allowing for a
physical interpretation of all the amplitude Floquet exponents

in terms of oscillator dissipation.
Once a representation has been chosen and the set

has been derived, as discussed previously, the
oscillator bundle can be calculated as

(20)

where we have divided the cycle interval into
equidistant points , with , and
used (10) and (11).

III. DECOMPOSING THE OSCILLATOR TANGENT SPACE

The oscillator coordinate basis introduced in (6) and (7) of
the previous section is generally not orthogonal. In fact, as will
be discussed in Section V and later in Section VI.C, such an or-
thogonal decomposition of the tangent bundle is only generated
by special oscillator classes.

In the generally nonorthogonal, or oblique, oscillator coordi-
nate system, there exists a preferred decomposition scheme that
leads to a coordinate-independent representation of the linear re-
sponse. However, in order to achieve this structure, we need to
introduce the concept of an oscillator cotangent bundle ,
which is spanned not by basis vectors but instead by geometric
objects known as one-forms, a special type of tensor. A discus-
sion of tensor analysis as it pertains to oscillator linear response
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is delayed until Section V. Here, we instead turn to the more
accessible methods of linear operator theory.

A standard result known as Fredholm’s alternative, applied to
linear maps, tells us that it is always possible to construct a set of
unique linear operators mapping onto the tangent spaces of the
manifolds discussed in Section II as long as certain constraints
are put on the adjoint operator. We shall use this very general
result to construct a set of oblique projection operators on the
oscillator tangent bundle.

The normal space , at a point , is now defined
as the -dimensional hyperplane normal to the limit cycle
tangent space . Extending this definition to the whole set

, we can hence write the normal bundle as

(21)

with being a set of linearly independent pe-
riodic one-forms on the cotangent bundle6 . From the afore-
mentioned description, it is seen that

(22)

where, in the following, refers to the transposition of the
vector . It should be noted that, at this point in the analysis, the
set is not uniquely characterized since a set of forms
fulfilling (22) could be chosen in many different ways.

We start by considering the projection onto . This oper-
ator should have a range that is equal to the limit cycle tangent
space and a null response to points in the constant phase man-
ifold . According to this description, we can define the pro-
jection operator as

(23)

From the definitions in (6), (7), and (21), we construct the
following two splits of the tangent bundle

(24)

(25)

where is the 1-D complement to

(26)

From (25), it follows that must obey

(27)

Note that the set is now specified, up to a scaling,
as the bundle is uniquely defined (see the discussion in
Section II). From the definitions in (24), (25), and (26), we can
then write (23)

(28)

6See Section V for an explanation of these terms. In order to follow the anal-
ysis in this section it suffices to think of one-forms as vectors.

As we consider a projection operator, it follows that
, which gives us the relation

(29)

According to Fredholm’s alternative, and the split in (24) and
(25), the adjoint operator must then
fulfill

(30)

and we can write7

(31)

where the normalization of this operator follows from (29).
It should be apparent from the aforesaid development that we

can repeat the process for each of the modes in . This exercise
would then lead to a full characterization of the normal bundle

defined in (21). We write the split (24) and (25) for the
general case as

(32)

(33)

where
and ,

and we write the set of oblique projection operators
as

(34)

and the corresponding adjoint operators
as

(35)

It follows from the previous discussion (see (27) and (29))
that and represent biorthogonal sets

(36)

IV. DECOMPOSING THE LINEAR RESPONSE FLOW

The operator describing the linear
response flow on the oscillator manifold , with base space

, can be divided into the following two separate maps:
1) projection of the initial condition onto proper solution sub-

spaces;
2) mapping the points forward in time.

7In the following, we shall only consider 1-D subspaces (modes), which
means that � ��� � � ��� for all �. We do not consider 2-D subspaces, which,
of course, do occur but which would require the use of complex algebra.
The inclusion of the aforementioned manifolds would add nothing to the
qualitative understanding of the situation while it would mean a more tedious
mathematically complicated notation. The theory described in this paper could
very easily be updated to include these 2-D or “complex” results.
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The purpose of the text in the previous section was to de-
rive the projection operation in 1), as given by (34). We then in-
troduce the mapping operator along the th invariant manifold,
which, according to (10), must have the form

(37)

where is the contraction function (see Section II, (12)–(16))
and is the time interval. The th component of the
flow is then written as

(38)

The complete linear response, decomposed according to the
oscillator coordinate basis, then becomes

(39)

We then turn to consider the adjoint flow, which, according
to basic operator theory, is defined through

(40)

where is a vector in the tangent bundle at the point
, is a one-form in the cotangent bundle at the

point , and denotes the scalar product.
Decomposing the vector and one-form according to the
scheme developed in Section III, we get

, with and . Inserting
these into (40) and using the identity ,
which follows from (11) and (16) , we find the
following expression for the ’th component of the adjoint flow

(41)

leading to the following decomposition of the adjoint linear re-
sponse operator:

(42)

Holding fixed while interpreting as the new time param-
eter, the adjoint flow can be divided into two maps as follows:

1) projecting the solution onto the corresponding initial con-
dition manifold;

2) bringing the points backward in time.
The monodromy matrix is defined as the time- return map

for the linearized flow. Using the decomposition in (39), this can
be written as

(43)

where was defined in (14). Equation (43) illustrates how, in
the course of a single cycle, the linear response flow of the mode

is contracted by a factor .

V. COORDINATE-INDEPENDENT REPRESENTATION

Using standard definitions from differential geometry, it
follows that the set , for a given , represents a
coordinate basis for the dual tangent space , the
so-called dual basis, and, hence, that ,
with being the so-called co-tangent bundle. This in
turn leads to the definition of a co-tangent phase bundle

, and a cotangent constant phase bundle
. The vectors in , spanned by the

basis , and the one-forms in , spanned by the
dual basis , are different geometric objects in the
sense that they transform in an opposite manner8. The vectors in

can then be thought of as geometric objects that “point” in
a certain direction, independently of the coordinate basis, while
one-forms in are functionals on the vector space .
With the aforementioned definitions, the projection operators in
(34) are tensors (i.e., linear operators) for a fixed , where
the term “tensor” is used to refer to any coordinate-independent
geometric object9.

In previous papers dealing with the so-called phase macro-
model, some authors refer to the set as the PPV. How-
ever, this name is actually somewhat misleading since it sug-
gests that these objects should transform as vectors, which they
do not, and since it completely misses the physical interpreta-
tion that follows from the aforesaid text. The geometrically cor-
rect picture of the PPV as a one-form, a phase differential form,
and, hence, the covariant version of the phase function10 gra-
dient vector on is shown in Fig. 2.

Using standard topological considerations, we have created a
coordinate description on the oscillator manifold , and as
long as a coordinate transformation is nonsingular, it is perfectly
legal to change the coordinate basis. All geometric objects (i.e.,
scalars, vectors, one-forms, and higher order tensors) will main-
tain their original interpretation in the new frame (see Footnote
9).

In [5], Kaertner also noted this coordinate independence for
the Floquet representation. He then proceeded to give an ex-
ample of a model that did not include this property. In an earlier
paper [4], the phase projection operator was defined as

(44)

8We also say that vectors are contravariant since their components transform
oppositely compared to the basis, while one-forms are covariant because their
components transform in the same manner as the basis. Note that standard no-
tation stipulates that contravariant objects have raised indexes (i.e., � ). Here,
we do follow these index rules since we want to stay close to notation from [1].

9The expressions in (34) are coordinate independent since � � � with � �
and � � is a true scalar i.e., a number independent of basis. Con-

sidering the linear transformation � � ��, with � being a nonsingular �� �
matrix, the vector transforms as � � �� and the one-form as� � � � ,
while from (34), we have � � �� � , and the coordinate independence
follows directly. The aforementioned results can be extended to nonlinear coor-
dinate transformations.

10Here, we follow [1] and label the oscillator asymptotic phase � (see also
the discussion in Section VII).
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which is easily seen not to be a tensor, except for special cases;
in fact, referring to Footnote 9, (44) only transforms as a tensor
if the transformation has the special symmetry .
The expression in (44) hence only constitutes a phase projection
operator, in the coordinate-independent sense of the word, if the
oscillator supports an orthogonal coordinate basis.

VI. APPLICATIONS

In this section, we apply the developed methodology to a
collection of simple planar oscillators from the literature. This
exercise will serve to illustrate some of the characteristic is-
sues in the linear response analysis of more complex systems.
The geometrical approach will be seen to lead to a simplified,
easy-to-understand, and almost algebra-free analysis.

A. Coram’s Nonorthogonal Oscillator

In [8], Coram investigates the topic of orthogonal decomposi-
tions of the oscillator linear response by considering the planar
ODE system

(45)

(46)

which includes the asymptotically stable hyperbolic limit cycle
. Using standard Floquet analysis for his

investigation of (45) and (46), the author achieves in illustrating
that the assumption of an orthogonal decomposition, used in cer-
tain earlier publications on the subject, is not always valid. The
main points of this analysis can be attained almost effortlessly
and, with only a minimum use of algebra, by applying the geo-
metric tools developed in this paper.

The vector field in (45) and (46) is rotationally symmetric,
and any invariant foliation must preserve this symmetry. Then,
we have

(47)

where is a scalar function to be determined. Differ-
entiating the aforementioned expression with regard to time, we
get

(48)

Since all points on the isochrone move with the same fre-
quency as the limit cycle points, we have . Using this prop-
erty, together with (45) and (46), we find the following solution
to (48):

(49)

where is an integration constant. The function has a singu-
larity at . However, since we only assume that the invariant

foliation exists in a tubular region around (see the discus-
sion in Section II), this is not a problem. Enforcing on
the limit cycle yields . From (47), the isochrone
foliation for the system in (45) and (46) is then written as

(50)

The amplitude-mode vector is now found as the tangent
vector of the parameterized curve
at the limit cycle , where we have used (50) with ,
an arbitrary constant phase, to express as a function of . We
then find

(51)

where is the usual polar basis. Since we have , the
linear response decomposition of the system in (45) and (46) is
seen to be nonorthogonal.

B. AM–PM Noise Conversion (I): The Oscillator

In this section, we reconsider (45) and (46) from the previous
section in a slightly modified form and with noise forcing

(52)

(53)

where differentiations are now performed with regard to the
slow time dB is the resonator natural
frequency, is the quality factor of the resonator, de-
termines the stiffness of the amplitude regulation, and
denotes the amplitude dependence of the frequency, which is re-
ferred to here as the frequency modulation index. The two noise
sources are uncorrelated Gaussian white noise sources
with power , with being the single-sided
available noise power in a 1-Hz bandwidth, and the extra factor
two follows because we consider narrow-band noise sources
[17]. We then interpret (52) and (53) as the noise-forced aver-
aged state equations of a high- harmonic oscillator with res-
onator bandwidth (see, e.g., [9] and [10]).

Repeating the calculations that lead to (50) in the previous
section, we find the isochrone foliation for (52) and (53)

(54)

and the isochrone tangent bundle is then given as

(55)

where in the aforementioned equations represents the angle
between the isochrone and radial, which is referred to here as
the isochrone opening angle11. Equation (54) is shown in Fig. 3
for three different values of .

11���������� � � ��������� �� � ����� ��������� 	 �� � 
����� �
�������
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Fig. 2. One-forms � span the cotangent phase bundle and are interpreted
physically as phase differential forms �� (see Footnote 10). We can visualize
such a form as a series of ���-dimensional parallel hyperplanes generated by
the constant phase tangent space . The contraction of ��with vectors in
is then determined by the number of surfaces that these vectors pierce. The con-
travariant version of �� is the phase function gradient vector �� that points in
a direction that is normal to the constant phase level sets i.e., the direction of
maximal phase change. There exists an equivalent physical interpretation of the
forms � �� living in the normal space , where, now, an oscillator energy
function takes the place of the phase function �.

Fig. 3. Limit cycle and isochrone foliation of the oscillator in (52) and (53)
for � � �� �� � and � � �. The different curve sets represent the phases �
�� ���� ���� �� ���������. Solid line 	–
: � � �. Broken line 	- -
: � � �.
Dashed-dot 	-�
: � � �. Note that (solid line) � � �� � � � also represents the
isochrone foliation of (45) and (46), as calculated in (50).

The standard algorithm for noise analysis of an ODE like (52)
and (53), laid out in [1], specifies the derivation of the so-called
phase PPV , which actually is not a vector (see the discus-
sion in Section V) and which is then used to isolate the phase
stochastic differential equation (SDE). Finally, this equation is
solved using stochastic integration. We will have more to say
about this algorithm in Section VII, where we deal with the
derivation of the asymptotic phase statistics. However, here, we
want to illustrate an alternative approach.

We now introduce the coordinate transformation
, which leads to the new state equations in the trans-

formed frame

(56)

(57)

with an isochrone foliation being shown in Fig. 4. From this
figure, it should be clear that we have created an orthogonal
decomposition for the linear response (i.e., ). In this
orthogonal system, the amplitude and phase are decoupled, and
we then do not need to define a PPV but can instead directly
integrate (57) in linearized form. As the two noise sources on
the right-hand side of (57) are uncorrelated, this leads to the

Fig. 4. Isochrone foliation for (52) and (53) in the transformed frame � �
������
	 becomes ��� 	
 � ������
 ���	
� ����
��� 	
, where the
parameter sets corresponding to the different plot symbols are explained in the
caption of Fig. 3.

definition of a phase diffusion constant , which is referred
to as in [1] (see also Section VII)12

(58)

where now refers to the linear response variable with renor-
malized time, is the oscillator power, is the steady-
state amplitude that is one. Note that enters the denominator
of (58) since the correct angle coordinate is and not simply

. The standard expression for the single-sideband noise spec-
trum of a harmonic feedback oscillator, known as the Leeson
model [19], is , where
is the offset from . With the notation from [1], this becomes

, and relating the two expressions, we
then get . Using (58) in this expression, we
can define an oscillator Q-factor as

(59)

From (58) and (59), we hence see that AM–PM noise con-
version is proportional to the tangent of the isochrone opening
angle, while the oscillator -factor is proportional to the co-
sine of the same angle. The expression in (59) can be seen as
a nonlinear extension of Razavi’s oscillator [20], which was
derived using a linear feedback model.

From the expression (see Footnote 11), it fol-
lows that the amplitude regulation and the frequency modula-
tion index are dual parameters in the sense that

, as can also be observed from Fig. 3. It then fol-
lows from (59) that one can increase the oscillator by (either)
decreasing the modulation index by, e.g., making the phase
characteristic of the resonator as flat as possible at the oscilla-
tion frequency and/or by increasing the stiffness of the ampli-
tude regulation.

As mentioned earlier, simple expressions like (52) and (53)
appear as averaged models of more complex harmonic oscil-
lators. An example of this was given in [9], which considered

12Here, we use that [18] ����

 � ��
 

 � � �� � ��
�� �
����

 � ��
��
 � � �� 
	� � ��� �


, where we have set 
 � �.
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noise analysis of quadrature oscillators. Expressions, which are
similar in form to (58) and (59), also appear in (23) and (29) of
that paper, thus illustrating the generality of the aforementioned
expressions.

C. AM–PM Noise Conversion (II): The Nonsymmetric Case

The discussion in the previous sections concerning a possible
orthogonal decomposition appears to be somewhat misplaced,
or artificial, when entering the domain of “real-life” oscillators
where the limit cycles are not rotationally symmetric. Here, we
consider the simple planar ODE

(60)

(61)

known as the van der Pol oscillator, where is a posi-
tive parameter that is proportional to the dissipation. For zero
dissipation (60) and (61) become a so-called Hamil-
tonian oscillator. In the following, we shall use the notation

to refer to (60) and (61), while
denotes the orthogonal field. In order for to generate an in-
variant foliation for (60) and (61), its Lie derivative with this
vector field should be proportional to

(62)

where is a function that depends on the representation (see
Section II) and is the so-called Lie bracket. Using the
notation , a simple calculation gives13

(63)

(64)

Except for the isolated set of points , (63) and
(64) do not obey the condition (62) for any . It is easily found
that no limit cycle solution (i.e., ) of (60) and (61) will
contain these points. Note that, for the Hamiltonian oscillator

, we have an orthogonal decomposition with ,
but as soon as we introduce dissipation, the coordinate basis
becomes nonorthogonal, which, in turn, implies AM–PM noise
conversion, as discussed in the previous section.

D. Demir’s Nonhyperbolic Oscillator

In [11], Demir investigates the planar ODE

(65)

(66)

which describes a stable nonhyperbolic periodic solution
. As was noted in [11], (65) and (66) have

both amplitude and frequency that are asymptotically stable;
however, no such stability condition exists for the phase.

We can proceed in the same manner as for the system in (45)
and (46) which produces the result ,
where, again, is an integration constant. It is seen that the
function has a singularity at , implying that there does
not exist an invariant transverse bundle for the oscillator in (65)

13The �th component of the Lie bracket is calculated as � � ��� � � �
�� ��� ����� �� � ��� ����� ��, with �� � � � � ��� ��

Fig. 5. Periodic solution and isochrone foliation for the perturbed system �	 �
���	� �
���	�� �� � 	 for 
 � ��� (see (65) and (66)). The system contains
three limit cycles at 	 � ���

�

�	
��
��� ����	
��
���� �

�

�	
��
��� �

������� �� ������. The isochrones exist in the annulus between the two stable
limit cycles; the rest of the plane is a so-called phaseless set [12]. Using the
method described in Section VI-A, we find the following expression for the
isochrone foliation in this region: ��� 	� � �� ����

�

��
��

�

� 	� ���


��
�

� 	����, which is plotted above for � �� 
��� 
��� 
� �
����
��.

and (66). This, in turn, implies that there cannot exist a linear re-
sponse representation for this oscillator. This was also discussed
in [11], where the author investigates the Floquet response and
notes that it does not give the expected result.

In order for a transverse bundle to exist, a manifold has to be
normally hyperbolic. However, from (65) and (66), it is clear
that, as the orbit nears the periodic solution, the linear response
vector field approaches a pure phase (azimuthal) component.
Note that it is this lack of normal hyperbolicity, and not the
nonhyperbolic amplitude (65), that accounts for the absence of a
transverse bundle; indeed, changing (66) to, e.g.,
would produce an isochronous oscillator. Of course, if (65) was
hyperbolic, an invariant foliation would be guaranteed to exist.

This is shown in Fig. 5, where we add a small perturbative
term to (65), making it hyperbolic. In this scenario, the non-
hyperbolic solution bifurcates, producing one unstable and two
stable limit cycles. One can gain insight into the phaseless na-
ture of (65) and (66) by noting that the extent of the annulus in
Fig. 5, where the isochrone foliation exists, is on the order of

; this region hence reduces to the periodic set as .

VII. ASYMPTOTIC OSCILLATOR PHASE STATISTICS

As explained in [1], using the decomposition of the linear
response flow in (39), we can isolate the phase dynamics of the
noise-perturbed circuit as follows:14

(67)

where is a time variable related to the oscillator phase
as is the periodic scalar
noise modulation function, and is a unit-variance
zero-mean white macro noise source.

14Here, we define � ��� � � �������, where � � � � ���� and ���� �
� ������ ����, with � � � being the noise modulation matrix
[1]. While (67) is not identical to the phase SDE used in [1] (see [1, eq. (12)]),
the ensemble averages of the noise forcing (right-hand sides) are identical, and
the two expressions lead to identical Fokker–Planck formulations. This is seen
by inserting the noise modulation function in (67) into (72) and (73) which will
produce the drift and diffusion constants used in [1] (see [1, eq. (21)]). Thus,
although the individual realizations of the two processes are different, in a sta-
tistical sense, they are interchangeable.
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The statistics of the stochastic process described through
(67) are characterized by a time-varying probability distribution
function, conditioned on deterministic (sharp) phase at time

.
Since the phase dynamics are neutrally stable (see the dis-

cussion in Section II), the only possible stationary distribution
is given by15

(68)

where this uniform distribution tells us that the oscillator phase
becomes completely random asymptotically with time.

We now introduce the stochastic variable through

(69)

As shown in [1], once the asymptotic statistics of (69) are
specified for all , the phase noise characterization is com-
plete16.

We first consider the case in (69). Since the asymptotic
statistics of both terms are specified by (68), it follows that the
expression in (69), for , will include a completely random
term. It then follows that itself must be random for

and hence will have no effect on the asymptotic phase
statistics.

For , the variable in (69) will not be random since the
randomness is removed in the symmetric difference. The oscil-
lator self-referenced phase (SR-P) is now given as

(70)

With the aim of characterizing the oscillator SR-P, we now
integrate (67) from to

(71)

where the Wiener process is defined as the
integration of the white noise source (i.e., ).
The integral on the right-hand side in (71) is stochastic and can
hence be specified only through its moments. According to the
Stratonovich interpretation [18] of this stochastic integral, the
process is characterized through a drift and diffusion coefficient,
which is given as

(72)

(73)

15This can also be written as ��� ���� ��� � � � � �� � ����	�
 if
we interpret � on the real line since a completely random stochastic variable on
an unbounded sample space must have zero probability distribution everywhere.
See also [1, Theorem 7.1] for a mathematical proof.

16The oscillator autocorrelation function is given as ���� �� � �
� �� �
������ �� � � � ��� � ���� � 	 	 �
��
� �� �

��� �
���
� 
���
�
���
� � ��� ����, where 	 is the 
th Fourier
component vector and � � ���� . The oscillator phase noise spectrum is
then found by Fourier transforming this expression [1].

Fig. 6. In the limit � � �, the oscillator phase ensemble is completely
diffused, corresponding to a uniform distribution on the limit cycle � . This
is illustrated in the top-left part of the figure, where the limit cycle is dis-
cretized into � � � time points �� �, with the oscillator ensemble being
uniformly distributed to each of the � points. The periodic forcing func-
tion �, as introduced in (67), is shown in the top-right part of the figure.
The effective drift coefficient is then derived as (see the lower left figure)
��� ��
� ��� ������ � ��� � �� � � ��� � �,
and the effective diffusion coefficient becomes (see the lower right figure)
��� �� 
� ��� ������ � ��� � ���� �����.

The functions in (72) and (73) specify the time evolution of
the SR-P mean and second moment, respectively, conditioned
on the phase taking on the deterministic (sharp) value at time
. With regard to capturing the asymptotic statistics of ,

the obvious problem with (72) and (73) is then that
is not sharp but instead completely random, as specified by (68).
However, since we know the stationary distribution of the vari-
able , as given by (68), we can derive the ensemble-averaged
evolution constants, which are referred to here as the effective
drift constants

(74)

and the effective effective diffusion constant17

(75)

where it was indicated that (72), a periodic function multiplied
by its own derivative, has zero dc, while (73) must have a dc
component that we, following [1], denote with . The previous
calculations are illustrated for a discrete phase ensemble in
Fig. 6.

The aforementioned calculations could be redone for ,
and one would refind (74), while (75) becomes

(76)

By integrating (74), (75), and (76) with the initial condi-
tions and ,
we find the asymptotic SR-P mean and power as

(77)

(78)

17Here, we use (74) to set � 
	� � �
	 �� ��
	�� � �
	 �.

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on October 28, 2009 at 04:55 from IEEE Xplore.  Restrictions apply. 



1382 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 56, NO. 7, JULY 2009

and since is a Gaussian stochastic variable,
which follows from the Gaussian nature of the noise, we find
the following asymptotic distribution:

(79)

which is seen to be identical to what was found in [1], as was, of
course, to be expected. However, the aforesaid derivation con-
stitutes a serious reduction in the amount and complexity of the
calculations needed to reach (79). Equation (79) completes the
asymptotic characterization of the variable and, hence,
of the phase noise scenario (see Footnote 16).

VIII. CONCLUSION AND FUTURE WORK

This paper has documented the construction of the oscillator
linear response map, with the derivation being based on the
simple geometrical ideas implied from the assumption of a hy-
perbolic solution. This general model was shown to naturally
include the well-known phase macromodel as a special case. A
simplified derivation of the asymptotic oscillator phase statistics
was included. We intend to conduct a more thorough investiga-
tion of the topics discussed in Section VI-C.
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