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Abstract—This paper is concerned with the design of observers
and dynamic output-feedback controllers for positive linear sys-
tems with interval uncertainties. The continuous-time case and the
discrete-time case are both treated in a unified linear matrix in-
equality (LMI) framework. Necessary and sufficient conditions for
the existence of positive observers with general structure are es-
tablished, and the desired observer matrices can be constructed
easily through the solutions of LMIs. An optimization algorithm
to the error dynamics is also given. Furthermore, the problem of
positive stabilization by dynamic output-feedback controllers is in-
vestigated. It is revealed that an unstable positive system cannot
be positively stabilized by a certain dynamic output-feedback con-
troller without taking the positivity of the error signals into ac-
count. When the positivity of the error signals is considered, an
LMI-based synthesis approach is provided to design the stabilizing
controllers. Unlike other conditions which may require structural
decomposition of positive matrices, all proposed conditions in this
paper are expressed in terms of the system matrices, and can be
verified easily by effective algorithms. Two illustrative examples
are provided to show the effectiveness and applicability of the the-
oretical results.

Index Terms—Dynamic output-feedback, interval systems,
linear matrix inequalities (LMIs), positive observers, positive
systems, uncertain systems.

I. INTRODUCTION

P OSITIVE systems are dynamic systems whose state vari-
ables are constrained to be positive (at least nonnegative)

at all times. Such systems abound in various fields, e.g., biomed-
icine [1], [2], pharmacokinetics [3], ecology [4], chemical en-
gineering [5], industrial engineering [6], economics, and so on.
Recently, an interesting application of positive system model
to TCP-like Internet congestion control has also appeared [7],
[8]. In view of these widespread applications, it is necessary
to investigate the analysis and synthesis problems for positive
systems. However, a lot of well-established results for general
linear systems cannot be readily applied to positive systems due
to the fact that positive systems are defined on cones rather than
linear spaces. For example, in general linear system theory, if
a system is controllable, the poles of the system can be placed
arbitrarily, whereas for positive linear systems, this feature may
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not be true owing to the positivity constraints on systems ma-
trices. Therefore, the study on positive system theory has ap-
pealed to an increasing number of researchers all over the world.

The early mathematical study on positive systems (nonnega-
tive matrices) can be traced back to Markov, Perron, and Frobe-
nius, just to mention a few. As for recent developments on non-
negative matrices, we refer readers to [9], [10] and references
therein. The unifying approach of system theory to positive sys-
tems was initiated by David G. Luenberger in his famous book
[11]. Since then, a large number of theoretical and practical
contributions to this field have emerged. The positive realiza-
tion problem has been investigated thoroughly during the past
several decades, and many results can be found in the litera-
ture [12]–[18]. Reachability and controllability for positive sys-
tems have received much attention as well [19]–[23], and a good
survey is provided in [24]. As for some results on 2-D positive
systems, we refer readers to [25]–[28], and references therein.
In contrast with the abundance in the behavior analysis and the
property characterization, only a few results on the synthesis
and feedback control are available. The problem of positive or-
thant stabilizability and holdability with the scalar input was
extensively studied in [29]. Based on Geršgorin’s theorem and
quadratic programming, a sufficient condition for the existence
of state-feedback controllers guaranteeing the stability and pos-
itivity of the closed-loop system has been proposed in [30]. The
problem of stabilization into the interior of positive orthant with
the scalar input has been solved by means of affine state feed-
back in [31]. Some results on pole assignment for a class of pos-
itive systems with cohort-type model structure can be found in
[32]. The optimal output feedback controller design for set-point
regulation of positive linear systems with structural constraints
on the system matrices has been treated in [33]. Recently, the
sysnthesis problem of state-feedback controllers guaranteeing
the closed-loop system to be asymptotically stable and positive
has been investigated by the LMI approach and the linear pro-
gramming approach in [34] and [35], respectively. In terms of
the structural decomposition on the system matrices, a design
approach to positive observers of compartmental systems has
been established in [36]. A few results on the design of positive
observers by using a linear programming approach are available
in [37], [38], and some discussion on the existence and synthesis
of positive observers can be found in [39] and [40].

In the literature aforementioned, it is assumed that parame-
ters of systems are exactly known. However, in practical appli-
cations, it is inevitable that uncertainties enter the system pa-
rameters due to some unpredictable factors, e.g., limitation in
data acquisition [41], errors in measurements, stochastic dis-
turbances from the environments [42], and the individual vari-
ability of plants [1]. Although there are results on robust stability
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analysis for positive systems [43], [44], the synthesis problems
for uncertain positive systems have not been fully investigated,
especially for the output feedback case. This forms the motiva-
tion of our study.

In this paper, we investigate the design problem of positive
observers and dynamic output-feedback controllers for positive
linear systems with interval uncertainties. Being different from
widely used algebraic techniques such as monomial transfor-
mation and decomposition, both the continuous-time case and
the discrete-time case are treated in a unified linear matrix in-
equality framework. Necessary and sufficient conditions on the
existence of positive observers are established, and the desired
observer matrices can be constructed easily through the solu-
tions of LMIs. An optimization algorithm to the error dynamics
is also given. Moreover, it is revealed that an unstable posi-
tive system cannot be positively stabilized by a certain dynamic
output-feedback controller without taking the positivity of the
error signals into account. When the positivity of the error sig-
nals is considered, an LMI-based synthesis approach is pro-
vided to design the stabilizing controllers. Unlike other con-
ditions which may require structural decomposition of positive
matrices, all the conditions proposed in this paper are expressed
in terms of the system matrices, and can be verified easily by
effective algorithms.

The remainder of this paper is organized as follows. Section II
presents some notation and preliminaries. Sections III and IV
are devoted to solving design problem of positive observers and
controllers, respectively. A brief discussion on the design of re-
duced-order observers and controllers is presented in Section V.
Two illustrative examples are provided in Section VI to show
the effectiveness and applicability of the theoretical results. In
Section VII, we summarize our results.

II. NOTATION AND PRELIMINARIES

Let be the set of real numbers; denotes the -dimen-
sional Euclidean space; is the set of matrices for
which all entries belong to .

For a matrix , denotes the element located
at the th row and the th column. A matrix is said to be
nonnegative, denoted by , if ; it is
said to be positive, if , . Due to the
fact that the definitions of nonnegative and positive matrices are
equivalent, except when a nonnegative matrix is is identically
zero which is the degenerate case and is of no interest, we do not
distinguish these two throughout this paper. That is to say that
we consider these two are equivalent in general cases. A matrix

is called Metzler, if all its off-diagonal elements
are nonnegative, i.e., , , . For matrices

, the notation means that .
For matrices , the notation
means that .

For symmetric matrices and , the
notation (respectively, ) means that the ma-
trix is positive-semidefinite (respectively, positive-def-
inite). is the identity matrix with appropriate dimension, and
the superscript “ ” represents the transpose. For any matrix

, and
denote the spectral radius and spectral

abscissa of , respectively, where is the spectrum of .

The symbol is used to denote a matrix which can be in-
ferred by symmetry. Matrices, if their dimensions are not ex-
plicitly stated, are assumed to have compatible dimensions for
algebraic operations.

We give the following definition on positive linear systems.
Definition 1:

1) Consider a continuous-time linear system

(1)

where , , and are the
system state, control input, and output, respectively, and

, , are system matrices with compatible dimensions.
System (1) is said to be a (continuous-time) positive linear
system if for all and all input , we
have and for .

2) Consider a discrete-time linear system

(2)

where , , and are the
system state, control input, and output, respectively, and

, , are system matrices with compatible dimensions.
System (2) is said to be a (discrete-time) positive linear
system if for all and all input , we
have and for .

The following lemma provides a direct characterization for
positive linear systems.

Lemma 1 ([45]):
1) The system in (1) is a continuous-time positive linear

system if and only if

is Metzler

2) The system in (2) is a discrete-time positive linear system
if and only if

It should be stressed here that, when and
are not satisfied, may not stay in the

first orthant even if the conditions of Lemma 1 holds. In other
words, and are essential for
the positivity of systems. In the real world, this is often guaran-
teed by the features of practical physical systems.

The asymptotic stability conditions for positive linear sys-
tems are given in the following lemma.

Lemma 2 ([45]):
1) The continuous-time positive linear system in (1) is asymp-

totically stable if and only if there exists a matrix
such that
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2) The discrete-time positive linear system in (2) is asymp-
totically stable if and only if there exists a matrix

such that

We end this section by giving two lemmas which will be used
in the sequel.

Lemma 3 ([9], [10]): For matrices , ,
1) If , then ,
2) If and are Metzler and , then .
Lemma 4: For any matrices , with ,

Proof:

III. POSITIVE OBSERVER DESIGN

In this section, we consider observer design for the following
uncertain interval positive system:

(3)

where and are unknown con-
stant matrices, and is Metzler and

. Identity Luenberger observer structure used in [36] is not
suitable for such systems, and the more general observer struc-
ture which will be adopted is of the form

(4)

where and are the observer matrices to
be designed. Throughout this section, we make the following
assumption.

Assumption 1: The matrix is asymptotically stable.
Define the error signal as , then the aug-

mented observing system is given by

(5)

For general linear systems, it is only required that system (5)
is asymptotically stable. For positive linear systems, however,
this specification is not enough, since not only the stability of
(5) but also the positivity of should be guaranteed. To this
end, it is natural to require, according to Lemma 1, that
and is Metzler. In addition, as seen from [36], the induced
error dynamic system is a positive system for the identity Luen-
berger observer. It is desirable that this feature also holds for
the general case. In other words, (5) is a positive system. In
fact, the positivity of is significant for the design of dy-
namic output-feedback controllers, which will be discussed in
the sequel. Therefore, the problem of continuous-time general
observer (CGO) is stated as follows.

1) Problem 1 (CGO): Given a positive system in (3), de-
sign Metzler and such that system (5) is positive
and asymptotically stable for any and

.
For the discrete-time case

(6)

we similarly have the following observer structure:

(7)

Then, the augmented observing system is given by

(8)

Likewise, we have the following problem of discrete-time gen-
eral observer (DGO).

2) Problem 2 (DGO): Given a positive system in (6), de-
sign and such that system (8) is positive
and asymptotically stable for any and

.
Remark 1: The positivity specification on the error signals

is not introduced only for the purpose of consistence with
the identity Luenberger observer case, but also facilitates the
synthesis of the desired positive observer. Although this speci-
fication may cause some conservatism, it is noted that the posi-
tivity of the error signals will not affect that of the estima-
tion . If the initial condition does not satisfy ,
the error signals may not stay in the positive orthant for all

, but will still remain positive.
Traditional detectability is no longer sufficient to guarantee

the existence of solutions to the problems of CGO and DGO. Of
course, it is still a necessary condition. We are now in a position
to establish necessary and sufficient conditions to the problems
of CGO and DGO in terms of LMIs.

Theorem 1: There exists a solution to Problem CGO if and
only if there exist matrices ,

, , Metzler such
that the following LMIs hold:

(9)

(10)

Under the conditions, desired observer matrices can be obtained
as

(11)

Proof:
Sufficiency: From (9), we obtain that . Therefore,

the obtained is Metzler, and , since is diagonally
strictly positive.

It follows from (10) and (11) that:

which implies that

(12)
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For any and , it is obvious that

(13)

Combining (12) and (13) yields that, for any
and

(14)

which shows that augmented system (5) is a positive system.
From (9) and (11), we obtain that

which, by Lemma 2, implies that

(15)

By (13), we know that, for any and

(16)

Then, combining (14)–(16) and by Lemma 3, we obtain that, for
any and

which means that augmented system (5) is asymptotically stable
for any and . This proves the
sufficiency.

Necessity: Suppose that there exist and such that ob-
server (4) is positive, i.e., is Metzler, and , and aug-
mented system (5) is a positive asymptotically stable system for
any and . Then, by Lemma 2, we
obtain that there exist matrices

and such that

(17)

By setting

(18)

we readily obtain, with the diagonal strict positivity of , that
and is Metzler. Substituting (18) into (17), we

further obtain (9).
Since augmented system (5) is positive for any

and , we obtain that

is Metzler. This implies that . By the
positivity of and (18), we further obtain that

which is equivalent to (10). This proves the necessity.
For the discrete-time case, we have the following theorem.
Theorem 2: There exists a solution to Problem DGO if and

only if there exist matrices ,
, , such

that the following LMIs hold:

(19)

(20)

Under the conditions, desired observer matrices can be obtained
as

(21)

Proof:
Sufficiency: By the diagonal positivity of , ,

and , we obtain from (21) that and .
It follows from (20) and (21) that:

which, by the diagonal positivity of , implies that

(22)

For any and , it is obvious that

(23)

Combining (22) and (23) yields that, for any
and

(24)

which shows that augmented system (8) is a positive system.
It follows from (19), (21), and Schur complement equivalence

that:

which, by Lemma 2, implies that

(25)

It is obvious that, for any and

(26)
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By combining (25)–(26) and using Lemma 3, we obtain that, for
any and

which implies that augmented system (8) is asymptotically
stable for any and . This proves
the sufficiency.

Necessity: Suppose there exist , such that
augmented system (8) is positive and asymptotically stable for
any and . Then, by Lemma 2, we
obtain that there exist matrices

and such that

(27)

By setting

(28)

we readily obtain, with the diagonal strict positivity of , that
and . Substituting (28) into (27), we further

obtain (19).
Since augmented system (8) is positive for any

and , we obtain that

This implies that . By the positivity of
and (18), we further obtain that

which is equivalent to (20). This proves the necessity.
Remark 2: Due to the uncertainties in the system matrices,

many useful structural features, such as irreducibility or mono-
mial similarity to the companion form, may disappear. The con-
ditions based on these features may become numerically in-
tractable. Therefore, the LMI-type conditions of Theorems 1
and 2, which could be checked easily by effective algorithms
such as the interior-point method [46], may be better in the sense
of numerical computation.

Remark 3: Theorems 1 and 2 present necessary and suffi-
cient conditions on the existence of desired robust observers for
interval positive linear systems. Unlike general conditions on
interval systems which may require enormous computation to
check the necessity, it is only required to test a vertex of the
uncertain domain of the system matrices in Theorems 1 and 2.
This reduces drastically the computational burden, and makes
the conditions easy to use.

When the external disturbance is taken into account, the
presented results can be extended to the disturbance attenuation
observers with performance specifications, such as and
norm, on the error signals or the augmented state variables in a
standard way. Further results on these topics are not intended to
be presented here due to the page length consideration.

When the external input is applied to the system, i.e.,

where , are defined as previously, and is assumed to be
known, we use the following observer structure for the contin-
uous-time case:

Some manipulations give that

It follows that the error signals may no longer converge to zero
owing to the excitation of . To make the error small, var-
ious standard design techniques, such as optimization
[47], optimization [48], model predictive control [49], can
be employed, but details on this issue are omitted due to their
maturity. Here, by making use of the positivity of the consid-
ered system, we propose another approach based on the iterative
LMI optimization technique to reduce the error. On one hand,
it is desirable that the error signals converge to its steady as fast
as possible. Hence, a prescribed decay rate can be imposed to
the system, i.e.,

where and is a prescribed decay rate. On the other hand,
to make the steady error small, we may require the norm of

is small enough for and .
It can be shown easily that, for

, .
In view of this feature, we may solve the following convex op-
timization problem to minimize the norm of for

and .
Minimize , subject to

Therefore, an iteration LMI algorithm is constructed to optimize
the observer matrices.

Algorithm 1:

1) Set , and find two initial observer matrices and
solving Problem CGO.

2) For fixed and , find a such that

3) For fixed and , solve the following convex
optimization problem with respect to , Metzler , and

:

Minimize , subject to
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Denote , , and as the solution of the problem. If

where is a prescribed bound, then and are
desired observer matrices. STOP.

4) If

where is a prescribed tolerance bound, then there may
not exist desired observer matrices. STOP. Otherwise, set

, and go to Step 2.

It is noted that is monotonic decreasing with respect to
and lower bounded by 0, and hence the convergence of the

iteration is guaranteed. The effectiveness of the algorithm will
be shown through an example in the sequel. For the discrete-
time case, a similar algorithm can be constructed, but omitted
here for brevity.

IV. DYNAMIC OUTPUT-FEEDBACK STABILIZING

CONTROLLER DESIGN

In this section, we turn to consider the positive stabilization
problem by a dynamic output-feedback controller. Consider the
following interval positive linear systems with input:

(29)

where , , and are
unknown constant matrices. Here, is Metzler and

, . The general controller
structure under consideration is of the form

(30)

where , , and are the controller
matrices to be designed. When applying (30) to (29), the closed-
loop system will become

(31)

On one hand, as discussed in [29]–[31], it is desired that
remains in the positive orthant and converges to the origin. On
the other hand, it is natural to require , the estimate of ),
to be nonnegative as well. Therefore, the problem to be solved
is to design , and such that the closed-loop system (31)
is positive and asymptotically stable. Unfortunately, we shall
prove that this is impossible.

Theorem 3: For a given unstable positive system in (29), there
exist no , and such that the closed-loop system (31) is
positive and asymptotically stable.

Proof: Assume that there exist , and such
that (31) is positive and asymptotically stable, then, ac-
cording to Lemma 2, there must exist diagonal ma-
trices and

such that the following LMI
holds:

With this, we obtain that

which implies that the original system (29) is asymptotically
stable. This contradicts the assumption that the original system
is unstable. Therefore, there exist no , and such that the
closed-loop system (31) is positive and asymptotically stable.

Although Theorem 3 gives a negative answer to the positive
stabilization problem aforementioned, this does not mean that
no approach could be used. The key lies in the positivity of the
error signal, which is defined as

If we choose as the new augmented state
variable, then the new closed-loop system will become

(32)
It is possible that there exist , and such that (32) is pos-
itive and asymptotically stable for a given unstable open-loop
system in (29). Hence, we turn to consider the positive stabi-
lization problem based on the closed-loop system in (32). In the
meanwhile, to guarantee the positivity of the estimate , it
is natural to require that and are Metzler and nonnega-
tive, respectively. It is easy to show that there exists no non-
negative such that (32) is positive and asymptotically stable
for a given unstable system in (29). Here, we only consider de-
signing a nonpositive to positively stabilize (29). As for de-
signing a sign-indefinite , it remains unsolved and needs fur-
ther study. Therefore, the problem of continuous-time general
controller (CGC) is formulated as follows.

1) Problem 3 (CGC): Given a system in (29), design Metzler
, , and such that (32) is positive and asymp-

totically stable for any , and
.

For the discrete-time case

(33)

we have the following theorem.
Theorem 4: For a given unstable positive system in (33), there

exist no , and such that the closed-loop

is positive and asymptotically stable.
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Hence, we likewise turn to consider the new closed-loop
system given by

(34)

The problem of discrete-time general controller (DGC) is stated
as follows.

2) Problem 4 (DGC): Given a system in (33), design
, and such that (34) is positive and asymp-

totically stable for any , and
.

Remark 4: Compared with the single input state-feedback
case [29], [31], the multi-input and multi-output case considered
in this paper is more general and arduous. Not only the positivity
and asymptotic stability of controlled are considered, but
also the positivity of the estimated signal is guaranteed.
This allows us to use as a substitute of , in addition
to constructing control signals, for further applications such as
state monitoring and fault detection.

We first provide easy-to-check necessary conditions on the
existence of solutions to Problems CGC and DGC. If they are
not satisfied, then we can stop further computing and conclude
that there exists no solution.

Theorem 5: If there exists a solution to Problem CGC, then
the following linear inequalities with respect to Metzler ,

, and have a solution:

(35)

(36)

(37)

Proof: If there exists a solution to Problem CGC, then we
have that

(38)

(39)
It follows from (38) that

which implies (35). In addition, it is evident that (39) implies
(36) and (37). This completes the proof.

For the discrete-time case, we similarly have the following
theorem.

Theorem 6: If there exists a solution to Problem DGC, then
the following linear inequalities with respect to ,

, and have a solution

Next, we further study sufficient conditions and the corre-
sponding synthesis approach for Problems CGC and DGC.

Theorem 7: There exists a solution to Problem CGC if there
exist matrices , , Metzler , and
such that

(40)

(41)

(42)

where

(43)

Proof: It follows from (41) and (42) that and
are Metzler and nonnegative, respec-

tively. Combining this with and yields that,
for any , and

is Metzler(44)

and

(45)

In addition, from being Metzler and , we obtain that,
for any

(46)

and

(47)

Therefore, from (44)–(47), we have that, for any
, , and , (32) is

positive.
It follows from (40), by Schur complement equivalence, that:

(48)

which implies that

(49)
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where the following relationship is used:

Rewriting (49) yields that

which implies that

Therefore, is asymptotically stable. That is

(50)

Some algebraic manipulations give that

(51)

In addition, it is easy to show that

(52)

Therefore, by combining (50)–(52) and using Lemma 3, we ob-
tain that

which means that (32) is asymptotically stable for any
, , and . This com-

pletes the proof.
When in (40) is fixed, (40)–(42) become LMIs, of which

their feasibility could be verified easily by conventional LMI
solver. In addition, it can be seen from the proof that the left
side of (48) achieves its minimum when . Therefore,
inspired by [50], the following iteration LMI (ILMI) algorithm
is provided to solve (40)–(42).

Algorithm 2 (ILMI Algorithm):

1) Select and solve from the following algebraic
Riccati equation:

Set and .

2) Solve the following optimization problem with respect to
, Metzler , , and . Minimize

subject to (41)–(42) and the following LMI constraint:

Denote as the optimal value of .

3) If , then , and are desired controller matrices.
Stop

4) Solve the following optimization problem with respect to
, Metzler , , :

Minimize subject to (41)–(42) and the above LMI
constraint with .

Denote as the optimal value of .

5) If , which is a prescribed tolerance bound,
then there may not exist a solution. Stop.

Otherwise, set and , then go to Step 2.
For the discrete-time case, we provide the following theorem.
Theorem 8: There exists a solution to Problem DGC if there

exist matrices , , , and
such that

(53)

(54)

(55)

where , , , and are defined in (43).
Proof: Following the same line as in the proof of Theorem

7, we can derive that (34) is positive for any ,
and . Next, we will show the

stability of (34). It follows from (53), by Lemma 4, that

which, by Schur complement, is equivalent to

Noting that

we obtain that

(56)

Rewriting (56) yields that
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which implies that

Hence, is asymptotically stable, that is

It is easy to show that, for any , ,
and

Therefore, by Lemma 3, we obtain that, for any ,
, and

This completes the proof.
An algorithm similar to the continuous-time case (Algorithm

1) can be constructed, but omitted here for brevity.
Remark 5: Unlike other synthesis approaches for dynamic

output-feedback controllers [51], the controller matrices to be
designed in Theorems 7 and 8 are separated from the Lyapunov
matrices, and no parameterization is applied to them. This en-
ables us to impose positivity specifications on the controller ma-
trices in an easy way. In addition, since there are no structural
constraints on the system matrices, it is anticipated that the ap-
plicability of the results is better.

Remark 6: It is noted that the solution sequence
is monotonic decreasing and bounded below for a fixed , and
thus the convergence of the algorithm is guaranteed. It should
be emphasized that one cannot conclude that there exists no so-
lution to Problem CGC or DGC even if no solution can be found
via Theorems 7 or 8 and the corresponding ILMI algorithm,
since Theorems 7 or 8 is merely a sufficient condition and the
solution obtained through the ILMI algorithm may not be glob-
ally optimal. As a matter of fact, the selection of initial will
affect the convergence speed of the algorithm and the obtained
solution. If the algorithm fails to obtain a stabilizing solution,
we may select another and run the algorithm again.

Remark 7: It is obvious that, under the action of the designed
controller (30), the state vectors , and will be
nonnegative if the initial condition ,
and are satisfied. One may ask why (31) is not a
positive and asymptotically stable system even when and

are nonnegative and converge to the origin. The reason
for this is that the invariant set associated with (31) is not the
positive orthant but the cone defined by

In other words, any trajectory of (31) starting from
will remain in for . If a

positive system can be called positive orthant invariant, then
(31) with , and obtained through Theorem 6 can be

viewed as invariant. It is not difficult to show that a necessary
and sufficient condition to Problem CGC is that there exist Met-
zler , and such that (31) is asymptotically
stable and invariant. This interpretation may be helpful to
seek less conservative conditions for Problem CGC, and to fur-
ther establish solvable necessary and sufficient conditions for
the positive stabilization problem with sign-indefinite . For
the discrete-time case, we also have similar remark. These may
consist of some interesting problems for further investigation.

When uncertainties in the input matrix disappear, i.e.,
, Theorems 7 and 8 will become necessary and sufficient

conditions to Problems CGC and DGC.
Theorem 9: There exists a solution to Problem CGC with

if and only if there exist matrices , ,
Metzler , and such that (40)–(42) hold.

Theorem 10: There exists a solution to Problem DGC with
if and only if there exist matrices , ,

, , and such that (53)–(55) hold.
The sufficiency is an immediate result from Theorems 7 and

8. It suffices to prove the necessity. For the continuous-time, the
proof of the necessity can be conducted by the similar line as in
[50]. Here, we only provide the proof of the necessity for the
discrete-time case.

Discrete-Time Case:
Necessity: Assume that (34) is positive and asymptotically

stable for any and , then

(57)

and

(58)

where . Obviously, (57) implies (54) and (55).
Next, we will show that (53) holds. Since

where , , with , , and are defined in
(43), it follows from (58) that there exists such that

It is easy to find a large enough scalar such that

which is equivalent to

By setting , we obtain that

(59)

Re-writing (59) yields that

(60)
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Set , then

With this and (60), we obtain that

which, by Schur complement, is equivalent to (53). This com-
pletes the proof.

Remark 8: In fact, by removing the requirement
and adding the condition

Theorems 9 and 10, when , can be also extended to
solve the problem of positive stabilization by a dynamic output-
feedback controller with a sign-indefinite , and the conditions
are still necessary and sufficient.

V. FURTHER RESULTS ON REDUCED-ORDER

OBSERVERS AND CONTROLLERS

In practical applications, it is often desirable to construct re-
duced-order observers and controllers due to the requirement
on high speed data processing or the limit of computation ca-
pacity. Hence, in this section, we briefly discuss this problem
based on the results presented previously. Here, we only present
the results for the continuous-time case. The results for the dis-
crete-time case can be conducted in a similar way.

Consider the following class of interval positive linear
systems:

(61)

where and are the same as defined in Section III;
is the signal to be estimated; is assumed to be a
known matrix. The structure of reduced-order observers is given
as

where and are the observer matrices to be
designed. Define the error signal as , then
the augmented observing system is given by

(62)

Therefore, the problem of reduced-order continuous-time gen-
eral observer (RCGO) is formulated as follows.

1) Problem 5 (RCGO): Given a system in (61), design
Metzler and such that (62) is positive and asymptot-
ically stable.

Theorem 11: There exists a solution to Problem RCGO if and
only if there exist matrices ,

, , Metzler such
that the following LMIs hold:

Under the conditions, desired observer matrices can be obtained
as

When control input is taken into account, the model becomes

(63)

where , , and are the same as previously defined. The
reduced-order controller under consideration is of the form

where , , and are the controller
matrices to be designed. Define the error signal as

, then the closed-loop system is given by

(64)
Therefore, the problem of reduced-order continuous-time gen-
eral controller (RCGC) is stated as follows:

2) Problem 6 (RCGC): Given a system in (63), design Met-
zler , , and such that (64) is positive and
asymptotically stable.

Theorem 12: There exists a solution to Problem RCGC if
there exist matrices , , Metzler , , and

such that

where
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Fig. 1. Mammillary model with three compartments.

VI. ILLUSTRATIVE EXAMPLES

In this section, two examples are provided to demonstrate the
effectiveness and applicability of the theoretical results.

1) Example 1: Consider a mammillary model depicted in
Fig. 1 with observation only from the central compartment,
where positive represent the flow rate constants. This model
setting has widely been used to analyze the dynamics of thyroid
hormone metabolism [52]–[54]. The mathematical description
is given by the following differential equation:

where denotes the quantities of
substance in compartments.

To estimate the quantities in compartments 2 and 3, we can
construct an observer. Assume that the estimated parameters for
this model are

Then, by using the MATLAB LMI Toolbox, the LMIs in The-
orem 1 are feasible with the following solution:

Therefore, desired observer matrices can be obtained as

Fig. 2. State estimation of � ���.

Fig. 3. State estimation of � ���.

For the decay rate constraint , we, by using Algorithm
1 after 10 iterations, further obtain optimized observer matrices
as follows:

Under the excitation of inputs

Figs. 2 and 3 show the actual states and their estimates obtained
through the observer and the optimized observer by taking five
samples randomly on the uncertain and .

2) Example 2: Consider a certain pest’s structured popula-
tion dynamics described by the following Leslie matrix model,
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Fig. 4. Open-loop system.

named after British ecologist P. H. Leslie who popularized age-
structured models for animal populations in the midtwentieth
century.

where , and

number of juvenile pests at time

number of immature pests at time

number of adult pests at time

Here, denotes a birth rate for parents in the th age class, and
denotes a survival rate for those in the th age class passing

into the ( )th. The structure of the input matrix means that
only birth rates can be affected by external inputs. The structure
of the output matrix means that only the sum of number of im-
mature and adult pests can be observed.

To annihilate such pest in a certain district, we can design an
output-feedback control law as follows:

Assume that the estimated parameters for this model are given
as

Fig. 5. Closed-loop system.

then, by using the ILMI algorithm, we obtain a stabilizing con-
troller after 58 iterations, and

Fig. 4 shows that the open-loop system is unstable, and the
number of pests increases over time. Applying the designed con-
trol law makes the system stable, and Fig. 5 gives the response
of the closed-loop system.

VII. CONCLUSION

In this paper, we have studied the synthesis problem of ob-
servers and dynamic output-feedback controllers for positive
linear systems with interval uncertainties. The continuous-time
case and the discrete-time case are both treated in a unified
LMI framework. Necessary and sufficient conditions on the ex-
istence of positive observers are established, and the desired ob-
server matrices can be constructed easily through the solutions
of LMIs. The designed observer not only tracks the observed
signals, but also guarantees the positivity of the observations and
the error signals. Moreover, the positive stabilization problem
with dynamic output-feedback controllers is investigated. It is
shown that an unstable positive system cannot be positively sta-
bilized by the considered dynamic output-feedback controller
without taking the positivity of the error signals into account.
When the positivity of the error signals is considered, sufficient
conditions for the existence of the desired controllers are pro-
posed, and an ILMI algorithm is provided to solve them. Two
illustrative examples are given to show the effectiveness and ap-
plicability of the theoretical results.
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