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Control of MEMS Vibration Modes With Pulsed
Digital Oscillators: Part I—Theory
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Abstract—The aim of this paper is to show that it is possible
to excite selectively different mechanical resonant modes of a
MEMS structure using pulsed digital oscillators (PDOs). This
can be done by simply changing the working parameters of the
oscillator, namely its sampling frequency or its feedback filter. A
set of iterative maps is formulated to describe the evolution of the
spatial modes between two sampling events in PDOs. With this
lumped model, it is established that under some circumstances
PDO bitstreams related to only one of the resonances can be
obtained, and that in the anti-oscillation regions of the PDO
the mechanical energy is absorbed into the electrical domain on
average. The possibility of selecting for a given resonant frequency
the oscillation and anti-oscillation behavior allows one to obtain
oscillations at any given resonant mode of the MEMS structure.

Index Terms—Energy efficiency, microelectromechanical sys-
tems (MEMS), microresonators, multimode control, oscillators,
sigma-delta modulation.

LIST OF SYMBOLS

Modulus .

Largest integer less or equal to .

Complex conjugate of .

Real part of .

Imaginary part of .

Greater common divider, .

I. INTRODUCTION

T HERE is a large set of applications based on MEMS
working in resonance, such as the sensing of accelera-

tion, pressure, mass change, etc. These resonant sensors often
detect shifts of the resonant frequency or amplitude changes of
MEMS structures put in resonance in response to an external
stimulus [1]–[4]. In most cases, resonant MEMS exploit struc-
tures such as beams [3]–[6] or plates [2], [7] with additional
supporting elements (springs, arms, etc.) that are excited in one
of their mechanical modes.
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Fig. 1. General single feedback topology of the pulsed digital oscillator. In this
paper G(z) is a delay filter ����� � � �.

With the development of the MEMS technology, a lot of ef-
forts have been made to improve the sensitivity of resonant sen-
sors (see [8] and papers cited there). In most cases, the sensi-
tivity of such sensors depends on the resonant frequency of the
MEMS structure, which is usually excited in one of its mechan-
ical resonant modes. Most of the methods that have been pro-
posed to improve the sensitivity of gravimetric (or mass change)
resonant sensors are based on increasing their operating fre-
quency. For instance, parametric resonance amplification is an
example of an efficient technique [9]–[12] that allows the ex-
citation of the same mechanical structure at a higher frequency
to improve sensitivity. In gravimetric sensors, the use of higher
order modes generally serves to increase the sensitivity to mass
changes, whereas it is desired in gyroscopes to avoid the activa-
tion of certain resonant modes of the inertial mass [13]. More-
over, the activation of higher vibration modes to increase perfor-
mance has been also reported in atomic force microscopes [14],
[15] and in piezoelectric sensors and actuators [16], where elec-
trodes have been specifically designed to activate certain modes.

Thus, depending on the specific application, the selective ac-
tivation of different spatial vibration modes of a mechanical
resonator can be one way to improve performance for a large
number of MEMS sensors [17]. The purpose of this paper is
to show that pulsed digital oscillators (PDOs) [18], [19], may
be a tool to selectively excite self-sustained resonant modes in
MEMS structures.

PDOs are simple circuits that allow linear resonators
to maintain self-sustained oscillations. The PDO general
single-feedback topology is depicted in Fig. 1. The circuit
topology consists of a resonator, a 1-bit quantizer ( func-
tion), and a simple digital feedback filter, . The position
of the MEMS resonator is evaluated at each sampling time, and
short pulses of force are applied to the resonator. These circuits
allow changes in the resonant frequency of the resonator to be
monitored simply by processing the binary sequence generated
at their output [20], [21]. The use of a pulsed actuation with
constant amplitude and simplified position/velocity sensing
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requirements overcomes some of the nonlinearities usually
found in MEMS with standard actuation techniques. This is
clearly the case for the example of thermoelectric actuation,
where the applied force is proportional to the square of the
applied voltage or current. The same approach can also be
used to the electrostatic actuation case, if the variation of the
electrode gap is negligible (small signal displacement).

In order to analyze the dynamics of PDOs working with
MEMS resonators with more than one resonance it is conve-
nient to obtain the iterative map of the dynamical system, using
a lumped model for the MEMS structure. The dynamics of
MEMS structures that display predominately one-dimensional
behavior, such as cantilevers or beams, are described through
1D partial differential equations (PDEs) [22]. A common
strategy is to reduce distributed systems in the form of PDEs to
lumped systems in the form of ordinary differential equations
(ODEs) [23]. This way, instead of using a PDE, this device
can be described by a set of mass-spring-damper coupled dif-
ferential equations, the typical and yet effective way to model
the dynamics of a variety of MEMS [7], [19], [20], [24]–[27].
This is an important result that will allow us to link the MEMS
geometry with the iterative map of the PDO working with
the resonator. We start with the partial differential equation
(Section II) that describes the transversal deflections of a beam
[22], [28]. Then a system of ordinary differential equations,
coupled via the external driving, is obtained. Based on the
pulsed nature of the actuation, in Section III a set of iterative
maps is obtained to describe the evolution of the spatial modes
between two sampling events.

Once the lumped model has been obtained, the iterative map
of the PDO working with a resonator with several resonances is
found in Section III. The objective of Section IV is to show that
under some circumstances the PDO is able to excite only one of
the resonances of the resonator. In this case the bitstream at the
output of the oscillator is related exclusively to that resonance.
It will be shown that this behavior may depend on the initial
condition of the resonator. This implies that in order to select
a given resonance another mechanism is needed. In [25] it was
shown that under some circumstances the actuation of PDOs
on linear resonators may, on average, extract energy out of the
resonator. This mechanism is for the first time analyzed and
characterized in a general way in Section V. It will be used as
a tool to generate selective oscillation in MEMS resonators in
part II of the paper.

II. ANALYSIS OF THE VIBRATION MODES OF ELASTIC BEAMS

In order to obtain a suitable lumped model to generate the
iterative map of PDOs actuating resonators with more than one
resonance, it is necessary to analyze the mechanical resonances
of the structure. The general problem of transversal vibrations
on elastic beams has been considered, for instance, in books
[28], [22], including direct applications to MEMS in the latter
book. A number of papers have studied beam vibrations in the
context of MEMS [23], [29]–[33].

The aim of this section is to derive a reduced-order model of a
specific MEMS cantilever with the given external driving using
one of the techniques described in review [23] and successfully
applied to MEMS in the above-mentioned papers. This is a re-
quired step in order to obtain the lumped model, which later

Fig. 2. Schematic drawing of the clamped-free beam in the PDO.

will allow the generation of the PDO iterative map actuating the
MEMS resonator variables. We will start from a general PDE
that describes transversal deflections of a cantilever and apply
a strategy based on discretizing the initial distributed system by
means of a set of spatial eigenmode functions , which
in the general case is infinite. As a result, we will obtain a set
of ordinary differential equations that represent the dynamics of
each spatial mode as the mass-spring-damper equation with ap-
propriate parameters.

Let us emphasize that in contrast to [30]–[32] that examine
MEMS devices with electrostatic actuation, we will focus on a
system that is subjected to a different type of excitation (driving
by short pulses) and discuss the impact of such type of driving
on mechanical modes generated in beams.

According to this, we assume that the MEMS cantilever is a
clamped-free beam shown in Fig. 2 that is excited by the external
force . The dimensionless equation and the boundary
conditions that describe the transverse vibrations of the beam
are as follows [28]:

(1)

and (2)

where is the transverse displacement at the position
and time . In (1), the dimensionless coordinate along the beam
axis , time and the dissipation parameter due to viscous
damping are defined through the dimensional ones , and

(3)

where is the Young’s modulus, is the moment of inertia
of the cross-section (for beams with a rectangular cross-section

), is the density, is the area of the cross section,
is the dissipation coefficient, is the length of the beam, is

its width and is its thickness.
Next, the continuous equation (1) is discretized using the

truncated set of linear mode shapes [23], [34]

(4)

where are time-dependent functions and are the spa-
tial mode shapes. For a clamped-free beam, these functions are
[28]:

(5)

where , and are
the roots of the equation

(6)
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Fig. 3. Functions � ��� versus the axial coordinate �.

The first three functions (calculated according to (5)
for the first three solutions of (6)) are shown in Fig. 3 as func-
tions of the axial coordinate. Later in the paper, the vibrations
that correspond to these functions will be called spatial modes
with spatial frequencies .

Substituting (4) into (1) yields

(7)

where the overdot notation denotes differentiation with respect
to time, and the superscript ‘IV’ denotes the fourth derivative
with respect to position. According the Galerkin procedure, we
require that the residue term be orthogonal to each eigenmode

. Multiplying the latter equation by , integrating over the
beam domain and taking into account that

(8)

where is the Kronecker delta, we obtain the system of ordi-
nary differential equations

(9)

Note that the system (9) presents each spatial mode as the mass-
spring-damper system with appropriate parameters such as the
dissipation parameter and the temporal frequency .
Using that set of equations allows us to describe the evolution of
spatial eigenmodes separately from each other and to obtain the
overall solution of the problem in the form of a superposition
of the modes. The functions in the right-hand side of the
equations are the “projections” of the external force onto each
eigenmode. They define what quantity of the force is transmitted
to excite the oscillations of a mode:

(10)

Using the expressions (3) that establish the correlations be-
tween dimension and dimensionless parameters, the radial and
cyclic dimensional temporal frequencies in (9) are

(11)

and they are proportional to squared spatial frequencies .

Fig. 4. Schematic drawing of the microbeam. The figure shows possible posi-
tions of the measurement �� � and actuation system �� �.

The first four frequencies calculated as the roots of (6) are
as follows:

(12)

Now let us return to the PDO and rewrite the system of (9) for
our specific case. To actuate the resonator, short pulses of force

are applied to it [18], with the sign of the pulses
defined by the sign of the gain in the feedback loop and on
the position of the resonator. (For the resonator of the paper,
we assume that we actuate the system by delta-pulses.) Position
sensing is required only at the fixed time instants defined by the
sampling frequency . At these moments, the sensing system
defines whether the resonator position is above or below the
steady-state position. The actuation and sensing points in the
cantilever can be placed in the same place or separated (see, e.g.,
Fig. 4). Let us denote as the coordinate along the beam axis at
which the position of the resonator is measured by the sensing
system and as the coordinate at which the pulse of external
driving is applied to the resonator by the actuating system.

Although we present the excitation in our model as a se-
quence of Dirac delta pulses with a constant amplitude, and this
model has its limitations, we suppose that this approach could be
applied to a wider class of realistic MEMS devices that utilises
pulsed driving to excite or stabilize oscillation of a mechanical
structure. Let us give some discussion here.

In practical realizations, force pulses always have finite
width . However, if and , where
is the natural frequency of oscillations and is the normalised
dissipation, then the displacement caused by this short pulse

and the change of velocity .
Therefore, mathematically this system can be reduced to one
that is driven by Dirac delta pulses. Note that many MEMS are
characterized by a relatively high frequency of oscillations and
a high -factor, and these assumptions are typically valid.

Secondly, electrostatic short pulse actuation in the form
, where is the linearized

part of the force, is the displacement and is the capac-
itor gap, can be modeled to some extent as constant amplitude
pulses if oscillations of the resonator are small. In this case,
we can neglect the nonlinear part of the force in that formula.
In addition, in [35], for an electrostatically driven system short
pulses were used as a compensation to avoid instability. Both
cases were studied, the linearized force and the nonlinear
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, and comparison of results were given there, showing that at
high sampling frequencies the linearized approach is valid.

Thus, the external driving force for a beam embedded in the
loop of a PDO can be written in the following form:

(13)

where is the position of the resonator, is the number
of delays in the feedback (see Fig. 1), is the sign of the feed-
back loop, is the dimensionless
sampling frequency ( is its dimensional value), is
the dimensionless interval of time between two impulses,
is the Dirac delta function and is the signum function. In
the most general case, an impulse is applied to a finite area at the
beam, and, therefore, the function represents the “density
distribution” of the actuating force. In the simplified statement
of the problem, this function can be replaced by the Dirac delta
function, i.e., . The latter means that the pulse is
localized at the point .

Let us denote as the th instant of time at which
we apply the force pulse. Using the general definition (10) and
the specific form of the force (14), the functions may be
expressed in the following way:

(14)

where the amplitude of the external driving for each mode is
denoted by

(15)

and the sequence of signs is introduced by

(16)

Equation (15) emphasises that the th spatial mode receives a
portion of the external driving which is proportional to the value

. Note that in the simple case , the
expression (15) is reduced to

(17)

Equation (16) uses the truncated expansion (4) to express the
sensed positions of the beam.

Now, (9) and (14)–(16) can be used to specify the equations
that will describe the dynamics of the first spatial modes

in the PDO with delay blocks in the
feedback loop:

(18)

where the definitions of and are given above. For sim-
plicity, the expressions (16) can be replaced by the following
one (on condition that ):

(19)

where

(20)

Formula (20) introduces a new family of parameters in order to
avoid always operating in terms of the spatial functions . The
parameters now define the geometry of the sensing system
and the contribution of the th spatial mode to the overall posi-
tion of the resonator.

In the same manner, we can introduce the parameters that
defines the geometry of the actuating system and the impact of
the external driving on the th mode excitation:

(21)

In the case of two resonances, (19), (20), and (21) can be
simply written as with

and with .
Now the reduced-order model of the specific PDO system is

defined by the set of equations (18)–(21). In the obtained model,
only two parameters, and , fully describe all possible posi-
tions of the actuating and sensing of the PDO on the MEMS
resonator.

III. ITERATIVE SYSTEM FOR THE PDO

In the previous section we have converted the PDE to an ODE
and obtained the system of (18) that describes the evolution of
spatial modes in the PDO. In this section we discuss how the
ordinary differential equations can be further reduced to dis-
crete-time iterative equations (maps).

The system (9) is subjected to pulsed excitation given by
the expressions (14). Between two sampling instants, the res-
onator moves freely, and at each sampling event its velocity is
instantaneously changed by the applied delta-pulse. Thus, for
the sequence of variables that we extract from the mass-spring-
damper equations (9) at the sampling instants, we will be able
to formulate iterative equations.

In order to do so, for each spatial mode with the index “ ” we
introduce the normalized damping factor and the
variable

Now we can rewrite the ordinary differential equations of the
second order (9) in the symmetrical form

(22)

The solution of (22) is given by

(23)
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where is the rotation matrix

by the angle . If we define the sequence
as the extracted values of and at

the sampling instants , the set of iterative equations will have
the following form:

(24)

for . Note that the values are defined by
(16). In the set (24), we introduce the following dimensionless
parameters:

(25)

where is the dimensionless damping parameter, is the nor-
malized sample ratio in terms of the paper [26] (or normalized
frequency in terms of the paper [20], both terms will be used
throughout the paper), is the normalized increment (note that
it depends on the sign of the feedback loop) and is the con-
traction factor. In (24), the first letter of the index, i.e., , refers
to the number of a spatial mode, and the second letter, i.e., ,
refers to the iteration number.

In a similar way to the previous section, we draw attention
to the particular case of the first two spatial modes. It is very
convenient to establish the correlation between the parameters
that refer to the first and the second modes in explicit form.
Therefore, we introduce the ratio of the spatial frequencies of
the modes as follows:

(26)

and apply it to connect the set of parameters for the modes:

(27)

Note that from the onset, our theory has included such
parameters as the frequencies of the eigenmodes. As a con-
sequence, the parameters used for formulation of the iterative
system cannot be considered as independent ones, i.e., the
values of controlling parameters have to be changed according
the expressions (27). For instance, in the experimental set the
sampling frequency is measured with respect to the frequency
of the fundamental mode (i.e., the first spatial mode with the
lowest frequency), and so the sampling ratio is given as a
“basic” parameter. The value of can be obtained simply by
recalculating with the ratio .

Equations (24) introduce the iterative system as a set of 2D
iterative maps and operate with variables such as the position

of the resonator and the variable proportional to the ve-
locity of the resonator. Results presented in these variables are
easier to understand since and have an obvious physical
interpretation. However, it is convenient to work on the com-
plex plane with appropriate normalization and introduce a set
of complex 1-D maps instead of 2-D maps written in real vari-
ables. By defining the following complex variable

the evolution of the system is described now by the complex
map

(28)

where , and for definition of and
see (25).

The system (24) contains two coupled subsets—iterative
equations that describe the first spatial mode component by
the variables and and the second spatial mode by the
variables and . Later in the paper, dynamics that are
displayed by the first subset of (24) will be referred as the “first
spatial mode” (or the first mode, eigenmode or resonance),
and dynamics that are displayed by the second subset will be
referred as the “second spatial mode” (or the second mode).
Note that the real position of the system is defined by the super-
position of these two components according to the formula (4).

IV. CONTROL OF RESONANT MODES WITH PDOS

The objective of this section is to study the behavior of PDOs
working with resonators with more than one resonance. Now
that we have established the possibility of extracting a lumped
model of the PDE governing a given MEMS structure, it is pos-
sible to continue the line of work introduced in [20] to study the
dynamics of PDOs. The first result will show that under some
conditions, depending on the initial condition of the resonator,
it is possible to obtain bitstreams at the output of the oscillator
related only to one of the resonant frequencies of the resonator.
It will be shown later that, at least in some cases, the oscillation
frequency may generally depend on the initial condition of the
resonator.

On the other hand, it has already been shown in [36] that,
given a resonator with one resonance and a configuration of
the oscillator, either the oscillator induces self-sustained oscil-
lations on it, or, on the contrary, tends to cancel any oscillation
by extracting energy until some limit cycle is reached near the
origin. This behavior will be used to selectively activate one of
the resonances of a resonator with more than one resonance. The
objective of Section V will be the study of this “anti-oscillation”
behavior.

A. Iterative Map With Two Resonances

Let us focus on the case with two resonances. We will assume
that the feedback filter is of the form . Using the
general complex formula (28) to formulate the iterative equa-
tions we obtain the following equations:

(29)

(30)

(31)
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where are normalized forces (25),
and depends on the MEMS geometry.

In the case of a cantilever it would be defined as in (20).
The dynamical system associated with these equations may

be defined in the following way:

(32)

where . For

(33)

Now, following a similar approach to [20], we define:
Definition 1: The projections

and are de-
fined as , and

.
We will consider that , is the identity

and that is the result of applications of the function
to . In order to simplify notation we further define:

Definition 2: The function is
defined as .

Definition 3: The function is defined as
.

Definition 4: In the case , the functions
are defined as . If

is defined as .
If the feedback loop of the oscillator ensures that

. If
then .

Now, for a given binary sequence we may define the se-
quence as:

(34)

with , and test for the admissibility of that
binary sequence:

Lemma 1: Given a sequence and
, if

then
.

Proof: It is obvious since in this case:

(35)

and , for all .
This is an important result because it is the mechanism we

will use to prove that a given bitstream can be present at the

output of a PDO. A similar result has been previously used in
[20] to prove that under some circumstances the bitstream of a
PDO, working with a resonator with only one resonance, is an

sequence at the resonant frequency of the resonator.
Due to the presence of two different resonances in the res-

onator, one might expect a bitstream related to a mixture of
both frequencies, most probably rendering the bitstream use-
less, from the point of view of obtaining at least one of the reso-
nant frequencies directly from it. However, it will be proved that
under some conditions, the bitstream at the output of the PDO
with two resonances may be related only to one of them.

We will principally focus on a certain group of frequencies,
called ‘tuned’ frequencies which were first found in [20]. The
main reason to focus on these frequencies is that the oscillator
with low or no losses presents a regularity pattern that simplifies
the analysis of its dynamics.

B. Lossless Resonator Case

Now, we will obtain sufficient conditions for oscillation at one
of the resonant frequencies of the resonator. This result will be
valid for frequencies and ,
with g.c.d. , and g.c.d. . Further-
more, we will assume that frequency is ‘tuned’ [20], i.e., for

:

even

(36)

In the case , the former conditions are

(37)

Under the above conditions it has been proved, [20], that
if , with being a tuned frequency and

, for , then

(38)

for , which is a result greatly simplifying the use of
Lemma 1 for sequences of the form of . Now, we may state
the following theorem:

Theorem 1: If an oscillator with two lossless resonances,
, and

, with g.c.d. , is tuned to ,
and are such that

, then

. (The proof is given in Appendix I.)
This last result shows us that under some circumstances it is

possible to obtain a bitstream at the output of the PDO related
to only one of the resonances of the resonator. Among the con-
ditions needed to ensure this oscillation we find the initial con-
dition in both resonators.
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Fig. 5. Evolution of a PDO, with � � �� � � � and a lossless resonator with
two tuned resonances, � � ����� � � ������ � �. The initial conditions
of both resonances are � � �����	 � � � ���	 .

C. Leaky Resonator Case

A similar result may be found for the leaky case.
Theorem 2: For any oscillator with two leaky resonances

such that
and , with
g.c.d. g.c.d , there exist a
and a such that if then there is a
constant such that for , with

, then

. (The proof is given in Appendix II.)
This result extends the previous one on lossless resonances.

It has been proved that under some conditions it is possible to
obtain a bitstream related to only one of the resonances out of a
PDO working with a leaky resonator.

D. Discussion

These results provide some insight into the fact that the os-
cillation frequency of a PDO working with more than one reso-
nance generally may depend on the initial condition of the res-
onator. Let us assume that we have a resonator with two tuned
frequencies. The above results state that, depending on the ini-
tial conditions of the resonator, the oscillation frequency will
be one or the other. This is reflected in Figs. 5 and 6. As it
can be observed, depending on the initial condition of the res-
onator, the oscillator may oscillate at the first or second reso-
nance. This means that in order to control the selective activation
of a given resonance we need a new mechanism: the ‘anti-oscil-
lation’ mode.

The objective of the next section is to show that, depending on
the normalized frequency of the resonator and the feedback filter
of the PDO, either the PDO on average tends to provide energy

Fig. 6. Evolution of a PDO, with � � �� � � � and a lossless resonator with
two tuned resonances, � � ����� � � ������ � �. The initial conditions
of both resonances are � � ���	 � � � �����	 .

to the resonator, or, on the contrary, tends to extract it until a
limit cycle is reached near the origin. This second behavior is
called the ‘anti-oscillation’ mode. By choosing an appropriate
feedback filter and a sampling frequency, it will be possible to
put a given resonance in the “oscillation” mode and the others
in the “anti-oscillation” mode. This mechanism will allow the
selective activation of the vibration modes of the structure.

V. ANTI-OSCILLATION MODE

A. Simulation Results

From the behavior observed experimentally and in simula-
tions, given a configuration of the oscillator and a resonator two
possible behaviors of the PDO are possible: either: 1) the oscil-
lator generates a self-sustained oscillation in the resonator, or 2)
it tends to cancel out any oscillation in the resonator.

In the first case, the excitation being applied to the resonator
tends on average to introduce energy to the resonator, whereas
in the second case, the excitation extracts energy from the res-
onator until a limit cycle is reached near the origin. The iterative
map that we will consider is that of a PDO working with only
one resonance:

(39)

where is the normal-
ized resonant frequency, is the normalized force, is the
number of delays in the feedback loop , and:

(40)

This iterative map is the same as that in (28), with parameters
(25), except that the sign of the feedback loop, , is put in the
map in explicit form.
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Fig. 7. Response of the oscillator, � � �, as a function of the normalized
resonant frequency when no change of signs is made in the feedback loop �� �
��, for a resonator with � � ������.

Fig. 8. Response of the oscillator, � � �, as a function of the normalized
resonant frequency when the feedback sign is changed in the anti-oscillation
regions, for a resonator with � � ������.

In all the simulations the oscillation frequency is obtained by
generating an auxiliary bitstream. As pointed out in [20], any
sequence can be converted to a first-order sigma-delta bitstream
simply by edge detection. The new bitstream is generated by
applying the following rule: . By filtering
the oscillation frequency is now easily obtained. Although this
result has been only proved for sequences, simulation as well
as experimental results, [21], show that this procedure can be
used in practical applications.

If the sign of the feedback filter is kept constant for all fre-
quencies there are whole frequency segments where the oscilla-
tion frequency extracted from the bitstream is simply “wrong,”
in the sense that it is not related in any way to the resonant
frequency of the resonator. This behavior can be observed in
Fig. 7. As can be seen, there are some “forbidden” segments

where the PDO does not follow the
resonant frequency of the resonator [25], [37].

In order to obtain self-sustained oscillations for all frequen-
cies it is necessary to change the sign of the feedback filter in
the forbidden frequency segments. Fig. 8 shows the oscillation
frequency of a PDO, with and , in which the
sign of the feedback loop is changed in the forbidden regions.
Fig. 9 shows a similar result for an oscillator with and a

Fig. 9. Response of the oscillator, � � �, as a function of the normalized
resonant frequency when the feedback sign is changed in the anti-oscillation
regions, for a resonator with � � ����.

Fig. 10. Oscillation mode for a PDO with � � ���� � � ������� � � ���
� � �� � � � and initial condition of the resonator 	 � � 	 
 .

resonator with heavy losses . As can be observed the
oscillation frequency follows closely the resonant frequency of
the resonator in the first case, whereas in the second case large
differences can be observed due to the plateaus of the fractal re-
sponse of the oscillator. The relation between the sign switching
and the oscillation-anti-oscillation behavior will be shown in
Section V-C.

In the anti-oscillation frequency segments the oscillator is on
average extracting energy from the resonator. This effect can be
seen in Figs. 10 and 11. In Fig. 10 the initial condition of the
resonator is near the origin . It is seen that the
final orbit reaches an amplitude of approximately 450. In this
case the oscillator is working in the oscillation mode and it is
on average always increasing the energy of the resonator. On the
other hand, in Fig. 11, for the same frequency but changing
the sign of the feedback loop and a large initial condition of
the resonator , the oscillator finally reaches an
orbit near the origin. This means that the oscillator has extracted
energy stored initially in the resonator until the limit cycle near
the origin is reached.

B. Regions With No Tuned Frequencies

It was proved in [20] that a necessary condition to obtain
self-sustained oscillations at the resonant frequency of a loss-
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Fig. 11. Anti-oscillation mode for a PDO with � � ���� � � ��� �� � � ��
� � �� � � � and initial condition of the resonator 	 � �� � ��
 .

less resonator is that the resonant frequency must be tuned.
Extensive simulations have been carried out showing that the
PDO does not generate oscillations in the frequency segments

when and
when . The purpose of this section is to show that in these
frequency segments there are no tuned frequencies and therefore
it is not possible to find perfect sequences at the resonant fre-
quency of the resonator in the lossless case.

Now, let us assume that , then if a frequency
g.c.d. , with even, is tuned there is an

integer such that:

(41)

which means that

(42)

and therefore, . Now, for odd,
is

(43)

and therefore

(44)

which means that . In both
cases, odd or even, we have that for any integer :

(45)

Following a similar procedure for the case , it can be
shown that and therefore,

(46)

Taking into account [20], this result tells us that oscillations
giving rise to perfect sequences at the resonant frequency of
a lossless resonator are not possible in these regions. This is not
a complete result because it does not provide any information

regarding what happens in those forbidden zones, although it is
completely consistent with the anti-oscillation modes that are
always observed in simulations.

The above result, together with Proposition 2 of [20], shows
that there are frequency segments on which an sequence at
the resonant frequency of a lossless resonator is not possible.

C. Energy Considerations for PDOs in the Antioscillation
Mode

It has been shown in [38] that under some conditions se-
quencesat theresonantfrequencyoftheresonatorprovideasymp-
totically a maximum in energy transfer to the resonator. The ob-
jective of this section is to show that, under some conditions,
PDOs working in the anti-oscillation mode may provide max-
imum energy extraction from the resonator, i.e., absorption of the
mechanical energy of the resonator into the electrical domain.

Each time a delta of force of amplitude is applied to a
resonator at time , the energy delivered to the resonator
is (see the Appendix of [19]):

(47)

where is the mass of the resonator and is the resonator
velocity at time . This means that when a delta of force
is applied to a resonator, depending on the sign and magnitude
of both the excitation and the instantaneous velocity of the res-
onator, we may either increase or decrease its stored energy.

If we look again at the iterative map of a PDO with a lossless
resonator, (39), if at a given time we have that:

(48)

taking into account that , i.e., the imagi-
narypartof isproportional totheinstantaneousvelocityofthe
resonator just before the delta is applied, then the energy transfer
to the resonator at that sampling time has been maximum. In the
case where the contrary happens,
the energy extracted from the resonator has been maximum.

Let us first define the set of “anti-tuned” frequencies.
Definition 5: A rational frequency of the resonator,

is said to be an anti-tuned frequency of a PDO if ei-
ther it obeys (36) and , or it obeys (37) and .

From the results of the previous section we know that no
permanent oscillation at the resonant frequency is possible at
any anti-tuned frequency. However it is possible to obtain a bit-
stream of the form , out of any PDO, at
least for some clock cycles, depending on the initial condition
of the resonator.

Lemma 2: Given a PDO with a resonator and an initial con-
dition, , such that ,
for , then and

, for .
Proof: From the map of the oscillator, (39), we have that:

(49)

Now, if for ,
then , because

. On the other hand,
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from (49), it is easy to see that if , for
, then .

This last result, means that for an unbounded set of initial
conditions of the resonator, regardless of the configuration of
the oscillator, the bitstream is dominated at least for some time
directly by the initial condition of the resonator. Under these
circumstances it is possible to study the energy efficiency of the
PDO actuation while actuating the resonator, i.e., the number
of times the sign of the delta of force applied to the resonator
coincided with the sign of its velocity.

Definition 6: The energy efficiency, , of a given finite-time
pulsed actuation with amplitudes on a linear
resonator with initial condition is defined as

(50)

where is the velocity of the resonator at time when
the resonator is actuated with deltas with amplitudes

, and the initial condition of the resonator is .
We will now analyze the energy efficiency of PDOs in anti-

tuned frequencies.
Theorem 3: Given a PDO with a lossless resonator with an

anti-tuned frequency, , if the initial condition, ,
is such that , for

, then the energy efficiency of the actuation of the PDO
from time to on the resonator is

a) for even either or ;
b) for odd, either or .

Proof: The actuation the oscillator feeds into the res-
onator is . From Lemma 2, it follows that

and
. If ,

then .
We may distinguish three different cases:
a) : in this case ,

and therefore
. This means the

the energy efficiency of this actuation is ;
b) : then .

In this case,
. Now, if

, where is defined as
, then

, and therefore . On
the other hand, if , we
will see that the difference between the sequences

and is
of two bits each bits, and therefore .

The sequence may be ex-
pressed in the following form:

(51)

Now, if the collection of sets is defined
, we may further define a function as

(52)

which allows us to rewrite the sequence as:

(53)

Then, for any if , and
otherwise. On the other hand, the sequence

may be written as:

(54)

It is clear that if then both bitstreams
are identical. If then:

(55)

and therefore 2 in each bits change from the sequence
with regard to , which means that .

odd: then , and therefore
. Now, if

then and
therefore the energy efficiency is .

Now, the sequence may be
expressed in the following form:

(56)

Following a similar procedure as before, we may define
as

(57)
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and therefore

(58)

which implies that if then other-
wise. Now, if we look at the sequence :

(59)

Once again it is clear that if then
, implying that . When

:

(60)

and in this case it means that only one bit changes in bits
between and , because for any two with

it is . Now the
energy efficiency is .

Corollary 1: Given a PDO with a lossless resonator with a
tuned frequency, , if the initial condition, , is
such that , for

, then the energy efficiency of the actuation of the PDO
from time to on the resonator is

a) for even either or , and
b) for odd, either or .

Proof: It follows step by step the proof of the previous
result but taking into account that now the frequency is tuned,
which means that either or

, depending on whether is even or not, and the initial
condition of the resonator.

Now, the following result can be proved for leaky resonators:
Theorem 4: For any and any anti-tuned frequency,

, there are some maximum losses, ,
such that for any PDO with a leaky resonator with ,
if the initial condition, obeys

, for ,
then the energy efficiency of the actuation of the PDO from time

to on the resonator is:
a) for even either or , and
b) for odd, either or .

Proof: Due to the fact that is finite, it is possible to find
, such that if and

it is for :

(61)

or, equivalently

(62)

Now, following a similar approach as in Lemma 2, if

, for , then
and

. Finally following a
similar procedure as before the result is obtained.

Corollary 2: For any and any tuned frequency,
, there are some maximum losses, , such that

for any PDO with a leaky resonator with , if the
initial condition, obeys

, for ,
then the energy efficiency of the actuation of the PDO from time

to on the resonator is:
a) for even either or , and
b) for odd, either or .

Proof: It follows step by step the proof of the previous
result but taking into account that now the frequency is tuned.

D. Characterization of the Anti-Oscillation Frequency
Segments

We have seen that if what governs the immediate evolution
of the PDO is the initial condition of the oscillator, i.e., under
the conditions of Lemma 2, the actuation of PDOs can produce
extreme values of the energy efficiency, depending on whether
the resonant frequency of the resonator is tuned or anti-tuned.
The objective of this section is to establish a condition fully
characterizing the anti-oscillation frequency segments.

Let us assume an initial condition of the resonator that guar-
antees a “natural evolution” of the resonator for clock
cycles. In the case of a lossless resonator the condition might be

, for . In
the case of a leaky resonator,

, for .
Therefore, assuming the initial condition of the resonator is in
these regions, we have that and

.
Therefore:

(63)

(64)
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Now, considering that , for large, in order to have
, on average for all initial conditions, it must be

, which means that:

(65)

and these are precisely the frequency segments where the anti-
oscillation behavior is found (for ). In case then

.

VI. CONCLUSION

The dynamics of PDOs working with MEMS resonators
with more than one resonance were analyzed. We started with
a lumped model of coupled ordinary differential equations
obtained for clamped-free beams. Each ODE is related to
one of the resonances of the beam, which result from the
decomposition in eigenmodes of the solution to the partial dif-
ferential equation governing the motion of the beam. From this
lumped model a set of iterative maps has obtained that serve
to describe the dynamics of a PDO working with resonator
with more than one resonance. It has been proved that under
some circumstances PDOs can activate one of the resonances
of the MEMS structure, but that this fact can depend on the
initial condition of the resonator. In order to achieve an active
control on the activation of the resonances another mechanism
is necessary: the anti-oscillation mode. This mode has been
analyzed and it has been shown that the energy efficiency of the
actuation in the anti-oscillation frequency segments is negative.
This mechanism will be used later in part II to actuate different
resonant modes on a MEMS cantilever.

APPENDIX I
PROOF OF THEOREM 1

In order to obtain the proof of Theorem 1 we need first the
following result:

Lemma 3: Given , with g.c.d.
, and g.c.d. , then

(66)

Proof: The result is evident for . Now,
for , let us assume that the first set does not have

elements, and therefore the above equality does not
hold. This means that for a given it is

, or what is the same,
. Now, taking into

account that g.c.d. , we have that
and , for some . On the

other hand, because g.c.d. , then ,
with , and therefore , which
is a contradiction.

This only reflects the fact that is a group
isomorph to if and only if g.c.d. .

This result allows us to bound the response of a given res-
onator, of resonant frequency , to an sequence,

of frequency of a different frequency, if their re-
spective frequencies under the conditions of Lemma 3, at times
multiple of .

Lemma 4: For any binary sequence
, with

, if , with g.c.d.
, and g.c.d. , then

.
Proof: From Lemma 3, we have that

(67)

and therefore . Now, due to the fact that

(68)

which means that .
Now, we may proceed with proving Theorem 1:

Proof of Theorem 1: Following a similar approach to that
used for proving Theorem 2 in [20], it can be shown that for a
binary sequence we have that

(69)

Now, due to the fact that is a tuned frequency,
it is or

. On other hand, re-
taking Lemma 5, we have that .
Therefore for a sufficiently large , it is for

, and

(70)

and therefore

(71)

Finally, if
, then (72) is also true for , and

therefore Lemma 1 can be applied.

APPENDIX II
PROOF OF THEOREM 2

We begin with an auxiliary result.
Lemma 5: Given a binary sequence

, with
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and , with g.c.d. ,
and g.c.d. , for any there is a

such that for :

(72)

Proof: For any

(73)

Now, due to the continuity of as a function
of , and taking into account that , then for

we have that , and the result is
easily obtained.

Corollary 3: If to the conditions of Lemma 5 we add that
or then there is a such that

for :

(74)

With the above results we may proceed to prove the second
theorem:

Proof of Theorem 2: For any we have that:

(75)
where is:

(76)

which means that:

(77)

Now, taking into account that for :

(78)

then, because is continuous as a function of
,there is a such that for , we have

that
. Finally, taking into account expression (77) and Lemma 5,

there exists a such that for and a
sufficiently high it is for :

(79)

which means that
for .

Finally, if , for ,
where:

(80)

then
for , and

therefore Lemma 1 can be applied.
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