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General Dynamics of Pulsed Digital Oscillators
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Abstract—The objective of this work is to analyze pulsed digital
oscillators (PDOs), as dynamical systems. It is proved that under
some conditions, the bitstream at the output of the oscillator is
that of the sign of a sampled sinusoid at the resonant frequency of
the resonator, and that a bijection exists between these sequences
(without distinguishing between a sequence and its negated ver-
sion) and those of first-order sigma-delta modulators. This pro-
vides a new and simple method of obtaining the oscillation fre-
quency of PDOs just from their bitstream.

Index Terms—Oscillators, pulsed digital oscillators (PDOs),
sigma-delta (��) modulation.

LIST OF SYMBOLS

Complex conjugate, .

modulus 1, .

Largest integer less or equal to , .

Smallest integer not less than , .

Sign function, .

Real part of .

, .

.

Greater common divider, , .

I. INTRODUCTION

T HE objective of this work is to analyze the dynamics of
pulsed digital oscillators (PDOs) [1]–[4], seen as dynam-

ical systems. Microelectromechanical systems are well known
for presenting nonlinearities in actuation and/or sensing, [5], [6].
PDOs are simple circuits that can easily overcome some of these
nonlinearities. The PDOs general circuit topology can be seen
in Fig. 1. It is a sampled circuit and at each sampling time it is
only necessary to know if the resonator is above or below its rest
position. The actuation force fed into the resonator consists of a
train of deltas taking values or . In practical
realizations a train of short pulses is used instead. The output
of the system is the bitstream provided by the 1-bit quantizer
(the sign of the sampled position of the resonator). Although
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Fig. 1. General circuit topology of PDOs.

the influence of the filter has been analyzed in [4] to some
extent, in this work we will assume for the sake of simplicity
that , .

These circuits can be seen as iterative piecewise-linear maps,
basically in the complex plane, although other memory struc-
tures will be added to account for the delay blocks in the feed-
back loop. Previous works have been focused on the symbolic
dynamics of piecewise-linear maps [7]–[11], but the specifity of
the results we are looking for, requires an extensive and partic-
ular analysis of the dynamics of PDOs.

The main question that this work tries to solve is: what kind
of sequences are at the output of PDOs? and what phase-space
trajectories does the resonator follow? These are very similar
questions to those solved in [12], [13] for first-order sigma-delta
( ) modulators. The results obtained in this work are the first
rigorous results proving that under some conditions PDOs are
actually oscillators, explaining the phase-space trajectories of
the resonator and providing the bitstreams at the output. It will
be shown that PDOs are much more related to first-order modu-
lators than to bandpass modulators, as had been pointed out
in [2], and that the typical quantization noise shaping of standard

modulators must not be expected at the output of PDOs.
We will assume that the resonator can be described by the

following equation:

(1)

where is the mass of the resonator, is damping factor, is
the spring factor and is the external force being applied on
the resonator. Now, what kind of sequences are at the output of
PDOs? Let us for a moment look to Fig. 1, and assume that the
oscillator is working ‘well’. It would mean that the resonator
position waveform would be a sinusoid, and therefore the bit-
stream at the output of the PDO would be the sign of a sampled
sinusoid, from here on sequences

(2)

for a given normalized frequency, . On the other hand, one of
the usual similes used to describe the behaviour of first-order
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modulators is the rotations of the circle, a very similar situ-
ation to the one described above, taking into account both vari-
ables of the resonator: position and velocity. The main differ-
ence is that in the case, a ‘1’ is emitted each sampling
time a complete rotation of the circle has been accomplished,
whereas in the PDO case, at each sampling time a ‘1’ or ‘ 1’
is emitted depending on whether the resonator is in a given half
of the circle or in the other.

The main results of this paper, stated in the form of 3 theo-
rems, can be summarized as follows:

a) There is a bijection between sequences (without dis-
tinguishing between a sequence and its negated version)
and first-order sequences. This will provide a new
simple way of obtaining the oscillation frequency of the
resonator, directly from the bitstream at the output of the
PDO.

b) Under some sufficient conditions, PDOs will have se-
quences at their output, at the resonant frequency of the
resonator.

Section II will provide the relationship between first-order
sequences and sequences. Section III will present the

PDO as an iterative map. Section IV will provide the tools to
graphically observe under which conditions we have perfect
sequences at the output of the PDO, and the relation with the ini-
tial condition of the resonator. Section V, based on the intuition
gained by the extensive analysis of the results of Section IV,
will provide general properties of PDO systems and conditions
under which PDOs produce sequences. Finally, the bitstream
spectra of sequences are analyzed in the Appendix.

II. FIRST ORDER MODULATORS AND BITSTREAMS

The objective of this section is to establish the relation be-
tween the Sign of a Sampled Sinusoid sequences and first-order

sequences. sequences can be described as

(3)

with , and being a given normalized
frequency. Any sequence generated with a frequency

, and offset is identical to that generated with
a frequency and offset .

These sequences can also be expressed in the following way:

(4)

On the other hand, first-order modulators produce se-
quences of the form [13]

(5)

for some given parameters . The set of all
sequences will be named . The set of all unordered pairs

of sequences, will be named .
Theorem 1: A bijection exists between the set and the set

of first-order sequences, .

Proof: Given a pair , let us assume without
loss of generality that can be expressed in the form

(6)

with and (if needs to be in [1/2,1),
then will have in the desired segment). Let us now de-
fine a function , such that for any

, where sequence is defined as
, and where is defined as

.
If the sequence is aperiodic then and therefore the

choice of parameters , is unique. If the sequence is periodic,
then parameter , with , is
unique but can take values over a segment of length for

even, and for odd [3]. This collection of segments
is, for N even, and,
for N odd, .

From (6), when and
if .

Now, if , then

(7)

which is the same as

(8)

On the other hand, if , then

(9)

which means that

(10)

Therefore, the sequence generated through the detection of
edges in belongs to , i.e.,

. And is an sequence generated by parameters
and . This result does not depend on the choice of when

is rational, because for even, the segments, namely
are transformed

into , which are
exactly the uncertainty offset segments for sequence , because
its main parameter is ( is even, and now

). A very similar situation occurs for
odd: the uncertainty segments of signal ,

, become
, which are exactly the segments corresponding to sequence

, of parameter . Therefore, function is injective.
Now, given a sequence , it can be expressed in the

form

(11)

with , . We generate the sequence as follows:
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Fig. 2. Circuits for conversion between � and �� bitstreams. a) from � to
�� sequences, b) from �� to � sequences. A change on the initial condition
of the delay block of circuit b) generates a change from an � � � sequence to
��.

a)
if
if

b) for ,
if
if

Now, if it means that

(12)

and therefore if then
; and if

then . Following the same
reasoning, if then if then

; and if
then .

This in fact implies that the bits in only change their value
when changes from taking values in [0,1/2)
to [1/2,1) or vice versa. Therefore, either

if
if

or

if
if

which means that . Following the same reasoning
as before, the above result does not depend on the choice of
parameter for rational, and . Therefore,
we may finally conclude that function is also surjective, and
therefore it is a bijection.

The above result provides a very simple and practical way of
transforming sequences into and vice versa (see Fig. 2).
Simulation and experimental results confirm that the circuit of
Fig. 2(a) can be used as an intermediate step to extract the os-
cillation frequency directly from general PDO bitstreams.

III. PDOS AS ITERATIVE MAPS

The objective of this section is to see the discrete time dy-
namics of PDOs as iterative maps. The general circuit topology
of the PDO can be seen in Fig. 1. The most common form of (1)
is

(13)

where

(14)

The evolution of the Pulsed Digital Oscillator can be seen
as an example of systems governed by Impulsive Differential
Equations [14]. This means, that between any two sampling
events, the resonator moves freely along its rotating trajectory
and at each sampling event, its velocity is instantaneously
changed by the force delta being applied on it. In this sense,
if we define the sequence ,
where is the period of the sampling clock, then
the evolution of the oscillator for is governed by the
following equations:

(15)

where

(16)

and , . The initial condi-
tions are , and .

In order to handle more comfortable expressions it is con-
venient to work on the complex plane with an appropriate nor-
malization. This will allow us later to use Fourier Transform
notation to find necessary conditions to obtain sequences in
PDOs. In this way, by defining the following variable sequence:

(17)

the evolution of the system is described through this equation

(18)

where , depending on the sign of the
feedback loop of the oscillator, and , being

.
In order to consider this system as a map , we must define

our phase space. Let . The most straight-
forward option for is

(19)

where , , . For

(20)

where , is defined as .
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We will consider that , , is the identity
and that is the result of applying times function to ,

.
Definition 1: The projections and

, are defined as ,
and .

In order to simplify notation we further define as follows.
Definition 2: The function , is

defined as .
Definition 3: In the case , the functions

are defined as , , . If ,
is defined as , .

If the feedback loop of the oscillator ensures that
, , , . If

then .

IV. SYMBOLIC DYNAMICS OF THE PDO

The purpose of this section is to study how the initial con-
ditions of the resonator and the initial bits affect the future
evolution of the oscillator, specified by , , , . Through the
values taken by and (or ), is specified.

The result of this section is a partition on the complex plane,
, depending on the initial conditions of the bitstream

, , and a function, ,
such that for any there is a such that

for
, being the maximum number of clock cycles

on which it is possible to find with this property. The
idea of generating a partition consistent with the bitstream has
been used in the past, for example in [15].

Definition 4: The function
is defined as , , with

.
The time evolution of the resonator can be described with the

following equation:

(21)

and

(22)

The feedback loop of the oscillator ensures that
, , , .

For a given initial condition of the bitstream,
, Lemmas 1,2 and Corollary 1 will provide a

sequence of partitions of the complex plane such that
for each one of the sets of these partitions, the initial conditions
of the resonator are undistinguishable from the first bits at
the output of the oscillator.

Lemma 1: If , , it is
for if and only if

and
for some , , , with , .

Proof: The numbers , are uniquely determined as the
imaginary and real parts respectively of the complex numbers

, . Parameters , are the imaginary and
real parts of , , note that they are defined
as a function of , not of . Now, it is ,

, because they all depend only on , (
, ). Therefore, ,

, if and only if
, .

If we are done.
Let us assume that . Now

because . Taking
this into account, it is
if and only if

. By proceeding
recursively we will reach and

, for .
This result can be interpreted as follows: given an initial

and an initial , it is possible to obtain the future evo-
lution of the bitstream at the output of the oscillator. This se-
quence of bits determines the values of , which also
determine the lines

. Then, Lemma 1 states that for those initial
conditions located at the same sides of the lines ,

as , the output of the oscillator is the same as in the
case of , for at least clock cycles.

The next step is to generate a sequence of partitions ,
such that for any , it is

, .:
Lemma 2: For a given and , it is possible

to construct a set of partitions , , in
such that for all , it is

, .
Proof: We will proceed to construct this partition through

an algorithm.

Step 1:
The line will be used
to generate three different connected sets:

, ,
. The sets , , will be

the ones in . We define the counter variable .
Step 2:
For each set we choose a point and
calculate . Of course the choice of is
of no relevance.
If then . If not, the
connected components of will be included
in , together with .
Next, we proceed with the following set in . When
all the sets in the partition have undergone this
process, if the algorithm ends and if not we
repeat Step 2, while increasing the value of .

Corollary 1: is a partition finer than .
Proof: Each set of is either obtained as the result of

a subdivision of a set in or it belongs to .
Now we will construct a new partition, , based on the

sequence .
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Definition 5: Given an oscillator and a ,
the collection of sets , , is defined as

and if then .
Lemma 3: Given a , and , it is

if and only if .
Proof: If then it is always

. On the other hand, if , it is possible
to find , , such that .
Then

, if only if, .
Corollary 7: Given a , it is

, if and only if
, .

Obviously, given a , for any two ,
, it is , .

Lemma 4: For any given and ,
it is , if and only if

, and . If
but there is a such that then

, .
Proof: It is evident from Corollary 2 and Lemmas 1 and 2

and taking into account that if , , it is
.

Definition 6: Given the collection of sets of
and the application are defined
in the following way. A subset belongs to if

and , , for a given
and for all , , with it is

, . Then .
For any sequence of sets such that

, , , and
, , then , and .

Lemma 5: The collection of sets is a partition of , and
for any it is .

Proof: For each there is a unique collection of sets
with , because each is a partition

of . For each and . If for all ,
, then

and . Otherwise, if is the minimum integer such
that , for any , then

. Therefore, for all there is a set such
that .

In order to see that for two different sets, , it
is , let us assume that , and

, . It is not possible that
because then they would belong to the same partition , and
therefore . If and ,
assuming , then . But then ,

, and , , which is not
possible because and .

Now, let us assume , with with
and . Then ,

, and , with ,

Fig. 3. Set of 250 lines � ��� � � � � ���, generated by � � � for an oscillator
with � � ���, � � �, � � �, � � �����. It is clear that point 1 is trapped by
these lines and therefore if � � 	 � ���� then 
�	��� ��.

and , . But it must be
, since , and therefore we have a contradiction.

If , with , then
and , with , . But it must

be , , since . Therefore, and
is a partition of .

Finally, , because
, for any .

Therefore, for any and .
Lemma 6: Given a , the following are true.
a) For each , there is a such that

,
.

b) For each , if , there is
no such that

, .
Proof:

a) It follows from the construction of partition .
b) Because for any it is ,

and for any there is a , ,
such that .

Figs. 3 and 4 do not show any example of partition
but can provide some intuition as to what is happening in these
partitions. Both Figures show the lines generated by
an initial condition . In the first case, the point is clearly
engulfed by the lines, and therefore , where
is the set, , such that . In the second case,
however, this is clearly not happening. In fact, it can be predicted
that , and

. It is interesting to note that in the configuration
of Fig. 4, if we change the point to many other positions, it
won’t be trapped by its corresponding lines , because
these lines rotate following . In the case of lossless resonators,
this will lead us later to say that this oscillator is ‘tuned’ to this
specific frequency, whereas a similar condition, depending this
time on the initial condition , may be defined for PDOs
with a leaky resonator.

Finally, the symbolic dynamics of the PDO can be easily ex-
tracted from the partitions , although not in a closed
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Fig. 4. Set of 250 lines � ��� ��� ��� � � � � ��� ������, generated by � � �
for an oscillator with � � ���, � � �, � � ��, � � �	��	. It is clear
that point 1 is not trapped by these lines and therefore if � � 
 � ���� then
��
��� � �.

form. Once an initial condition is specified for bitstream of the
oscillator, , depending on the initial condition of the res-
onator , the output of the oscillator will be ,

, . Now, if , the
procedure can be iterated producing a sequence of times and
complex numbers, , and vectors which completely
specify the bitstream at the output of the oscillator in terms of
pieces of sequences.

The extensive computation of plots like those in Figs. 3 and
4 has proven to be an excellent tool to predict the results of the
next Section.

V. PROPERTIES OF PDO SYSTEMS

The main objective of this section is to obtain sufficient or
necessary conditions under which the oscillator provides a per-
fect sequence for all clock cycles. First, some general prop-
erties of PDO systems are presented and then specific cases are
analyzed. It must be assumed that the oscillator and the working
frequency are specified through the value of , and .

In order to simplify the problem, we will assume throughout
this section that the initial bitstream has the following
property.

Definition 7: A is said to be consistent with if
.

If the initial bitstream of an oscillator is consistent with the
initial value of the resonator, , the situation is equivalent to
having with an initial condition of the resonator

. This assumption should be taken into account each time a
reference is made to the partition or the function
or .

Lemma 7: For any given , with
consistent with , for all , with

, it is

(23)

Proof: Since , the bit sequence for
clock cycles will be . Then
the Lemma follows because

(24)
and , for all .

Lemma 8: For any given , with
consistent with , for all , with

and , it is

(25)

Proof: It is obvious since
, and

.
Lemma 9: Given an oscillator with , for any

given , with consistent with , for all
, , with ,it

is

(26)
Proof: It follows since

(27)

and

(28)
and taking into account that for any complex number ,

.
Proposition 1: For any given , with
consistent with , for all , with

, it is

(29)

where the sequence , ,
, is formed by the time events

on which , and
is the number of such events in the bitstream

formed by n bits.
Proof: is consistent with , and for all

, which means that
, . The main

property of a sequence of bits is that it is completely deter-
mined by knowing the first bit and the instants of change
(the instants when ). In this case, it is

only when and
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, and only when
and . For all other cases

. Then, the instants of change are those on
which the sequence decreases (the moments
at which there is an ‘overflow’). This means that the sequence

is a sequence generated by with
initial integrator value , as it was shown in Section II.

The instants of change ,
with are such that if then

is the minimum integer such that

(30)

Therefore ,
, and in general

.
On the other hand, is the number of edges in the bit-

stream from bit 0 to bit . Therefore, is the largest integer
such that

(31)

which means that .
Now, with and the sequence is possible to charac-

terize the bitstream as bursts of ‘1’s and ‘ 1’s.

(32)

and therefore

(33)

and from here expression (29) is obtained, using the fact that if
, .

Definition 8: Given a we define the sequence ,
as

(34)

with .
Lemma 10: Given a , if

, then , , being
consistent with .

Proof: It follows since
, and then ,

. Therefore, the sequence is solution of
the problem.

This last result will be used to find sufficient conditions for
oscillations at the resonant frequency of the resonator in the next
subsection.

A. Sufficient Conditions for Oscillations at the Resonant
Frequency of the Resonator

Several cases will be considered. The first one corresponds
to frequencies of the form , on which (29) can be
easily calculated, for all values of . Next, the more general
frequencies of the form are analyzed, using this time
Lemma 9.

1) Case , : In this case, it is

(35)

where

(36)

Note that .
And

(37)

In this case it has also been used that
.

If , with M even, then
or . On the other hand, there are

values of such that , for some ,
but . Therefore, we can state the following lemma.

Lemma 11: If , is even,
, , and is

consistent with , then , .
Proof: We will be using Lemma 10. Since

and

(38)

then and, due to the
fact that , then

.
Fig. 5 shows the simulation of an oscillator with ,

, , , with initial condition . As
it can be observed the oscillator follows a perfect sequence.

2) Case , : In this case, we will only find
, in order to use Lemma 9. Then, because

and using the fact that for even

(39)
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Fig. 5. Simulation of an oscillator with � � �, � � �, � � ����, � � �, with
initial condition � � ��� . Each point corresponds to � ���	���, with �
consistent with �.

and for odd

(40)

then for even

(41)

and for odd

(42)

Now, the necessary condition to have
is that . Therefore, for

even it must be

(43)

and for odd

(44)

The distinction between even or odd, comes from the fact
that for odd, there are two possible bitstreams depending on
the initial , one in which there is one ‘1’ more than ‘ 1’s and
another on which the contrary happens. In order to distinguish
between these two situations it is necessary to divide the phase
space not in slides, but in .

Then, it is necessary, for and the following to be
true.

— even .
— odd .
In the case , the former conditions are modified

as follows.
— even: .
— odd: .
Definition 9: A lossless oscillator is said to be tuned to a

rational frequency , with , if the
above equations hold for this given frequency, or what is the
same, if , , for any .

Due to the fact that these conditions do not depend on , if
the oscillator is not tuned, then, for each , there is a

such that .
When is even there is always a solution in for either

or , because and
therefore for any number there is a such that

, in fact there are infinitely many num-
bers like this. When is odd, though, there will be a solution
only for a given sign of , depending on whether

is even (then ) or odd (then as follows.
a) If is even then there is a solution for

, is odd, and therefore there is no
solution for .

b) If is odd then there is no solution for
, is even, and therefore there is a

solution for .
This allows us to state the following lemma.
Lemma 12: For any given there is an oscillator

tuned to this frequency. If is even, regardless of and
for odd for a specific either or .

Lemma 13: Any lossless oscillator is tuned to an infinite
number of rational frequencies.

Proof: Given an oscillator with and the following are
true.

a) for , the oscillator is tuned to frequencies of the form
or , and

also to .
b) for , the oscillator is tuned to .
c) For any odd, there is a solution for any (even)

such that , regardless of the sign of
.

d) For any odd, if , there is a solution if
and even. If there is a solution

for any odd with and
odd.

Theorem 2: If a lossless oscillator is tuned to ,
is such that , and is

consistent with , then , .
Proof: We will be using Lemma 10. For any and

because it is

(45)

and . Due to
the fact that the oscillator is tuned to then

. Therefore,
, .
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Fig. 6. Simulation of an oscillator with � � �, � � �, � � ����, � � ��,
with initial condition � � ��� .

Now, as an example, we will find an oscillator tuned to
. To this effect we need to solve the conditions for tuning,

and a solution is , . Fig. 6 shows a simulation of this
oscillator. As it can be seen, sequences are obtained.

Proposition 2: If the output of an oscillator, with a lossless
resonator, is ,
for , where is the resonant fre-
quency of the resonator and , , then the oscil-
lator is tuned to frequency .

Proof: Under these conditions, after clock cycles,
, and if the value of the resonator at time is

, due to the constraints imposed by the PDO structure, it
is , , with

consistent with . Then, it is
, for any ,

being defined in Definition 8.
Let us assume that the oscillator is not tuned to , then there

is an such that . Due to
the assumptions of the proposition, for any
such that it is

. Now, for any it is
. Using (45),

for a sufficiently high , it will be
, because . This means

that the bitstream sequence cannot be strictly periodic of period
N from , and therefore we have a contradiction.

3) Case , : In this case, under the conditions
of Lemma 9, for we have

(46)

which means that, for

(47)

Expression (47) obviously implies that now the amplitude of
the oscillation remains bounded. Now, if we try the technique

Fig. 7. Simulation of an oscillator with � � �, � � �����, � � ����, � � �,
with initial condition � � ��� .

used in the case , there is a problem with the analytical
expression of . Recalling (29) in Proposition 1, it is not
easy now to find an analytical expression of , due to the
fact that . But the following result can be stated.

Theorem 3: If for a leaky oscillator, an initial condition of the
resonator and a frequency , it is for
even

(48)

and odd

(49)

and , are such that the following are true.
a) , .
b)

, .
then for consistent with ,

, .
Proof: We will be using Lemma 10. For it is

(50)

because . Now,
for , it is

(51)

Now, finally due to the fact that for this initial condition, and
frequency , (48), (49) hold, then ,
and therefore

, .
An example of the behaviour predicted by this result can

be found in Fig. 7. In this case, it can clearly be seen that
, . Condition

b) of the result can be fulfilled for .

Authorized licensed use limited to: IEEE Xplore Customer. Downloaded on November 26, 2008 at 08:41 from IEEE Xplore.  Restrictions apply.



DOMÍNGUEZ et al.: GENERAL DYNAMICS OF PDOs 2047

B. Detuned Lossless Oscillators With

Up to this point, we have introduced a number of sufficient
conditions to obtain sequences at the output of the PDO.
The objective of this section is to find some characteristics of
the phase-space trajectories that PDOs follow when the res-
onator has no damping losses and the oscillator is not tuned
to a given frequency . Throughout this section ,

and the initial bitstream is adapted to the
initial condition of the resonator.

In order to simplify notation we will use and instead of
and , without making explicit reference to

.
Lemma 14: Let us assume there exists an infinite sequence,

, of all time events on which
. For each , if and is the

next element in such that , then .
Proof: From the hypothesis , for a given

. Since is the next element in with
, then , . Therefore,

.
Corollary 3: In the same conditions of Lemma 14, for all

(52)

where if the number of elements of such that
, and is

even. And otherwise, where is the first element in
such that .

Proof: From the definition of , and taking into account
that (lossless resonator) it is

(53)

and therefore, for

(54)

ans the result follows using Lemma 14.
Corollary 4: In the same conditions of Lemma 14, if

,
for all , then

(55)

If the above property holds for an lossless oscillator, then it
is said to possess two ‘spirals’.

Proof: Following the same notation of Corollary 3

(56)

If ,
for all , then for each the number of

Fig. 8. Simulation of a two-spiral oscillator with � � �, � � �, � � ���,
� � �, with initial condition � � ��� .

Fig. 9. Simulation of a two-spiral oscillator with � � �, � � �, � � ���,
� � �, with initial condition � � ��� .

elements of such that and
, is even, and therefore .

Fig. 8 shows an oscillator with two spirals. It is interesting
to note that for frequencies with even, though, there is an
‘optical’ effect on the trajectories so that it seems to be

(57)

which is not true. This effect can clearly be seen in Fig. 9. What
it is really happening, is that for each either

or . Therefore, each time we observe a change
in the vectors it is not due to a single event , but to two of
them.

Finally, it is also interesting to note that in order to ‘observe’
the same two-spiral pattern in the evolution of the oscillator it
is not necessary that the conditions of Corollary 4 are strictly
fulfilled. Sometimes, translocations occur and for example a
number is repeated in ,
for a given , then in the next clock cycles this number will
not appear and will appear twice the missing one.
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if

if
(66)

VI. CONCLUSION

It has been proved that a bijection exists between the se-
quences of first-order modulators and the sign of sampled
sinusoid sequences, when no distinction is made between and

, with being an sequence. This has provided a per-
fect tool for obtaining the oscillation frequency of PDOs di-
rectly from their bitstreams. It has also been proved that under
some conditions, PDOs bitstreams are sequences at the reso-
nant frequency of the resonator, for both lossless and leaky res-
onators. It has also been explained the typical “second spiral”
trajectories of PDOs actuating lossless resonators.

Finally, these results seem to indicate that there is far more
similarity between PDOs and first-order modulators, than
with bandpass modulators. This might provide a clue as to
why the oscillator response with leaky resonators looks like a
distorted version of the Devil’s staircase fractal, which is the
response of first-order modulators with leaky integration.
These results also settle the question as to why the spectra at the
output of PDOs have not the usual noise-shaping characteristic
of modulators.

APPENDIX

SPECTRA OF SEQUENCES

In this section we will consider sequences of the form

(58)

which can also be expressed as

(59)

A. Case

Let us assume that with . Then
is of period .

The Fourier coefficients are usually calculated as

(60)

On the other hand ([13])

(61)
which means that a bijection, , exists in such
that

(62)

It is immediate that . Therefore

(63)

Taking into account that for

(64)

then

(65)

Therefore, the equation (66), shown at the top of this page
is true, where for , if and

, otherwise.
Two different cases can be distinguished: even, odd.

B. Case Even

In this case, .

if , or even

if odd.
(67)

C. Case Odd

In this case, .

Authorized licensed use limited to: IEEE Xplore Customer. Downloaded on November 26, 2008 at 08:41 from IEEE Xplore.  Restrictions apply.



DOMÍNGUEZ et al.: GENERAL DYNAMICS OF PDOs 2049

If

if

if

(68)

and if

if

if
(69)

The phase of component of the fast Fourier transform (FFT)
at frequency is quantized. This result is in concordance with
what in [2] was called the phase uncertainty of the signal,
(the length of the maximum interval in which can change
without chaging the sign of its samples). For even

and for odd is .
With the above computed Fourier coefficients it is possible to

construct the bitstream in the usual way

(70)

D. Case

In this case, and following the approach taken in [13], we will
use a Bohr-Fourier representation series to describe the aperi-
odic bitstream sequence. It is known that, for

(71)

where

(72)

due to the fact that the trajectory of is dense in [0,1],
for irrational. Then

if
if

(73)

The coeficients of the bitstream
are then

if , or even
if odd, frequency (74)

In all cases, the maximum of the above calculated spectra
is located at frequency , regardless of whether is irrational
or rational. This provides an explanation as to why in the first
works on PDOs [1], [2], the method used to infer the oscillation
frequency of the oscillator, by finding the frequency at which the
FFT of the bitstream presented its maximum, worked properly.
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