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Evaluation of Gunshot Detection Algorithms

Alfonso Chacén-Rodriguez, Member, IEEE, Pedro Julidn, Senior Member, IEEE, Liliana Castro,
Pablo Alvarado, Member, IEEE, and Néstor Hernandez

Abstract—Six preprocessing algorithms for the detection of
firearm gunshots are statistically evaluated, using the receiver
operating characteristic method as a previous feasibility metric
for their implementation on a low-power VLSI circuit. Circuits
are intended to serve as the input detection sensors of a low-power
environmental surveillance network. Some possible VLSI im-
plementations for the evaluated algorithms are also evaluated.
Results indicate that the use of wavelet bank filters, either discrete
or continuous, might be the best choice in terms of the compromise
between detection efficiency and the power requirements of the
intended application.

Index Terms—Gunshot detection, low-power VLSI, mixed-
signal application-specified integrated circuit, signal processing.

1. INTRODUCTION

ETECTION, classification, and localization of gunshots

are of particular interest in areas related to public health,
surveillance, law enforcement, and the military. There is plenty
of research regarding gunshot theory and the needs for its study
(see [1]-[4]), as well as many software and hardware imple-
mentations of computationally efficient signal processing anal-
ysis methods [5]-[11]. These solutions mostly use complex al-
gorithms, such as short-time Fourier transform, wavelet trans-
forms, hidden Markov models, Gaussian mixtures, and max-
imum likelihood models, and claim to be very effective at de-
tecting, classifying, and localizing shots from different firearms.
Yet, such algorithms are expensive in terms of power due to
their computational needs, which range from the whole personal
computer systems to mote-oriented sensor networks with DSP-
dedicated chips and embedded processors, making their deploy-
ment on the field cumbersome mainly because of their energy
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requirements. One particular instance of interest is the establish-
ment of a surveillance network against illegal hunting in trop-
ical forest reserves. In such environment, low-power sensor net-
works provide a feasible solution, considering the large areas to
be protected and the near impossibility of providing the sensors
with standard long-lasting power supplies. Although there are
some commercial solutions available in that area (see [9] and
[12]), all of them entail the use of equipment and algorithms
that claim to be efficient in terms of processing but not in terms
of power dissipation, questioning the use of complex classifica-
tion methods at least in the early stages of detection.

Regarding the complexities behind gunshot and firearm de-
tection and classification, Maher offers a very thorough expla-
nation of the physics of a gunshot in [1] and [2]. Gunshot sound
is produced by two phenomena: first, the muzzle blast, which
is produced by the rapidly expanding gases from the confined
explosive charge that is used to propel the bullet out of the gun
barrel. This acoustic disturbance lasts 3—5 ms and propagates
through the air at the speed of sound. Second, if the bullet travels
at supersonic speed, it causes an acoustic shock wave that prop-
agates away from the bullet’s path. The shock wave expands as
a cone behind the bullet, with the wave front propagating out-
ward at the speed of sound.

A typical gunshot signature is shown in Fig. 1. The sound
characteristics of any gunshot are thus determined by factors
such as the caliber of the bullet and the barrel, the length of the
latter, and the chemical properties of the propellant. Moreover,
being a nearly perfect impulsive signal, any particular measure-
ment of the spectral or impulsive characteristics of a particular
gunshot will likely give more information about the acoustic
surroundings (i.e., the surrounding’s acoustic impulse response)
rather than the firearm’s or the projectile’s characteristics [1],
[2], which, in turn, are dependent on a multiple set of factors
such as temperature, wind speed, foliage density, air moisture,
and soil characteristics [13]. Attempts at detecting the N-shaped
shock wave (as Sadler et al. report using a wavelet approach
[7]) become difficult as the wave rapidly loses its shape due to
nonlinear dispersion or disappears altogether once the bullet’s
speed falls under supersonic speed or hits an obstacle, a possi-
bility which is higher in such a dense setting as a tropical rain
forest. On the other hand, looking at the power spectra of three
particular gunshots gives also an idea of the differences between
firearms located at the same distance (Fig. 2), which simply dis-
courages the use of a simple filtering method for the task of de-
tection.

Considering all these, a solution is proposed, where a signal
detector would be used as an initial low-power processing stage
in each node of the surveillance network. In the case of a gun-
shot, this detector would activate a subsequent classification
stage in that same node, which would either process the signal
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Fig. 1. Typical time signature of a gunshot: 9-mm pistol at 30-m range from the
recording microphone. Multipath distortion is appreciated a few milliseconds
after the first peak.
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Fig. 2. Examples of the power spectra for a .22 carbine, a 9-mm pistol, and a
.12 shotgun recorded at 30 m.

with an advanced (and, therefore, power hungry) algorithm or
transmit the acquired data through the network for further pro-
cessing. Thus, an evaluation of the efficiency of any detection
algorithm and the feasibility of its low-power implementation
becomes mandatory before proposing a particular solution for
this initial stage. A previous report on five of the algorithms has
been shown in [14]. A sixth algorithm is included here, some
extra evaluations were done on two of the other algorithms,
and additional considerations were taken regarding the alter-
natives for their physical realization. This paper is organized
as follows: Section II depicts the typical basic detection archi-
tecture, Section III explains the six algorithms that were evalu-
ated, Section IV shows the analysis of the results, and, finally,
Section V presents the conclusions.
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Fig.3. Basic structure of the detection algorithm. The adaptive threshold is typ-
ically a running average or rms estimation of the preprocessed signal. C serves
as a threshold gain that allows to fine tune the selectiveness of the detection.

II. BASIC DETECTION ARCHITECTURE AND ROC
SPECIFICATIONS

The proposed detection scheme is shown in Fig. 3 and is
common in the field of biomedical engineering for the detection
of neural spikes [15] and also in other applications involving
detection and classification of impulsive audio events [5]. De-
tection is achieved by the comparison between a preprocessed
version of the signal and an adaptive threshold, typically a run-
ning average or rms estimation of the same preprocessed signal,
scaled by a gain factor C that provides a sensitivity adjustment.

Since the long term interest of this research is the establish-
ment of a surveillance network against illegal hunting in trop-
ical forest reserves, the analysis of the algorithms is based on
a collection of sounds recorded in a dense tropical rain forest,
located in Costa Rica’s Braulio Carrillo National Park acquired
at a 48-kHz sampling rate with 16-bit quantization, on a high-
quality digital recorder DVD Fostex PD-6, using a professional
high-sensitivity directional Sennheiser MKH416P48V3 micro-
phone [16]. Amplitude is normalized to a maximum pressure
of 110 dBgpr,. The target samples include five firearms of dif-
ferent calibers, fired at 30, 90, and 250 m from the recording
equipment, at angles of 0°, 90°, and 180°. Additional samples
for negative validation include a chainsaw recorded at 30 m
from the equipment, at the same three angles as the firearms;
two planes flying low over the scene; three recordings of var-
ious birds singing; two recordings of rain showers; recordings
of two different water streams; a recording of wind through the
trees surrounding the setting; a Matlab-generated white noise
signal with o2 = 0.1; and a male human voice recorded close
to the microphone at a normal speech level.

In order to produce an objective selection of the best method
for gunshot detection, the selected metric is a receiver operating
characteristic (ROC) plot for each preprocessing method, with
a final comparison of the best ROCs for each analyzed method.
Since the final aim of the project (but not of the work pre-
sented in this paper in particular) is to achieve a low-power elec-
tronic implementation of the surveillance network, some discus-
sion is added with regard to the hardware complexities of each
method, with special emphasis on their power consumption re-
quirements.

Now, according to the signal detection theory [17], the ROC
plotis constructed with the ordered pairs (TPR, FPR) of a detec-
tion system as a function of a certain detection threshold, where
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Fig. 4. Positives far away from the real event are considered anomalies that
are annotated as the true positive (XTP). In this case, using the TEO as a pre-
processing algorithm, for a threshold gain of 40, there are two extra detections
showing in the upper image around 4.9 and 6.7 s, which imply that the algorithm
is not selective enough.

TPR stands for true positive rate and FPR for false positive rate,
and each figure is defined according to

TPR— True positives detected %

Total number of positives
False positives detected

FPR =

(@)

Total number of negatives

A true positive is to be considered as such whenever a detec-
tion occurs within a few tens of samples of a real gunshot peak
impulse. Usually, effective detectors are chosen, allowing for a
certain percentage of FPR in order to increase the TPR, since
a false positive can always be eliminated later on by the sub-
sequent classification system while a missing true positive is
lost forever. This suggests that comparing the algorithms at a
fixed FPR may be, statistically speaking, the most efficient way
to select the algorithms, using a simple L' norm. In our case,
nonetheless, a detector with a high FPR would activate addi-
tional circuitry, causing extra power consumption. Moreover, it
is assumed that the sensor network redundancy can compen-
sate for a certain number of missing true positives. Thus, the
evaluation is based on the ordered pair which stands closer (in
terms of the Euclidean distance) to a perfect detector with a
(TPR,FPR) = (1,0), where FPR is the z-axis coordinate and
TPR is the y-axis coordinate. A discrete ROC with five threshold
gain values is calculated for each method, and the best pair is
extracted from the plot. In addition, an extra annotation to the
true positives, called XTP, is made whenever a positive is gener-
ated but not within at least 20 ms from the impulse peak—con-
sidering that, in this particular data set, the typical signature’s
length of a gunshot extended from 60 to 100 ms and the impul-
sive peak values lay within the first few milliseconds—since this
indicates that the algorithm detected something else instead of
the searched impulse. An example of a XTP is shown in Fig. 4,
while an example of a real positive is shown in Fig. 5.
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Fig. 5. Example of a correct detection for a .12 shotgun at 250 m from the
detector, using the DWT method as the preprocessing algorithm, evaluating the
energy in certain frequency bands.

Due to the intended final application of this research, a pre-
liminary hardware implementation is also proposed for the pre-
processing methods (except for the adaptive threshold compar-
ison stage, which should be common to all). This provides with
another point of comparison between the methods, particularly
in regard to their static power dissipation.

III. DESCRIPTION OF PREPROCESSING ALGORITHMS

The following methods are proposed alternatively in [5], [11],
and [15]. Applying the signal directly to the threshold detector,
with no signal preprocessing at all, is taken as an evaluation ref-
erence (i.e., as the metric’s lower bound: the rest of the methods
should give results above it). Signals are prefiltered using an IIR
fourth-order Butterworth low-pass filter with a cutoff frequency
of 3 kHz (determined from the observation of the gunshots’
power spectra), except those to be processed using wavelets,
where the filtering is done by the processing itself. In the case
of the negative samples, signals are taken to amplitude levels
equivalent to sound pressures ranging between 90 dBgpy, and
98 dBgp1, (the typical pressure levels of gunshots at distances
greater than 90 m from the gun barrel, on an obstacle-free prop-
agation environment).

Now, since the signals are of a particularly high intensity with
regard to other sounds in the surroundings, the possible influ-
ence of electronic noise in the intended hardware implemen-
tations is deemed as insignificant. Moreover, distortion is not
considered a factor, since signals arrive already distorted to the
sensors due to inevitable multipath interference and the signal’s
high intensity that, in some cases, even saturates the receiving
microphone.

A. Absolute Value

The absolute value of the input signal is taken before being
introduced into the detection scheme in Fig. 3. Since abs[z(¢)]
is a one-to-one mapping of the energy estimation of the signal
(2(t)), their respective performances are considered to be
equivalent (as Obeid and Wolf argue in [15]), but with a lower
implementation complexity than that of a squarer/multiplier.
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Fig. 6. Simple low-power CMOS rectifier. The I,;,s for this circuit is on the
order of 405 nA, with a 1-V linear range (see [23] and [24]). An extra single-
ended OTA is used as a current—voltage converter.

TABLE I
BIAS CURRENT CONSUMPTION FOR THE PROPOSED ABSOLUTE-VALUE
CIRCUIT, USING THE RECTIFIER PROPOSED IN [23] AND IMPLEMENTED IN
[24] ON A 0.5-pgm STANDARD CMOS TECHNOLOGY. RESULTS ARE BASED
ON SPICE SIMULATIONS

SubCircuit Qty Bias Current
Dual OTA 1 270nA
Comparator 1 45nA
Single-ended OTA 1 90nA
Total Ipras 405nA

There are plenty of analog multiplier structures in the literature
[18]-[21], but as Han and Sanchez-Sinencio discuss in [22],
most of them can be grouped on a few categories; as they show,
effective multipliers with low distortion and a good linear range
always require extra circuitry to provide for common mode
shifting. On the other hand, the absolute value of a signal can
be performed by a simple analog rectifier. An example of such
circuit is shown in Fig. 6, as proposed in [23]. This rectifier only
needs a dual operational transconductance amplifier (OTA) and
a comparator, plus another OTA for current—voltage conversion
(not shown). From simulations, the circuit is found to have a
linear range over 1 V and requires only 405 nA (see Table I),
implemented on a 0.5-um standard CMOS technology (see
[24]). An alternative is to use four quadrant multipliers with
floating-gate MOS transistors that use low-voltage supplies
and have an extended linear range (see [25]-[28] for a few
examples); this alternative might be considered in the future.

B. Median Filter

The input signal is fed into a delay chain with six taps, where
each tap inserts a 1-ms delay to the signal. The input signal and
the six outputs of each delay tap form a searching window of size
seven, which is fed to a median filter whose output is subtracted
from the signal after the third delay tap (i.e., the middle of the
window); this is considered as the normalized energy that enters
into the threshold unit (Fig. 7). The implemented median filter
is of the form

y(n) = mzeodiaél{a:(n —iAy)} 3)

Normalized energy Detection

=(t)

Energy
Estimator

e(t)

6] T‘E medle(t)]
1 2 3 4 5 6 7

l Median filter

Fig. 7. Median filter structure. The time delay taps (6) implement the window
for the filter. Since there is a one-to-one relation between 22 (t) and abs[xz(t)],
the second method is used because it is easier to implement in analog or sam-
pled-time approaches.
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Fig. 8. For a median filter with a window of size seven, the peak values of
energy of each signal after the filtering are plotted together with their respective
energy’s rms running average as a function of the delay between taps. It is clear
that, beyond a 1-ms delay, the improvement in the differences of energy is not
significant.

where A,, = Fs-1msand Fs; = 48 kHz. In general, the behavior
of the median filter is similar to that of a low-pass filter, as it
smooths the signal but preserves abrupt changes (and therefore,
it passes some high frequencies too).

Dufaux et al. [5] proposed this structure using a median filter
with a window size of 20, using a 44.1-kHz sampling rate with
24-bit data resolution. This means a 20-tap delay chain with a
22-ps delay time.

In this case, in order to choose the length for the window and
the delay separation between each tap, some simulations were
performed with the available gunshot signals. The idea was to
find a maximum difference between the energy peak of each
signal and its normalized energy’s running rms average as a
function of the window’s length and the delay between taps.
From the plot of the results, it was possible to determine the
chosen window size of seven with the used delay of 1 ms for
each tap (Fig. 8 shows one of the plots used for the determina-
tion of these parameters: It is clear that beyond 1 ms, the im-
provement in the differences of energy is not significant).

For our purposes, a digital implementation is not possible due
to its high area and power requirements, particularly regarding
the needed sorting algorithm for the median calculation. A com-
pletely analog implementation as in [29] and [30] is constrained
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Fig. 9. Basic delay unit. Signal is sampled and held using two nonoverlapped
clocks [32]. An analog chain register may be built using this structure.

TABLE II
BIAS CURRENT CONSUMPTION FOR THE POSSIBLE IMPLEMENTATION OF
A MIXED-SIGNAL MEDIAN FILTER, WITH A CHAIN OF TIME DELAYS AS
PROPOSED IN [32], PORTED TO A 0.5-#m STANDARD CMOS TECHNOLOGY.
BIAS RESULTS BASED ON THE DATA FROM THE SUBCIRCUITS PROPOSED IN
[24] BUT USING THE TOPOLOGY PROPOSED IN [29]

Sub-circuit Qty Bias Current
Single-ended OpAmps 14 2.8uA
Diff. OpAmps 7 315nA
Rectifier (as defined in Table I) 1 405nA
Total Ipras 3.52uA

by the delay of the taps in the chain, which is on the order of 1
ms. Typical analog versions of delay chains are based on all-pass
filters, which at best provide delays equivalent to a phase shift
of up to 7 radians of the input signal. Moreover, delay con-
stants on the order of hundreds of microseconds require RC'
relations that are hard to achieve on standard CMOS processes.
A sampled-time approach is therefore a reasonable alternative.
A bucket-brigade device (BBD) may serve as the delay chain.
The search window, nonetheless, must be limited in length, as
this structure quickly degrades the signal [31]. A better option in
terms of signal conservation is the use of a delay chain, as pro-
posed in [32] and shown in Fig. 9. A bigger area and, therefore,
a higher power dissipation are the price to pay: Two operational
amplifiers are needed per stage [the use of single-ended cas-
code telescopic Operational Amplifiers (OpAmps), as proposed
in [33], substantially cuts power and area requirements]. This
means 14 single-ended OpAmps just for the delay stage (with
a 200-nA bias current for each OpAmp on a 0.5-pm CMOS
process [32], [33]) and seven differential OpAmps for the analog
median filter operation using the topology in [29], with a 45-nA
bias current for each, if the OpAmps proposed in [24] are used
on the same technology. Table IT gives the details. This of course
disregards the discretization of the input signal by the delay
chain, which implies verification if the use of a continuous me-
dian filter for the sorting is still valid.

C. TEO

The Teager energy operator (TEO), as defined in [34], is ap-
plied to the signal before feeding it to the threshold unit. This
operator has the following discrete form:

y(n) = 2(n)* — (z(n — Dz(n + 1)) 4

which, as reported by [34], enhances the high-frequency com-
ponents of the input signal z:(n) and is thus recommended for

Detection

x(t) +

z(n) 2(m)

Shift Register

Running RMS

z(n — z(n+1)

Fig. 10. TEO basic structure.

TABLE III
B1AS CURRENT CONSUMPTION FOR THE POSSIBLE IMPLEMENTATION OF AN
ANALOG TEO ALGORITHM, AS PROPOSED IN [35], PORTED TO A 0.5-ptm
STANDARD CMOS TECHNOLOGY. BIAS RESULTS BASED ON THE DATA FROM
THE SUBCIRCUITS PROPOSED IN [24]

Sub-circuit Qty Bias Current
Single-ended OTA 11 990nA
Multipliers 2 180nA
Total Igras 1.170pA

the detection of impulsive signals. Its discrete time implemen-
tation is shown in Fig. 10.

One advantage of this method is that it can be approximated
by an analog circuit, following the continuous equation also

given in [34]
 (dz(t)\? d2x(t)
y(t)_<7> o) ®

A particular proposal for action potential detection is of-
fered in [35]. Two bulk-driven multipliers are used, plus two
Gm—C-based differentiators. Table III shows an approxi-
mation in terms of the number of needed subcircuits and the
required bias, considering a 0.5-um implementation of the
circuit given in [35], with the subcircuits’ bias requirements
given in [24]. The small linear range of the multipliers (200
mV, as reported in [35]) is a problem to be dealt with if this
topology is chosen.

D. Correlation Against a Template

Detection and classification methods based on correlation
matching are common in plenty of fields, from brain machine
interfaces [15] to ultrawideband receivers [36]. Digital sim-
plified detectors based on correlation with very low power
dissipation have been successfully built for particular applica-
tions [37], and mixed-signal general classifiers have also been
proposed [31]. Here, a full-scale method is initially proposed
(16-bit resolution and 48-kHz sampling rate) as a top metric
for the evaluation of the method’s efficiency. On a later stage,
simplifications such as the use of integer arithmetic with lower
resolution or a lower sampling may be introduced in order to
gauge the tradeoffs between the degrading efficiency of the
method and its hardware feasibility.

The detection structure is shown in Fig. 11. First, two signal
templates are obtained by the averaging of gunshot signals at 30
and 90 m, as Obeid and Wolf propose [15]. The templates are
stored in two 1000-sample long vectors. Signal is fed through a
window with the same size of the template vectors, at a rate of
39 samples per iteration. At each iteration, correlation with each
vector is computed and stored in another pair of vectors. These
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Fig. 11. Basic scheme for a discrete correlation-based detection algorithm.

are the outputs of the system, which go to a threshold detector.
Since the correlation is a signed operation, the averaging is done
using a running rms scheme.

Since the gunshot response is highly dependent on the en-
vironment, it is clear that the correlation might be affected by
such environmental effects. Nonetheless, as the wilderness re-
gion where the signals were gathered is homogenous enough
and highly representative of the areas where the results of this
research are to be applied, no data were gathered from other
places. However, provisions were taken to acquire the signals at
different distances and angles of incidence with respect to the
microphone. It is also clear that, at least regarding the correla-
tion algorithm, different data would be necessary if the intended
system were to be used in locations with different environmental
conditions as the ones here indicated.

In terms of a possible hardware implementation, going
strictly digital is prohibitive because of the expensive digital
multiplication structures and the temporal storing needed. Sub-
quantization was applied in order to search for simpler digital
implementations but just going from 16- to 8-bit degraded per-
formance, with the FPR increasing to almost 0.3 to 0.4 in most
cases. A plausible alternative is Edwards and Cauwenberghs’
proposal of a mixed-mode implementation of this algorithm
[31], with a reported consumption of 50 to 30 uW. Here, the
computation is not done directly on the signal itself but on the
features provided by a wavelet, cochlear or any other kind of
preprocessing algorithm. The sampling vector used is a BBD
structure of 64 taps, and the correlation is done by an analog
current multiplication of the input with a binary pattern. Just
as in the median filter case, the main limitation arises from the
fact that the BBD cannot be very long. This entails shortening
of the template as well (from 1000 to 64 taps in our case) and
a cut on the sampling frequency. On the other hand, a delay
chain, as proposed in [32], may be used, i.e., 128 single-ended
single-stage OpAmps just in the delay chain, with the corre-
sponding power consumption increase. Table IV shows the
static power requirements of a possible implementation, ported
to a 0.5-um technology and with the changes indicated before,
using data from the subcircuits proposed in [24] and [32].

E. DWT

Istrate et al. propose in [11] the use of discrete analysis with a
Daubechies wavelet of six vanishing moments for the detection

TABLE 1V
B1AS CURRENT CONSUMPTION FOR A POSSIBLE IMPLEMENTATION OF THE
MIXED-SIGNAL CORRELATION, AS PROPOSED IN [31], BUT WITH THE
SUBSTITUTION OF THE BBD CHAIN FOR A CHAIN OF SAMPLERS, AS PROPOSED
IN [32], PORTED TO A 0.5-p¢m STANDARD CMOS TECHNOLOGY. BIAS RESULTS
BASED ON THE DATA FROM THE SUBCIRCUITS PROPOSED IN [24] AND [32]

Sub-circuit Qty Bias Current
Single-ended OpAmps 128 25.6pA
Diff. OpAmps 3 135nA
64-bit SRAM 1 ~ 0
Total Ipras 25.74MA
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Fig. 12. General structure of a wavelet decomposition bank filter. Signal details
are given by the w,, coefficients. Signal is approximated by the v,, coefficients.
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of impulsive signals. According to [38] and [39], a real conju-
gate mirror filter h such that H(w) (the Fourier transform of
h) has p zeros at w = 7 and has at least 2p nonzero coeffi-
cients. Furthermore, to ensure that a wavelet has p vanishing
moments, H (w) must have a zero of order p at w = 7. A Haar
wavelet has one vanishing moment and, therefore, its support is
two, while a Daubechies wavelet of six vanishing moments has
a support of 12 nonzero coefficients. Hence, the computational
complexity of computing the output with FIR filters is six times
higher under the assumption that all multipliers have the same
cost. Haar computation can be further improved, as the coef-
ficients are equal in magnitude, which reduces the number of
products by 1/2. Thus, in this case, an eight-level Haar wavelet
bank filter is used on a 7-kHz subsampled signal. Fig. 12 shows
the filter bank recursive structure, following Mallat’s notation
[38].

The filter bank is structured following a dyadic scale using
3500 Hz as the Nyquist frequency, and the inputs to this filter
are 2048 length sequences. The number of levels to be used in
the decomposition and the choice of the coefficients of interest
are the result of preliminary analysis with the wavelet interac-
tive Matlab toolbox. The energy of the chosen coefficients is
calculated using two alternative methods: squaring the signal
or obtaining its absolute value. After evaluating different cases,
it was concluded that the best results are obtained considering
levels 3, 4, and 5 and levels 4, 5 and 6. The output is then
used as input to the threshold detector, as shown in Fig. 13. The
choice of Haar functions is based on their simple form, which
allows mixed-mode hardware implementation using switched
capacitors, for instance. A Haar scale function is related to a
moving average operator with a transfer function H(z) = (1 +
2*1) / \/5 while its wavelet function gives rise to a moving dif-
ference operator with a transfer function G(z) = (1—z~1)/v/2.
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Fig. 13. Wavelet filter bank structure. The energy of each detail coefficient is
calculated before feeding it to the energy adder. Energy may be estimated by a
squaring or absolute-value estimator.

TABLE V
BI1AS CURRENT CONSUMPTION FOR THE IMPLEMENTATION OF A HAAR
WAVELET BANK FILTER ON A 0.5-ptm STANDARD CMOS PROCESS, USING
PRELIMINARY RESULTS FROM [24]

Sub-circuit Qty Bias Current
Single-ended OpAmps 16 32uA
Energy calculation unit 1 1.5pA

(estimated)

Total Ipras 4.7uA

The /2 factor ensures the orthonormality of the wavelet trans-
formation and may be replaced by another factor, considering
that only the analysis of the signals is required, not their recon-
struction.

A possible hardware implementation on a 0.5-um standard
CMOS process for the wavelet bank filter is given in [24], where
the recursive filter is replaced with an equivalent parallel im-
plementation. Preliminary data power, based on some tests and
simulations, is given in Table V.

FE Ccwr

A discrete wavelet analysis is generally done using a recur-
sive filter bank. However, a completely digital implementation
of such a filter may be expensive in terms of area and power
dissipation. An alternative mixed-signal solution using Haar fil-
ters and a parallel topology instead of a recursive one may result
in a more efficient architecture. Another option is the use of a
continuous wavelet transform (CWT), using functions such as
Morlet or Gauss wavelets, as proposed in [29] and [40]-[44].
However, as shown in the literature, the electronic implemen-
tation of these wavelets is complex and not straightforward.
A simpler approach is to reduce the transfer functions of each
filter to a passband expression in a similar way to cochlear filter
banks but using a parallel structure instead of a recursive one.
As it has been shown, a cochlear filter bank provides a time—fre-
quency decomposition equivalent to that of a wavelet analysis
[45]-[48]. Thus, a continuous filter version of the wavelet anal-
ysis is proposed, with third- or fourth-order passband filters, fol-
lowing the same topology shown in Fig. 13. The frequency tiling
is obtained by scaling the cutoff frequencies just like in the dis-
crete case. Thus, a parallel filter bank with three different pass-
band frequencies is defined, as shown in Fig. 14. The chosen fre-
quency ranges are determined by the previous discrete wavelet
transform (DWT) analysis, which determined that coefficients
3,4, 5 and 4, 5, 6 of an eight-level wavelet decomposition are
enough for the intended purposes of detection.

369
% flow=437HZ CD3(t)
/\_/ I
% fhigh=875HZ
Signal Conditioning
f(t) /\/ % frow=219Hz cDA4(t)
X Frign=43THz
fcutuff=l09Hz
% Sflow=109Hz eD5(t)
L /_\/ I
TX O frign=219Hz

Fig. 14. Analog parallel bank filter, equivalent to a CWT analysis. Cutoff fre-
quencies are based on the dyadic division obtained by the DWT analysis. All
passband filters are of third order, with a first-order high-pass input filter for
signal conditioning.

Thus, the resulting transfer function for each passband filter

is given by
s
CD(s)n = - N ” (6)
(1+25) (1+22)

where n determines the corresponding coefficient. In order to
getrid of any offset and 1/ f noise, an extra first-order high-pass
filter is placed at the system’s input. Simulations are performed
using Matlab’s LTI toolbox (Fig. 15).

An extra consideration was taken into account regarding en-
ergy estimation in the wavelet algorithms: The first analysis was
done using a squaring estimator. Then, another analysis was per-
formed using an absolute-value estimator. Results showed that
the absolute-value estimator did not degrade noticeably the ef-
fectiveness of the methods, even considering the loss of the im-
pulsive strengthening that a square estimator should produce.
This result implies a significant hardware simplification (con-
sidering the complexities of analog and discrete multipliers al-
ready discussed in Section III-A). Moreover, a secondary ben-
efit was the need for lower gains in the adaptive threshold unit,
of at least one order of magnitude. Although counterintuitive at
the first glance, this lower gain is due to the normalized input
signals, which entailed a compressive effect instead of an ex-
panding one for the squaring unit, something that would still
apply for its intended hardware implementation, considering the
use of voltages on the order of hundreds of millivolts.

A G'm—C hardware implementation of this circuit is given
in [24], ported to a 0.5-um standard CMOS process. Currently,
this implementation is under testing with the same data set used
for the evaluation of the algorithms. Results will be offered in
another publication. Preliminary power data are summarized in
Table VI (based on measurements).

IV. EVALUATION RESULTS AND ALGORITHM RANKING

Detection was evaluated for different gains. An example of
such evaluation is shown in Fig. 5 for the discrete Haar wavelet
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TABLE VI
Bias CURRENT CONSUMPTION FOR THE IMPLEMENTATION OF A CWT BANK
FILTER ON A 0.5-zzm STANDARD CMOS PROCESS. BIAS RESULTS BASED ON
REAL MEASUREMENTS [24]

TABLE VII
BEST ROC (TPR, FPR) PAIRS PER ALGORITHM IN TERMS OF THEIR
EUCLIDEAN DISTANCE FROM A PERFECT DETECTOR (T'PR, FPR) = (1,0)).
NEXT TO EACH ALGORITHM, THE REQUIRED GAIN FOR THE ADAPTIVE
THRESHOLD DETECTOR IS ALSO GIVEN

Sub-circuit Qty Bias Current
Single-ended OTA 14 2.160pA Method TPR FPR | Distance [ XTP | Gain
Rectifier (as defined in Table I) 3 1.215pA Correlation 30m template 41/45 | 0/15 0.088 1 25
Total Ipras 3.375pA Correlation 90m template 41/45 | ons 0.088 1 25
. Discrete Wavelet Transform 40/45 0/15 0.111 0 15
Bods-Disgram Bands 3, 4, 5 with absolute
value as energy estimator
E; Continuous Wavelet Transform 40/45 1/15 0.129 0 30
2 Bands 3, 4, 5 with absolute
é, value as energy estimator
s Continuous Wavelet Transform 40745 1/15 0.129 3 30
Bands 3, 4 with absolute
value as energy estimator
Median Filter 39/45 | 2/15 0.189 0 25
‘+2‘;}}} ‘ Discrete Wavelet Transform 37/45 1715 0.190 0 10
B s Bands 4, 5, 6 with absolute
E value as energy estimator
n_f_ Absolute Value Estimator 38/45 2/15 0.205 0 15
No Pre-processing 35/45 2/15 0.259 0 15
S TEO 36/45 | 3/15 0.283 2 45

Frequency (rad/s)

Fig. 15. Theoretical frequency responses for the filters shown in Fig. 14, using
Matlab’s LTI toolbox.

ROC. Median filter preprocessing.
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Fig. 16. Sample of the ROC for an adaptive threshold detector with median
filter preprocessing.

algorithm. With the results from the evaluation of the 45 positive
samples, plus the 15 negative samples, ROCs were plotted for
each method. An example of such plots is shown in Fig. 16.
Table VII shows the ranking of the best pairs for each tested
method, with the corresponding gain C for the threshold unit.
For each algorithm, the best (TPR, FPR) was chosen (with
its associated gain) in terms of the Euclidean distance between
each (TPR, FPR) pair and the ordered pair that represents a per-
fect detector (TPR, FPR) = (1,0): the smaller the distance,

the better the algorithm. Table VII lists the best algorithms in
descending order of its effectiveness (i.e., in descending order
of the Euclidean distance from a perfect detector). Next to each
algorithm, XTPs are also indicated, since they also qualify each
method, i.e., serve as an extra indicator to eliminate ties in the
rating. Ideally, no XTPs should exist.

According to the ROC ranking, correlations against templates
at 30 or 90 m were the two best preprocessing methods, yielding
no false positives but with two XTPs. The third method was the
DWT with an absolute-value estimator, using detail coefficients
3,4,and 5, with no false positives and no XTPs. In the fourth place
was the CWT for coefficients 3,4, and 5, withan FPR of only 1/15
(afalse positive due to the rain sample number two and no XTPs).
In the fifth place was also the CWT, but only considering bands
3 and 4, with three XTPs (which seems to indicate that the fifth
coefficient may be leftunconsidered if oneistooptimize hardware
area at the cost of higher FPR). The sixth algorithm in terms of
effectiveness was the median filter. In the seventh place was the
DWT for bands 4, 5, and 6, with an absolute-value estimator. In
the eighth place was the absolute-value estimator. At the end of
thetableis the TEO, which did noteven surpass the metric’s lower
bound of no preprocessing method at all.

The posterior analysis of the negative samples that produced
some of these false positives showed strong “pops” in the
recording (see, for instance, Fig. 17), which were probably
caused by water drops hitting the microphone and generating
an impulsive sound. An acoustic protection on the micro-
phone could thus increase the TPR while decreasing the FPR.
Anyway, it is remarkable that the correlation and the wavelet
algorithms are not fooled by these pops. Taking the absolute
value of the signal outperformed the TEO operator not only in
its TPR but also in its FPR, which coincides with the Obeid and
Wolf observations that included even more refined versions of
the latter method [15]. As in the median filter case, the pops’
effect in the negative samples is present in both methods, which
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Fig. 17. False positive using the median filter on a water stream recording. No-
tice the pop in the sample that fools the algorithm. A higher gain in the threshold
detector circumvents the false positive, at the expense of losing some true pos-
itives. An acoustic protection on the microphone may be a simple solution for
this false positive without sacrificing the TPR.

TABLE VIII
RANKING OF THE METHODS AS A FUNCTION OF THEIR REQUIRED BIAS.
DYNAMIC POWER CONSUMPTION IS NOT CONSIDERED

Method Total Bias Current
Absolute Value 405nA
Teager Energy Operator 1.170pA
Continuous Wavelet 3.375uA
Median Filter 3.52uA
Haar Discrete Wavelet 4.7uA
Mixed signal correlator 25.74pA

means that a similar protection of the microphone may increase
their performance. Not considering, for instance, the negative
sample of the water stream brings the FPR down to 1/15 in the
absolute-value preprocessing, the same as in the second case of
the wavelet method.

Table VIII tabulates some of the annotations given regarding
the approximate static power requirements of the possible
implementation of each method. Considering this, it is clear
that both the TEO and absolute-value algorithms may compen-
sate their low detection performance in terms of their lower
power needs against the higher power requirements of the other
methods. However, if one is to prefer a more detection-effective
method, then it seems better to opt for the more power-de-
manding algorithms.

A compromise solution in terms of power efficiency thus may
be offered by a discrete implementation of the DWT, using a
switched capacitor approach, for instance, or the implemen-
tation of the CWT method using a Gm—C' or equivalent ap-
proach.

At the time of submission of this paper, the continuous
wavelet IC implementation was being tested on laboratory.
The second version, which is a partial implementation of the
discrete wavelet approach, has just returned from the foundry.
The results of these two circuits’ testing will be the object

of a subsequent publication that will complement the results
presented in this paper.

V. CONCLUSION

Detection of impulsive signals can be implemented with a
variety of effective algorithms. An ROC statistical metric has
been proposed in order to sort them in terms of detection effi-
ciency, and some annotations have been given about their VLSI
low-power feasibility. Clearly, correlation and wavelet-based
detection algorithms give higher performances at a higher hard-
ware cost, at least in terms of static power consumption. There
exist good mixed-signal and analog approaches to the VLSI im-
plementation of wavelet-based methods that would suggest this
as the best compromise solution. A median filter approach may
be not as hardware costly as the preceding methods, with detec-
tion results still acceptable. For that matter, just considering the
absolute value of the signal, with a protected microphone, can
offer a similar performance at a much lower hardware cost.
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