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Abstract—Year 2009 marks the completion of 50 years of the
invention of CORDIC (COordinate Rotation DIgital Computer)
by Jack E. Volder. The beauty of CORDIC lies in the fact that
by simple shift-add operations, it can perform several computing
tasks such as the calculation of trigonometric, hyperbolic and
logarithmic functions, real and complex multiplications, division,
square-root, solution of linear systems, eigenvalue estimation,
singular value decomposition, QR factorization and many others.
As a consequence, CORDIC has been utilized for applications in
diverse areas such as signal and image processing, communication
systems, robotics and 3-D graphics apart from general scientific
and technical computation. In this article, we present a brief
overview of the key developments in the CORDIC algorithms and
architectures along with their potential and upcoming applica-
tions.

Index Terms—Arithmetic circuits, CORDIC, CORDIC algo-
rithms, digital signal processing chip, VLSI.

I. INTRODUCTION

C OORDINATE Rotation DIgital Computer is abbreviated
as CORDIC. The key concept of CORDIC arithmetic is

based on the simple and ancient principles of two-dimensional
geometry. But the iterative formulation of a computational algo-
rithm for its implementation was first described in 1959 by Jack
E. Volder [1], [2] for the computation of trigonometric func-
tions, multiplication and division. This year therefore marks the
completion of 50 years of the CORDIC algorithm. Not only
a wide variety of applications of CORDIC have emerged in
the last 50 years, but also a lot of progress has been made in
the area of algorithm design and development of architectures
for high-performance and low-cost hardware solutions of those
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applications. CORDIC-based computing received increased at-
tention in 1971, when John Walther [3], [4] showed that, by
varying a few simple parameters, it could be used as a single
algorithm for unified implementation of a wide range of ele-
mentary transcendental functions involving logarithms, expo-
nentials, and square roots along with those suggested by Volder
[1]. During the same time, Cochran [5] benchmarked various al-
gorithms, and showed that CORDIC technique is a better choice
for scientific calculator applications.

The popularity of CORDIC was very much enhanced there-
after primarily due to its potential for efficient and low-cost
implementation of a large class of applications which include:
the generation of trigonometric, logarithmic and transcendental
elementary functions; complex number multiplication, eigen-
value computation, matrix inversion, solution of linear systems
and singular value decomposition (SVD) for signal processing,
image processing, and general scientific computation. Some
other popular and upcoming applications are:

1) direct frequency synthesis, digital modulation and coding
for speech/music synthesis and communication;

2) direct and inverse kinematics computation for robot ma-
nipulation;

3) planar and three-dimensional vector rotation for graphics
and animation.

Although CORDIC may not be the fastest technique to per-
form these operations, it is attractive due to the simplicity of
its hardware implementation, since the same iterative algorithm
could be used for all these applications using the basic shift-add
operations of the form .

Keeping the requirements and constraints of different ap-
plication environments in view, the development of CORDIC
algorithm and architecture has taken place for achieving high
throughput rate and reduction of hardware-complexity as well
as the latency of implementation. Some of the typical ap-
proaches for reduced-complexity implementation are focussed
on minimization of the complexity of scaling operation and the
complexity of barrel-shifter in the CORDIC engine. Latency
of implementation is an inherent drawback of the conventional
CORDIC algorithm. Angle recoding schemes, mixed-grain
rotation and higher radix CORDIC have been developed for
reduced latency realization. Parallel and pipelined CORDIC
have been suggested for high-throughput computation. The
objective of this article is not to present a detailed survey of
the developments of algorithms, architectures and applications
of CORDIC, which would require a few doctoral and masters
level dissertations. Rather we aim at providing the key develop-
ments in algorithms and architectures along with an overview
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of the major application areas and upcoming applications. We
shall however discuss here the basic principles of CORDIC
operations for the benefit of general readers.

The remainder of this paper is organized as follows. In
Section II, we discuss the principles of CORDIC operation,
covering the elementary ideas from coordinate transformation
to rotation mode and vectoring mode operations followed
by design of the basic CORDIC cell and multidimensional
CORDIC. The key developments in CORDIC algorithms and
architectures are discussed in Section III, which covers the al-
gorithms and architectures pertaining to higher-radix CORDIC,
angle recording, coarse-fine hybrid micro rotations, redundant
number representation, differential CORDIC, and pipeline
implementation. In Section IV, we discuss the scaling and
accuracy aspects including the scaling techniques, scaling-free
CORDIC, quantization and area-delay-accuracy trade-off. The
applications of CORDIC to scientific computations, signal pro-
cessing, communications, robotics and graphics are discussed
briefly in Section V. The conclusion along with future research
directions are discussed in Section VI.

II. BASIC CORDIC TECHNIQUES

In this Section, we discuss the basic principle underlying the
CORDIC-based computation, and present its iterative algorithm
for different operating modes and planar coordinate systems. At
the end of this section, we discuss the extension of two-dimen-
sional rotation to multidimensional formulation.

A. The CORDIC Algorithm

As shown in Fig. 1, the rotation of a two-dimensional vector
through an angle , to obtain a rotated vector

could be performed by the matrix product ,
where is the rotation matrix:

(1)

By factoring out the cosine term in (1), the rotation matrix
can be rewritten as

(2)

and can be interpreted as a product of a scale-factor
with a pseudorotation matrix ,

given by

(3)

The pseudorotation operation rotates the vector by an angle
and changes its magnitude by a factor , to produce

a pseudo-rotated vector .
To achieve simplicity of hardware realization of the rotation,

the key ideas used in CORDIC arithmetic are to (i) decompose
the rotations into a sequence of elementary rotations through
predefined angles that could be implemented with minimum
hardware cost; and (ii) to avoid scaling, that might involve arith-
metic operation, such as square-root and division. The second
idea is based on the fact the scale-factor contains only the magni-
tude information but no information about the angle of rotation.

Fig. 1. Rotation of vector on a two-dimensional plane.

1) Iterative Decomposition of Angle of Rotation: The
CORDIC algorithm performs the rotation iteratively by
breaking down the angle of rotation into a set of small pre-de-
fined angles1, , so that could
be implemented in hardware by shifting through bit locations.
Instead of performing the rotation directly through an angle ,
CORDIC performs it by a certain number of microrotations
through angle , where

and (4)

that satisfies the CORDIC convergence theorem [3]:
. But,

the decomposition according to (4) could be used only for
(called the “convergence range”)

since . Therefore, the angular decom-
position of (4) is applicable for angles in the first and fourth
quadrants. To obtain on-the-fly decomposition of angles into
the discrete base , one may otherwise use the nonrestoring
decomposition [6]

and (5)

with if and otherwise, where the
rotation matrix for the th iteration corresponding to the selected
angle is given by

(6)

being the scale-factor, and the pseudoro-
tation matrix

(7)

Note that the pseudo-rotation matrix for the th itera-
tion alters the magnitude of the rotated vector by a scale-factor

during the th microrotation, which is in-
dependent of the value of (direction of microrotation) used in
the angle decomposition.

1All angles are measured in radian unless otherwise stated.
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Fig. 2. Hardware implementation of a CORDIC iteration.

2) Avoidance of Scaling: The other simplification performed
by the Volder’s algorithm [1] is to remove the scale-factor

from (6). The removal of scaling from the itera-
tive microrotations leads to a pseudo-rotated vector
instead of the desired rotated vector , where the
scale-factor is given by

(8)

Since the scale-factor of microrotations does not depend on
the direction of microrotations and decreases monotonically, the
final scale-factor converges to . Therefore, in-
stead of scaling during each microrotation, the magnitude of
final output could be scaled by . Therefore, the basic CORDIC
iterations are obtained by applying the pseudo-rotation of the
vector to have, , together with the nonrestoring
decomposition of the selected angles , as follows:

(9)

CORDIC iterations of (9) could be used in two operating modes,
namely the rotation mode (RM) and the vectoring mode (VM),
which differ basically on how the directions of the microrota-
tions are chosen. In the rotation mode, a vector is rotated by
an angle to obtain a new vector . In this mode, the direction
of each microrotation is determined by the sign of : if sign
of is positive, then otherwise . In the vec-
toring mode, the vector is rotated towards the -axis so that
the -component approaches zero. The sum of all angles of mi-
crorotations (output angle ) is equal to the angle of rotation of
vector , while output corresponds to its magnitude. In this
operating mode, the decision about the direction of the micro-
rotation depends on the sign of : if it is positive then
otherwise . CORDIC iterations are easily implemented
in both software and hardware. Fig. 2 shows the basic hardware
stage for a single CORDIC iteration. After each iteration the
number of shifts is incremented by a pair of barrel-shifters. To
have an -bit output precision, CORDIC iterations are
needed. Note that it could be implemented by a simple selec-
tion operation in serial architectures like the one proposed in
the original work, or in fully parallel CORDIC architectures the
shift operations could be hardwired, where no barrel-shifters are
involved.

Finally, to overcome the problem of the limited convergence
range and, then to extend the CORDIC rotations to the complete

TABLE I
GENERALIZED CORDIC ALGORITHM

range of , an extra iteration is required to be performed. This
new iteration is shown in (10) which is required as an initial
rotation through .

where (10)

B. Generalization of the CORDIC Algorithm

In 1971, Walther found how CORDIC iterations could be
modified to compute hyperbolic functions [3] and reformulated
the CORDIC algorithm in to a generalized and unified form
which is suitable to perform rotations in circular, hyperbolic and
linear coordinate systems. The unified formulation includes a
new variable , which is assigned different values for different
coordinate systems. The generalized CORDIC is formulated as
follows:

(11)

where

for rotation mode
for vectoring mode

For or , and or
, the algorithm given by (11) works in circular,

linear or hyperbolic coordinate systems, respectively. Table I
summarizes the operations that can be performed in rotation
and vectoring modes2 in each of these coordinate systems.
The convergence range of linear and hyperbolic CORDIC are
obtained, as in the case of circular coordinate, by the sum of all

given by . The hyperbolic CORDIC requires
to execute iterations for twice to ensure con-
vergence. Consequently, these repetitions must be considered
while computing the scale-factor ,
which converges to 0.8281.

2In the rotation mode, the components of a vector resulting due to rotation of
a vector through a given angle are derived, while in the vectoring mode the mag-
nitude as well as the phase angle of a vector are estimated from the component
values. The rotation and vectoring modes are also known as the vector rotation
mode and the angle accumulation mode, respectively.
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C. Multidimensional CORDIC

The CORDIC algorithm was extended to higher dimensions
using simple Householder reflection [7]. The Householder re-
flection matrix is defined as

(12)

where is an -dimensional vector and is the
identity matrix. The product reflects the -dimensional
vector with respect to the hyperplane with normal that
passes through the origin. Basically, the Householder-based
CORDIC performs the vectoring operation of an -dimen-
sional vector to one of the axes.

For the sake of clarity, we consider here the case of 3-D vector
projected on to the -axis in the Euclidean

space. The rotation matrix for 3-D case, corresponding to the th
iteration, , is given by the product of two simple House-
holder reflections as

(13)

where , and with
, and and

being the directions of microrotations.
One can write the th rotation matrix in terms of the

pseudo-rotation matrix as , where
is the scale-factor and

is the pseudo-rotation matrix which could be expressed as
function of the shifting and decision variables as

(14)

Therefore, the th iteration of 3-D Housholder CORDIC ro-
tation results , and, the vector is projected
to -axis, such that after iterations gives the length of the
vector scaled by with bit precision [8].

III. ADVANCED CORDIC ALGORITHMS AND ARCHITECTURES

CORDIC computation is inherently sequential due to two
main bottlenecks: 1) the micro-rotation for any iteration is per-
formed on the intermediate vector computed by the previous
iteration and 2) the th iteration could be started only
after the completion of the th iteration, since the value of
which is required to start the th iteration could be known
only after the completion of the th iteration. To alleviate the
second bottleneck some attempts have been made for evalua-
tion of values corresponding to small micro-rotation angles
[9], [10]. However, the CORDIC iterations could not still be
performed in parallel due to the first bottleneck. A partial par-
allelization has been realized in [11] by combining a pair of
conventional CORDIC iterations into a single merged iteration
which provides better area-delay efficiency. But the accuracy
is slightly affected by such merging and cannot be extended to
a higher number of conventional CORDIC iterations since the

induced error becomes unacceptable [11]. Parallel realization
of CORDIC iterations to handle the first bottleneck by direct
unfolding of micro-rotation is possible, but that would result
in increase in computational complexity and the advantage of
simplicity of CORDIC algorithm gets degraded [12], [13]. Al-
though no popular architectures are known to us for fully par-
allel implementation of CORDIC, different forms of pipelined
implementation of CORDIC have however been proposed for
improving the computational throughput [14].

Since the CORDIC algorithm exhibits linear-rate conver-
gence, it requires iterations to have -bit precision of
the output. Overall latency of the computation thus amounts to
product of the word-length and the CORDIC iteration period.
The speed of CORDIC operations is therefore constrained
either by the precision requirement (iteration count) or the
duration of the clock period. The duration of clock period on
the other hand mainly depends on the large carry propagation
time for the addition/subtraction during each micro-rotation.
It is a straight-forward choice to use fast adders for reducing
the iteration period at the expense of large silicon area. Use
of carry-save adder is a good option to reduce the iteration
period and overall latency [15]. Timmermann and others have
suggested a method of truncation of CORDIC algorithm after

iterations (for -bit precision), where the last itera-
tion performs a single rotation for implementing the remaining
angle. It lowers the the latency time but involves one multi-
plication or division, respectively, in the rotation or vectoring
mode [9].

To handle latency bottlenecks, various techniques have
been developed and reported in the literature. Most of the
well known algorithms could be grouped under, high-radix
CORDIC, the angle-recoding method, hybrid micro-rotation
scheme, redundant CORDIC and differential CORDIC which
we discuss briefly in the following subsections.

A. Higher Radix CORDIC Algorithm

The radix-4 CORDIC algorithm [16] is given by

(15)

where and the elementary angles
. The scale-factor for the th iteration

. In order to preserve the norm of the
vector the output of micro-rotations is required to be scaled by
a factor

(16)

To have -bit output precision, the radix-4 CORDIC algorithm
requires micro-rotations, which is half that of radix-2 al-
gorithm. However, it requires more computation time for each
iteration and involves more hardware compared to the radix-2
CORDIC to select the value of out of five different possi-
bilities. Moreover, the scale-factor, given by (16), also varies
with the rotation angles since it depends on which could have
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any of the five different values. Some techniques have there-
fore been suggested for scale-factor compensation through iter-
ative shift-add operations [16], [17]. A high-radix CORDIC al-
gorithm in vectoring mode is also suggested in [18], which can
be used for reduced latency operation at the cost of larger size
tables for storing the elementary angles and pre-scaling factors
than the radix-2 and radix-4 implementation.

B. Angle Recoding (AR) Methods

The purpose of angle recoding (AR) is to reduce the number
of CORDIC iterations by encoding the angle of rotation as a
linear combination of a set of selected elementary angles of
micro-rotations. AR methods are well-suited for many signal
processing and image processing applications where the ro-
tation angle is known a priori, such as when performing the
discrete orthogonal transforms like discrete Fourier transform
(DFT), the discrete cosine transform (DCT), etc.

1) Elementary-Angle-Set Recoding: In the conventional
CORDIC, any given rotation angle is expressed as a linear com-
bination of values of elementary angles that belong to the set

in order to obtain an -bit value as .
However, in AR methods, this constraint is relaxed by adding
zeros to the linear combination to obtain the desired angle
using relatively fewer terms of the form
for . The elementary-angle-set (EAS) used
by AR scheme is given by

. One of the simplest form
of the angle recoding method based on the greedy algorithm
proposed by Hu and Naganathan [19] tries to represent the re-
maining angle using the closest elementary angle .
The angle recoding algorithm of [19] is briefly stated in Table II.
Using this recoding scheme the total number of iterations could
be reduced by at least 50% keeping the same -bit accuracy
unchanged. A similar method of angle recoding in vectoring
mode called as the backward angle recoding is suggested in
[20].

2) Extended Elementary-Angle-Set Recoding: Wu et al. [21]
have suggested an AR scheme based on an extended elemen-
tary-angle-set (EEAS), that provides a more flexible way of de-
composing the target rotation angle. In the EEAS approach,
the set of the elementary-angle set is extended further
to

and . EEAS has better
recoding efficiency in terms of the number of iterations and
can yield better error performance than the AR scheme based
on EAS. The pseudo-rotation for th micro-rotations based on
EEAS scheme is given by

(17)

The pseudo-rotated vector , obtained after
(the required number of micro-rotations) iterations, according
to (17), needs to be scaled by a factor , where

to produce
the rotated vector. For reducing the scaling approximation and
for a more flexible implementation of scaling, similar to the

TABLE II
ANGLE RECODING ALGORITHM

Fig. 3. EEAS-based CORDIC architecture. BS represents the Barrel Shifter,
and C denotes the control signals for the micro-rotations.

EEAS scheme for the micro-rotation phase, a method has also
been suggested in [21], as given below

(18)

where and . and
.

The iterations for micro-rotation phase as well as the scaling
phase could be implemented in the same architecture to reduce
the hardware cost, as shown in Fig. 3.

3) Parallel Angle Recoding: The AR methods [19], [21]
could be used to reduce the number of iterations by more than
50%, when the angle of rotation is known in advance. However,
for unknown rotation angles, their hardware implementation in-
volves more cycle time than the conventional implementation,
which results in a reduction in overall efficacy of the algorithm.
To reduce the cycle time of CORDIC iterations in such cases,
a parallel angle selection scheme is suggested in [22], which
can be used in conjunction with the AR method, to gain the
advantages of the reduction in iteration count, without further
increase in the cycle time. The parallel AR scheme in [22] is
based on dynamic angle selection, where the elementary angles

can be tested in parallel and the direction for the micro-ro-
tations can be determined quickly to minimize the iteration pe-
riod. During each iteration, the residual angle , is passed to a
set of adder-subtractor units that compute
for each elementary angle in parallel and the
differences for are then fed to a binary-tree like
structure to compare them against each other to find the smallest
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Fig. 4. Architecture for parallel angle recoding.

difference. The corresponding to the smallest difference
is used as the angle of micro-rotation. The architecture

for parallel angle recoding of [22] is shown in Fig. 4.
The parallel AR reduces the overall latency at the cost of high

hardware-complexity of add/subtract-compare unit. For actual
implementation, it is required to find a space-time trade-off and
look at the relative performance in comparison with other ap-
proaches as well. The AR schemes based on EAS and EEAS
however are useful for those cases where the angle of rotation
is known in advance.

C. Hybrid or Coarse-Fine Rotation CORDIC

Based on the radix-2 decomposition, any rotation angle
with -bit precision could be expressed as a linear combina-
tion of angles from the set , given
by , where , explicitly specifies whether
there is need of a micro-rotation or not. But, radix-2 decom-
position is not used in the conventional CORDIC because that
would not lead to simplicity of hardware realization. Instead,
arctangents of the corresponding values of radix-2 based set are
used as the elementary-angle-set with a view to implement the
CORDIC operations only by shift-add operations. The key idea
underlying the coarse-fine angular decomposition is that for the
fine values of , (i.e., when ),

could be replaced by in the radix-set for expan-
sion of , since when is sufficiently large.

1) Coarse–Fine Angular Decomposition: In the coarse-fine
angular decomposition, the elementary-angle-set contains
the arctangents of power-of-two for more-significant part
while the less significant part contains the power-of-two
values, such that the radix-set is given by ,
where and

, and is assumed
to be sufficiently large such that [10]. For
the hybrid decomposition scheme, the rotation angle could be
partitioned into two terms expressed as

(19)

where and are said to be the coarse and fine subangles,
respectively, given by

(20a)

(20b)

Fig. 5. Architecture for a Hybrid CORDIC algorithm [10].

A combination of coarse and fine micro-rotations are used
in hybrid CORDIC operations in two cascaded stages. Coarse
rotations are performed in stage-1 to have an intermediate vector

(21)

and fine rotations are performed on the output of stage-1 to ob-
tain the rotated output

(22)

2) Implementation of Hybrid CORDIC: To derive the effi-
ciency of hybrid CORDIC, the coarse and fine rotations are per-
formed by separate circuits as shown in Fig. 5. The coarse ro-
tation phase is performed by the CORDIC processor-I and the
fine rotation phase is performed by CORDIC processor-II.

To have fast implementation, processor-I performs a pair of
ROM look-up operations followed by addition to realize the ro-
tation through angle . Since could be expressed as a linear
combination of angels of small enough magnitude , where

, the computation of fine rotation phase can
be realized by a sequence of shift-and-add operations. For im-
plementation of the fine rotation phase, no computations are in-
volved to decide the direction of micro-rotation, since the need
of a micro-rotation is explicit in the radix-2 representation of

. The radix-2 representation could also be recoded to express
where as shown in [9]. Since the

direction of micro-rotations are explicit in such a representation
of , it would be possible to implement the fine rotation phase
in parallel for low-latency realization.

The hybrid decomposition could be used for reducing the la-
tency by ROM-based realization of coarse operation. This can
also be used for reducing the hardware complexity of fine rota-
tion phase since there is no need to find the direction of micro-
rotation. Several options are however possible for the implemen-
tation of these two stages. A form of hybrid CORDIC is sug-
gested in [23] for very-high precision CORDIC rotation where
the ROM size is reduced to nearly bits. The coarse rota-
tions could be implemented as conventional CORDIC through
shift-add operations of micro-rotations if the latency is tolerable.

3) Shift-Add Implementation of Coarse Rotation: Using
the symmetry properties of the sine and cosine functions in
different quadrants, the rotation through any arbitrary angle
could be mapped from the full range to the first half
the first quadrant . The coarse-fine partition could be
applied thereafter for reducing the number of micro-rotations
necessary for fine rotations. To implement the course rotations
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Fig. 6. Shift-add architecture for a Hybrid CORDIC algorithm.

through shift-add operations the coarse subangle is repre-
sented in [24] and [25] in terms of elementary rotations of the
form as

(23)

where is a correction term.
Using (23) on (19), one can find ,

where

(24)

It is shown [25] that, based on the above decompositions
using radix-2 representation, both coarse and fine rotations
could be implemented by a sequence of shift-and-add oper-
ations in CORDIC iterations without ROM lookup table or
the real multiplication operation. One such implementation is
shown in Fig. 6. Processor-I performs CORDIC operations like
that of conventional CORDIC for nearly the first one-third of
the iterations and the residual angle as well as the intermediate
rotated vector is passed to the processor-II. Processor-II can
perform the fine rotation in one of the possible ways as in case
of the circuit of Fig. 5.

The coarse-fine rotation approach in some modified forms has
been applied for reduced-latency implementation of sine and co-
sine generation [24]–[28], high-speed and high-precision rota-
tion [24], [26], and conversion of rectangular to polar coordi-
nates and vice versa [29], [30].

4) Parallel CORDIC Based on Coarse-Fine Decomposition:
In [31], the authors have proposed two angle recoding tech-
niques for parallel detection of direction of micro-rotations,
namely the binary to bipolar recoding (BBR) and micro-rota-
tion angle recoding (MAR) to be used for the coarse part of the
input angle . BBR is used to obtain the polarity of each bit
in the radix-2 representation of to determine the rotation
direction. MAR is used to decompose each positional binary
weight into a linear combination
of arctangent terms. It is further shown in [32] that, the rotation
direction can be decided once the input angle is known to
enable parallel computation of the micro-rotations. Although
the CORDIC rotation can be executed in parallel according to
[32], the method for decomposition of each positional binary
weight produces many extra stages of micro-rotation, especially
when the bit-width of input angle increases. A more efficient
recoding scheme has been proposed in [33] for the reduction of
number of micro-rotations to be employed in parallel CORDIC
rotations.

D. Redundant-Number-Based CORDIC Implementation

Addition/subtraction operations are faster in the redundant
number system, since unlike the binary system, it does not
involve carry propagation. The use of redundant number
system is therefore another way to speed up the CORDIC
iterations. A CORDIC implementation based on the redundant
number system called as redundant CORDIC was proposed
by Ercegovac and Lang and applied to matrix triangulariza-
tion and singular value decomposition [34]. Rotation mode
redundant CORDIC has been found to result in fast imple-
mentation of sinusoidal function generation, unitary matrix
transformation, angle calculation and rotation [34]–[38].
Although redundant CORDIC can achieve a fast carry-free
computation, the direction of the micro-rotation (the sign
factor ) cannot be determined directly unlike the case of the
conventional CORDIC, since the redundant number system
allows a choice along with the conventional choices
1 and 1 such that . Therefore, it requires a
different formulation for selection of , which is dif-
ferent for binary signed-digit representation and carry–save
implementation. In radix-2 signed-digit representation, as-
suming— , it is
shown that [6]

if
if
if

(25)

where is the value of truncated after the first fractional
digit. Similarly for carry-save implementation, it is

if
if
if

(26)

It can be noted from (25) and (26), that in some of the iter-
ations no rotations are performed, so that the scale-factor be-
comes a variable which depends on the angle of rotation. Since
the redundant CORDIC of [34] uses non-constant scale-factor,
Takagi et al. [35] have proposed the double-rotation method and
correcting-rotation method to keep the value of scale-factor con-
stant. In double rotation method, in each iteration two micro-ro-
tations are performed, such that when , one positive and
one negative micro-rotations are performed, and when
or , respectively, two positive or two negative micro-rota-
tions are performed. The scale-factor is retained constant in this
case since the number of micro-rotations is fixed for any rota-
tion angle but it doubles the iteration count. The correcting-rota-
tion method examines the sign of constituted by some most
significant digits of , and if then is taken to be

and is taken to be otherwise. It is shown that the
error occurring in this algorithm could be corrected by repeti-
tion of the iterations for , etc., where is the
size of . The branching CORDIC was proposed in [36] for
fast on-line implementation for redundant CORDIC with a con-
stant scale factor. The main drawback of this method, however,
is its necessity of performing two conventional CORDIC itera-
tions in parallel, which consumes more silicon area than clas-
sical methods [39]. The work proposed in [34] has also been
extended to the vectoring mode [37], and correcting operations
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Fig. 7. Pipelined architecture for conventional CORDIC.

are included further to keep the scaling factor constant so as to
eliminate the hardware for scaling.

E. Pipelined CORDIC Architecture

Since the CORDIC iterations are identical, it is very much
convenient to map them into pipelined architectures. The main
emphasis in efficient pipelined implementation lies with the
minimization of the critical path. The earliest pipelined archi-
tecture that we find was suggested by Deprettere, Dewilde and
Udo in 1984 [14]. Pipelined CORDIC circuits have been used
thereafter for high-throughput implementation of sinusoidal
wave generation, fixed and adaptive filters, discrete orthogonal
transforms and other signal processing applications [40]–[44].
A generic architecture of pipelined CORDIC circuit is shown in
Fig. 7. It consists of stages of CORDIC units where each of the
pipelined stages consists of a basic CORDIC engine of the kind
shown in Fig. 2. Since the number of shifts to be performed by
the shifters at different stages is fixed (shift-operation through
-bit positions is performed at the th stage) in case of pipelined

CORDIC the shift operations could be hardwired with adders;
and therefore shifters are eliminated in the pipelined implemen-
tation. The critical-path of pipelined CORDIC thus amounts
to the time required by the add/subtract operations in each of
the stages. When three adders are used in each stage as shown
in Fig. 7, the critical-path amounts to ,
where and are the time required for addition,
2:1 multiplexing and 2’s complement operation, respectively.
For known and constant angle rotations the sign of micro-ro-
tations could be predetermined, and the need of multiplexing
could be avoided for reducing the critical-path. The latency of
computation thus depends primarily on the time required for
an addition. Since there is very little room for reducing the
critical path in the pipelined implementation of conventional

TABLE III
DIFFERENTIAL CORDIC ALGORITHM

CORDIC, digit-on-line pipelined CORDIC circuits based on
the differential CORDIC (D-CORDIC) algorithm have been
suggested to achieve higher throughput and lower pipeline
latency.

F. Differential CORDIC Algorithm

D-CORDIC algorithm is equivalent to the usual CORDIC in
terms of accuracy as well as convergence, but it provides faster
and more efficient redundant number-based implementation of
both rotation mode and vectoring mode CORDIC. It introduces
some temporary variables corresponding to the CORDIC vari-
ables and , that generically defined as

(27)

which implies that and
. The signs of are, therefore, considered as being

differentially encoded signs of in the differential CORDIC
algorithm [45]. The rotation and vectoring mode D-CORDIC
algorithms are outlined in Table III.

D-CORDIC algorithm is suitable for efficient pipelined
implementation which is utilized by Ercegovac and Lang [34]
using on-line arithmetic based on redundant number system.
Since the output data in the redundant on-line arithmetic can be
available in the most-significant-digit-first (MSD-first) fashion,
the successive iterations could be implemented by a set of
cascaded stages, where processing time between the successive
stages is overlapped with a single-digit time-skew, that results
in a significant reduction in overall latency of computation.
Moreover, in some redundant number representations, the
absolute values and sign of the output are easily determined,
e.g., in binary signed-digit (BSD) representation, the sign of a
number corresponds to the sign of the first nonzero MSD, and
negation of the number can be performed just by flipping signs
of nonzero digits. A two-dimensional systolic D-CORDIC
architecture is derived in [46] where phase accumulation is per-
formed for direct digital frequency synthesis in the digit-level
pipelining framework.

IV. SCALING, QUANTIZATION AND ACCURACY ISSUES

As discussed in Section II-A, scaling is a necessary opera-
tion associated with the implementation of CORDIC algorithm.
Scaling in CORDIC could be of two types: 1) constant factor
scaling and 2) variable factor scaling. In case of variable factor
scaling the scale-factor changes with the rotation angle. It arises
mainly because some of the iterations of conventional CORDIC
are ignored (and that varies with the angle of rotation), as in
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the case of higher-radix CORDIC and most of the optimized
CORDIC algorithms. The techniques for scaling compensation
for each such algorithms have been studied extensively for min-
imizing the scaling overhead. In case of conventional CORDIC,
as given by (8), after sufficiently large number of iterations, the
scale-factor converges to 1.6467605, which leads to con-
stant factor scaling since the scale factor remains the same for
all the angle of rotations. Constant factor scaling could be ef-
ficiently implemented in a dedicated scaling unit designed by
canonical signed digit (CSD)-based technique [47] and common
sub-expression elimination (CSE) approach [48], [49]. When
the sum of the output of more than one independent CORDIC
operations are to be evaluated, one can perform only one scaling
of the output sum [50] in the case of constant factor scaling. In
the following subsections, we briefly discuss some interesting
developments on implementation of on-line scaling and real-
ization of scaling-free CORDIC. Besides, we outline here the
sources of error that may arise in a CORDIC design and their
impact on implementation.

A. Implementation of Mixed-Scaling-Rotation

Dewilde et al. [51] have suggested the on-line scaling where
shift-add operations for scaling and micro-rotations are in-
terleaved in the same circuit. This approach has been used in
[52] and improved further in [53]. In the mixed-scaling-rota-
tion (MSR) approach, pioneered by Wu et al. [54]–[56], the
micro-rotation and scaling phases are merged into a unified
vector rotational model to minimize the overhead of the scaling
operation [54]–[56]. The MSR-CORDIC can be applied to
DSP applications, in which the rotation angles are usually
known a priori, e.g., the twiddle factor in fast Fourier transform
(FFT) and kernel components in other sinusoidal transforms.
It is shown in [55] that the MSR technique can significantly
reduce the total iteration count so as to improve the speed
performance and enhance the signal-to-quantization-noise
ratio (SQNR) performance by controlling the internal dy-
namic range. The MSR-CORDIC scheme has been applied
to a variable-length FFT processor design [29], and found to
result in significant hardware reduction in the implementation
of twiddle-factor multiplications. Although, the interleaved
scaling and MSR-CORDIC provide hardware reduction, they
also lead to the reduction of throughput. For high-throughput
implementation, one should implement the micro-rotations and
scaling in two separate pipelined stages.

B. Low-Complexity Scaling

When the elementary angles pertaining to a rotation are “suf-
ficiently small”, defined by , and the rota-
tions are only in one direction, the CORDIC rotation is given by
the representation [57]

(28)

and , (considering clockwise micro-rota-
tions only), where and are the components of the vector
after the th micro-rotation, is the input wordlength and

. The formulation of (28) performs the

“actual” rotation where the norm of the vector is preserved at
every micro-rotation.

However, the problem with this formulation is that the overall
range of angles for which it can be used is very small, because,
for 16-bit wordlength, the largest such angle is

, which obviously is quite small compared to the entire
coordinate space. To overcome this problem, argument reduc-
tion is performed through “domain folding” [58] by mapping
the target rotation-angles into the range . Besides, the
elementary rotations are carried out in an adaptive manner to
enhance the rate of convergence so as to force the approxima-
tion error of final angle below a specified limit [59]. But, the
domain-folding in some cases, involves a rotation through
which demands a scaling by a factor of . Besides, the target
range is still much larger than the range of convergence
of the scaling-free realization. The formulation of (28), there-
fore, could be effectively used when a rotation through
is not required and angles of rotations could be folded to the
range . Generalized algorithms, and their corre-
sponding architectures to perform the scale-factor compensa-
tion in parallel with the CORDIC iterations, for both rotation
and vectoring modes are proposed in [60], where the compen-
sation overhead is reduced to a couple of iterations. It is shown
in [61] that since the scale-factor is known in advance, one can
perform the minimal recoding of the bits of scaling-factor, and
implement the multiplication thereafter by a Wallace tree. It is
a good solution of low-latency scaling particularly for pipelined
CORDIC architectures.

C. Quantization and Numerical Accuracy

Errors in CORDIC are mainly of two types: 1) the angle ap-
proximation error which originates from quantization of rota-
tion angle represented by a linear combination of finite numbers
of elementary angles and 2) the finite wordlength of the datapath
resulting in the rounding/truncation of output that increases cu-
mulatively through the successive iterations of micro-rotations.
A third source of error that also comes into the picture results
from the scaling of pseudo-rotated outputs. The scaling error is,
however, also due to the use of finite wordlength in the scaling
circuitry and is predominantly a rounding/truncation error. A
detailed discussion on rounding error due to fixed and floating
point implementations is available in [62]. In his earlier work,
Walther [3] concluded that the errors in the CORDIC output
are bounded, and extra bits are required in the datap-
aths to take care of the errors. Hu [62] has provided more pre-
cise error bounds due to the angle approximation error for dif-
ferent CORDIC modes for fixed point as well as floating-point
implementations. The error bound resulting for fixed point rep-
resentation of arctangents is further analyzed by Kota and Cav-
allaro [63] and its impact on practical implementation has been
discussed.

D. Area-Delay-Accuracy Trade-Off

Area, accuracy and latency of CORDIC algorithm depend
mainly on the iteration count and its implementation. To
achieve -bit accuracy, if fixed-point arithmetic is applied, the
wordlength of and data-path is and
for the computation of the angle , it is [45],
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TABLE IV
COMPUTATIONS USING CORDIC ALGORITHM IN DIFFERENT CONFIGURATIONS

[63]. The hardware requirement therefore increases accord-
ingly with the desired accuracy. Floating-point implementation
naturally gives higher accuracy than its fixed-point counter-
part, but at the cost of more complex hardware. To minimize
the angle approximation error, the smallest elementary angle

needs to be as small as possible [62]. This consequently
demands more number of right-shifts and more hardware for
the barrel-shifters and adders. Besides, to have better angle
approximation, more number of iterations are required which
increases the latency. The additional accuracy resulting from
floating-point implementation or better angle approximation
may not, however, be necessary in many applications. Thus,
there is a need for trade-off between hardware-cost, latency
and numerical accuracy subject to a particular application.
Therefore, the designer has to check how much numerical
accuracy is needed along with area and speed constraints for
the particular application; and can accordingly decide on fixed
or floating-point implementation and should set the wordlength
and optimal number of iterations.

V. APPLICATIONS OF CORDIC

CORDIC technique is basically applied for rotation of a
vector in circular, hyperbolic or linear coordinate systems,
which in turn could also be used for generation of sinusoidal
waveform, multiplication and division operations, and evalua-
tion of angle of rotation, trigonometric functions, logarithms,
exponentials and squareroot [6], [64], [65]. Table IV shows
some elementary functions and operations that can be directly
implemented by CORDIC. The table also indicates whether
the coordinate system is circular (CC), linear (LC), or hyper-
bolic (HC), and whether the CORDIC operates in rotation
mode (RM) or vectoring mode (VM), the initialization of the
CORDIC and the necessary pre- or postprocessing step to
perform the operation. The scale factors are, however, obviated
in Table IV for simplicity of presentation. In this Section, we
discuss how CORDIC is used for some basic matrix problems
like QR decomposition and singular-value decomposition.
Moreover, we make a brief presentation on the applications of

CORDIC to signal and image processing, digital communica-
tion, robotics and 3-D graphics.

A. Matrix Computation

1) QR Decomposition: QR decomposition of a matrix can
be performed through Givens rotation [66] that selectively in-
troduces zeros into the matrix. Givens rotation is an orthogonal
transformation of the form

(29)

where and
. The QR decomposition requires two types

of iterative operations to obtain an upper-triangular matrix
using orthogonal transformations. Those are: (i) to calculate
the Givens rotation angle, and (ii) to apply the calculated angle
of rotation to the rest of the rows. Circular coordinate CORDIC
is a good choice to implement both these Givens rotations,
where the first operation is performed by a VM CORDIC
and the second one is performed by an RM CORDIC. The
CORDIC-based QR decomposition can be implemented in
VLSI with suitable area-time trade-off using a systolic trian-
gular array, a linear array or a single CORDIC processor that is
reconfigurable for rotation and vectoring modes of operations.
A detail explanation of these architectures are available in [64],
[67].

2) Singular Value Decomposition and Eigenvalue Estima-
tion: Singular value decomposition of a matrix is given by

where and are orthogonal matrices and
is a diagonal matrix of singular values. For CORDIC-based

implementation of SVD, it is decomposed into 2 2 SVD prob-
lems, and solved iteratively. To solve each 2 2 SVD problem,
two-sided Givens rotation is applied to each of the 2 2 ma-
trices to nullify the off-diagonal elements, as described in the
following:

(30)
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where is a 2 2 input matrix to be decomposed; and and
are, respectively, the left and right rotation angles, calculated

from the elements of using the following two relations:

for

(31)

CORDIC-based architectures for SVD using this method
were developed by Cavallaro and Luk [68]. A simplified design
of array processor for the particular case ( i.e., )
was developed further by Delosme [69] for the symmetric
Eigenvalue problem. In a relatively recent paper [70], Liu et al.
have proposed an application-specific instruction set processor
(ASIP) for the real-time implementation of QR decomposition
and SVD where circular coordinate CORDIC is used for effi-
cient implementation of both these functions.

B. Signal Processing and Image Processing Applications

CORDIC techniques have a wide range of DSP applications
including fixed/adaptive filtering [8], and the computation of
discrete sinusoidal transforms such as the DFT [50], [52], [71],
[72], discrete Hartley transform (DHT) [53], [73], [74], dis-
crete cosine transform (DCT) [75]–[78], discrete sine transform
(DST) [76]–[78] and chirp -transform (CZT) [79]. The DFT,
DHT, and DCT [80] of an -point input sequence for

, in general, are given by

for (32)

where the transform kernel matrix is defined as

for
for DHT
for DCT

The input sequence for the DFT is, in general, complex and
the computation of (32) can be partitioned into blocks of
form: ,
which is in the same form as the output of RM-CORDIC,
for . In case of DHT similarly the computation
can also be transformed into a computations of the form

to be im-
plemented efficiently by RM-CORDIC units. These features
of DFT and DHT are used to design parallel and pipelined
architectures for the computation of these two transforms [50],
[52], [53], [71]–[74]. It is shown that [76], [77] by simple
input-output modification, one can transform the DCT and
DST kernels into the DHT form to compute then by rotation
mode CORDIC. Similarly in [79], CZT is represented by a
DFT-like kernel by simple pre-processing and post-processing
operations, and implemented through CORDIC rotations. The
CORDIC technique has also been used in many image pro-
cessing operations like spatial domain image enhancement for
contrast stretching, logarithmic transformation and power-law
transformation, image rotation, and Hough transform for line
detection [81], [82]. CORDIC implementation of some of these
applications are discussed in [83], [84]. Several other signal
processing applications are discussed in detail in [64], which
we do not intend to repeat here.

Fig. 8. CORDIC-based direct digital synthesizer. � � � � � � �.

Fig. 9. A generic scheme to use RM CORDIC for digital modulation. � and
� are, respectively, the in-phase and quadrature signals to be modulated. � �
� ���� ������� �� � � � ���� �	������ and � � �
 
� 	� ��		 ��.

C. Applications to Communication

CORDIC algorithm can be used for efficient implementa-
tion of various functional modules in a digital communication
system [85]. Most applications of CORDIC in communications
use the circular coordinate system in one or both CORDIC op-
erating modes. The RM-CORDIC is mainly used to generate
mixed signals, while the VM-CORDIC is mainly used to esti-
mate phase and frequency parameters. We briefly outline here
some of the important communication applications.

1) Direct Digital Synthesis: Direct digital synthesis is the
process of generating sinusoidal waveforms directly in the dig-
ital domain. A direct digital synthesizer (DDS) (as shown in
Fig. 8) consists of a phase accumulator and a phase-to-wave-
form converter [86], [87]. The phase-generation circuit incre-
ments the phase according to , where is the normal-
ized carrier frequency in every cycle and feeds the phase infor-
mation to the phase-to-waveform converter. The phase-to-wave-
form converter could be realized by an RM-CORDIC [88], [89],
as shown in Fig. 8. The cosine and sine waveforms are obtained,
respectively, by the CORDIC outputs and .

2) Analog and Digital Modulation: A generic scheme to
use CORDIC in RM for digital modulation is shown in Fig. 9,
where the phase-generation unit of Fig. 8 is changed to gen-
erate the phase according to , for

and being the normalized carrier and the modulating
frequencies, respectively, and is the phase of modulating
component. By suitable selection of the parameters and

and the CORDIC inputs and , the generic scheme of
Fig. 9 it could be used for digital realization of analog ampli-
tude modulation (AM), phase modulation (PM), and frequency
modulation (FM), as well as the digital modulations, e.g., am-
plitude shift keying (ASK), phase-shift keying (PSK), and fre-
quency-shift keying (FSK) modulators. It could also be used
for the up/down converters for quadrature-amplitude modula-
tors (QAM) and full mixers for complex signals or phase and
frequency corrector circuits for synchronization [85].

3) Other Communication Applications: By operating the
CORDIC in vectoring mode, one can compute the magnitude
and the angle of an input vector. The magnitude computation
can be used for envelope-detection in an AM receiver or to
detect FSK signal if it is placed after mark or space filters [90].
The angle computation in VM CORDIC, on the other hand, can
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be used to detect FM and FSK signals and to estimate phase
and frequency parameters [91]. A single VM-CORDIC can be
used to perform these computations for the implementation of
a slicer for a high-order constellation like the 32-APSK used in
DVB-S2.

CORDIC circuits operating in both modes are also required
in digital receivers for the synchronization stage to perform a
phase or frequency estimation followed by a correction stage.
This can be done by using two different CORDIC units, to meet
the high speed requirement in Costas loop for phase recovery
in a QAM modulation [92], [93]. On the other hand the burst-
based communication system that needs a preamble for syn-
chronization purposes, e.g., in case of IEEE 802.11a WLAN-
OFDM receivers, can use a single CORDIC unit configurable
for both operating modes since the estimation and correction
are not performed simultaneously [94], [95]. Apart from these,
the CORDIC-based QR decomposition has been used in multi-
input-multi-output (MIMO) systems to implement V-BLAST
detectors [96]–[98], and to implement a recursive-least-square
(RLS) adaptive antenna beamformer [67], [99], [100].

D. Applications of CORDIC to Robotics and Graphics

Two of the key problems where CORDIC provides area and
power-efficient solutions are: 1) direct kinematics and 2) inverse
kinematics of serial robot manipulators. How CORDIC is ap-
plied in these applications is discussed below.

1) Direct Kinematics Solution (DKS) for Serial Robot Ma-
nipulators: A robot manipulator consists of a sequence of links,
connected typically by either revolute or prismatic joints. For an

-degrees-of-freedom manipulator, there are joint-link pairs
with link 0 being the supporting base and the last link is attached
with a tool. The joints and links are numbered outwardly from
the base. The coordinates of the points on the th link repre-
sented by change successively for

due to successive rotations and translations of the links. The
translation operations are realized by simple additions of coor-
dinate values while the new coordinates of any point due to ro-
tation are computed by RM-CORDIC circuits.

2) Inverse Kinematics for Robot Manipulators: The inverse
kinematics problem involves determination of joint variables for
a desired position and orientation for the tool. The CORDIC ap-
proach is valuable to find the inverse kinematic solution when
a closed form solution is possible (when, in particular, the de-
sired tool tip position is within the robot’s work envelope and
when joint angle limits are not violated). The authors in [101]
present a maximum pipelined CORDIC-based architecture for
efficient computation of the inverse kinematics solution. It is
also shown [101], [102] that up to 25 CORDIC processors are
required for the computation of the entire inverse kinematics so-
lution for a six-link PUMA-type robotic arm. Apart from imple-
mentation of rotation operations, CORDIC is used in the eval-
uation of trigonometric functions and square root expressions
involved in the inverse kinematics problems [103].

3) CORDIC for Other Robotics Applications: CORDIC has
also been applied to robot control [104], [105], where CORDIC
circuits serve as the functional units of a programmable CPU
co-processor. Another application of CORDIC is for kinematics
of redundant manipulators [106]. It is shown in [106] that the
case of inverse kinematics can be implemented efficiently in

parallel by computing pseudo-inverse through singular value
decomposition. Collision detection is another area where
CORDIC has been applied to robotics [107]. A CORDIC-based
highly parallel solution for collision detection between a robot
manipulator and multiple obstacles in the workspace is sug-
gested in [107]. The collision detection problem is formulated
as one that involves a number of coordinate transformations.
CORDIC-based processing elements are used to efficiently
perform the coordinate transformations by shift-add operations.

4) CORDIC for 3-D Graphics: The processing in graphics
such as 3-D vector rotation, lighting and vector interpolation are
computation-intensive and are geometric in nature. CORDIC
architecture is therefore a natural candidate for cost-effective
implementation of these geometric computations in graphics.
A systematic formulation to represent 3D computer graphics
operations in terms of CORDIC-type primitives is provided in
[108]. An efficient stream processor based on CORDIC-type
modules to implement the graphic operations is also suggested
in [108]. 3-D vector interpolation is also an important function
in graphics which is required for good-quality shading [109] for
graphic rendering. It is shown that the variable-precision capa-
bility of CORDIC engine could be utilized to realize a power-
aware implementation of the 3-D vector interpolator [110].

VI. CONCLUSION

The beauty of CORDIC is its potential for unified solution
for a large set of computational tasks involving the evaluation
of trigonometric and transcendental functions, calculation of
multiplication, division, square-root and logarithm, solution of
linear systems, QR-decomposition, and SVD, etc. Moreover,
CORDIC is implemented by a simple hardware through re-
peated shift-add operations. These features of CORDIC has
made it an attractive choice for a wide variety of applications.
In the last fifty years, several algorithms and architectures
have been developed to speed up the CORDIC by reducing
its iteration counts and through its pipelined implementation.
Moreover, its applications in several diverse areas including
signal processing, image processing, communication, robotics
and graphics apart from general scientific and technical compu-
tations have been explored. Latency of computation, however,
continues to be the major drawback of the CORDIC algorithm,
since we do not have efficient algorithms for its parallel im-
plementation. But, CORDIC on the other hand is inherently
suitable for pipelined designs, due to its iterative behavior, and
small cycle time compared with the conventional arithmetic.
For high-throughput applications, efficient pipelined-archi-
tectures with multiple-CORDIC units could be developed to
take the advantage of pipelineability of CORDIC, because the
digital hardware is getting cheaper along with the progressive
device-scaling. Research on fast implementation of shift-ac-
cumulation operation, exploration of new number systems
for CORDIC, optimization of CORDIC for constant rotation
have scope for further reduction of its latency. Another way
to use CORDIC efficiently, is to transform the computational
algorithm into independent segments, and to implement the
individual segments by different CORDIC processors. With
enhancement of its throughput and reduction of latency, it is
expected that CORDIC would be useful for many high-speed
and real-time applications. The area-delay-accuracy trade-off
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for different advanced algorithms may be investigated in detail
and compared with in future work.
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