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The Origin of Nonlinear Phenomena in TCR-SVC
Associated With Parametric Excitation of Intrinsic
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Abstract—This paper focuses on anomalous nonlinear phe-
nomena in a thyristor controlled reactor-static var compensator
(TCR-SVC) system, called switching time bifurcation, and clarifies
the relationship between the occurrence of nonlinear phenom-
enon and the intrinsic characteristics of the circuit equation with
switching function. The occurrence of nonlinear phenomenon in a
TCR-SVC system cannot be predicted when the dynamics of the
circuit related to the switching action is neglected. Therefore, this
paper considers the dynamics related to the switching operations
in the analysis of nonlinear phenomena. The parametric excitation
of circuit is discussed in relation to the homogeneous expression of
the circuit equation. This paper indicates that the homogeneous
equation of the TCR-SVC system results in Hill’s equation, and
it can be approximated as Mathieu’s equation. The occurrence
of nonlinear phenomena in the system is evaluated using the
characteristics of Mathieu’s equation. The anomalous nonlinear
phenomena occur when the natural frequency of Mathieu’s equa-
tion coincides with the frequency of the ac voltage in a TCR-SVC
system. The parametric excitation is also confirmed through the
characteristics of Hill’s equation. This study clarified the interac-
tion between the switching dynamics of the circuit and its external
excitation, and clued the occurrence of nonlinear phenomena
in the circuit. The proposed procedure can also be applied to
the analysis for other switching converter circuits with periodic
excitation source.

Index Terms—Homogeneous equation, intrinsic oscillation,
Mathieu’s equation, nonlinear phenomenon, switching function,
switching time bifurcation, TCR-SVC.

I. INTRODUCTION

A THYRISTOR controlled reactor-static var compensator
(TCR-SVC) is a power electronics apparatus for power

systems, which uses thyristors as the switching devices [1], [2].
The thyristors control the amount of lagging reactive current
flowing through the reactor. Then, the reactive power output of
TCR-SVC is regulated to maintain the ac system voltage. Thus,
TCR-SVC maintains power quality to the disturbances caused
by faults or by load changes.

The switching operation of thyristors generates harmonics in
periodical steady state, which is related to fundamental utility
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frequency. References [3], [4] studied the interaction between
all the harmonics in TCR-SVC based on the Fourier series ex-
pansion of switching function and on the harmonic admittance
matrix of the circuit. Reference [4] assessed the stability of
TCR-SVC circuit by the eigenvalues of the exponential matrix
derived from the state transition matrix for piece width linear
circuit. Furthermore, [5] proposed to analyze the distorted
waveform in Walsh domain. The work achieved computational
efficiency by accurately approximating the switching function
with smaller numbers of Walsh coefficients than conventional
Fourier and Hartley coefficients. Reference [6] discussed the
stability of switching circuit with Lie Algebraic, which is based
on the Lyapnov function for the system. References [7], [8]
analyzed the border collision bifurcation in dc-dc converter
with the explicit map and the symbolic analysis method, respec-
tively. However, a TCR-SVC is different from dc-dc converter
in having external periodical excitation ac voltage, and these
analysis methods are not suitably applicable.

A TCR-SVC in a power circuit is a nonsmooth dynamical
system consisting of linear and continuous power circuit com-
ponents, and thyristor switches. A thyristor is a semi-control-
lable device; the turn-on operation is driven by a gate pulse,
however, the turn-off is determined by the conditions of device
voltage and current. Therefore, the voltage of a power system is
required for a thyristor power conversion circuit as an external
periodic excitation or a forced commutation circuit. The occur-
rence of nonlinear phenomena related to switching operations of
thyristor has been previously reported [9], [10]. The nonlinear
phenomena are a nonsmooth change in the conduction angle
to a smooth change in the firing angle. References [11]–[13]
demonstrated the occurrence of switching time bifurcation in a
TCR-SVC. The non-normality in power system operation has
been discussed on the egienvalues of the Jacobian of differen-
tial equations at the equilibrium; such as, saddle node bifurca-
tion [14] and Hopf bifurcation [15]. Also, the mechanics for the
inter area electric power system oscillation is shown in [16], and
subharmonic oscillations are discussed by Melnikov functions
in [17]. These approaches are adequate for conventional power
system, which can be expressed as a smooth dynamical system.
References [12], [13] indicated that the occurrence of switching
time bifurcation cannot be predicted from the Jacobian of the
fixed point of the system accompanied by switching operations
in the TCR-SVC. They also presented coexisting solutions to
a given control parameter, and discussed the relationship be-
tween switching time bifurcations and their domains of attrac-
tion. References [18], [19] reported other nonlinear phenomena
occurring in a TCR-SVC, e.g., half-wave asymmetrical and sub-

1549-8328/$25.00 © 2008 IEEE

Authorized licensed use limited to: Kyoto University. Downloaded on August 3, 2009 at 05:29 from IEEE Xplore.  Restrictions apply. 



FUNAKI et al.: ORIGIN OF NONLINEAR PHENOMENA IN TCR-SVC 2953

Fig. 1. Schematic diagram of single phase TCR-SVC.

Fig. 2. Ideal voltage and current waveforms of TCR.

TABLE I
CIRCUIT PARAMETERS OF THE STUDIED TCR-SVC SYSTEM

harmonic oscillations. These are also classified as one type of
switching time bifurcation, because they both have nonsmooth
changes in their conduction angles to the smooth changes in the
firing angle. The occurrence of unpredictable switching time bi-
furcation is undesirable for TCR-SVC operation, but it can be
managed if bifurcation is predictable. Therefore, it is necessary
to clarify the origin of nonlinear phenomena in a TCR-SVC.

This paper focuses on the homogeneous expression of the
circuit equation for a TCR-SVC, and discusses the relation-
ship between its characteristics and the occurrence of nonlinear
phenomenon. The circuit equation of a TCR-SVC can be ex-
pressed by a simple differential equation with variable parame-
ters when the switching operation of the thyristor is expressed
by a switching function. The switching function of a TCR-SVC
can be expressed as a periodic function with ac fundamental fre-
quency for a periodic steady state operation. Thus, this paper
reveals that the homogeneous equation can be derived as Hill’s
equation by neglecting the damping component in the circuit. In
addition, Hill’s equation is approximated by Mathieu’s equation
by extracting the dc and fundamental ac frequency components
from the switching function. This paper figures out that there
exists the possibility of predicting the occurrence of nonlinear

phenomena based on the stability analysis of both Mathieu’s
equation and Hill’s equation. That is, any nonlinear phenom-
enon occurring in the TCR-SVC is attributable to the interac-
tion between parametric excitation of intrinsic oscillations and
the external excitation by the ac system. The numerical and ex-
perimental results elucidate the sufficient condition for the oc-
currence of nonlinear phenomenon in TCR-SVC.

II. BASIC OPERATION OF TCR-SVC AND SYSTEM EQUATION

First, this section describes the circuit configuration and
the basic operation of a TCR-SVC system. Then, the circuit
equation for a TCR-SVC is established for the conducting and
blocking state of thyristor switch and the solution of the circuit
equation is derived for a half-wave symmetrical fundamental
periodic steady state. Finally, the occurrence of anomalous non-
linear phenomena is estimated based on the derived solutions.

A. Circuit Configuration of TCR-SVC

A TCR-SVC system is generally configured as a three-phase
system. Fig. 1 depicts one phase component of the TCR-SVC.
This study analyzes the behavior of the TCR-SVC in a single-
phase configuration to simplify the analysis. This simplification
is valid for the phenomenon that is free from inter-phase inter-
action.

A long transmission line induces a voltage drop between
the power station and the load in a power system. The line is
represented by lumped inductance and resistance . The
drop is due to the current flowing through the transmission
line when electric power is transmitted. The power station
is treated as an infinite bus and is expressed by the voltage
source . A TCR-SVC consists of a shunt capacitor
and a thyristor controlled reactor (TCR). The shunt capacitor
consists of a capacitance and an equivalent series resistance

, and supplies leading reactive power to the power system.
The TCR comprises an inductance with winding resistance

and a back-to-back connected thyristor. It regulates the lag-
ging reactive power output in accordance with current flowing
through the reactor, which is controlled by the firing angle of
thyristor as shown in Fig. 2. This system is oscillatory due to its
second-order resonant circuit configuration, and the connected
load has a damping effect on oscillation. Then, a light or no load
condition induces nonlinear phenomena associated with the os-
cillation and switching of the thyristor. The circuit parameters
of the studied system are given in Table I. This study assumes
the no load condition to have the most distorted oscillatory
waveform, which is subjected to [9]–[12] to observe notably
the anomalous nonlinear phenomena in TCR-SVC. The circuit
parameters used in the study is chosen to have the same quality
factor
as the respective circuit component in order to simplify the
analysis and to facilitate the derivation of a solution. This
assumption of the same quality factor to the respective com-
ponent in the circuit will not affect on the following analytical
result. Because, the damping term in the differential equation
of the circuit model will be neglected in the transformation of
formula. Also, the high value of quality factor will not affect
essentially on the analytical result.
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A thyristor, as a switching device, plays an important role in
determining the system state. The turn-on operation and con-
ducting state of the thyristor are described as follows. A thyristor
holds a blocking state until a firing pulse is injected to the gate
at a forward biased condition, and then it turns on. The con-
ducting state is held by the forward current. It turns off when
the thyristor current decreases to zero and reverse bias voltage is
applied. The voltage and current waveform in TCR for the ideal
operating condition is shown in Fig. 2. The solid and dashed
lines indicate the TCR current and voltage, respectively.

B. Circuit Equations for TCR-SVC

The time of firing pulse injection is defined by the firing angle
in reference to the phase angle of the applied ac voltage. A

periodic firing pulse is injected symmetrically at every half cycle
of the ac voltage at periodic steady state. The conduction period
of the thyristor, which is expressed by an angle , varies with the
change in the firing angle . That is, the turn-off of the thyristor
depends on the voltage and current in the circuit at the firing, and
the TCR current is regulated by the firing angle. Fig. 2 denotes
the relationships between the angles, the ac voltage and TCR
current waveforms. The specified domain of the firing angle is
between and . Because the conduction angle reaches for
a firing angle less than , and a thyristor cannot turn on for the
firing angle larger than due to reverse bias voltage condition.
The conduction angle for a given firing angle is derived based
on the circuit equation as follows.

The dynamics of the system are dependent on the behavior
in the state variables of transmission line current , TCR cur-
rent , and shunt capacitor voltage . The circuit equation of
the system is expressed as (1) for the conducting condition of
thyristor

(1)
Here, time is in canonical form with the angular frequency .

This circuit equation becomes (2) when the thyristor is in
blocking condition

(2)

The state variables in (1) and (2) are associated with the fol-
lowing boundary conditions at the instant of turn-off to satisfy
the condition of continuity

(3)

In addition to the boundary condition at turn-off given in (3),
the periodic steady state condition with half-wave symmetry1 is

1The ac system, in which TCR-SVC is connected, has symmetric property
in the waveform due to the sinusoidal voltage waveform. Then, the system in
periodic steady state with fundamental frequency of the ac system shows half-
wave symmetry in their voltage and current waveform.

Fig. 3. Relationship between conduction angle � and firing angle � in half-
wave symmetrical periodic steady state.

represented by the following boundary condition at the instant
of turn-on

(4)

Equations (1) and (2) were solved to obtain the periodic
steady state solution with the boundary conditions given by (3)
and (4). The calculated relationship between firing angle and
conduction angle is given in Fig. 3. The solid line indicates
the solution, which does exist when the turn-on and turn-off
conditions of the thyristor are satisfied. That is, the turn-off
time point given by is the first time point after turn-on, where
thyristor current decreases to zero. The dashed line in
the figure is also the solution of (1) and (2), which satisfies the
boundary conditions of (3) and (4); however, it does not satisfy
the thyristor operating conditions. That is, there is an extra
point in time where the thyristor current reaches zero during
the conduction period , and it turns off before the conduction
period ends. Thus, the solution obtained as a dashed line cannot
be actually observed in the circuit. Fig. 3 also indicates that the
firing angle has the region in which there is no half-wave sym-
metrical periodic steady state solution ,
and the region in which coexisting multiple solutions exist

.
The occurrence of switching time bifurcation can be ex-

plained based on the numerical solutions for (1) and (2). The
TCR current waveform distorts with the oscillatory behavior
of the TCR-SVC. This is due to the second-order resonance
circuit of the shunt capacitor and the inductance in the TCR and
the transmission line. Then, the current waveform is obtained
as shown in Fig. 4(a). The dint at the center of the current
waveform in Fig. 4(a) is apart from zero, but it approaches to
zero according to increase of the firing angle . The thyristor
turns off when the dint reaches to zero as shown in Fig. 4(b),
but the successive waveform, drawn by the dashed line, cannot
be achieved in the circuit due to the extinction of thyristor.
Thus, the conduction period suddenly becomes small value.
The adverse phenomenon occurs in the increment of conduc-
tion period to the decrease of firing angle . That is, there is
nonsmooth change in the thyristor conduction period to the
smooth change of the firing angle. These phenomena are called
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Fig. 4. Current waveform of TCR (a) before and (b) after switching time bifur-
cation.

switching time bifurcation [11], [12]. The circuit state con-
verges to a periodic steady state after the onset of switching time
bifurcation, provided that the system shows a feasible periodic
solution to the given firing angle. The occurrence of switching
time bifurcation depends on the region of firing angle, which
has coexisting solutions of conduction angle. The solution set
for periodic steady state changes for the firing angle variation
around 2.548 and 2.705 shown in Fig. 3, where switching time
bifurcation were observed. A half-wave symmetric solution
cannot be obtained for . The half wave
asymmetric and subharmonic oscillations were found in this
region. The following sections discuss the relationship between
the occurrence of nonlinear phenomena and the solution of the
system.

III. HOMOGENEOUS EXPRESSION OF CIRCUIT EQUATION

AND THE RELATIONSHIP TO OCCURRENCE OF NONLINEAR

PHENOMENA

A. Hill’s Equation Related to TCR-SVC

This section focuses on the intrinsic characteristics of the cir-
cuit equations for the TCR-SVC. The circuit equations of the
TCR-SVC are respectively given by (1) and (2) for the con-
ducting and blocking conditions of the thyristor. They have con-
sistent form except for the term related to the TCR current .
Subsequently, the two equations can be consolidated into (5) by
applying a switching function

(5)

Here, the switching function takes the unit value (1) for the
conducting state of thyristor , and null value
(0) for the blocking state . The function

directly depends on the system state, which is determined by
the control parameter of the firing angle . Therefore, (5) can be
regarded as a second-order differential equation with a variable
parameter .

The TCR-SVC is interconnected to a utility grid which is ex-
pressed by an ac voltage source in the right-hand side of (5).
That is, the ac voltage source becomes a forced external ex-
citation term in the mathematical expression of the dynamical
system. Therefore, the homogeneous expression of the circuit
equation governs the intrinsic frequency of the system by con-

sidering the switching of the thyristor. The feasibility of non-
linear phenomena in the TCR-SVC is investigated based on the
relationship between the solutions in the homogeneous form and
the dynamics in the non-homogeneous form. The homogeneous
form of (5) is given by (6) with switching function

(6)
The second term in the left-hand side of (6) gives a damping

term. The criteria for the occurrence of nonlinear phenomena
can be notably observed by neglecting the damping term in the
equation, as in (7)

(7)

The switching function is a periodic function with period
when the operation of the TCR-SVC is in the half-wave

symmetrical periodic steady state. Then, (7) is a homogeneous
second-order differential equation with a periodic parameter .
It is obviously a type of “Hill’s equation” [20], [21].

B. Approximation by Mathieu’s Equation and Stability
Evaluation

Mathieu’s equation, given as (8), is a type of Hill’s equation
that has a sinusoidal periodic parameter

(8)

The solutions of Mathieu’s equation and their characteristics
have been studied with relation to the parameters and in
(8) [21]–[23]. The solutions of Mathieu’s equation are classi-
fied into 3 groups: periodic solutions, quasi-periodic solutions,
and solutions that diverge exponentially. The parameters in the
stable region give periodic solutions or quasi-periodic solutions.
On the other hand, the parameters in the unstable region make
the solutions diverge over time. The domain of parameters space

in Mathieu’s equation is sectioned into the stable and un-
stable regions, as shown in Fig. 5. The stable regions are filled
with white and the unstable regions are filled with gray. The
dotted and solid lines in the figure indicate the borders between
the stable and unstable regions. The solid line gives the param-
eter sets for the borders when Mathieu’s equation has a peri-
odic solution with period as a general solution. The dotted
line gives the parameter sets for borders when Mathieu’s equa-
tion has a periodic solution with period . The dashed line,
plotted in the form of a parabolic curve gives the parameter sets
for and , which is obtained from (7) by the approximation of
switching function as following.

The switching function is expanded to the Fourier series
for the half-wave symmetrical periodic steady state. Mathieu’s
equation is approximated with the dc and second-order compo-
nents of Fourier coefficient as (9). Since, the switching function
is unipolar and pulsates twice an ac voltage cycle

(9)

Here, is the th order of Fourier coefficient, and
corresponds to the fundamental frequency component of the
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Fig. 5. Discrimination of stable and unstable parameter region for Mathieu’s
equation and corresponding parameters of TCR-SVC operation.

Fig. 6. Example of switching function and approximated switching function in
Mathieu’s equation �� � �������.

switching function attributed to the symmetry of the ac wave-
form.

Fig. 6 shows the relationship between the original switching
function and the approximated switching function by con-
sidering the case of as an example. Therefore, the
parameters in (8) are derived from (10) using Fourier coeffi-
cients

(10)

Based on the above formulation, we can relate the origin of
nonlinear phenomena in TCR-SVC with the stability of solu-
tions in Mathieu’s equation. There are parameter sets for ap-
proximated switching function , which are located in the un-
stable region of Mathieu’s equation. These correspond to the
conduction angle around 0.576, 1.466, and 2.286. The con-
duction angles around 0.576 and 2.286, respectively, lo-
cated in the region of firing angle and

as shown in Fig. 3. The occurrence of non-
linear phenomena is observed in these firing angle regions. The
parameter sets for these conduction angles are sandwiched by
the borders given with the solid line in Fig. 5, in which borders
Mathieu’s equation has a periodic solution with period . The
parameters for the conduction angle are also located
in the unstable region, which is encompassed by the parameter
sets of the borders given by the dotted line, in which the period
of periodic solution is . However, nonlinear phenomena do not

appear over this unstable region and the symmetrical half-wave
periodic solution is obtained, as shown in Fig. 3.

There are choosy emergences of nonlinear phenomena in the
unstable region of Mathieu’s equation. The incidence are con-
fined to the unstable region surrounded by the borders for the
periodic solution with period . Then, it can be attributed to
the resonance of the TCR-SVC circuit. That is, the TCR-SVC
is amenable to the external excitation of an ac voltage source
with period when the natural frequency of the homogeneous
expression for the system coincides with period and does not
keep the stability. However, the TCR-SVC is insensitive to the
external excitation with period and keeps the stability, even
if the homogeneous equation is unstable when the region is en-
closed by the stability boundary with period .

C. Discrimination of Nonlinear Phenomena Occurrence
Based on Characteristic Equation of Hill’s Equation

The last subsection discussed that the region of parameters,
which cause nonlinear phenomena in the TCR-SVC, coincides
with the unstable regions of Mathieu’s equation. However, their
emergences are confined to the unstable region surrounded by
the boundary for the periodic solution with period . This
section discusses the relationship among the parameter region,
stable solution, and the occurrence of nonlinear phenomena.
The discussion is based on the characteristics of Hill’s equa-
tion, which carries out the analysis with accurate behavior of
the switching function.

Hill’s equation, (7), is a second-order ordinary differential
equation which has a general solution as a linear combination of
two linearly independent fundamental solutions. The two funda-
mental solutions and are chosen to satisfy the initial
conditions given in

(11)

The characteristic equation of Hill’s equation is given by (12)

(12)

The fundamental solutions, which correspond to the accurate
switching function , are derived as follows. The state variable
corresponds to the solution of the following differential equation
for the conducting period of the thyristor

(13)

The two fundamental solutions, which satisfy the initial con-
ditions (11), can be obtained by (14)

(14)

Here, .
The state variable corresponds to the solution of the

following differential equation for the blocking period of the
thyristor

(15)
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Fig. 7. Variation of discriminant for characteristic equation of Hill’s equation
to parameter �.

The state variable and its time derivative are contin-
uous at , which are the boundary conditions between (13)
and (15). Then, the two fundamental solutions of (15) are ob-
tained

(16)
Here, .

Therefore, and are calculated from (16).
The characteristic equation of Hill’s equation is obtained as fol-
lows:

(17)

The stability of the solutions of Hill’s equation can be esti-
mated based on the discriminant of characteristic equation
(17). Fig. 7 shows the discriminant for the parameter of con-
duction angle . The solution of Hill’s equation diverges when
the discriminant becomes .

The characteristic equation has solutions with multiple roots
when the discriminant becomes . Hill’s equation has a
periodic function with period as a general solution following
Floquet’s theory. Whereby the solution of the characteristic
equation with multiple roots becomes 1 at 1.375 and 1.550.
On the other hand, Hill’s equation has the periodic function
with period as a general solution when the multiple root
becomes 1 at 0.635, 0.698, 2.276, and 2.459.

The ac voltage source connected to the TCR-SVC corre-
sponds to the external forced excitation in the dynamical form.
Thus, Hill’s equation, which is the homogeneous equation of
the TCR-SVC with an accurate switching function, has indef-
inite solution, when the period of external excitation coincide
with the periodic solution with period . This corresponds to
the region of parameter , in which a nonlinear phenomenon
occurs as shown in Fig. 3.

The above discussions are based on the characteristics
of Hill’s equation, which is the homogeneous equation of
the TCR-SVC without the damping term. The effect of the
damping term on the stability should be assessed because it

Fig. 8. Numerical simulation result of TCR-SVC (The occurrence of switching
time bifurcation, � changes from 2.705 to 2.722 at � � �).

may converge and stabilize the solution, even if the solution of
Hill’s equation diverges. We confirmed that the homogeneous
equation (6) has parameter regions of
and , where the solution diverges even if
the effect of damping term is considered. These respectively
coincide with the unstable region of and

in Hill’s equation (7). Although, the
parameter region of yields an unstable so-
lution when neglecting the damping effect in the homogeneous
equation as (7), but it produces a stable solution when damping
in the circuit is considered by (6).

The numerical analysis based on the circuit equation of
TCR-SVC confirmed the occurrence of nonlinear phenomena
around this parameter region. Fig. 8 shows the occurrence
of switching time bifurcation in the time domain analysis of
TCR-SVC, when the firing angle is changed from 2.705
to 2.722 at . The anomalous phenomenon can be esti-
mated from the jump of solution set for periodic steady state
shown in Fig. 3. This phenomenon also coincide with the
unstable solution of Hill’s equation to the parameter region
of , which becomes stable when damping
term in the homogeneous form in (6) is considered. Therefore,
the result indicated that there is a resonance between the nat-
ural resonant frequency of the circuit and an external forced
excitation, even if damping exists in the circuit.

IV. CONCLUSION

This paper discussed the relationship between the occurrence
of nonlinear phenomena in a TCR-SVC, and the parametric ex-
citation of intrinsic oscillation in the circuit with external exci-
tation by ac system.

The homogeneous expression of the TCR-SVC model equa-
tion can be estimated by Hill’s equation with expressing the
switching function by a periodic parameter and neglecting
the damping term. Furthermore, it can be approximated as
Mathieu’s equation by extracting the dc and fundamental
frequency components of the switching function. It became
clear that the regions where nonlinear phenomena occur in the
TCR-SVC coincide with the regions where Mathieu’s equation
gives unstable solutions. The solution of Hill’s equation with
the accurate switching function affirmed the resonance of
TCR-SVC excited by the ac voltage. The resonance was also
validated with the discriminant for the characteristic equation.

The proposed analysis makes it possible to analyze system
behavior associated with the switching dynamics and also the
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parametric resonance due to external forced excitation. The ba-
sics of the analysis procedure used in this paper are for the clas-
sical dynamical system. Therefore, the analysis is expected to
apply other types of periodically excited electrical switching
system. It can be applied to the analysis of nonlinear phenomena
for other types of nonautonomous switching converter circuit
which is interconnected to ac power system. Moreover, it can
be applied to analyze motor drive system, micro electronic ma-
chine, etc.
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