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Abstract—This paper presents the fuzzy-model-based control
approach to synchronize two chaotic systems subject to parameter
uncertainties. A fuzzy state-feedback controller using the system
state of response chaotic system and the time-delayed system state
of drive chaotic system is employed to realize the synchronization.
The time delay which complicates the system dynamics makes the
analysis difficult. To investigate the system stability and facilitate
the design of fuzzy controller, Takagi–Sugeno (T-S) fuzzy models
are employed to represent the system dynamics of the chaotic
systems. Furthermore, the membership grades of the T-S fuzzy
models become uncertain due to the existence of parameter un-
certainties which further complicates the system analysis. To ease
the stability analysis and produce less conservative analysis result,
the membership functions of both T-S fuzzy models and fuzzy
controller are considered. Stability conditions are derived using
Lyapunov-based approach to aid the design of fuzzy state-feed-
back controller to synchronize the chaotic systems. Simulation
examples are presented to illustrate the merits of the proposed
approach.

Index Terms—Chaotic synchronization, fuzzy control, stability,
Takagi–Sugeno (T-S) fuzzy model.

I. INTRODUCTION

FUZZY-MODEL-based control approach is a promising ap-
proach to deal with complex nonlinear systems. It has been

successfully applied in various applications. Recently, fuzzy-
model-based control approach has been employed to synchro-
nize chaotic systems, which is a useful application in commu-
nication system to ensure a secure communication.

In fuzzy-model-based control approach, generally, Takagi–
Sugeno (T-S) fuzzy model [1], [2] is employed to describe the
dynamical behaviors of the response and drive chaotic systems.
It was shown in [3]–[5] that most common chaotic systems can
be represented by T-S fuzzy models with simple rules. Based
on the T-S fuzzy model, a fuzzy state-feedback controller
[3]–[6] is then designed to realize the synchronization. Under a
design criterion that the grades of membership of both response
and drive chaotic system are known, linear-matrix-inequality
(LMI)-based exact linearization conditions [3], [6] were given
to design a fuzzy state-feedback controller to synchronize two
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identical chaotic systems. In [4], [5], this design criterion was
alleviated by using the tracking control approach. Under
the approach in [4], [5], the grades of membership of the drive
chaotic system are not necessarily known and the tracking per-
formance is guaranteed by an tracking performance index.
The fuzzy-model-based control approach has combined with
adaptive ability [6]–[11] to deal with chaotic systems subject
to parameter uncertainties. With the outstanding approximation
ability of the fuzzy system, the uncertain parameter values of the
chaotic systems can be estimated in an online manner according
to some update rules. A fuzzy controller can generate an appro-
priate control action based on the estimated parameters. The
adaptive fuzzy approach offers a superior robustness property,
however, computational demand and structural complexity of
the controller are increased. In some operating environment,
the system state information of the drive chaotic system reaches
the responses system with time delay owing to the long-dis-
tance transmission. Under such a situation, the current state
information of the drive chaotic system cannot be obtained to
realize the synchronization. In [12]–[14], synchronization using
time-delayed feedback control was investigated. Linear con-
troller using constant time-delayed system state information of
both drive and response chaotic system, and the current system
state information of response chaotic system was proposed to
realize the synchronization. Both time-delay independent and
dependent stability conditions were derived [12]–[14] using the
Lyapunov–Krasovksii function. This delayed-feedback control
approach was extended to adaptive fuzzy framework [15]. In
[17]–[19], the synchronization of neural networks subject to
time delay was considered.

In this paper, a fuzzy controller is proposed to synchronize
two chaotic systems. The fuzzy controller makes use of current
system state information of the response chaotic system and
the time-delayed system state information of the drive chaotic
system to realize the synchronization. The time delay to be
considered is time varying and uncertain in value. It is due to
this reason, the proposed fuzzy state-feedback controller cannot
use the time-delayed system state information of the response
chaotic system compared to the linear control [12]–[14] and the
adaptive fuzzy control [15] approaches of which constant time
delay was considered. To cope with the time-varying delay, the
boundedness property of the system states of the drive chaotic
system is taken advantage to investigate system stability. Fur-
thermore, the parameter uncertainties of the chaotic systems
eliminate the favourable properties of the fuzzy-model-based
control approach to facilitate the stability analysis and produce
relaxed stability conditions [3]–[6], [12]–[15]. To alleviate the
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Fig. 1. Block diagram of the chaotic synchronization system.

difficulties introduced by parameter uncertainties, member-
ship functions of both fuzzy model and fuzzy controller are
considered. Consequently, some free matrices are allowed to
be introduced to the stability conditions to ease the stability
analysis and produce less conservative stability conditions.
LMI-based stability conditions are derived to aid the design of
a fuzzy controller to realize the synchronization.

This paper is organized as follows. In Section II, the fuzzy
model and the time-delayed fuzzy state-feedback controller is
presented. In Section III, system stability is investigated. LMI-
based stability conditions are derived to guarantee the system
stability. In Section IV, a simulation example is given to illus-
trate the effectiveness of the proposed approach. A conclusion
is drawn in Section V.

II. FUZZY MODEL AND TIME-DELAYED FUZZY CONTROLLER

In this paper, we consider the scenario depicted in the block
diagram in Fig. 1, e.g., a communication channel. Referring to
this block diagram, in the remote side, we have a drive chaotic
system subject to parameter uncertainties. The system state
of the drive chaotic system is transmitted over a channel to the
other end. The long distance of the communication channel will
introduces a time-varying delay of to . As a re-
sult, is available for synchronization. As the fuzzy
controller is assumed to be very close to the response system
subject to parameter uncertainties, hence, the time delay for the
response chaotic system with the system state of is insignif-
icant. Consequently, the fuzzy controller realizes the synchro-
nization based on the timed-delayed system state of
and current system state of .

To facilitate the system analysis and controller synthesis,
fuzzy models are employed to represent the dynamical behavior
of the response and drive chaotic systems subject to parameter
uncertainties. A time-delayed fuzzy state-feedback controller is
designed accordingly to drive the system state of the response
chaotic system to follow those of the drive chaotic system. The
details of the fuzzy model and fuzzy controller are presented in
the following subsections.

A. Fuzzy Model

Let be the number of fuzzy rules describing the chaotic
system subject to parameter uncertainties with control input
term. The th rule is of the following format:

(1)

where is a fuzzy term of rule corresponding to the function
with known form, , ,

is a positive integer; is the system state vector;
and are the known constant system and

input matrices, respectively; is the input vector.
The system dynamics are described by

(2)

where

for all (3)

(4)

is a nonlinear function of and is the grade
of membership corresponding to the fuzzy terms . Let the
chaotic system of (2) be the response system. Similarly, the
dynamics of the drive chaotic system subject to parameter un-
certainties can be represented by a fuzzy model with fuzzy
rules in the form of (1). Consequently, the dynamics of the drive
chaotic system can be represented as

(5)

where is the system state vector. is
the known constant system matrix; is the
grade of the membership and . It should be
noted that there is no control input term for the drive chaotic
system. The grades of membership are uncertain in value due to
the existence of the parameter uncertainties.

B. Time-Delayed Fuzzy State-Feedback Controller

A time-delayed fuzzy controller with fuzzy rules is em-
ployed to realize the synchronization. The th rule of the fuzzy
controller is of the following format:

(6)

where is a fuzzy term of rule corresponding to the function
, ; ; is a positive in-

teger; is the feedback gain of rule to be designed;
denotes the uncertain time-varying time delay. The

inferred time-delayed fuzzy controller is defined as,

(7)
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where

for all (8)

(9)

is a nonlinear function of and is the grade

of membership corresponding to the fuzzy term . Referring
to the proposed fuzzy controller of (7), it is assumed that the
system state of the response chaotic system in the local
side can be accessed without time delay. However, due to the
long transmission line, the system state of the drive
chaotic system in the remote side is subject to an uncertain time-
varying delay .

III. STABILITY ANALYSIS

The objective of synchronization is to drive the system states
of the response chaotic system of (2) to follow those of the drive
chaotic system of (5) using the time-delayed fuzzy controller of
(7). To proceed to the system stability analysis, from (2), (5) and
(7), the error system is defined as follows:

(10)

where

It should be noted that is bounded due to ,
and are bounded. In the following analysis, ,

and are denoted as , and for sim-
plicity. Furthermore, the property of the membership functions
that is ap-
plied in the following analysis. The error system of (10) is rep-
resented as the following form to facilitate the stability analysis:

(11)

(12)

(13)

From (12) and (13), the following property, which is applied
during the stability analysis, can be obtained:

(14)
To investigate the stability of (10), the following Lyapunov

function candidate is employed.

(15)

where . From (11) and (15), we have

(16)

where

and , . From (14) and (16), we have
(17), shown at the bottom of the next page, where

, ,
and is a nonzero positive scalar. Let
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and , ; , and , . From (17), we have (18),
shown at the bottom of the page, where the third equation at
the bottom of the page holds. The symbol “ ” denotes the trans-
posed element at the corresponding position. It can be seen from
(18) that the system is stable if for all and . However,
it produces a very conservative stability analysis result. In order
to alleviate the conservativeness, the membership functions of
both fuzzy model and fuzzy controller are designed such that

(17)

(18)
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for all and where and are
scalars to be determined. From (18), we have

(19)

where , , are arbitrary
matrices which are severed to transfer stable elements between
the first two terms in the right-hand side of (19) to compensate
unstable elements to produce less conservative stability analysis
result. It can be seen from (19) that if

and for , , we
have

(20)

Taking integration on both sides of (20), we have (21), shown
at the bottom of the page.

Based on the facts that and , the
tracking performance of (21) is achieved to guarantee the
tracking performance. It can be seen that a good tracking
performance is ensured by a small value of . The stability
analysis result is summarized in the following theorem.

Theorem 1: The error system of (10), formed by the response
chaotic system in the form of (2), the drive chaotic system in

the form of (5) and the timed-delayed fuzzy state-feedback con-
troller of (7), satisfies the following tracking performance
for a prescribed attenuation level

if the membership functions of the time-delayed fuzzy con-
troller are designed such that
for all and where and are scalars and there
exist constant matrices , ,

, , and
such that the following LMIs hold.

; , ;
, ;

, , ,and the feedback gains are
defined as , .

Remark 1: The above analysis is valid if is invertible. Re-
ferring to Theorem 1, if there exists a solution to the stability
conditions in Theorem 1, it implies that ,

and for all . These are sufficient conditions
for to be a nonsingular matrix to ensure that is invertible.

Remark 2: Referring to Theorem 1, it can be seen that the
stability conditions do not relate to the information of the time
delay. Hence, the error system is guaranteed to be stable for any
value of time delay.

IV. SIMULATION EXAMPLES

Three examples are given in this section to illustrate the ef-
fectiveness of the proposed approach.

A. Example 1

Two Rössler systems subject to parameter uncertainties are
employed as the response and drive chaotic systems, respec-
tively. The proposed time-delayed fuzzy controller is employed
to realize the synchronization.

Step 1) The dynamics of the response Rössler’s system with
input term are described as follows:

(22)

where

(21)
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and ,

is the uncertain parameter, , and
. It is assumed that

and . The response
Rössler system can be exactly represented by a
fuzzy model with the following fuzzy rules [3]–[5]:

(23)

The inferred response Rössler system is defined as

(24)

where

and
and

. It can be seen
that the uncertain parameter makes the
grades of membership function uncertain in value.
Consequently, the proposed approaches in [3]–[6],
[12]–[16] for uncertainty-free chaotic systems
cannot be applied.

Step 2) The dynamics of the drive Rössler’s system subject
to parameter uncertainties are given as follows:

(25)

where

where , ,
is regarded as the parameter

uncertainty, and .
Step 3) The fuzzy state-feedback controller of (7) is em-

ployed to handle the synchronization problem

Fig. 2. System state responses of the response (dotted lines) and drive (solid
lines) Rössler systems with ���� � � for � � � � �� s and the proposed fuzzy
controller applied for � � �� s with � ��� � ������ � �� � �	
�������.

using the time-delayed system state information of
the drive system. The fuzzy rules are designed as
follows:

(26)

The inferred fuzzy controller is defined as

(27)

where the membership functions are designed as

and
for .

It can be shown that the condition of
for all and , with

and , is satisfied. By solving the solu-
tion to the stability conditions in Theorem 1 using
MATLAB LMI toolbox, with , we have

and
.

Fig. 2 shows the system state responses of the response and
drive chaotic systems under the initial conditions of

and for . In this sim-
ulation, is employed for s and the fuzzy
state-feedback controller is applied for s with

. Fig. 3 shows the tracking error be-
tween the response and drive systems. Referring to these figures,
it can be seen that the proposed fuzzy controller, which is ap-
plied for s, is able to drive the system states of the uncer-
tain response Rössler’s system to follow those of the uncertain
drive Rössler’s system with a sufficiently small tracking error.
The simulation is repeated for
and , respectively . Figs. 4–7 show
the system responses and the tracking error between the re-
sponse and drive systems, respectively. Referring to these fig-
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Fig. 3. Tracking error of the response Rössler system with ���� � � for � �
� � �� s and the proposed fuzzy controller applied for � � �� s with � ��� �
������ � �� � �	
�������.

Fig. 4. System state responses of the response (dotted lines) and drive (solid
lines) Rössler systems with ���� � � for � � � � �� s and the proposed fuzzy
controller applied for � � �� s with � ��� � ������ �� � �	
�������.

Fig. 5. Tracking error of the response Rössler system with ���� � � for � �
� � �� s and the proposed fuzzy controller applied for � � �� s with � ��� �
����� � �� � �	
�������.

ures, it can be seen that the tracking error cannot be kept small
for but bounded when the value of
time delay is sufficiently large.

Fig. 6. System state responses of the response (dotted lines) and drive (solid
lines) Rössler systems with ���� � � for � � � � �� s and the proposed fuzzy
controller applied for � � �� s with � ��� � � � �� � �	
������.

Fig. 7. Tracking error of the response Rössler system with ���� � � for � �
� � �� s and the proposed fuzzy controller applied for � � �� s with � ��� �
� � �� � �	
������.

In this example, the proposed fuzzy controller is able to syn-
chronize both the response and drive chaotic systems subject to
parameter uncertainties and time-varying delay. However, the
theories developed in [3]–[6], [12]–[16] for uncertainty-free
chaotic systems with constant time delay cannot be applied to
handle the synchronization problems considered. Compared
with the fuzzy adaptive controller in [8]–[11] for chaotic sys-
tems, the proposed fuzzy controller offers lower computational
demand and structural complexity. Moreover, the time delay is
not considered in [8]–[11].

B. Example 2

Two Chen’s systems [16] are considered as the drive and re-
sponses systems. In this example, the proposed control scheme
is compared with that in [16] of which no time delay and param-
eter uncertainties are considered. It can be seen that the proposed
fuzzy controllers offer simpler structure and better performance.

The Chen’s system can be exactly represented by the fuzzy
model with two fuzzy rules [16] in the form of (23). It should
be noted that the drive Chen’s system does not have the control
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input of . The inferred Chen’s system [16] is in the form of
(24) with

where , , and . The member-
ship functions for the drive and response systems are defined
as
and ,

and
, respectively.

It is assumed that both the drive and response chaotic sys-
tems work in the operating domain of and

. Consequently, the fuzzy model for the
drive and response Chen’s systems are defined, respectively, as
follows:

(28)

(29)

Referring to [16], the fuzzy controller is defined as follows:

(30)

where

.
For comparison purpose, the proposed fuzzy controller with

two rules is employed to realize the synchronization. The rule
of the proposed fuzzy controller is in the form of (26). As input
time delay in [16] is not considered, for fairness of comparison,
we set for the proposed fuzzy controller which is
defined as follows:

(31)

As the membership functions of the fuzzy model of the response
system do not have parameter uncertainties, the fuzzy controller

Fig. 8. Tracking error of the response Chen’s system with the fuzzy controller
in [16].

Fig. 9. Tracking error of the response Chen’s system with the proposed fuzzy
controller.

of (31) share the same membership functions as those of the re-
sponse system, i.e, , , 2. Under such
a situation, we have and such that the membership
function condition of satisfies.
It should be noted that when and , the stability
condition of can be removed from Theorem 1.
By solving the solution to the stability conditions in Theorem
1 using MATLAB LMI toolbox, with and and

, we have

Figs. 8 and 9 show the tracking error between the response
and drive Chen’s systems with the fuzzy controller of (30) and
the proposed fuzzy controller of (31) for initial system states
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of and . It can
be seen from the figures that the proposed fuzzy controller per-
forms better in terms of shorter converge time. The converge
time for the fuzzy controller of (30) in [16] is about 10.5 s, 13 s
and 8 s for , and , respectively. While for the pro-
pose fuzzy controller of (31), the converge time is about 0.3 s for
all , and . Furthermore, although both fuzzy con-
trollers of (30) and (31) are able to synchronize the driven and
response systems, the proposed fuzzy controller offers a sim-
pler structure as only the membership functions of the response
system are used.

C. Example 3

Two Lorenz systems [10] are considered as the drive and re-
sponse systems. The drive Lorenz is subject to parameter uncer-
tainties. The fuzzy adaptive control scheme in [10] is employed
to synchronize the Lorenz systems and is compared to the pro-
posed fuzzy control approach. In [10], the following rule is em-
ployed to describe the system dynamics of the Lorenz system
subject to parameter uncertainties

(32)

where

and , and . The parameters of , and
are assumed to be unknown in this example [10]. It is assumed
that with . The inferred Lorenz system
is defined as follows:

(33)

where the membership function are defined as
and

. The fuzzy response system in
[10] is described by the follow rules.

(34)

Fig. 10. Tracking error of the response Lorenz system with the fuzzy adaptive
controller in [10].

where

are the estimates of and , respectively. According to
[10], the adaptive law is defined as

(35)
where and are constant adaptation gains.
Given in [10], the rule of the fuzzy adaptive controller is of the
following form:

(36)

The inferred control law is defined as follows:

(37)

where

Fig. 10 shows the tracking error between the response and
drive Lorenz systems with the fuzzy adaptive controller of (37).
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The initial system states are set to be
and , and the initial values of , ,

, , , , and are all set to be zero. Referring to
this figure, it can be seen that the fuzzy adaptive controller in
[10] is able to synchronize the drive and response systems. The
converge time for , and is about 7.5, 3.5, and 3
s, respectively.

For comparison purpose, the proposed fuzzy controller is em-
ployed to realize the synchronization. To design the proposed
fuzzy controller, a fuzzy model with two rules is employed to
exactly describe the system behavior of the response Lorenz
system. The fuzzy rule is in the form of (23) and the inferred
Lorenz system is defined as in (24) with

where , and . As the parameter values of the
drive Lorenz system are assumed to be unknown, the parameter
values, , and , of the response Lorenz system are chosen ar-
bitrarily. The membership functions of the fuzzy model are de-
fined as and

. As no input time
delay is considered in [10], for fairness of comparison, we set

for the proposed fuzzy controller in the form of (31).
The fuzzy controller shares the same membership functions of
the fuzzy model. As a result, we have and such that
the membership function condition of

satisfies. By solving the solution to the stability condi-
tions in Theorem 1 using MATLAB LMI toolbox, with
and and , we have

Fig. 11 shows the tracking error between the response and
drive Lorenz systems with the proposed fuzzy controller in the
form of (31). The initial system states are set to be

and . It can be seen that
fuzzy controller is able to synchronize the drive and response
Lorenz systems with the converge time of about 0.006 s for all

, and .
Referring to Figs. 10 and 11, it can be seen that the proposed

fuzzy controller performs better in terms of shorter converge
time. Furthermore, compared to the fuzzy adaptive scheme in
[10], it can be seen that the proposed fuzzy control scheme offers
a simpler approach to realize the synchronization in terms of
lower structural complexity and computational demand for the
response system and fuzzy controller.

Fig. 11. Tracking error of the response Lorenz system with the proposed fuzzy
controller. (a). Tracking error for � � � � �� s. (b). Tracking error for � �
� � ��� s.

V. CONCLUSION

The synchronization of chaotic systems subject to parameter
uncertainties using timed-delayed fuzzy state-feedback con-
troller has been investigated. The fuzzy state-feedback controller
using the system state of the response chaotic system and the
time-delayed system state of the drive chaotic system has been
proposedtorealizethesynchronization.Toovercometheanalysis
difficulties introduced by the system time delay and parameter
uncertainties, first, T-S fuzzy has been employed to represent
the chaotic systems subject to parameter uncertainties. Then,
the membership functions of both fuzzy model and fuzzy con-
troller have been considered to facilitate the stability analysis and
produce less conservative stability analysis result. LMI-based
stability conditions have been derived using Lyapunov-based ap-
proach to guarantee the system stability and aid the design of the
time-delayed fuzzy controller. Simulation examples have been
given to illustrate the effectiveness of the proposed approach.
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