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 
Abstract— In this paper, an efficient optimization technique 

aligning three-dimensional (3D) electromagnetic simulator 
responses with two-dimensional (2D) electromagnetic simulator 
responses around space mapped solution, for the electromagnetic 
design of radiofrequency and microwave 3D circuits is presented. 
The interface between 2D and 3D electromagnetic simulators is 
obtained from an inverse linear input space-mapping approach 
and an output modeling process based on a fuzzy logic technique. 
It is shown that the technique provides a highly accurate 
estimation of the 3D design parameter space of the 3D 
radiofrequency and microwave circuits to be designed, for 
initially fixed design specifications. Designs of first-order, second-
order and sixth-order C-band 3D evanescent rectangular 
waveguide bandpass filters with dielectric posts show the 
performance of our approach. 
 

Index Terms—CAD, fuzzy logic, circuit optimization, 
RF/microwave filters, waveguide filters. 
 

I. INTRODUCTION 

N the aerospace industry, the main constraints over the 
microwave components concern the mechanical and 

electrical characteristics. Since the first satellite launch, the 
challenges have been the reduction in weight and volume, and 
the performance improvements. To meet the increasing 
demand over enhanced microwave components, accurate 
CAD tools have been required. Nowadays, a large range of 
two-dimensional (2D) and three-dimensional (3D) 
electromagnetic (EM) simulators are available [1]-[3]. From a 
computational point of view, the 3D EM simulators are very 
accurate for the analysis of arbitrary 3D structures, but usually 
very time-consuming. The 2D EM simulators typically 
provide efficient and accurate analysis of 2D structures, due to 

the reduction of one spatial dimension. However, these 2D 
structures find fewer applications, because from a practical 
point of view, many component structures of interest for the 
space sector are 3D. In this context, we want to focus this 
work in a design process of 3D RF/microwave circuits by 
using the efficient capabilities for the numerical modeling of 
2D structures. 
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This design process can be successfully achieved by using a 
powerful computational optimization tool between the 2D and 
3D EM simulators, which adjusts the 2D and 3D dimensions 
of the RF/microwave circuits in order to meet the design 
specifications. Many EM-based CAD tools and optimization 
techniques are available in the literature [4]-[15]. In 
computational electromagnetics, the trend is to combine 
different EM theories into hybrid techniques by expanding 
their capabilities and their efficiency. Among the optimization 
techniques, the space mapping approach has attracted our 
interest because of the possibility of reducing the 
computational time of the EM-based design process. This 
approach employs two models: a fine model and a coarse 
model. The fine model is accurate and slow in computational 
time, whereas the coarse model is fast but less accurate. The 
concept of the space mapping consists in aligning the space of 
the design parameters of the fine model with a mapped space 
of the design parameters of the coarse model by using an 
optimization tool. The optimization is done using only the 
efficient coarse model; the fine model is used only a few times 
during the design process. 

For the analysis and design of microwave circuits, artificial 
neural networks and fuzzy logic techniques have also been 
employed extensively [16]-[21]. The basic approach consists 
of training an artificial neural network or a fuzzy logic system 
over a certain region of interest, and then applying analysis 
and optimization techniques to the computationally 
inexpensive extracted models. The use of space-mapping-
based neural models and space-mapping-based fuzzy models 
was demonstrated in [22] and [23], respectively. These works 
developed a neural-mapping and a neuro-fuzzy-mapping for 
the input design parameters with a high generalization ability. 

In this paper, we describe an innovate interface between 2D 
and 3D EM simulators for the efficient optimization-oriented 
design of RF/microwave circuits using inverse-linear-input 
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neuro-fuzzy-output space-mapped (ILINFO-SM) models. The 
key idea is to find a mapping from the 2D structure to the final 
3D structure. With respect to other space mapping approaches 
of 3D structures [24]-[28], the highly accurate estimation of 
the 3D design parameter space is realized from the following 
two main contributions: 1) An inverse linear input mapping P 
from the coarse model space (2D EM simulator) to the fine 
model space (3D EM simulator) is iteratively built by 
applying a linear iterated prediction method, as described in 
[28], [29]; 2) the building of a nonlinear output space mapping 
based on a neuro-fuzzy modeling process [30]-[32]. This 
neuro-fuzzy output mapping reduces the residual error 
between the coarse (2D structure) and fine (3D structure) 
models, and facilitates further optimizations and 
interpolations, which can not be carried out with an inverse 
linear input mapping as in [28]. This neuro-fuzzy interpolator 
idea is related with a neural output space mapping introduced 
in [27], but in that work the technique is not applied to the 
interface between 2D and 3D EM simulators. 

(a) 

(b) 
Fig. 1.  Nth-order evanescent rectangular waveguide bandpass filter with n 
dielectric posts. (a) Top view. (b) Cross-section view. 

Our initial approach in [28] is extended and improved in 
different ways. A neuro-fuzzy-output mapping is added to the 
inverse-linear-input mapping. The different sub-processes of 
the ILINFO-SM approach are formulated, described and 
illustrated by using an example. The accuracy improvement 
and the interpolation abilities of the whole system are 
demonstrated. Finally, a step-by-step procedure is proposed 
for the application of the novel technique to the design of 
higher order microwave filters. A sixth-order microwave filter 
is for the first time designed using the proposed approach. 

Among the different technologies of interest in the 
aerospace industry [33], [34], we have opted by evanescent 
rectangular waveguide filters with dielectric resonators (Fig. 
1). The dielectric resonators are dielectric circular posts 
centered and suspended inside the evanescent rectangular 
waveguide sections for the 3D structures (non-inductive 
discontinuities, see Fig. 1(b)), whereas for the 2D structures, 
the dielectric circular posts touch the top and bottom metallic 
walls of the evanescent rectangular waveguide sections 
(inductive discontinuities). The analyses of the 2D and 3D 
structures are provided by a specific in-house simulator and a 
commercial tool (HFSS), respectively. The specific in-house 
simulator is based on an integral equation technique 
customized for the analysis of 2D inductive discontinuities in 
rectangular waveguides [3]. To exploit the 2D symmetry of 
the problem, Green’s functions of infinite line-sources inside a 
parallel plate waveguide are used. On the contrary, HFSS is a 
full-wave EM field simulator for arbitrary 3D passive circuit 
analysis. It employs the finite element method and adaptive 
meshing to solve the 3D EM problems. The integral equation 
simulator is very fast, since it exploits the 2D symmetry of the 
problem. On the contrary, the HFSS simulator is slower, since 
it has to perform a full-wave analysis and a volume mesh of 
the complete 3D structure.  

Fig. 2.  Inverse-linear-input neuro-fuzzy-output space-mapping approach 
(MANFIS is the multiple adaptive neuro-fuzzy inference system). 

 

II. INVERSE-LINEAR-INPUT NEURO-FUZZY-OUTPUT SPACE-
MAPPING METHOD 

The proposed ILINFO-SM approach is illustrated with the 
design example of a first-order 3D evanescent rectangular 
waveguide bandpass filter containing one dielectric post. The 
unique dielectric post (Fig. 1) is centered in the evanescent 
waveguide section ( ). The input/output waveguides are of 

standard WR-229 type, with dimensions (a, b) = (58.1, 29.05) 
mm. The fixed design parameters are: c = 31.1 mm (the width 
of the evanescent waveguide section),  = 18.05 mm (the 

height of the dielectric post with  = 5.5 mm) and 

cl

1h

2h 4r  

(the permittivity of the dielectric post). The parameters to be 
optimized are the diameter of the post ( ) and the length of 

the evanescent waveguide section ( ). cl

Our proposed ILINFO-SM strategy is illustrated in Fig. 2. 
The *-symbol has been used to denote the variables that will 
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be affected by the mapping between 2D and 3D spaces. , 

 and  are, respectively, optimal 2D,  and 3D 

design parameter space vectors obtained for initially fixed 

design specifications ( ,   and   , 

n and  are the numbers of the design parameters in the 
2D space (x, y) and in the 3D space (x, y, z), respectively). 

 has the same order than .  includes the 

variables of the third dimension (z-axis in Fig. 1), which are 
known or fixed by constraints.  and  are the 

corresponding 2D and 3D simulator response vectors and f is 

the frequency.  is the 2D to  mapping vector. 

2DX

kn


3DX


3DX

3DX

k

 P

D3

3DX

3DR

2DX

n


3DX

X

n

2D

2DR

D3

n 

z 3D,X

 
In the example of the first-order bandpass filter (Fig. 1 with 

one dielectric post), the 2D structure (coarse model) considers 
the dielectric post as being an inductive discontinuity. The 
space is reduced to the plane (x, y), since the field is constant 
along the z-axis. The 3D structure (fine model) processes a 
true 3D dielectric post inside the waveguide, where the height 
of the dielectric post is smaller than the height of the 

waveguide (  = 18.05 mm). The 2D and  design 

parameter spaces to be optimized according to initially fixed 

design specifications are  = [  

1h D3

D2X cl  ]T and  = [  

]T, respectively. In this case, the third dimension is formed 

by the fixed height of the dielectric post  =  = 18.05 

mm. In this example, we can observe that the numbers of the 
design parameters in the 2D space (x, y) and in the 3D space 
(x, y, z) are n = 2 and  = 3 (k = 1), respectively. 


D3X

1h


cl



z,D3X

kn 
In our approach, the mapping function P is linear. 

Therefore, in most practical cases, the 3D response 

 f,, z 3D,3D3D  XXR   slightly varies from  f,2D2D XR


3DX

, 

because of a residual error that can not be eliminated with a 
linear mapping P. To solve this problem, we have added a 
multiple adaptive neuro-fuzzy inference system (MANFIS) 
[30]-[32] after the 2D EM simulator (Fig. 2). MANFIS, whose 
internal parameter vector is defined from ip (premise and 
consequent parameters), is trained to learn stipulated input-
output data pairs obtained during the successive iterations 
performed to find the mapping P with the linear prediction 
method. During the training process of the MANFIS, the 
inputs are  and the discrete design specifications 

derived from . The outputs are  and the 

discrete design specifications extracted from 

z 3D,X

2D XR  f,2D 

 f,, z 3D,3D3D  XXR  . 

Once MANFIS is trained, we can use it to perform an 

accurate computation over the  design parameters 

( ), so that the residual error between 

D3

 2D3D* XPX M 
 f,

z 3D,

, z
MM

 3D,3D3D * XXR

X

 and  is reduced for the 

initially fixed discrete design specifications (Fig. 2). The 
consideration of  in the MANFIS inputs will facilitate 

further optimizations and interpolations. The interpolation 

results will allow to reduce the computational cost of linear 
iterated prediction 2D to 3D space mapping optimizations by 

 f,2D

(a) 

(b) 

(c) 
Fig. 3.  Illustration of the three sub-processes of our proposed approach for 
the first-order bandpass filter (Fig. 1 with one dielectric post). (a) First sub-
process: Target response of the 2D simulator according to the predefined 
discrete 2D design specifications. (b) Second sub-process: Linear iterated 
prediction 2D to 3D* space mapping optimization for . (c) Third sub-
process: Output neuro-fuzzy mapping for . 2D XR
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decreasing the number of 3D simulations necessary to obtain 

solutions of . 
3DX

The proposed ILINFO-SM approach consists of three sub-
processes, which are illustrated in Fig. 3 for our example 
(applied only to the diameter of the post ( ) for the sake of 

space): 1) find a target response  according to 

the initially fixed discrete design specifications by optimizing 
the coarse model, which is the 2D structure (Fig. 3(a)); 2) find 

 of the 3D structure (fine model) and P by means of an 

inverse linear input space-mapping optimization (Fig. 3(b)); 
and 3) develop the output neuro-fuzzy mapping (modeling 
process) using the MANFIS with stipulated input-output data 

pairs to obtain accurate  design parameters ( ) (Fig. 

3(c)). These sub-processes are described and illustrated in the 
following sub-sections. A space mapping notation similar to 
[26] is followed. For the example of the first-order bandpass 
filter (Fig. 1 with one dielectric post), we have used a set of 
discrete 2D design specifications ( , ): center 

frequency  = 4 GHz and 3 dB bandwidth  = 0.16 

GHz. The optimization task consists in finding the final 3D 
structure that meets these two predefined 2D design 
specifications. 

 ,D2

D





fD2 XR

2f B


3DX

D3 M
*3DX

D2

D2BD2f

 

A. 2D Model Optimization 

The algorithm starts by optimizing the 2D model according 
to the initially fixed discrete design specifications 
 
  f,U D2D2D2

D2 

min  arg xR
x

X

h

 (1) 

 

where  denotes the response vector of the 2D 

model for h frequency points, U corresponds to the objective 
function with the initial discrete 2D design specifications 

(center frequency, bandwidth),  is the 2D design 

parameter vector and  is the optimal 2D design 

parameter vector to be achieved, which is assumed to be 
unique. The optimization of the 2D model can be performed 
by using a classical optimization method [10], genetic 
algorithms [12], or any one proposed in [26]. 

2DR

nD2x
nD2X

 This sub-process is illustrated in Fig. 3(a) for the example 
of the first-order bandpass filter (Fig. 1 with one dielectric 
post). Fig. 3(a) shows the starting 2D response (dashed line) 
for the initial 2D parameters  = [  D2x cl  ]T = [36.2  6.86]T 

mm and the optimized 2D response (dotted line) obtained for 
the specified discrete design specifications ( , ) = (4, 

0.16) GHz. The optimization was implemented from a 
gradient-based optimization method. The number of 2D 
evaluations was 4. The optimal 2D parameters extracted from 
the optimized 2D response were 2DX cl  

D2f D2B

 = [  ]T = [37  11.4]T 

mm. 
 

B. Inverse Linear Input Space Mapping 

The inverse linear input space-mapping optimization is 

reached by using a linear iterated prediction 2D to  space 
mapping optimization procedure, which allows to find an 
approximate root of the system of nonlinear equations 

D3

 

   ,,,ii
i, 2 1 0  D21 D3 
 XPX  (2) 

 
such that 

 

       

2

1

22
2














q

i

T
iee  (3) 

 
where  is the optimal 2D design parameter vector (1) and 


D3X he predicted D3 sign parameter vector at the 

(i+1)th iteration. 

D2X

1i  is t ,  de

  is the error, 
2
2

   e is the square of the 

Euclidean norm of the error vector 

 

     1
T
q

T eee  , q is the 

number of discrete frequency points aligning the discrete 
design specifications of the 2D and 3D simulator responses 
(S-parameters), and  is the qth error vector given by qe

 

    qz,i,qq f,,f,  D31 D33D2D2D XXRXRe 
 . (4) 

 
The multidimensional inverse linear mapping vector 

function  (2) is iteratively estimated in two steps. The first 
step realizes an alignment of the  response with the 

discrete design specifications (center frequency, bandwidth) 
of the  response at the ith iteration. This step is aimed at 

extracting the 2D design parameter vector  from the 

 design parameter vector  

iP

D3

D2R

i

R

i, D2X

D3 
, D3X

 

 
2

2
1 2D,     min arg  

2D

qi  
x

X  . (5) 

 
The qth 2D design parameter extraction error vector is given 
by 
 

      q,i,qq f,,f, zXXRxRx  D3 D33D2D2D2D
 . (6) 

 
 The second step establishes the inverse linear mapping 

between the  and 2D design parameter vectors D3
 

   i,
ii

i,
i

i,  D2 D2 D3  XBAXPX   (7) 

 

where  and iA iB  are the coefficient vectors calculated with 
the iterative procedure described in [28]. 
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Fig. 3(b) illustrates the linear iterated prediction sub-
process for the example with the first-order bandpass filter 
with one dielectric post (Fig. 1) and for one parameter: the 
diameter of the post. After four iterations (Fig. 3(b)) and an 
user-predefined error criterion 0.01    (3), the optimized 3D 

parameter vector for our example was  = [  ]T = 

[40.3  24.2]T mm. In Fig. 4, it can be seen that the  

response for this optimized vector presents a misalignment of 
0.02 GHz with respect to the target  response. To further 

reduce this error, one has the option to increase the number of 
iterations, but this is time consuming, since each new iteration 
requires an additional 3D evaluation. To avoid this problem, a 
MANFIS is connected at the output, as shown in Fig. 2. 


3DX 

3 ,cl

3
R D3

D2R

Fig. 4.  First-order evanescent rectangular waveguide bandpass filter with 
one dielectric post: 2D and 3D simulator responses (S-parameters) for the 
optimal 2D and 3D design parameters obtained from the linear iterated 
prediction 2D to 3D space mapping procedure (second sub-process). 

 

C. Output Neuro-Fuzzy Mapping Model 

In our optimization procedure (Fig. 2), we use an output 
neuro-fuzzy mapping modeling process, which allows to 
reduce the residual error between  and  responses 

for the optimized parameters obtained from the above linear 

iterated prediction 2D to  space mapping optimization 
procedure. The output neuro-fuzzy mapping modeling process 
is based on a multiple adaptive neuro-fuzyy inference system 
(MANFIS) [30], [31]. MANFIS is an extension of ANFIS to 
produce multiple real responses of the target system. The 
ANFIS is a fuzzy inference system implemented in the 
framework of an adaptive fuzzy neural network. The fuzzy 
inference system is a popular computing framework based on 
the concepts of fuzzy set theory, fuzzy if-then rules, and fuzzy 
reasoning. Among many fuzzy inference system models, we 
have used the Takagi and Sugeno's type [32], which is the 
most widely applied due to the accuracy, efficiency and high 
interpretability of its models. 

D2R D3R

D3

The formulation of our optimization procedure (Fig. 2) with 
MANFIS is as follows. Assume that the vectors I and O 
represent the input and the output of MANFIS, respectively. 
Vector I, common to a number d of ANFIS, is of size 

. The input parameters include the discrete 

design specifications (e.g., s = resonant frequency + 3dB 

bandwidth) extracted from the successive  responses to 

recover the  responses (second sub-process), the k design 

parameters of the third dimension , and the discrete 

frequencies (f). Vector O has a number 

 1 ksl 

D2R

z

D3R

 3D,X

 snd   of 

variables such as the n design parameters of  of the 

mapping P, and the discrete design specifications (s) extracted 
from the successive  responses. The number of ANFIS is 

equal to the number d of output variables. The architecture of 
the qth ANFIS with l inputs ( ) and one output ( ) 

is shown in Fig. 5. It consists of five layers, two of them 
having adjustable weights (represented by square boxes). In 
this qth ANFIS, the rule base would contain a number u of 
fuzzy if-then rules of Takagi and Sugeno's type [32] 
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Fig. 5.  Architecture of the qth adaptive neuro-fuzzy inference system 
(ANFIS) with l inputs and one output . qO
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where (i
qR ,  and ) denotes the ith fuzzy 

rule of the qth adaptive neuro-fuzzy inference system. 

(j=1,…,l) is the jth component of vector I.  is the real 

output of the fuzzy rule .  ( h ) are the 

linguistic labels (small, large, etc.), which are assigned to a 
corresponding membership function. Among different 
membership functions, we have used Gaussian membership 
function. If the number of linguistic labels (membership 
functions) associated to each input is h, then the number u of 

d,

h
q,j

,, 21

i
qR a

q

jI i
q

p,

O

,1

fuzzy rules, common to each adaptive neuro-fuzzy inference 
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system, is equal to lpu  . Finally, i
q,jr  are parameters called 

consequent parameters. 
The first layer (Fig. 5) implem ber ents a num ul     of fuzzy 

de

 

cision rules by means of p membership functions, like for 
example 
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In the fourth layer, each node associates every normalized 
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inally, the fifth layer sums the two outputs of the previous 
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 is the qth component of the vector O and it corresponds to 

e application of this neuro-fuzzy technique to the 
ex

 

q

the

O

 output of the qth adaptive neuro-fuzzy inference system. 
The output qO  is a real number. During the learning process, 

the premise parameters in layer 1 and the consequent 

parameters in layer 4 are tuned until the desired output 
response of the adaptive neuro-fuzzy inference system is 
obtained. In this paper, a hybrid learning algorithm [30] 
combining the least square method and the gradient descent 
method is used to fast train the adaptive neuro-fuzzy inference 
system. 

For th

Fig. 6.  First-order evanescent rectangular waveguide bandpass filter with 
one dielectric post: 2D and 3D simulator responses (S-parameters) for the 
optimal 2D and 3D design parameters (third sub-process). 

ample of the first-order bandpass filter (Fig. 1 with one 
dielectric post), the successive discrete design specifications 
extracted from D2R  and D3R , and the successive design 

parameters X btained he different iterations of the 

linear iterated prediction algorithm, are included in the 
corresponding input 

i, D  o3  at t

I  and output O  vectors. Thus, the input 
parameters are the center frequency of D2R  ( D2f ), the 3 dB 

bandwidth of D2R  ( D2B ), the discrete frequencies and the 

fixed height of  po t the different iterations: I = [ D2f  

D2B  f 1h ]T. The output parameters are the optimized length 

e anescent waveguide section ( l ), the optimized 

diameter of the post (  ), the center frequency of R  

( 3Df ), and the 3 dB bandwidth of the D3R  ( 3DB ) at the 

different iterations: O = [ l  *  f  B The mber of 

ANFIS is, therefore, four. u  t ng phase, the total 
number of data was 404 (101 frequency points 

 the st a

 

of th ev c

3D ]T

raini

D3

c

D ring 
3D

the

.  nu

  4 iterations). 
Half of data (202) were used for training and the other half for 
testing. Three epochs were sufficient to train each ANFIS with 
16 fuzzy rules. Additional parameters are 2 Gaussian 
membership functions per input, 16 and 96 premise and 
consequent parameters per adaptive neuro-fuzzy inference 
system, respectively. The maximum relative error over 

expected M
*3DX  and M

3DR  (discrete 3D design specifications) 

test data w wer th -410  .4 % for this structure. 
Once the training of t NFIS is completed, w

as lo an 6
he MA e have 

av

m th

ailable a nonlinear output space mapping model. Fig. 3(c) 
shows the output neuro-fuzzy mapping for the diameter of the 

post. Thus, the optimal 3 *D  design parameters M
*X  of the 

corresponding filter are accurately computed fro is sub-
3D
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process. M
*3DX  is obtained by applying, in the MANFIS input, 

the initial vector with the discrete 2D design specifications to 
be achieved: inI  = [ D2f  D2B  f 1h ]T = [4  0.16  f  18.05]T. 

The optimal *  d n am r vector was MX  = 

[39.95  24.04]T m , which is slightly different to the us 

3DX  = [40.3  24.2]T mm. Fig. 6 shows the 2D and 3D 

tor responses with the optimal 2D ( D2X ) and 3D 

( MX ) design parameters. It can be seen t the 3D 

si tor response is in good agreement with the initial 
discrete design specifications. Due to the use of MANFIS, the 

3 D esig  par ete *3D

previom

simula

*3D

mula

 tha

  error (3) is lower than 3105.1  . This represents an 
provement in accuracy of 8  respect to the user-

predefined error ( 0.01 
im 5% with

 ) achieved during the inverse linear 
input space-mapping optimization. In the next sub-section, we 
summarize the whole optimization procedure in twelve 
different simple steps. 
 

D. 

de

Implementation details 

R

R

an

Fig. 7.  First-order evanescent rectangular waveguide bandpass filter with 
one dielectric post: 2D and 3D sim la r responses (S-parameters) for the 
optimal 2D and 3D design parameters (third sub-process). 

u to

A summary of the propos



 and 

e MA

e im

(1) 

X  and 

; 

(5

N wit

d 

 

1O

 and O

FIS 

plem be 

and ial 

 

) an

 

h

entation 

 obtain

; 

; 

X

d iI ; 

1i ; 

can 

 the init


1D3 ,  from

 from

scribed from the following steps: 
1. Set i=0, optimize D2R  to find

vector inI ; 

2. Obtain R D3  at D3X 

o fi

 at X

 at X

ain th

D20, 0

3. Optimize D2R  t nd (5) and obtain 0I

O

4. Find the coefficients of (7) and compute 

(2); 

5. Obtain 

in 

pare 

D3 1 D3 ,

6. Set i=i+1, optimize D2R  to find 

7. Find the coefficients of (7) and compute X 1 D3 i,

(2); 

8. Obta D3 1 D3 i, 1i

9. Optimize DR  to find (5) and obtain

; 

2

1

 I

0. Compare R  of Step 1 with D3R  of Step 8. If the D2

execution condition (3) is not satisfied and the user-
defined number of iterations is not exceeded go to step 
6. 

11. Pre d tr  I  and O

RIENTED 

posed 

; 

DESIGN 

techniq

12. Compute M
3X  and MR3  with MANFIS at I ; END. *D D in

 

III. 

To 
fo

APPLICATION TO THE OPTIMIZATION-O

pro ue 

OF HIGHER ORDER EVANESCENT RECTANGULAR WAVEGUIDE 

BANDPASS FILTERS 

the usefulness of the demonstrate 
r the optimization-oriented design of practical narrow 

bandpass microwave filters, we have applied the same 
technique to the design of higher order bandpass filters based 
on 3D evanescent rectangular waveguides with dielectric 
posts (Fig. 1). As application examples, we have considered a 

second-order and sixth-order bandpass filters. The 
input/output waveguides are of standard WR-229 type with 
dimensions (a, b) = (58.1, 29.05) mm. The fixed design 
parameters are: 4r , 1h  = 18.05 mm ( 2h  = 5.5 mm), c = 

31.1 mm and c = 32.1 m  for the second-order and sixth-
order filters, respectively. The posts are centered in the 
evanescent waveguide section of length cl . The simulations 

were realized on an Intel Pentium 4 (3-GHz CPU) computer 
with 1-GB RAM for 101 frequency points and 3 GHz 

m

  f   5 
GHz. 

Acc

Fig. 7.  Magnitude of  and  for the second-order evanescent 

rectangular waveguide bandpass filter with two dielectric posts before 2D to 
3D space mapping optimization (  = 18.05 mm). 

11S 21S

1 h

ording to Fig. 1 and the ILINFO-SM technique (Fig. 2), 
the 2D parameter space of the second-order filter is composed 
of D2x  = [ cl  1   2   

1 cd ]T, where 
1 cd  is the distance 

between the centers of the two dielectric posts. A symmetrical 
filter was considered: 2   = 1  . The 3D parameter space is 
x  = [ l      d T, together with the third dimension, 

h is e ig o  posts fixed to 1h  = z,X D3  = 18.05 

mm. The initial discrete 2D design specifications to be 
achieved for this filter are the center frequency D2f  = 4 GHz 

and the equal-ripple bandwidth D2B  = 0.1 GHz.

In the first step of the algori  (Section II D

3D

ic

c

th

1 

he

2 

ht 
1 c ]

f thewh

 

thm ), the initial 
vector according to predefined discrete 2D design 
specifications was: inI  = [ D2f  D2B  f 1h ]T = [4  0.1  f  

18.05]T. The optimal  desi a ters (Step 1) verifying 
the above initial discrete design specifications were D2X  = 

[ cl  1 

2D gn p rame

  2   cd ]T = [92  11.4  11.4  55]T mm ey 

co st e  t responses of the ILINFO-SM approach. 

At these optimal 2D design parameters ( 
3Dx  = D2X ), the 

responses of the 2D and 3D simulators are as in Fig. 7. A 
disagreement is observed before 2D to 3D optimization. 

Following the successive steps until Step 10 o

1 

targe

. Th

n itut  the

f the 
optimization procedure described in Section II D, we obtain 

the design parameters 
D3X  for this second-order bandpass 

filter. For an error condition (3) set to     0.01, the solution 
of this filter was achieved with four 3D imulator evaluations. 

The design parameters 
D3X  obtained with the iterated 

 s
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prediction procedure were  = [98.2  24.6  24.6  58.3]T 

mm. In the meantime, successive discrete design 
specifications extracted from D2R  and D3R , and the 

successive design parameters 3 * were i ed in the 

corresponding input I = [ D2f  D2B  1h ]T and output O = [ 
cl  


1   

2   
1 cd  3Df  3DB ]T vectors. 

n  n  S  1 e prepare five 


D3X

the 

cc

D , 

 f

h

nclud

( 
2 

ters X

e

I

tra

co

 the

was lower than 

ext tep

pti

1, w

mal 

ANFIS  = 

me  of 


1  ) and 

the 

1  =

in them with the input I and output O vectors. During the 
training phase, the total number of data was 404 (101 
frequency points   4 iterations). Half of data (202) were used 
for training and the other half for testing. Three epochs were 
sufficient to train each ANFIS with 16 fuzzy rules. Additional 
parameters are 2 Gaussian membership functions per input, 16 
and 96 premise and consequent parameters per ANFIS, 
respectively. The maximum relative error over expected 

M
*3DX  and M

3DR  (discrete 3D design specifications) test data 
-310 3 % for this filter. 

Finally, the o 3 *D  design para

e 

M
*3D

d 

rresponding filter are urately computed in Step 12 by 
applying, in the MANFIS input, the vector inI  = [4  0.1  f  

18.05]T. The results obtained were M
*3DX  = [97.98  23.9  23.9  

58.25]T mm, which are slightly different to the previous 
D3X  

= [98.2  24.6  24.6  58.3]T mm (Step 10). Fig. 8 shows the 2D 
and 3D simulator responses corresponding to the second-order 

bandpass filter with the optimal 2D ( 2DX ) and 3 *D  ( M
*3DX ) 

design parameters, for a height of t osts fix to  

18.05 mm. It can be seen that the 3D simulator response of the 
3D structure is in good agreement with the initial discrete 
design specifications. Due to the use of MANFIS, the 

a

p h

  error 

(3) is lower than 3108.1  . This represents an improvement 
in accuracy of 82% with respect to the user-predefined error  
( 0.01  ) achieved during the inverse linear input space-

apping om ptimization. 
In order to assess the computational cost of the approach 

when the complexity of the structure increases, Table I shows 

the useful optim  obtained from  ization data  our ILINFO-SM
approach for the first-order and second-order evanescent 
rectangular waveguide bandpass filters. The number of the 
parameters to be optimized is 2 and 3 for the first-order 
bandpass filter and second-order bandpass filter, respectively. 
Due to the need to optimize an additional parameter in the 
case of the second-order bandpass filter, the computational 
cost has approximately increased in 151%, 22% and 30% for 
the total 2D evaluation time, total 3D evaluation time and total 
optimization time, respectively. Although the total 2D 
evaluation time has increased considerably adding one 
parameter to the structure, it can be seen in Table I that its 
computational cost represents less than 7% of the total 
optimization time. In table I, we can see the importance to 
reduce the number of 3D analysis to avoid very large 
computational times, since it represents more than 90% of the 
total cost. With the proposed technique, the whole structure 
can be optimized with only four 3D evaluations. 

In order to compare our approach with other techniques, we 
include in Table II details of the optimization results for the 
second-order evanescent rectangular waveguide bandpass 
filter with two dielectric posts obtained from an 
electromagnetic-multiple adaptive neuro-fuzzy inference 
system (EM-MANFIS) method similar to [16], [17], and from 
our proposed approach. For the test, we have substituted the 
artificial neural network in [16], [17] by MANFIS. To 

produce a similar accuracy to our approach ( -310 81. ), 
fourteen 3D simulator evaluations randomly distributed in the 
region of interest were needed to create the E S 
model. The region of interest was obtained from the previous 
optimization process with our proposed approach: 90 mm 

M-MANFI

  

Fig. 8.  Second-order evanescent rectangular waveguide bandpass filter with 
two dielectric posts: 2D and 3D simulator responses (S-parameters) for the 
optimal 2D and 3D design parameters (  = 18.05 mm). 1 h

TABLE I 
ILINFO-SM OPTIMIZATION RESULTS FOR THE FIRST-ORDER AND SECOND-

ORDER EVANESCENT RECTANGULAR WAVEGUIDE BANDPASS FILTERS 

Details First-order filter Second-order filter 

Nº of 2D  evaluations 17 17 
Nº of 3D  evaluations 4 4 
Total 2D evaluation 
time 

15.18 min 
(3.44 %) 

38.15 min 
(6.91 %) 

Total 3D evaluation 
time 

7 h 05.39min 
(96.55 %) 

8 h 42.03min 
(93.18 %) 

Total MANFIS 
training, test and 
evaluation time 

2 s 
(0.01 %) 

3 s 
(0.01 %) 

Total optimization 
time 

7 h 20.59 min 9 h 20.21 min 

 
TABLE II 

OPTIMIZATION RESULTS FOR THE SECOND-ORDER EVANESCENT 

RECTANGULAR W ANDPASS FILTER 

FIS method 

AVEGUIDE B

Details Our approach EM-MAN

Nº of 2D sim aluations ulator ev 17 — 
Nº of 3D sim

5 min 
 42.03 min  08.56 min 

st  

20.21 min 9.11 min 

ulator evaluations 4 14 
Total 2D evaluation time 38.1 — 
Total 3D evaluation time 8 h 24 h
Total MANFIS training, te
and evaluation time 

3 s 15 s

Total optimization time 9 h 24 h 0
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
cl    100 mm, 5.5 mm   

1     13 mm, 55 mm   
1 cd    

m and 
2   = 

1 
previously known, even more 3D evaluations would be 
required to cre  the m del with similar accuracy. Although 
our approach has required seventeen 2D simulator 
evaluations, the total optimization time is larger for the EM-
MANFIS method, due to the higher number of evaluations in 
the time consuming 3D space. 

Up to now MANFIS has been used to reduce the error of 
the iterated linear prediction al

60 m

inc

. If the region of interest is not 

gorithm,

o

r structures, the coupling coefficients of higher 
or

ate

re X

 v

 i

o

 9, 

 without the need to 

ptim

rease the number of time consuming 3D simulations. 
However, the interpolation capabilities of MANFIS can be 
further exploited to optimize the design process of the filters if 
different heights of the dielectric posts need to be considered 
in a practical situation. To show the performance of MANFIS 
in this task, in a first step we have optimized this second-order 
bandpass filter with the same above structure and initial 
discrete design specifications, but with a different height of 
the posts ( 1h  = 17.05 mm). At 1h  = 17.05 mm, the design 

parameters 
D3X  obtained with the iterated prediction 

procedure w 
D3  = [98.80  26.36  24.36  58.67]T mm. 

The data of the successive iterations were introduced at the 
previous I and O rs, together with data generated for the 
previous height: 1h  = 18.05 mm. In a second step, we have 

trained MANFIS with 3 epochs. Once MANFIS is trained, it 
can directly be used, without the need of further 
optimizations, to obtain the design of a filter when the 
dielectric posts have a different height. For instance, we have 

extracted the optimal 3 *D  design parameters for an 
intermediate height of the posts: 1h  = 17.5 mm. The optimal 

3 *D  design parameters were M
*3DX  = [99.87  25.38  25.38  

58.91]T mm for inI  = [ D2f  B 1h ]T = [4  0.1  f  17.5]T. 

As it can be seen  Fig. im solution M
*3DX  for 1h  

= 17.5 mm, satisfies the initial discrete design specifications in 
a very accurate way, and without any extra izati  
procedure. 

Finally, by applying the proposed technique to several 
second-orde

e

ecto

D2  

opt

f 

n the al 

on

der filters can be efficiently obtained for the design of more 
complex microwave filters [7]. To illustrate the procedure we 
have selected a sixth-order bandpass filter. The initial discrete 
2D design specifications to be achieved for this filter are the 
center frequency D2f  = 4 GHz and the equal-ripple 

bandwidth D2B  = 0.18 GHz (relative bandwidth of 4.5 %). 

All other fixed dimensions shown in Fig. 1 are the same as 
above except for c = 32.1 mm. A symmetrical filter was 
considered: 4   = 3  , 5   = 2  , 6   = 1  , 

4 cd  = 
2 cd  and 

5 cd  = 
1 cd . Using well known synthesis techniques [35], the 

trix of the filter to be designed was: 

    0         0         0         0         0  1.082         0

coupling ma
 

(14) 

 
The source/load coupling to the first/last resonator (  = 

































0  1.082         0         0         0         0         0         0

1.082         0  0.843         0         0         0         0         0

0  0.843         0  0.611         0         0         0         0

0         0  0.611         0  0.583         0         0         0

0         0         0  0.583         0  0.611         0         0

0         0         0         0  0.611         0  0.843         0

0         0         0         0         0  0.843         0  0821

0      

.

M

1SM

ization L6  = 1.002) is adjusted by applying our optim

hnique to a doubly terminated single resonator, as 
ned in Section II. This optimization has required 4 

evaluations of the 3D EM simulator. All other inter-resonator 
couplings are extracted by applying our optimization 
technique to a structure composed of two coupled resonators, 
maintaining the input/output coupling obtained in the previous 
step. A total of 12 evaluations of the 3D simulator were 
needed for the optimization of the three remaining couplings 
( 12M  = 56M  = 0.843, 23M  = 45M  = 0.611 and 34M  = 

0.583). The optimal 2D and 3D design parameters for the 
sixth-order bandpass filter were D2X  [ cl  1 

M

tec
explai

 =   2   3   d
1 c  

Fig. 10  Sixth-order evanescent rectangular waveguide bandpass filter with 
six dielectric posts: 2D and 3D simulator responses (S-parameters) for the 
optimal 2D and 3D design parameters (  = 18.05 mm). 1 h

Fig. 9  Interpolation results for the second-order evanescent rectangular 
waveguide bandpass filter with two dielectric posts: 2D and 3D simulator 
responses (S-parameters) for the optimal 2D and 3D design parameters (  = 

17.5 mm). 
1 h
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2 cd  
3 cd ]T = [288.6  10.78  10. 10.76  4 2 6 T 

a M
*3DX  = [304.65  21.38  21.3  21.28  51.82  58.1  

59.19]T m pectively. Fig. 10 shows the optimized 2D and 
3D responses at the final solution. Both responses exhibit a 
very good agreement inside the passband of the filter. 
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