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Two Different Dimensionality Simulators
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Abstract— In this paper, an efficient optimization technique
aligning three-dimensional (3D) electromagnetic simulator
responses with two-dimensional (2D) electromagnetic simulator
responses around space mapped solution, for the electromagnetic
design of radiofrequency and microwave 3D circuits is presented.
The interface between 2D and 3D electromagnetic simulators is
obtained from an inverse linear input space-mapping approach
and an output modeling process based on a fuzzy logic technique.
It is shown that the technique provides a highly accurate
estimation of the 3D design parameter space of the 3D
radiofrequency and microwave circuits to be designed, for
initially fixed design specifications. Designs of first-order, second-
order and sixth-order C-band 3D evanescent rectangular
waveguide bandpass filters with dielectric posts show the
performance of our approach.

Index Terms—CAD, fuzzy logic, circuit
RF/microwave filters, waveguide filters.

optimization,

I. INTRODUCTION

N the aerospace industry, the main constraints over the

microwave components concern the mechanical and
electrical characteristics. Since the first satellite launch, the
challenges have been the reduction in weight and volume, and
the performance improvements. To meet the increasing
demand over enhanced microwave components, accurate
CAD tools have been required. Nowadays, a large range of
two-dimensional  (2D) and  three-dimensional  (3D)
electromagnetic (EM) simulators are available [1]-[3]. From a
computational point of view, the 3D EM simulators are very
accurate for the analysis of arbitrary 3D structures, but usually
very time-consuming. The 2D EM simulators typically
provide efficient and accurate analysis of 2D structures, due to
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the reduction of one spatial dimension. However, these 2D
structures find fewer applications, because from a practical
point of view, many component structures of interest for the
space sector are 3D. In this context, we want to focus this
work in a design process of 3D RF/microwave circuits by
using the efficient capabilities for the numerical modeling of
2D structures.

This design process can be successfully achieved by using a
powerful computational optimization tool between the 2D and
3D EM simulators, which adjusts the 2D and 3D dimensions
of the RF/microwave circuits in order to meet the design
specifications. Many EM-based CAD tools and optimization
techniques are available in the literature [4]-[15]. In
computational electromagnetics, the trend is to combine
different EM theories into hybrid techniques by expanding
their capabilities and their efficiency. Among the optimization
techniques, the space mapping approach has attracted our
interest because of the possibility of reducing the
computational time of the EM-based design process. This
approach employs two models: a fine model and a coarse
model. The fine model is accurate and slow in computational
time, whereas the coarse model is fast but less accurate. The
concept of the space mapping consists in aligning the space of
the design parameters of the fine model with a mapped space
of the design parameters of the coarse model by using an
optimization tool. The optimization is done using only the
efficient coarse model; the fine model is used only a few times
during the design process.

For the analysis and design of microwave circuits, artificial
neural networks and fuzzy logic techniques have also been
employed extensively [16]-[21]. The basic approach consists
of training an artificial neural network or a fuzzy logic system
over a certain region of interest, and then applying analysis
and optimization techniques to the computationally
inexpensive extracted models. The use of space-mapping-
based neural models and space-mapping-based fuzzy models
was demonstrated in [22] and [23], respectively. These works
developed a neural-mapping and a neuro-fuzzy-mapping for
the input design parameters with a high generalization ability.

In this paper, we describe an innovate interface between 2D
and 3D EM simulators for the efficient optimization-oriented
design of RF/microwave circuits using inverse-linear-input
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Fig. 1. Nth-order evanescent rectangular waveguide bandpass filter with n
dielectric posts. (a) Top view. (b) Cross-section view.

neuro-fuzzy-output space-mapped (ILINFO-SM) models. The
key idea is to find a mapping from the 2D structure to the final
3D structure. With respect to other space mapping approaches
of 3D structures [24]-[28], the highly accurate estimation of
the 3D design parameter space is realized from the following
two main contributions: 1) An inverse linear input mapping P
from the coarse model space (2D EM simulator) to the fine
model space (3D EM simulator) is iteratively built by
applying a linear iterated prediction method, as described in
[28], [29]; 2) the building of a nonlinear output space mapping
based on a neuro-fuzzy modeling process [30]-[32]. This
neuro-fuzzy output mapping reduces the residual error
between the coarse (2D structure) and fine (3D structure)
models, and facilitates further  optimizations and
interpolations, which can not be carried out with an inverse
linear input mapping as in [28]. This neuro-fuzzy interpolator
idea is related with a neural output space mapping introduced
in [27], but in that work the technique is not applied to the
interface between 2D and 3D EM simulators.

Our initial approach in [28] is extended and improved in
different ways. A neuro-fuzzy-output mapping is added to the
inverse-linear-input mapping. The different sub-processes of
the ILINFO-SM approach are formulated, described and
illustrated by using an example. The accuracy improvement
and the interpolation abilities of the whole system are
demonstrated. Finally, a step-by-step procedure is proposed
for the application of the novel technique to the design of
higher order microwave filters. A sixth-order microwave filter
is for the first time designed using the proposed approach.
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Fig. 2. Inverse-linear-input neuro-fuzzy-output space-mapping approach

(MANFIS is the multiple adaptive neuro-fuzzy inference system).

Among the different technologies of interest in the
aerospace industry [33], [34], we have opted by evanescent
rectangular waveguide filters with dielectric resonators (Fig.
1). The dielectric resonators are dielectric circular posts
centered and suspended inside the evanescent rectangular
waveguide sections for the 3D structures (non-inductive
discontinuities, see Fig. 1(b)), whereas for the 2D structures,
the dielectric circular posts touch the top and bottom metallic
walls of the evanescent rectangular waveguide sections
(inductive discontinuities). The analyses of the 2D and 3D
structures are provided by a specific in-house simulator and a
commercial tool (HFSS), respectively. The specific in-house
simulator is based on an integral equation technique
customized for the analysis of 2D inductive discontinuities in
rectangular waveguides [3]. To exploit the 2D symmetry of
the problem, Green’s functions of infinite line-sources inside a
parallel plate waveguide are used. On the contrary, HFSS is a
full-wave EM field simulator for arbitrary 3D passive circuit
analysis. It employs the finite element method and adaptive
meshing to solve the 3D EM problems. The integral equation
simulator is very fast, since it exploits the 2D symmetry of the
problem. On the contrary, the HFSS simulator is slower, since
it has to perform a full-wave analysis and a volume mesh of
the complete 3D structure.

Il. INVERSE-LINEAR-INPUT NEURO-FUZZY-OUTPUT SPACE-
MAPPING METHOD

The proposed ILINFO-SM approach is illustrated with the
design example of a first-order 3D evanescent rectangular
waveguide bandpass filter containing one dielectric post. The
unique dielectric post (Fig. 1) is centered in the evanescent
waveguide section (I.). The input/output waveguides are of
standard WR-229 type, with dimensions (a, b) = (58.1, 29.05)
mm. The fixed design parameters are: ¢ = 31.1 mm (the width
of the evanescent waveguide section), h; = 18.05 mm (the

height of the dielectric post with h, =55 mm) and &, =4

(the permittivity of the dielectric post). The parameters to be
optimized are the diameter of the post (¢) and the length of

the evanescent waveguide section (I ).

Our proposed ILINFO-SM strategy is illustrated in Fig. 2.
The *-symbol has been used to denote the variables that will
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be affected by the mapping between 2D and 3D spaces. X,p,

X3p and Xgp are, respectively, optimal 2D, 3D* and 3D
design parameter space vectors obtained for initially fixed
design specifications ( X,p, Xip €®R" and Xzp eR™K,
n and n+k are the numbers of the design parameters in the
2D space (x, y) and in the 3D space (X, Y, z), respectively).
X3p has the same order than X,p. Xgp , includes the
variables of the third dimension (z-axis in Fig. 1), which are
known or fixed by constraints. R,p and Rsp are the
corresponding 2D and 3D simulator response vectors and f is
the frequency. P e R" is the 2D to 3D™ mapping vector.

In the example of the first-order bandpass filter (Fig. 1 with
one dielectric post), the 2D structure (coarse model) considers
the dielectric post as being an inductive discontinuity. The
space is reduced to the plane (x, y), since the field is constant
along the z-axis. The 3D structure (fine model) processes a

true 3D dielectric post inside the waveguide, where the height
of the dielectric post is smaller than the height of the

waveguide (h; = 18.05 mm). The 2D and 3D" design
parameter spaces to be optimized according to initially fixed
design specifications are X,5 = [l ¢]" and X3p = [Ig
#" 1", respectively. In this case, the third dimension is formed
by the fixed height of the dielectric post X3p, = h; =18.05

mm. In this example, we can observe that the numbers of the
design parameters in the 2D space (x, y) and in the 3D space
(x,y,z)aren=2and n+k =3 (k=1), respectively.

In our approach, the mapping function P is linear.
Therefore, in most practical cases, the 3D response
R3D(X§D ,X3D‘Z,f) slightly varies from Ryp(X,p, f),
because of a residual error that can not be eliminated with a
linear mapping P. To solve this problem, we have added a
multiple adaptive neuro-fuzzy inference system (MANFIS)
[30]-[32] after the 2D EM simulator (Fig. 2). MANFIS, whose
internal parameter vector is defined from ip (premise and
consequent parameters), is trained to learn stipulated input-
output data pairs obtained during the successive iterations
performed to find the mapping P with the linear prediction
method. During the training process of the MANFIS, the
inputs are Xgp , and the discrete design specifications

derived from R,p(X,p, ). The outputs are X3p and the
discrete design specifications extracted from
R3D(X§D ' X3p, 2. f).

Once MANFIS is trained, we can use it to perform an
accurate computation over the 3D* design parameters
(XM, =P(X,p)), so that the residual error between
RM (Xé\f';*,xmz , f) and Ryp(X,p, f) is reduced for the

initially fixed discrete design specifications (Fig. 2). The
consideration of X3p , in the MANFIS inputs will facilitate

further optimizations and interpolations. The interpolation

0 o TP et
— el Pi-L >
5 s S e i \\ it
e SR o 3 ¢
a =10 o y ’I/'-.______T]__‘If_
= 151 g ¥
ta S 1l
-20 B - 11
Z e — 1
g 25 1 ;ﬁ‘;‘ ’,a’- i
4 .30 4 i A= * Discrete design specifications |
a5 | \/ IS211  __ Starting 2D response VISl
- - - Ophmized 2D response
.40 ; - t
3 35 4 45 5
Frequency (GHz)
@)
2 — : S
83, } 8 amPgy) T Temriendmppig 6 3= L )
h“"‘* ----- ~1 ---------------------- .I
Y T A NN YT &0 e -
@ 1213 al *> o ::
o= $
g 11 $1=P () +— '
X o i i
§ ) ?e=¥xn C b
s H L
o " 0 : optimal @zp
= A —’¢D=P(¢U)E E E:‘
8 , RPN, SRR |
1] 2 4 5] g 10 1
$o 1 @283
2D post diameter (mm)
(b)
-1 e A i
g
B 20 I}
o
L]
=
s
o 15] :
E ot
=
] 10{ :
037\
355 0.25
bandwidth (GHz)

42 4-4 4‘5
Center frequency (GHz)

i

(©
Fig. 3. lllustration of the three sub-processes of our proposed approach for
the first-order bandpass filter (Fig. 1 with one dielectric post). (a) First sub-
process: Target response of the 2D simulator according to the predefined
discrete 2D design specifications. (b) Second sub-process: Linear iterated
prediction 2D to 3D" space mapping optimization for ¢ (c) Third sub-
process: Output neuro-fuzzy mapping for ¢.

results will allow to reduce the computational cost of linear
iterated prediction 2D to 3D space mapping optimizations by



IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS 4

decreasing the number of 3D simulations necessary to obtain
solutions of X3p .
The proposed ILINFO-SM approach consists of three sub-

processes, which are illustrated in Fig. 3 for our example
(applied only to the diameter of the post (¢) for the sake of

space): 1) find a target response Rop(Xp, f) according to

the initially fixed discrete design specifications by optimizing
the coarse model, which is the 2D structure (Fig. 3(a)); 2) find
X3p of the 3D structure (fine model) and P by means of an
inverse linear input space-mapping optimization (Fig. 3(b));
and 3) develop the output neuro-fuzzy mapping (modeling
process) using the MANFIS with stipulated input-output data
pairs to obtain accurate 3D* design parameters (Xév'D*) (Fig.
3(c)). These sub-processes are described and illustrated in the
following sub-sections. A space mapping notation similar to
[26] is followed. For the example of the first-order bandpass
filter (Fig. 1 with one dielectric post), we have used a set of
discrete 2D design specifications ( f,p, Bop): center
frequency f,p =4 GHz and 3 dB bandwidth B,p = 0.16
GHz. The optimization task consists in finding the final 3D

structure that meets these two predefined 2D design
specifications.

A. 2D Model Optimization

The algorithm starts by optimizing the 2D model according
to the initially fixed discrete design specifications

Xp =argminU(Ryp (Xzp , f)) 1)

X 2D

where Rop eR" denotes the response vector of the 2D

model for h frequency points, U corresponds to the objective
function with the initial discrete 2D design specifications

(center frequency, bandwidth), X,p € R" is the 2D design

parameter vector and X,p € R" is the optimal 2D design

parameter vector to be achieved, which is assumed to be
unique. The optimization of the 2D model can be performed
by using a classical optimization method [10], genetic
algorithms [12], or any one proposed in [26].

This sub-process is illustrated in Fig. 3(a) for the example
of the first-order bandpass filter (Fig. 1 with one dielectric
post). Fig. 3(a) shows the starting 2D response (dashed line)
for the initial 2D parameters X,p =[l, ¢]" = [36.2 6.86]
mm and the optimized 2D response (dotted line) obtained for
the specified discrete design specifications ( fop, Bop) = (4,
0.16) GHz. The optimization was implemented from a
gradient-based optimization method. The number of 2D
evaluations was 4. The optimal 2D parameters extracted from
the optimized 2D response were X,p =[l. ¢#]1"=[37 11.4]"

mm.

B. Inverse Linear Input Space Mapping
The inverse linear input space-mapping optimization is
reached by using a linear iterated prediction 2D to 3D™ space

mapping optimization procedure, which allows to find an
approximate root of the system of nonlinear equations

X3pin=P'(Xop)i=012,.. @)
such that
@ 2)
o () < .
i=

where X,p is the optimal 2D design parameter vector (1) and
X3p.is1 is the predicted 3D" design parameter vector at the

(i+1)th iteration. & is the error, |e H; is the square of the

Euclidean norm of the error vector e = lelT eqT J q is the

number of discrete frequency points aligning the discrete
design specifications of the 2D and 3D simulator responses
(S-parameters), and eq is the qth error vector given by

eq:RZD(XZDIfq)_RSD(XSD,i+1’X3D,Zvfq)- 4)
The multidimensional inverse linear

function P’ (2) is iteratively estimated in two steps. The first
step realizes an alignment of the R,p response with the

discrete design specifications (center frequency, bandwidth)
of the Rgzp response at the ith iteration. This step is aimed at

extracting the 2D design parameter vector X,p ; from the

mapping vector

3D" design parameter vector X 3p ;

2
Xop,j =arg minH 31...qu . (5)
Xop 2

The gth 2D design parameter extraction error vector is given
by

&q(Xop)= RZD(XZD ) fq)_ Rsp (X§D,i ' X3D,z fq)' (6)

The second step establishes the inverse linear mapping
between the 3D™ and 2D design parameter vectors

X3p,i =P'(Xop,i )= AT +B Xy ; (7

where Al and B' are the coefficient vectors calculated with
the iterative procedure described in [28].
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Fig. 4. First-order evanescent rectangular waveguide bandpass filter with
one dielectric post: 2D and 3D simulator responses (S-parameters) for the
optimal 2D and 3D design parameters obtained from the linear iterated
prediction 2D to 3D space mapping procedure (second sub-process).

Fig. 3(b) illustrates the linear iterated prediction sub-
process for the example with the first-order bandpass filter
with one dielectric post (Fig. 1) and for one parameter: the
diameter of the post. After four iterations (Fig. 3(b)) and an
user-predefined error criterion ¢ < 0.01 (3), the optimized 3D

parameter vector for our example was Xzp =[lg3 ¢3]" =

[40.3 24.2]" mm. In Fig. 4, it can be seen that the Rsp

response for this optimized vector presents a misalignment of
0.02 GHz with respect to the target R,p response. To further

reduce this error, one has the option to increase the number of
iterations, but this is time consuming, since each new iteration
requires an additional 3D evaluation. To avoid this problem, a
MANFIS is connected at the output, as shown in Fig. 2.

C. Output Neuro-Fuzzy Mapping Model

In our optimization procedure (Fig. 2), we use an output
neuro-fuzzy mapping modeling process, which allows to
reduce the residual error between R,p and Rgp responses

for the optimized parameters obtained from the above linear

iterated prediction 2D to 3D* space mapping optimization
procedure. The output neuro-fuzzy mapping modeling process
is based on a multiple adaptive neuro-fuzyy inference system
(MANFIS) [30], [31]. MANFIS is an extension of ANFIS to
produce multiple real responses of the target system. The
ANFIS is a fuzzy inference system implemented in the
framework of an adaptive fuzzy neural network. The fuzzy
inference system is a popular computing framework based on
the concepts of fuzzy set theory, fuzzy if-then rules, and fuzzy
reasoning. Among many fuzzy inference system models, we
have used the Takagi and Sugeno's type [32], which is the
most widely applied due to the accuracy, efficiency and high
interpretability of its models.

The formulation of our optimization procedure (Fig. 2) with
MANFIS is as follows. Assume that the vectors | and O
represent the input and the output of MANFIS, respectively.
Vector I, common to a number d of ANFIS, is of size
| =(s+k+1). The input parameters include the discrete

design specifications (e.g., s = resonant frequency + 3dB

layer | layer 2 laver 3  layer 4 layer 5
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Fig. 5. Architecture of the qth adaptive neuro-fuzzy inference system
(ANFIS) with | inputs and one output Oy, .

bandwidth) extracted from the successive R,p responses to
recover the R3p responses (second sub-process), the k design
parameters of the third dimension Xj3p ,, and the discrete
frequencies (f). Vector O has a number d =(n+s) of

variables such as the n design parameters of Xj3p of the
mapping P, and the discrete design specifications (s) extracted
from the successive Rsp responses. The number of ANFIS is
equal to the number d of output variables. The architecture of
the gth ANFIS with I inputs (1y,...,1;) and one output (O )
is shown in Fig. 5. It consists of five layers, two of them
having adjustable weights (represented by square boxes). In

this gth ANFIS, the rule base would contain a number u of
fuzzy if-then rules of Takagi and Sugeno's type [32]

Rcll If Ilisa%’q...and I isa|1’q,then Oé = r,l’ql| +...+r11’qll+r&’q

Rg f Ilisaiq...and I isafq,thenog = n?ql| +...+r1?qll+r&q

P

P - i i i
Rg:If lyisarq...and I |sa|f’q,then0q =ngh +...+Hgli+1gg
u. H H u u u u
Rq :If Ipisafy...and I isaff, then O =iyl +...+ gl + 1o

(8)

where Ré(izl,...,u and q=12,...,d ) denotes the ith fuzzy
rule of the qgth adaptive neuro-fuzzy inference system.
I'1(G=1,....1) is the jth component of vector I. Oth is the real

output of the fuzzy rule Ré. a?,q (h=1,...,p) are the

linguistic labels (small, large, etc.), which are assigned to a
corresponding membership  function. Among different
membership functions, we have used Gaussian membership
function. If the number of linguistic labels (membership
functions) associated to each input is h, then the number u of
fuzzy rules, common to each adaptive neuro-fuzzy inference
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system, is equal to u = pI . Finally, r}’q are parameters called

consequent parameters.

The first layer (Fig. 5) implements a number | xu of fuzzy
decision rules by means of p membership functions, like for
example

2
h
h -1 1 —bjq
walli)=em 5| = ©)
J’q

where ,uE"q(I j) (h=1,...,p) is the membership function of

a?,q associated to the input 1. It specifies the degree to

h
ia

O'?‘q) is the parameter set that changes the shapes of the

which the given 1 satisfies the quantifier a?,q . Also, (b

Gaussian membership function. These parameters are referred
as the premise parameters.

The second layer computes every possible conjunction of
the I xu decision rules via multiplication

Wa :ﬂllq(ll)xﬂ%,q(Iz)x---x/ﬂl,q (II)
Wé :ﬂ%q(ll)xﬂ%,q(IZ)X~~-X,U|2,q(II)
| . (10)
Wy = g (11)x g g (12 )%y (1)
WH :ﬂl?q(ll)xﬂzpyq(IZ)X---XMF?q(II)

The third layer normalizes the conjunctives membership
functions in order to rescale the inputs

wa —wh 1 Yw) (12)

In the fourth layer, each node associates every normalized
membership function with an output

wg x O} :Vv(;(rli’ql| tot gl ). (12)

Finally, the fifth layer sums the two outputs of the previous
layer

Og = Y Wi x0} = >wi O} / > wi 13

q=2XWgqxOq=2>wgOq/Xwg . (13)
=1 i=1 i=1

O is the gth component of the vector O and it corresponds to

the output of the gth adaptive neuro-fuzzy inference system.
The output O is a real number. During the learning process,

the premise parameters in layer 1 and the consequent
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Fig. 6. First-order evanescent rectangular waveguide bandpass filter with
one dielectric post: 2D and 3D simulator responses (S-parameters) for the
optimal 2D and 3D design parameters (third sub-process).

parameters in layer 4 are tuned until the desired output
response of the adaptive neuro-fuzzy inference system is
obtained. In this paper, a hybrid learning algorithm [30]
combining the least square method and the gradient descent
method is used to fast train the adaptive neuro-fuzzy inference
system.

For the application of this neuro-fuzzy technique to the
example of the first-order bandpass filter (Fig. 1 with one
dielectric post), the successive discrete design specifications
extracted from R,p and Rjp, and the successive design

parameters X§D1i obtained at the different iterations of the

linear iterated prediction algorithm, are included in the
corresponding input | and output O vectors. Thus, the input
parameters are the center frequency of R,p ( fop), the 3 dB
bandwidth of R,p (Byp), the discrete frequencies and the
fixed height of the post at the different iterations: 1 = [ f,p

B,p f hy1". The output parameters are the optimized length
of the evanescent waveguide section (l;), the optimized

diameter of the post (¢*), the center frequency of Rsp
(f3p), and the 3 dB bandwidth of the Rsp (Bsp) at the

different iterations: O = [15 ¢~ fsp Bgap]". The number of

ANFIS is, therefore, four. During the training phase, the total
number of data was 404 (101 frequency points x 4 iterations).
Half of data (202) were used for training and the other half for
testing. Three epochs were sufficient to train each ANFIS with
16 fuzzy rules. Additional parameters are 2 Gaussian
membership functions per input, 16 and 96 premise and
consequent parameters per adaptive neuro-fuzzy inference
system, respectively. The maximum relative error over

expected Xg',\’[')* and R:..',VE') (discrete 3D design specifications)
test data was lower than 6.4 10™ % for this structure.
Once the training of the MANFIS is completed, we have

available a nonlinear output space mapping model. Fig. 3(c)
shows the output neuro-fuzzy mapping for the diameter of the

post. Thus, the optimal 3 D" design parameters X3',"[')* of the
corresponding filter are accurately computed from this sub-
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process. Xs'»V'D* is obtained by applying, in the MANFIS input,
the initial vector with the discrete 2D design specifications to
be achieved: 1;, =[f,p Byp f 1" =[4 0.16 f 18.05]".
The optimal 3D design parameter vector was X??f'} =
[39.95 24.04]" mm, which is slightly different to the previous
X3p = [40.3 24.2]" mm. Fig. 6 shows the 2D and 3D
simulator responses with the optimal 2D (X,p) and 3D

(X%*) design parameters. It can be seen that the 3D

simulator response is in good agreement with the initial
discrete design specifications. Due to the use of MANFIS, the
¢ error (3) is lower than 1.5x1073. This represents an
improvement in accuracy of 85% with respect to the user-
predefined error (¢ =0.01) achieved during the inverse linear
input space-mapping optimization. In the next sub-section, we
summarize the whole optimization procedure in twelve
different simple steps.

D. Implementation details

A summary of the proposed implementation can be
described from the following steps:
1. Seti=0, optimize R,p to find (1) and obtain the initial

vector 1 ;
Obtain R3p at X3pg = X,p and Op;
Optimize Ryp to find (5) and obtain 1 ;
4. Find the coefficients of (7) and compute X;D,l from
(2);
Obtain Rgp at X3p 1 and Og;
Set i=i+1, optimize R,p to find (5) and 1;;
7. Find the coefficients of (7) and compute X;D,Hl from
)
Obtain Rsp at X3p i1 and Oj,g;
. Optimize R,p to find (5) and obtain 1;,4;
10. Compare R,p of Step 1 with Rsp of Step 8. If the

execution condition (3) is not satisfied and the user-
defined number of iterations is not exceeded go to step
6.

11. Prepare and train the MANFIS with | and O;

12. Compute Xg',vl')* and R3'Y$ with MANFIS at I;,; END.

I1l. APPLICATION TO THE OPTIMIZATION-ORIENTED DESIGN
OF HIGHER ORDER EVANESCENT RECTANGULAR WAVEGUIDE
BANDPASS FILTERS

To demonstrate the usefulness of the proposed technique
for the optimization-oriented design of practical narrow
bandpass microwave filters, we have applied the same
technique to the design of higher order bandpass filters based
on 3D evanescent rectangular waveguides with dielectric
posts (Fig. 1). As application examples, we have considered a

5 4 15111
g 10
; 15 4 |SZI|
2
_g 20 1

-25 ; " il
= --- 2D simulator gL \: .....
ta 301 __ 3D simulator P !

-35 1  * Discrete design speciﬁcaﬁgmg

.40 i 4 -

3 35 4 45 5
Frequency (GHz)

Fig. 7. Magnitude of S;; and S,; for the second-order evanescent
rectangular waveguide bandpass filter with two dielectric posts before 2D to
3D space mapping optimization ( h, = 18.05 mm).

second-order and sixth-order bandpass filters. The
input/output waveguides are of standard WR-229 type with
dimensions (a, b) = (58.1, 29.05) mm. The fixed design
parameters are: ¢, =4, hy =18.05 mm (h, =55 mm), ¢ =
31.1 mm and ¢ = 32.1 mm for the second-order and sixth-
order filters, respectively. The posts are centered in the
evanescent waveguide section of length I.. The simulations
were realized on an Intel Pentium 4 (3-GHz CPU) computer
with 1-GB RAM for 101 frequency pointsand 3GHz < f < 5
GHz.

According to Fig. 1 and the ILINFO-SM technique (Fig. 2),
the 2D parameter space of the second-order filter is composed
of Xop = [l ¢1 ¢ dcl]T, where d¢ is the distance

between the centers of the two dielectric posts. A symmetrical
filter was considered: ¢, = ¢;. The 3D parameter space is
x3p = [I¢ 41 #% d¢, T, together with the third dimension,
which is the height of the posts fixed to hy = X3p, = 18.05
mm. The initial discrete 2D design specifications to be
achieved for this filter are the center frequency f,p =4 GHz
and the equal-ripple bandwidth B, =0.1 GHz.

In the first step of the algorithm (Section Il D), the initial
vector according to predefined discrete 2D design
specifications was: 1;; = [fop Bop f ] =[4 01 f
18.05]". The optimal 2D design parameters (Step 1) verifying
the above initial discrete design specifications were X,p =

[lc ¢1 ¢, dc, 1" =1[92 114 114 55" mm. They
constitute the target responses of the ILINFO-SM approach.
At these optimal 2D design parameters (X3p = Xyp), the
responses of the 2D and 3D simulators are as in Fig. 7. A
disagreement is observed before 2D to 3D optimization.
Following the successive steps until Step 10 of the
optimization procedure described in Section Il D, we obtain
the design parameters X3p for this second-order bandpass
filter. For an error condition (3) set to ¢ < 0.01, the solution
of this filter was achieved with four 3D simulator evaluations.

The design parameters Xjp obtained with the iterated
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Fig. 8. Second-order evanescent rectangular waveguide bandpass filter with
two dielectric posts: 2D and 3D simulator responses (S-parameters) for the
optimal 2D and 3D design parameters ( h; = 18.05 mm).

prediction procedure were X3p = [98.2 24.6 24.6 58.3]

mm. In the meantime, the successive discrete design
specifications extracted from R,p and Rjp, and the

successive design parameters 3D", were included in the
corresponding input 1 =[ fop Byp f hy 1" and output O = [I
91 ¢ de,

In the next Step 11, we prepare five ANFIS (g% = 47 ) and

train them with the input I and output O vectors. During the
training phase, the total number of data was 404 (101
frequency points x 4 iterations). Half of data (202) were used
for training and the other half for testing. Three epochs were
sufficient to train each ANFIS with 16 fuzzy rules. Additional
parameters are 2 Gaussian membership functions per input, 16
and 96 premise and consequent parameters per ANFIS,
respectively. The maximum relative error over expected

Xs'»\f')* and Rs'»vl'j (discrete 3D design specifications) test data

fap Bspl" vectors.

was lower than 3x1072% for this filter.

Finally, the optimal 3D" design parameters Xg',\’[')* of the

corresponding filter are accurately computed in Step 12 by
applying, in the MANFIS input, the vector I, = [4 0.1 f

18.05]". The results obtained were Xs’v\fl)* =[97.98 23.9 23.9

58.25]" mm, which are slightly different to the previous X3p

=[98.2 24.6 24.6 58.3]" mm (Step 10). Fig. 8 shows the 2D
and 3D simulator responses corresponding to the second-order

bandpass filter with the optimal 2D ( X,p ) and 3 D" (X%*)
design parameters, for a height of the posts fixed to h; =
18.05 mm. It can be seen that the 3D simulator response of the

3D structure is in good agreement with the initial discrete
design specifications. Due to the use of MANFIS, the ¢ error

(3) is lower than 1.8x1073. This represents an improvement
in accuracy of 82% with respect to the user-predefined error
(£=0.01) achieved during the inverse linear input space-
mapping optimization.

In order to assess the computational cost of the approach
when the complexity of the structure increases, Table | shows

TABLE |
ILINFO-SM OPTIMIZATION RESULTS FOR THE FIRST-ORDER AND SECOND-
ORDER EVANESCENT RECTANGULAR WAVEGUIDE BANDPASS FILTERS

Details First-order filter Second-order filter
N° of 2D evaluations 17 17
N° of 3D evaluations 4 4
Total 2D evaluation 15.18 min 38.15 min
time (3.44 %) (6.91 %)
Total 3D evaluation 7 h 05.39min 8 h 42.03min
time (96.55 %) (93.18 %)
Total MANFIS 2s 3s
training, test and (0.01 %) (0.01 %)
evaluation time
Total optimization 7 h20.59 min 9h20.21 min
time

TABLE Il

OPTIMIZATION RESULTS FOR THE SECOND-ORDER EVANESCENT
RECTANGULAR WAVEGUIDE BANDPASS FILTER

Details Our approach ~ EM-MANFIS method

Ne° of 2D simulator evaluations 17 —

Ne° of 3D simulator evaluations 4 14

Total 2D evaluation time 38.15 min —

Total 3D evaluation time 8h42.03min 24 h 08.56 min
Total MANFIS training, test 3s 15s

and evaluation time
Total optimization time

9h20.21 min 24 h09.11 min

the useful optimization data obtained from our ILINFO-SM
approach for the first-order and second-order evanescent
rectangular waveguide bandpass filters. The number of the
parameters to be optimized is 2 and 3 for the first-order
bandpass filter and second-order bandpass filter, respectively.
Due to the need to optimize an additional parameter in the
case of the second-order bandpass filter, the computational
cost has approximately increased in 151%, 22% and 30% for
the total 2D evaluation time, total 3D evaluation time and total
optimization time, respectively. Although the total 2D
evaluation time has increased considerably adding one
parameter to the structure, it can be seen in Table | that its
computational cost represents less than 7% of the total
optimization time. In table I, we can see the importance to
reduce the number of 3D analysis to avoid very large
computational times, since it represents more than 90% of the
total cost. With the proposed technique, the whole structure
can be optimized with only four 3D evaluations.

In order to compare our approach with other techniques, we
include in Table Il details of the optimization results for the
second-order evanescent rectangular waveguide bandpass
filter with two dielectric posts obtained from an
electromagnetic-multiple adaptive neuro-fuzzy inference
system (EM-MANFIS) method similar to [16], [17], and from
our proposed approach. For the test, we have substituted the
artificial neural network in [16], [17] by MANFIS. To

produce a similar accuracy to our approach (g=1.810'3),
fourteen 3D simulator evaluations randomly distributed in the
region of interest were needed to create the EM-MANFIS
model. The region of interest was obtained from the previous
optimization process with our proposed approach: 90 mm <
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Fig. 9 Interpolation results for the second-order evanescent rectangular
waveguide bandpass filter with two dielectric posts: 2D and 3D simulator

responses (S-parameters) for the optimal 2D and 3D design parameters (h; =
17.5 mm).

l¢ <100 mm, 55 mm < ¢ < 13mm,55mm < d¢, <

60 mm and ¢% = @¢3. If the region of interest is not

previously known, even more 3D evaluations would be
required to create the model with similar accuracy. Although
our approach has required seventeen 2D simulator
evaluations, the total optimization time is larger for the EM-
MANFIS method, due to the higher number of evaluations in
the time consuming 3D space.

Up to now MANFIS has been used to reduce the error of
the iterated linear prediction algorithm, without the need to
increase the number of time consuming 3D simulations.
However, the interpolation capabilities of MANFIS can be
further exploited to optimize the design process of the filters if
different heights of the dielectric posts need to be considered
in a practical situation. To show the performance of MANFIS
in this task, in a first step we have optimized this second-order
bandpass filter with the same above structure and initial
discrete design specifications, but with a different height of
the posts (h; = 17.05 mm). At h; = 17.05 mm, the design

parameters Xzp obtained with the iterated prediction

procedure were X3p = [98.80 26.36 24.36 58.67]" mm.
The data of the successive iterations were introduced at the
previous | and O vectors, together with data generated for the
previous height: h; = 18.05 mm. In a second step, we have
trained MANFIS with 3 epochs. Once MANFIS is trained, it
can directly be wused, without the need of further
optimizations, to obtain the design of a filter when the
dielectric posts have a different height. For instance, we have
extracted the optimal 3 D design parameters for an
intermediate height of the posts: h; = 17.5 mm. The optimal

3D" design parameters were X3',"[')* =[99.87 25.38 25.38
58.91]" mm for I;, =[f,p Bop f M1 =[4 0.1 f 17.5]".
As it can be seen in Fig. 9, the optimal solution X3N|'3* for hy

= 17.5 mm, satisfies the initial discrete design specifications in
a very accurate way, and without any extra optimization
procedure.

0
g 49
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L8] -
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L - - 3D simulator
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Fig. 10 Sixth-order evanescent rectangular waveguide bandpass filter with
six dielectric posts: 2D and 3D simulator responses (S-parameters) for the

optimal 2D and 3D design parameters ( h; = 18.05 mm).

Finally, by applying the proposed technique to several
second-order structures, the coupling coefficients of higher
order filters can be efficiently obtained for the design of more
complex microwave filters [7]. To illustrate the procedure we
have selected a sixth-order bandpass filter. The initial discrete
2D design specifications to be achieved for this filter are the
center frequency fo,p = 4 GHz and the equal-ripple

bandwidth B,p = 0.18 GHz (relative bandwidth of 4.5 %).

All other fixed dimensions shown in Fig. 1 are the same as
above except for ¢ = 32.1 mm. A symmetrical filter was

considered: ¢4 = @3, d5 = @, dg = &1, dc4 = dC2 and
d05 = dCl . Using well known synthesis techniques [35], the
coupling matrix of the filter to be designed was:

0 10820 0 0 0 0 0
10820 08430 0 0 0 O
0 08430 06110 0 0 0
w_|0 0 060 oS0 0 0 |
0 0 0 05830 06110 0
0 0 0 0 06110 08430
0 0 0 0 0 0830 108
o 0o o0 0 0 0 10820 |

The source/load coupling to the first/last resonator (M gy =
Mg. = 1.002) is adjusted by applying our optimization
technique to a doubly terminated single resonator, as
explained in Section Il. This optimization has required 4
evaluations of the 3D EM simulator. All other inter-resonator
couplings are extracted by applying our optimization
technique to a structure composed of two coupled resonators,
maintaining the input/output coupling obtained in the previous
step. A total of 12 evaluations of the 3D simulator were
needed for the optimization of the three remaining couplings
(M].Z = M56 = 0.843, M23 = M45 = 0.611 and M34 =
0.583). The optimal 2D and 3D design parameters for the
sixth-order bandpass filter were X,p =[l; ¢1 é2 ¢3 dCl
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de, dc,1"=[288.6 10.78 10.76 10.76 49.2 55.4 56.4]"
3

mm and Xg',vl')* = [304.65 21.38 21.3 21.28 51.82 58.1

59.19]" mm, respectively. Fig. 10 shows the optimized 2D and
3D responses at the final solution. Both responses exhibit a
very good agreement inside the passband of the filter.

IV. CONCLUSION

A technique for the optimization-oriented design of 3D
radiofrequency and microwave circuits has been presented.
This technique reduces the number of analysis needed with
time consuming 3D electromagnetic simulators, by
performing optimization with fast 2D electromagnetic
simulators, and a proper mapping between the 2D and 3D
spaces. The mapping is obtained from an inverse-linear-input
space-mapping approach and a neuro-fuzzy-output space-
mapping technique using a multiple adaptive neuro-fuzzy
inference system (MANFIS). The neuro-fuzzy output reduces
the residual error, and facilitates further optimizations and
interpolations, which can not be carried out with an inverse
linear input mapping. Our inverse-linear-input neuro-fuzzy-
output space-mapped (ILINFO-SM) technique has been
successfully applied to the optimization and interpolation of
first-order, second-order and sixth-order C-band 3D
evanescent rectangular waveguide bandpass filters with
dielectric posts.
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