
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 58, NO. 5, MAY 2011 971

Application-Specific Processor for Piecewise Linear
Functions Computation

J. Agustín Rodríguez, Omar D. Lifschitz, Víctor Manuel Jiménez-Fernández, Pedro Julián, Senior Member, IEEE,
and Osvaldo Enrique Agamennoni

Abstract—This paper presents an application specific processor
architecture for the calculation of simplicial piecewise linear func-
tions of up to six dimensions with 24-bit wide input words. The
architecture, in particular registers and bus connections, is specif-
ically designed for the task of simplicial piecewise linear compu-
tation. The parameters of the function are stored in an external
16 MB RAM memory. A proof-of-concept integrated circuit (that
achieved first silicon success) was fabricated through MOSIS in a

standard CMOS process using an auto-
mated design flow based on Synopsys and Cadence tools and the
OSU standard cell library.

Index Terms—Application specific, function evaluation, micro-
processor architecture, piecewise linear, VLSI.

I. INTRODUCTION

P IECEWISE linear (PWL) functions have been widely
used for the last four decades in the areas of circuits,

systems, and control, mainly because they allow to represent
multivariate functions with reduced complexity. In some cases,
they are used to make a large problem numerically tractable [1],
while in others, they allow numerically complex algorithms to
be run in real time [2] or at high speeds [3].
There are several areas where PWL functions have produced

successful implementations. The first and most traditional area
has been the computationally efficient resolution of nonlinear
circuits (see [4]–[7]). One dimensional PWL functions are used
at present for efficient realization of elementary nonlinear func-
tions: multipartite and bipartite methods are one example (see
[8] and [2]). These methods make an extremely efficient use of

Manuscript received March, 16 2010; revised August, 23 2010; accepted Oc-
tober 12, 2010. Date of publication December 20, 2010; date of current version
April 27, 2011. This work was supported in part by PICT 2006–1864 , PICT
2006–1835, and PAE 37079 of Agencia Nacional de Promoción Científica y
Tecnológica (ANPCyT) of the Argentine Ministry of Science and Technology
(MINCYT). This paper was recommended by Associate Editor S. Cotofana.
J. A. Rodríguez, O. Lifschitz, and P. Julián are with the Departamento de

Ingeniería Eléctrica y Computadoras, and Instituto de Investigaciones en Inge-
niería Eléctrica, Universidad Nacional del Sur/CONICET, 8000 Bahía Blanca,
Argentina
(e-mail: pjulian@ieee.org).
V. M. Jiménez-Fernández is with the Facultad de Instrumentación Elec-

trónica, Universidad Veracruzana, Xalapa, Veracruz, México.
O. Agamennoni is with the Departamento de Ingeniería Eléctrica y Com-

putadoras, and Instituto de Investigaciones en Ingeniería Eléctrica, Universidad
Nacional del Sur/CONICET, 8000 Bahía Blanca, Argentina, and also with the
Comisión de Investigaciones Científicas de la Pcia. 1900 Buenos Aires, CIC,
Argentina.
Color versions of one or more of the figures in this paper are available online

at http://ieeexplore.ieee.org.
Digital Object Identifier 10.1109/TCSI.2010.2091196

the memory where the function parameters are stored [9], al-
though they not always take advantage of the continuity of the
function to further reduce the number of parameters and achieve
a “canonical” representation [10]. Direct Look-up Table (LUT)
methods and LUTwith linear interpolations are both PWL func-
tions. Direct LUT do not perform interpolation and store all data
in memory, while LUT with interpolation, reduce the data in the
memory and include an interpolation algorithm. Quadratic inter-
polation methods have been proposed in order to reduce even
further the size of the memory [11], although the extension to
higher dimensional domains results too expensive from a nu-
merical viewpoint. These implementations are intensively used
in Graphic Processor Units (GPU), Digital Signal Processors
(DSP), and microprocessors for fast and accurate calculation of
one-dimensional functions [11].
In communication systems, baseband digital predistortion

[12] allows good linearity and power efficiency, by previoulsy
compensating the nonlinearities of the power amplifier. This
implies the use of linear filters and nonlinear static operations,
most of them based on LUT [13], explicit PWL functions
[14]–[17], and piecewise linear networks [18]. Reference [19]
presents a dedicated VLSI that implements a predistorter based
on a PWL approximated Gaussian function.1

The introduction of nonlinear control and estimation strate-
gies in power electronics applications, demands the evaluation
of nonlinear functions at speeds of tens and hundreds of Mhz.
Digital audio amplifiers and A/D converters require nonlinear
operations for predistorsion [14], [20]. Feedback control of dc
converters lie in the same category; the dc–dc converter reported
in [22] uses a Look-up Table (LUT) approach for the high speed
implementation of a nonlinear PID control. Control and estima-
tion of variables in motors require also a considerable volume
of static (memoryless) computation [23], [36], [37], and they
justify the use of extra memory in the LUT approach to achieve
the necessary performance; indeed, the application described in
[24] uses a 64 Mb DRAM.
All these applications show the current and future relevance

of multidimensional PWL functions. Motivated by this, in this
paper we propose an Application Specific Processor (ASP) for
PWL function computation.2 ASP combine high flexibility with
hardware resources that optimize the execution of the target ap-
plication; GPU, DSP, and special purpose micro-controllers are
some of the most popular realizations of this design philosophy.
In particular, we use the simplicial PWL expression introduced

1In these applications it is also desirable for the nonlinear block to be able to
adapt over time [12]
2Preliminary work describing the architecture with simulations was presented

in [25]

1549-8328/$26.00 © 2010 IEEE

972 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 58, NO. 5, MAY 2011

in [26], [27], which is general with respect to the domain di-
mension, and can be used as a generic platform for nonlinear
dynamic system representations [28], [30], [31]. The processor
runs a sorting algorithm to perform simplex identification [6],
and retrieves the parameters from an external memory to per-
form the linear interpolation. A Harvard coprocessor architec-
ture is used together with a master system that loads the program
memory with the execution code and also sends different pro-
cessing requests. The microprocessor is of a RISC type, with a
microprogrammed control unit; an on-chip memory stores the
256 (micro) program words. A particular characteristic of this
design is that the micro program memory is actually the com-
plete program memory space.
A proof-of-concept 4 mm 4 mm integrated circuit (IC) was

fabricated in the MOSIS m technology, using Synopsys
tools and the Oklahoma State University (OSU) standard cell li-
brary. The main objective of the IC is to produce a first generic
platform, with an optimized architecture (within the limits im-
posed by the maximum available area of) in order to
perform experiments at the system level. The design sets the
foundations for a high performance nonlinear multidimensional
PWL-based ASP.
The IC was designed to perform a PWL calculation of a six

dimensional input vector , where every component is
represented with 24 bits; in addition, the number of inputs can
be reconfigured anywhere between one and six. A friendly and
extensible instruction set was developed to program the PWL
microprocessor. In addition, a complete software environment
was developed to load programs and also to send processing
requests to the chip. Thorough debugging tests shows the correct
behavior of the IC for the specified operating conditions (55
Mhz at V).

II. BACKGROUND AND PRELIMINARIES

The Simplicial PWL representation proposed in [26] and [27]
and the decomposition procedure proposed in [6] for an n-di-
mensional compact domain provide the processor
computation platform. In a given simplex, any PWL function

can be expressed as a weighted sum

(1)

where is the point to be evaluated, are
scaling parameters dependent on , and are the values of the
function at the simplex vertices, .
For a given , the values are known—they are the func-

tion parameters—but the -values, associated to the simplicial
decomposition, must be computed. This association, hereinafter
denoted as vertex addressing, is defined by the hypercube path
[32], and can be obtained by the simplicial decomposition of
as reported in [6]. In fact, a point in a simplex can be decom-
posed as , with defined as follows:

(2)

where are the simplex vertices.

Fig. 1. PWLR6 computation system.

Algorithmic Scheme for Evaluation of

The evaluation scheme of is based on a sorting proce-
dure to compute the parameters, and requires a binary-format
vertex addressing procedure. The algorithm can be summarized
as follows:
1) Data Input and Decomposition: Let be the input
vector. Each -component (for) is decom-
posed into integer and fractional part, using the notation:

.
2) Sorting: Let be a vector that
includes the elements sorted by the relation:

.
3) evaluation: -Computation and Vertex ad-
dressing: The -parameters can be computed as follows:

(3)

The values are physically stored in a RAM; the fol-
lowing procedure addresses the memory in order to fetch
the values that correspond to a specific parameter:
a) Let be a binary number
formed by the concatenation of the integer part of all
input variables, where .

b) Let be a binary number (with the
same word length as) composed by the concate-
nation of -terms (each of them with the same
length as) whose value can be either
or .

c) Let be a sequence indicating
the order of the components of in (i.e., if

then).
The address memory of a value corresponding to a
specific is obtained by the following procedure:

The notations turn-on and turn-off are used to indicate the
process of setting and , respec-
tively. It is important to note that the set of RAM ad-
dresses generated to fetch the -terms constitute the path in the

RODRÍGUEZ et al.: APPLICATION-SPECIFIC PROCESSOR FOR PIECEWISE LINEAR FUNCTIONS COMPUTATION 973

Fig. 2. Microarchitecture of the PWL- .

-dimensional hypercube. Finally, (1) can be evaluated in ac-
cordance with the - correspondence given by the hypercube
path.

III. THE PWL- ARCHITECTURE

The digital architecture of an ASP strongly depends on its
target application. A successful ASP provides the required hard-
ware to solve the target set of computational problems in an opti-
mized way in terms of execution time, power, or chip resources,
while maintaining the flexibility and programmability charac-
teristics of a general purpose microprocessor. A trade-off exists
among optimization levels and flexibility levels; thus, an ASP
can be considered as an intermediate point between a general
purpose microprocessor and an ASIC. The three main architec-
tural blocks of the PWLmicroprocessor, namely, Data Path, I/O,
and Control, were designed taking into account the special op-
erations required to perform the PWL calculation. The result is
a nearly basic microprocessor with special features that accel-
erate the PWL computation. This section presents the details of
these blocks as well as an overview of the system operation, the
memory configuration and an instruction level analysis of the
calculation cycle.
Data Path is the most influenced block by the special char-

acteristics and mechanics of the PWL computation. Due to this
strong dependence, data path was the first block to be designed.
After getting an adequate Data Path design, I/O structures and
protocols were defined to supply the required data for com-
putation. Finally, the Control Unit was designed to sequence

PWL- ’s operations. The resulting Control and Instruction set
are closely related to the attained flexibility and performance.

A. Operation

The PWL- is designed as a Harvard coprocessor architec-
ture intended to work with a master system that: 1) loads the
PWL- ’s program memory with a data RAM configuration
program or an evaluation program for ; 2) sends dif-
ferent processing requests (see Fig. 1). Once the PWL function
parameters are stored in the data RAM and the evaluation pro-
gram is loaded, the system is ready to compute the processing
requests. The master inputs a value , the PWL- computes
the function’s value for this point and produces an output.

B. Data Path

The mechanism of the PWL function evaluation algorithm
has a direct impact on the Data Path architecture, which is
shown in Fig. 2. Although it includes typical blocks like a
register file and an ALU, the architecture has been tailored
for PWL computations by especially designing word lengths,
interconnection buses, and addressing hardware. As was pre-
viously described, the input data has to be decomposed into
integer and fractional parts. This is implemented using on-line
processing with minimum hardware overhead: I/O register
SR-38 (3 8-bit shift register) receives a 24-bit value corre-
sponding to one variable ; the integer part is concatenated in
register SR-VRT (6 4-bit shift register) and the fractional part
is stored in the register file. Associated to each fractional part,

974 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 58, NO. 5, MAY 2011

an additional 3-bit tag is stored; this tag is generated with CNT
(3-bit counter) and is incremented each time an arrives to be
used as the index required in the vertex addressing procedure.
This digital structure optimizes the execution time for data
input compared to a standard microprocessor, where input
values have to be first stored into registers before they can be
decomposed. In a standard microprocessor, the decomposition
has to be done with shift operations while concatenation of the
six integer parts can be done with shift-and-add operations.
Although CNT tags result in a nonstandard register file, they
save operations, and the register file can still be used as a
standard register.
Sorting constitutes the second part of the algorithm (it is re-

quired to evaluate the parameters), and was implemented
following the comparison sequence of a Bose–Nelson sorting
network. In order to maintain the microprocessor structure and
to avoid the area overhead of 12 compare-switch blocks, only
one comparator (the one included in the ALU) was used. The
RF (register file) is composed of 6 registers (20-bit wide plus
3 bits for CNT tags) and has two bidirectional ports. Port A is
connected to Register A and port B to Register B; transfers be-
tween RF and Registers A and B can be done in parallel. Both
Register A and Register B are possible ALU inputs. The com-
pare operation is performed by these registers and depending on
the result Register A and Register B values may be written back
into the RF, by switching sources and destinations. CNT tags
are not part of the fractional part, therefore they are not used in
the comparison, but if a register switch occurs, tags need to be
switched with their corresponding fractional parts. That is the
reason why bidirectional ports Register A and Register B are
23-bit wide but ALU inputs connected to Register A and Reg-
ister B are only 20-bit wide.
The third and last step is evaluation. For each term of the sum

(2), must be addressed and read from the data memory and
must be computed. The result of multiplying these two pa-

rameters has to be accumulated into a partial sum result. Again,
special features accelerate this computation. The key structures
are the connection buses between registers, the ALU inputs and
the addressing structures.3

With two special purpose registers, the PWL- has a simple
and efficient addressing method to retrieve the values from
memory. SR-VRT stores the concatenated integer parts of
values and plays the role of the binary number (introduced
in Section II-A); Register RSX is a 6-bit register, which plays
the role of binary number , and can be operated bit-wise.4

As shown in Fig. 2, both SR-VRT and RSX can be added
directly (they are ALU inputs) to generate the ’s address;
after the memory access operation, the value is stored in
Register MADR (Memory Address Data Register). The CNT
tags are used to perform the turn-off operations described in
Section II-A; this operation is supported by a 3-bit bus from the
RF tags to a decoder that selects the RSX bit to be turned off;
then, the RSX update depends on the selected RF register and
its tag. These features clearly differentiate the PWL- from

3Different configurations provide different advantages; even though the pro-
posed architecture is efficient, it could be further optimized
4The binary number is 24-bit wide, then every bit of RSX is concatenated

with a sequence “000” to generate .

a typical microprocessor architecture providing an efficient
address generation. After has been read from data memory,
the next step is to compute by subtracting sequentially
components of . Sorting has already taken place, so
RF stores in ascending order. The parameters are then
computed by subtracting sequentially the RF registers (for ex-
ample, requires the computation of). Finally,
the Register MADR value is multiplied with the Register
ALU-out value (both can be simultaneous ALU inputs).
After that, the Register ACC value that stores the partial sum
evaluation is added to Register ALU-out (again, both can be
simultaneous ALU inputs) and the th sum term is ready. After
repeating the preceding operations times, the value of

is obtained, in accordance with (1).

C. External Memory

The data RAM space depends on the PWL function’s dimen-
sion , and on the granularity or number of divisions per domain
of the simplicial partition, namely , so that
. The RAM space is exponentially dependent on the number

of dimensions; although the theory behind PWL functions is
valid for -dimensional functions, memory space is obviously
restricted. Setting the maximum dimension equal to six gives
enough room for a large set of scientific/engineering problems
(see Section IV). A minimum number of partitions per domain
must be set in order to guarantee enough resolution for func-
tion approximation; setting this value equal to 16 resulted in a

RAM. When the dimension of the PWL function is re-
duced, a finer granularity is obtained as a result of the flexibility
provided by the PWLR6 architecture. If the six 4-bit
registers in SR-VRT are grouped into 1, 2, or 3 groups of 24,
12, or 8 bits, producing , 4096, and 256 divisions,
respectively. For the remaining two cases, and ,
register cannot be matched to a regrouping of SR-VRT and
the grid must be fixed at 16 subdivisions. In all cases, the frac-
tional part is 20-bit wide.

D. Input-Output

Communication with the PWL- is done by three blocks:
1) XY port; 2) Data memory subsystem; 3) Program port. Each
of these blocks communicates by using a set of bits for data
transmission and another for synchronization.
1) XY port: This port is used to transmit 8/16/24-bit data to
and from the master system. An 8-bit bidirectional bus,
a 3 8-bit shift register (SR-38), signals “require-bit”
and “acknowledge-bit” define an asynchronous commu-
nication channel. In the PWLR6 system, the master sends
the 24-bit input values and receives the 28-bit output
through the XY port (in both cases, using 3 or 4 send-re-
ceive transactions). The PWL parameters are also sent
using this port.

2) Data memory subsystem: As was previously mentioned,
the data memory subsystem addresses a 16 MBytes RAM,
which requires a 24-bit address. Due to pin count limi-
tation, the memory addressing procedure is multiplexed
using a similar structure to Intel’s 8086. An internal 16-bit
Data Address Memory Register (MADR) outputs the
24-bit address in two cycles, the 16-bit lower part is stored

RODRÍGUEZ et al.: APPLICATION-SPECIFIC PROCESSOR FOR PIECEWISE LINEAR FUNCTIONS COMPUTATION 975

TABLE I
INSTRUCTION SET

in an external register (ALE) and the 8-bit higher part is
stored in the MADR’s lower byte.

3) Program port: This port is used to load a program into the
PWL- internal program memory. A bit line and a clock
line establish a synchronous communication channel.
20-bit program words are stored in a 20-bit shift register
that is used during the programming as input data for
the internal program RAM. Each word needs 21 clock
cycles to be loaded: 20 cycles for data transfer and an
additional cycle to store it. RAM internal control signals
are generated during this last cycle. Simplicity and min-
imum pin count was preferred for this I/O instead of high
performance.5

E. Control Unit

The control unit evolved form a simple nearly-counter
structure to a micro-programmed control unit that implements
the PWL- instruction set architecture (ISA). Control signals
were encoded in 20-bit instructions. The ISA was designed to
exploit all the resources inside the PWL- ; it includes abso-
lute and relative jumps, memory RD/WR instructions, ALU
operations, and dedicated registers instructions (see Table I).
Opcode “0000” represents all possible register manipulation
operations among RF, Register ALU-out and registers A and B.
The programmer sets directly the control signals that configure
write/read operations on these registers. In other words, each bit
of the instruction word is a Read or Write enable of one register.
Allowing the programmer to move data between registers in
arbitrary ways gives a flexible albeit insecure environment; i.e.,
simultaneous accesses can be done, but simultaneous writings
on the same bus will produce a contention between outputs;
logic constraints were included to avoid problematic control
configurations.
The remaining instructions are structured and more con-

strained. The final control unit has a 256 20-bit RAM that
stores 256 (micro) instructions. As was mentioned earlier, this
memory is actually the program memory and no addressing ca-
pabilities are provided for external program memory; although

5Even though this mechanism is not efficient in terms of computing time, it
was maintained for simplicity, due to the fact that program loading is not part
of the PWL function evaluation algorithm. Indeed, the system was conceptually
designed to load an evaluation program and execute it repeatedly

it seems a small program space it is enough for storing the
PWL evaluation programs and other micro-programs like the
“configure data RAM program”; the compact representation
for this computation is consequence of the data path special
features that reduce the number of instructions compared to an
x86 approach.
The control unit fetches (micro) instructions from on-chip

program memory and decodes them to produce the control bits.
Program memory is addressed with an MPC (Micro Program
Counter) and program words are stored in an MIR (Micro
Instruction Register). Decode logic uses MIR data to evaluate
the data path’s control bits. A final characteristic that is worth
mentioning is that the PWL- is a pipelined architecture.
Fetch/Decode/Execute cycles are performed in parallel; dedi-
cated logic was designed in order to insert wait cycles for jump
instructions. Pipelining was used for the fetch, decode, and
execution stages, but no pipelining was used for the ALU.

F. Instruction Level Analysis of the Calculation Cycle

In the description of the architecture the characteristics that
speed up the execution of the PWL function computation were
presented. In this subsection the calculation cycle and its three
stages (data input, sorting, and evaluation) are analyzed at the
instruction level with the objective of identifying the funda-
mental gains resulting from the special resources. A comparison
between the PWL- and a standard RISC (ARM) in terms of
number of instructions is presented.6 Since memory and I/O
structures differ substantially (i.e., ARM uses a hierarchical
memory cache & main memory and the PWL- uses only a
main memory), they are not part of this comparison.
Figs. 3(a) and 4(a) show the Data Input code using PWL-

and ARM’s assembler respectively; the convenience of the VSI
instruction and its two associated registers can be observed. The
statements “Run XY protocol for x” and “Load xi into R10”
represent the required steps to input the values.
Figs. 3(b) and 4(b) show a comparison of the code required

for sorting using PWL- and ARM’s assembler. The sorting
sequence requires 12 compare and switch operations. De-
pending on whether the compared inputs have to be switched
or not, 2 or 3 instructions are needed for the PWL- and 3 or
6 for the ARM. In the worst case, this sequence requires the
execution of 36 and 72 instructions, respectively.
Figs. 3(c) and 4(c) compare PWL and ARM assembler codes

for the evaluation step. Seven cumulative products are required
and each cumulative product requires one memory address gen-
eration and access to retrieve the parameter . Register manip-
ulation and arithmetic operations are similar; however, while
the standard RISC needs to implement a case statement to ac-
tualize the offset (r8) for vertex addressing, the PWL- does
it in just one instruction. The “Read Value from Data Memory
into MADR” and “LDRB” are the memory access operations
and are not being considered.
Table II summarizes the instruction count of the PWL micro-

processor in comparison with the ARM code. Data input shows
a relationship of 4.6 times. In the case of sorting, three values

6Since both architectures are RISCs this comparison can be considered in
terms of clock cycles, however given that stall cycles due to conditional jumps
are not taken into account, the comparison will be kept at the instruction count.

976 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 58, NO. 5, MAY 2011

Fig. 3. PWL code for three different operations. (a) Data input. (b) Data sorting
(showing only three terms). (c) Evaluation (considering the first two terms of
the summation).

are shown corresponding to the best case (data are ordered and
no switches are needed), the average case (six switches), and the
worst case (twelve switches). The evaluation cycle requires one
initial computation, six computation steps and six addressing
steps. In the PWL case these three steps require
cycles. In the ARM case these three steps require
cycles.
Considering an average case, the PWL instruction count is

and the ARM instruction count is
, so the average relative gain is 2.18. It is important

to notice that instruction count cannot be considered directly as
a performance measure. However, if the same technology node
is used for both our ASP and a standard RISC, the delay in their
logic circuits (registers and arithmetic blocks) will be similar
resulting in a similar maximum clock frequency. In that case
the instruction count can be used as a performance indicator.

IV. ACCURACY ANALYSIS

The result produced by the processor is obtained as a
linear combination of memory values (8 bits) times the ’s coef-
ficients (20 bits), so that is a 28 bits value. As the proposed
PWL processor is digital and there are no truncations during the
computation, the processor as an isolated digital computing unit
does not incur in calculation errors. However, when the pro-
cessor approximates an analog function, three different types of
errors appear [8]: a) PWL approximation errors; b) range quan-
tization errors; and c) domain quantization errors.
If the PWL function is the approximation of a nonlinear func-

tion, there is an initial error produced by the approximation. This
is an approximation problem which has been treated previously
in [27], where the grid size needs to be designed small enough in
order to achieve a desired accuracy.7 However, the PWL func-
tion can also be designed from the scratch, without a preexisting
analytical nonlinear function. One famous example is the well

7If the resulting grid size is too small, the chip will not be able to implement
the function. In this case, the domain must be reduced or a chip with more sub-
divisions must be designed

Fig. 4. ARM code for three different operations. (a) Data input. (b) Data sorting
(showing only three terms). (c) Evaluation (considering the first two terms of
the summation).

TABLE II
NUMBER OF OPERATIONS AND RELATIVE GAINS

known Chua’s circuit with 3 segments [33] and 5 seg-
ments [34]. Another example is when the PWL func-
tion is obtained directly from measured data ([14] implements a
correction function in for an A/D converter calibration with

subdivisions per axis; [35] uses a LUT with no interpo-
lation in with for image halftoning).
The PWL function is usually specified with infinite precision,

so that when the function is to be implemented by the processor,
the two other sources of errors appear: the coefficient quanti-
zation error is due to the fact that the parameters must be
stored in a digital memory of finite word length; the input quan-
tization error is due to the fact that the input vectors to the
function must also be converted into digital numbers of finite

RODRÍGUEZ et al.: APPLICATION-SPECIFIC PROCESSOR FOR PIECEWISE LINEAR FUNCTIONS COMPUTATION 977

word length. Some reported applications that fall under this cat-
egory and the grid size used, are the following: [1] implements
a magnetic positioning system in with subdivisions
per axis; [36] implements a nonlinear FIR filter to compensate
power amplifiers in with subdivisions per axis;
[37] implements a real time switched reluctance motor control
in with subdivisions (LUT with no inter-
polation); [22] implements a dc–dc PID controller in with

subdivisions; [23] implements an observer-con-
troller pair that can be implemented using several functions
with subdivisions per axis. [24] presents a similar ap-
plication in functions with subdivisions per axis;
[30] is able to reproduce complex nonlinear phenomena in dy-
namical systems of order three, using an PWL function with

subdivisions; [38] uses an approximation in
with for an all-region MOS transistor drain

current accurate model implemented in SPICE3F5; [39] uses a
LUT with no interpolation in with for the
analysis of a ADC. It is interesting to note that the de-
signed chip (even when it was meant to be a proof-of-concept)
can fit all cited applications.
Let denote the word length of every component of input

vector , the integer word length and the fractional word
length, in such a way that . As explained in the
previous section, is fixed. In addition, let denote the
parameter (memory) word length. Accordingly, there are

subdivisions per axis, and every axis subdivision is quantized
into possible locations for linear interpolation. Without loss
of generality, range and domain of the function will be normal-
ized to the sets and respectively.
Firstly, the effect of coefficient quantization is analyzed.

Every coefficient has to be rounded to a number of the form
, with , and as a consequence the

quantization error is bounded by

(4)

As shown in [26], the quantized PWL function can be upper
and lower bounded by two functions, and respectively, in
such a way that where is the PWL function
defined by coefficients , for all , and is the PWL
function defined by coefficients , for all . In other words,

(5)

which, after considering that , and some algebraic
manipulation results in

(6)

As the distance between and is bounded by (4), then
satisfies , so that

(7)

for all .

Fig. 5. Relative percentage error due to coefficient quantization and input
quantization .

Secondly, the effect of input quantization is analyzed. As-
suming that the function range is , every coordinate of
the quantized input is of the form , with

. The th input coordinate can be written
as , where . Inside an ar-
bitrary simplex, the PWL function can be written as

, and the error can be bounded as follows:
.

Considering that is PWL with range bounded to , and
the width of any simplex is ,

(8)

and . On the other hand, since
, then . The total input quan-

tization error can be bounded as follows:

(9)

where is a vector belonging to the simplex under analysis.
Assuming that both errors are independent, the total error is

given by

(10)

for every . For the case where and ,
, and . Fig. 5

shows the relative coefficient quantization error , for different
word lengths of the memory and the input
quantization error as a function of the input dimension .
For values of memory word length less than 20 bits, the error
is dominated by the memory word length. When the memory
word length is 20 bits, for both errors are approximately
equal; for the input quantization dominates, and for
coefficient quantization dominates. In our implementation

, so the error is dominated by the memory word length,
and equals 0.19%.

978 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 58, NO. 5, MAY 2011

V. PHYSICAL IMPLEMENTATION AND EXPERIMENTAL RESULTS

A. IC Synthesis

The PWL- logic and physical implementation was pro-
duced with a standard cell VLSI design flow, based on the AMI
05 OSU cell library. The flow consisted of logic synthesis with
Synopsys Design Compiler; formal verification with Synopsys
Formality; Place and route with Cadence’s Encounter; and
finally, layout with Cadence Virtuoso Layout Editor and the
NCSU technology library. A postlayout fast simulation was
performed based on a 20 instruction program case that uses
buses, ALU, and registers intensively. In all cases, correct
operation was predicted up to a frequency of 55 MHz under
nominal work conditions with V.

B. Testing Environment

A software environment was built to work with the system
and debug it. The user interface is written in Matlab to provide
a friendly environment to the user; this code communicates se-
rially (RS232) with a Spartan-3 FPGA. The FPGA contains an
8-bit soft-core PicoBlaze controller that handles the serial com-
munication, translates the Matlab messages, and implements a
set of state machines that depending on the commands sent from
the user interface (UI) perform one the following actions: a) pro-
gram the PWL- internal RAM; b) sets the PWL- in exe-
cution mode and sends the required input data; c) generates the
PWL clock; d) generates the debugging signals of DFT blocks.
In addition, a dedicated compiler allows the use of the instruc-
tion set using the mnemonic codes (see Table I).

C. DFT Architecture

A set of clock, data, and control signals for DFT provides
an adequate environment to verify the PWL- ’s architecture.
If an error occurs, these features can be combined to identify
it. A set of 16 6 static registers are connected using a trans-
mission gate MUX to 6 output pins for testing, as illustrated in
Fig. 6 (see Appendix for an explanation of the signals). Elabo-
rated verification procedures may be set up: for instance, get the
state of the PWL- clock by clock or generate assertions for
different events. The basic DFT routines are the following: a)
Stop_Clk: Halts the PWL- ’s clock depending on a configured
counter or a flag; b) Do_1_Clk: Triggers a clock pulse allowing
the execution of PWL- ’s routines step by step; c) Mux: Mul-
tiplexes different internal data signals—this DFT works “on the
fly,” sending out values while the chip is running; d) Data_Scan:
Reads the complete state of the PWL- and outputs it serially;
e) Control_Bypass: Disables control signals generated by the
Control Unit and replaces them by an outside generated control
word.

D. Experimental Results

The PWL- ’s IC was fabricated through the MOSIS ser-
vice, in a 4 mm 4 mm m standard CMOS process (see
Fig. 7); the IC transistor count is 150 000. The IC was placed on
a two layer PCB that includes connectors to a logic analyzer (HP
54620A), an oscilloscope (Agilent DSO 3062A) and multimeter
(HP34401A) as shown in Fig. 8. Input data vectors generated in
a computer were sent to the chip, and the outputs were analyzed

Fig. 6. DFT MUX and corresponding signals.

Fig. 7. Photograph of the chip.

Fig. 8. Experimental setup including the IC dedicated board, the FPGA board,
and the instruments during debugging.

in Matlab. In all cases, the behavior of the chip was correct.
Internal states were thoroughly tested using the available DFT,
and all measurements coincided with the expected results.
In addition, frequency measurements were done for a max-

imum V. Measurements were done by fixing a
clock frequency and reducing VDD until a failure occurred. The
test program, in this case, included ISA instructions that forced
the IC longest path. Operational failure was considered when
the calculated output was wrong, despite of the functional state
of the chip. Frequency set up was done using the DCM block in

RODRÍGUEZ et al.: APPLICATION-SPECIFIC PROCESSOR FOR PIECEWISE LINEAR FUNCTIONS COMPUTATION 979

Fig. 9. Freq. versus VDD: The “data points” are the operating points from ex-
perimental results; the “free points” are linearly extrapolated points.

Fig. 10. Power activity (signal REQ—not on scale—is included as a time ref-
erence.

the FPGA. Fig. 9 shows the maximum operational frequency at
each measured VDD value.8

Regarding power consumption, three components were mea-
sured: static, clock tree, and dynamic. Static consumption was
measured with reset asserted and clock stopped giving a value
of 160 nW. Clock tree consumption was measured with reset
still asserted and clock running. Dynamic consumption was
determined while the PWL- was executing a program. A
digital scope (Agilent DSO3062A) and a multimeter (Hewlett
Packard—HP34401A) were used for this measurement. Dy-
namic power is shown in the captured scope picture of Fig. 10
while a test is running. The Req (voltage) signal is part of the
XY port protocol and is shown just as a timing reference.

8Design Compiler predicted a maximum operating frequency of 54 MHz at
V, which is remarkably close to the experimental result.

TABLE III
POWER @3.3 V.

In addition, a “Power Virus” (power-worst-case) test pro-
gram9 was developed to measure dynamic power for different
clock frequencies. Maximum power consumption occurs in the
“calculate and memory access” step; then, the “Power Virus”
program loops executing ALU and memory access operations.
This program was also used to compare I/O power against
internal logic by including or not I/O instructions. Table III
summarizes the results of these tests. Clock tree power is also
included.

VI. CONCLUSIONS

A microprocessor architecture for the computation of
simplicial piecewise linear functions has been presented. A
proof-of-concept fully functional 4 mm 4 mm IC prototype
in a m standard CMOS process, together with a complete
environment that allows the user to program the IC and the
parameter memory from Matlab, has been developed. The IC
can implement six dimensional functions, but it can also be
configured to implement lower dimensional functions with
more precision. In the six dimensional case, the inputs are
24-bit words, where 4 bits define the partition of the domain
and the remaining 20 bits are used for intrapartition definition.
In addition, the function parameters can be changed by the
user to implement adaptive algorithms. The versatility of the
approach comes at the price of memory capacity; in the six
dimensional case, 16 partitions per dimension imply a 16 MB
memory. Clearly, higher dimensional problems are limited by
memory availability.
Area and I/O pin limitations were major factors that im-

pacted on the number of cycles to produce one computation.
The maximum area available prevented the use of parallelism,
and impacted on several aspects of the architecture: the pro-
gram memory word length had to be shortened; a more compact
encoding had to be defined for the instruction set, increasing the
complexity of the decode logic; the data memory addressing
had to be multiplexed (requiring extra clock cycles); and some
interconnections had to be suppressed. As a result, the pro-
cessor needs 143 clock cycles to complete one calculation. The
availability of more area in an advanced process would lead
to a considerable speed up of the evaluation cycle by allowing
a higher frequency operation and a decreased cycle count.
The optimizations presented for the calculation cycle could be
further extended and the use of parallel techniques would dra-
matically reduce the cycle count; indeed, since the complexity
of the algorithm is linear on the number of dimensions, the
total number of cycles required is in the order of seven clock
cycles. As an example, sorting can be further speed up with the

9This program loads two registers of the Register File, moves them to RegA
and RegB, adds them up, and writes the result into MADR.

980 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 58, NO. 5, MAY 2011

addition of more comparators and dedicated structures [40];
the seven cumulative products can be performed in parallel
with additional multipliers and adders; and memory data can be
prefetched during sorting time. Ultimately, the bottleneck of the
approach is due to memory access, which can be overcome by
using on-chip memory (directly, or at least via a cache option).
In this direction, the increasing density of DRAM integration
and the possibility of vertical integration in 3D technologies
provide an ideal platform for the proposed microprocessor in
mid-size dimensions.

APPENDIX

The DFT signals in Fig. 6 are the following:
• RegA, RegB, and Reg_Alu_out: 6 LSB of these registers.
• tst_inreg: 3 bits of the “reg_in_control_ram” (command
flow) and 3 bits of the “data_in_control_ram” (data path
registers).

• MADR: Memory Address Data Read register.
• tst_out_vrt: Register with integer part.
• tst_out_sr38: Serial to parallel register.
• tst_mem0, tst_mem15 and tst_memX: 6 LSB of the in-
ternal ROM memory (addresses 0, 15 and 255).

• MIR and DATA_out: 3 LSB of the Micro Instruction Reg-
ister and 3 LSB of the data from the internal ROMmemory.

• MPC and ADD_IN: 3 LSB of the Micro Program Counter
and 3 LSB of the address pointing to the internal ROM.

• tst_s1: First 4 bits of the decoder SIN (write_en) for the 1st
internal MEM block and first 2 bits of the internal memory
address decoder.

• tst_s3: First 4 bits of the decoder SOUT (read_en) for the
1st internal MEM block and the first 2 bits of the internal
memory address decoder.

• Mux_jmp_control and jmp_cond and wait_jmp_flag and
REQ and WIT: combination of command control flow sig-
nals.

ACKNOWLEDGMENT

The authors would like to thank Synopsys University Pro-
gram, the MOSIS Service for IC fabrication, and also Ariel
Arelovich for the development of the software to compile PWL
assembler to machine code.

REFERENCES
[1] J. de Boeij, E. Lomonova, and A. Vandenput, “Look-up table based

real-time commutation of 6-DOF planar actuators,” in Proc. IEEE Int.
Conf. Control Appl. (CCA 2007), pp. 1118–1123.

[2] J. Detrey and F. de Dinechin, “Table-based polynomials for fast hard-
ware function evaluation,” in Proc. 16th IEEE Int. Conf. Appl.-Specific
Syst., Archit. Processor (ASAP 2005), pp. 328–333.

[3] A. Strollo, D. D. Caro, and N. Petra, “A 630MHz, 75 mW direct digital
frequency synthesizer using enhanced ROM compression technique,”
IEEE J. Solid-State Circuits, vol. 42, no. 2, pp. 350–360, 2007.

[4] T. Fujisawa and E. Kuh, “Piecewise-linear theory of nonlinear net-
works,” SIAM J. Appl. Math., Jan. 1972 [Online]. Available: http://
www.jstor.org/stable/2099721

[5] S. Kang and L. Chua, “A global representation of multidimensional
piecewise-linear functions with linear partitions,” IEEE Trans. Circuits
Syst., vol. 25, no. 11, pp. 938–940, 1978.

[6] M.-J. Chien and E. Kuh, “Solving nonlinear resistive networks using
piecewise-linear analysis and simplicial subdivision,” IEEE Trans. Cir-
cuits Syst., vol. 24, no. 6, pp. 305–317, 1977.

[7] L. Chua and R. Ying, “Canonical piecewise-linear analysis,” IEEE
Trans. Circuits Syst., vol. 30, no. 3, pp. 125–140, 1983.

[8] F. de Dinechin and A. Tisserand, “Multipartite table methods,” IEEE
Trans. Comput., vol. 54, no. 3, pp. 319–330, 2005.

[9] D. D. Caro, N. Petra, and A. Strollo, “Reducing lookup-table size in
direct digital frequency synthesizers using optimized multipartite table
method,” IEEE Trans. Circuits Syst. I, Reg. Papers, , vol. 55, no. 7, pp.
2116–2127, 2008.

[10] L. Chua and S. M. Kang, “Section-wise piecewise-linear functions:
Canonical representation, properties, and applications,” Proc. IEEE,
vol. 65, pp. 915–929, 1977.

[11] J.-A. Pineiro, S. Oberman, J.-M. Muller, and J. Bruguera, “High-speed
function approximation using a minimax quadratic interpolator,” IEEE
Trans. Comput., vol. 54, no. 3, pp. 304–318, 2005.

[12] O. Hammi, S. Boumaiza, M. Jaidane-Saidane, and F. Ghannouchi,
“Digital subband filtering predistorter architecture for wireless trans-
mitters,” IEEE Trans. Microw. Theory Tech., vol. 53, no. 5, pp.
1643–1652, 2005.

[13] L.-C. Chang and J. V. Krogmeier, “A look-up table with amplitude
scaling technique for amplifier linearization,” in Proc. 10th IEEE Sin-
gapore Int. Conf. Commun. Syst. (ICCS 2006), pp. 1–5.

[14] J. Yuan, N. Farhat, and J. V. der Spiegel, “Background calibration with
piecewise linearized error model for CMOS pipeline A/D converter,”
IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 55, no. 1, pp. 311–321,
2008.

[15] Bruno, J. Cousseau, S. Werner, J. Figueroa, M. Cheong, and R.
Wichman, “An efficient CS-CPWL based predistorter,” Radioengi-
neering, vol. 18, no. 2, pp. 170–177, Jun. 2009.

[16] W.-J. Kim, K.-J. Cho, S. Stapleton, and J.-H. Kim, “Piecewise
pre-equalized linearization of the wireless transmitter with a Doherty
amplifier,” IEEE Trans. Microw. Theory Tech., vol. 54, no. 9, pp.
3469–3478, 2006.

[17] M. Zakhama and D. Massicotte, “A systolic architecture for channel
equalization based on a piecewise linear fuzzy logic algorithm,”
in Proc. IEEE Can. Conf. Elect. Comput. Eng., 1999, vol. 2, pp.
1098–1101.

[18] M. Vidal and D. Massicotte, “A VLSI parallel architecture of a
piecewise linear neural network for nonlinear channel equalization,”
in Proc. 16th IEEE Conf. Instrum. Meas. Technol. (IMTC/99), vol. 3,
pp. 1629–1634.

[19] A.-O. Dahmane, D. Massicotte, and L. Szczecinski, “A VLSI architec-
ture of a piecewise RBF decision feedback channel equalizer,” in Proc.
IEEE Int. Symp. Circuits Syst. (ISCAS 2001), vol. 4, pp. 342–345.

[20] R. Hiorns andM. Sandler, “Power digital to analogue conversion using
pulse width modulation and digital signal processing,” IEE Proc. G
Circuits, Dev. Syst., vol. 140, no. 5, pp. 329–338, 1993.

[21] M. Streitenberger, H. Bresch, and L. Mathis, “Theory and implemen-
tation of a new type of digital power amplifier for audio applications,”
in Proc. IEEE Int. Symp. Circuits Syst. (ISCAS 2000 Geneva), vol. 1,
pp. 511–514.

[22] A. Prodic and D. Maksimovic, “Design of a digital PID regulator
based on look-up tables for control of high-frequency DC-DC
converters,” in Proc. IEEE Workshop Comput. Power Electron.,
2002, pp. 18–22.

[23] M. Sonnaillon, G. Bisheimer, C. D. Angelo, J. Solsona, and G. Garcia,
“Mechanical-sensorless induction motor drive based only on DC-Link
measurements,” IEE Proc. Elect. Power Appl., vol. 153, no. 6, pp.
815–822, 2006.

[24] M. Duran, S. Toral, F. Barrero, and E. Levi, “Real-time implementa-
tion of multi-dimensional five-phase space vector PWM using look-up
table techniques,” in Proc. 33rd Annu. Conf. IEEE Ind. Electron. Soc.
(IECON 2007), pp. 1518–1523.

[25] J. Rodriguez, P. Julian, O. Lifschitz, O. Agamennoni, and V. Jimenez-
Fernandez, “VLSI microprocessor architecture for a simplicial PWL
function evaluation core,” in Proc. Argentine School Micro-Nanoelec-
tron., Technol. Appl. (EAMTA 2008), pp. 55–60.

[26] P. Julian, “A high-level canonical piecewise linear representation:
Theory and applications,” UMI, Bell & Howell Inf. Learn., p. 182,
1999.

[27] P. Julian, A. Desages, and O. Agamennoni, “High-level canonical
piecewise linear representation using a simplicial partition,” IEEE
Trans. Circuits Syst. I, Fundam. Theory Appl., vol. 46, no. 4, pp.
463–480, 1999.

[28] L. Castro, J. Figueroa, and O. Agamennoni, “An NIIR structure using
HL CPWL functions,” Latin Amer. Appl. Res., vol. 35, pp. 161–166,
2005.

[29] M. Storace, P. Julian, and M. Parodi, “Synthesis of nonlinear multiport
resistors: A PWL approach,” IEEE Trans. Circuits Syst. I, Fundam.
Theory Appl., vol. 49, no. 8, pp. 1138–1149, 2002.

RODRÍGUEZ et al.: APPLICATION-SPECIFIC PROCESSOR FOR PIECEWISE LINEAR FUNCTIONS COMPUTATION 981

[30] M. Storace and O. D. Feo, “Piecewise-linear approximation of non-
linear dynamical systems,” IEEE Trans. Circuits Syst. I, Reg. Papers,
vol. 51, no. 4, pp. 830–842, 2004.

[31] T. Poggi, F. Comaschi, and M. Storace, “Digital circuit realization
of piecewise-affine functions with nonuniform resolution: Theory and
FPGA implementation,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol.
57, no. 2, pp. 131–135, 2010.

[32] J. P. Bowen, “Hypercubes,”Practical Comput., vol. 5, no. 4, pp. 97–99,
1982.

[33] T. Matsumoto, “A chaotic attractor from chua’s circuit,” IEEE Trans.
Circuits Syst., vol. 31, no. 12, pp. 1055–1058, 1984.

[34] G.-Q. Zhong and F. Ayrom, “Periodicity and chaos in chua’s circuit,”
IEEE Trans. Circuits Syst., vol. 32, no. 5, pp. 501–503, 1985.

[35] P. Li and J. Allebach, “Look-up-table based halftoning algorithm,”
IEEE Trans. Image Process., vol. 9, no. 9, pp. 1593–1603, 2000.

[36] O. Hammi, F. Ghannouchi, S. Boumaiza, and B. Vassilakis, “A data-
based nested LUT model for RF power amplifiers exhibiting memory
effects,” IEEE Microw. Wireless Compon. Lett. , vol. 17, no. 10, pp.
712–714, 2007.

[37] P. Chancharoensook and M. Rahman, “Dynamic modeling of a four-
phase 8/6 switched reluctance motor using current and torque look-up
tables,” in Proc. IEEE 28th Annu. Conf. Ind. Electron. Soc. (IECON
02), vol. 1, pp. 491–496.

[38] V. Bourenkov, K. McCarthy, and A. Mathewson, “MOS table models
for circuit simulation,” IEEE Trans. Comput.-Aided Design Integr. Cir-
cuits Syst., vol. 24, no. 3, pp. 352–362, 2005.

[39] G. Yu and P. Li, “Efficient look-up-table-based modeling for robust
design of ADCs,” IEEE Trans. Circuits Syst. I, Reg. Papers,
vol. 54, no. 7, pp. 1513–1528, 2007.

[40] G. Miranker, L. Tang, and C. Wong, “A zero-time VLSI sorter,” IBM
J. Res. Develop., vol. 27, pp. 140–148, Mar. 1983.

J. Agustín Rodríguezwas born in Bahía Blanca, Ar-
gentina, in 1981. He received the Computer Systems
Engineering degree from Universidad Nacional del
Sur (UNS), Bahía Blanca, Argentina, in 2007. He is
currently working toward the Ph.D degree in com-
puter science at UNS.
His research interests include: high performance

computer architecture, high level synthesis of mul-
ticore architectures, static timing analysis, and the
place and route problem.

Omar D. Lifschitz recived the Electronic Engineer
degree from Instituto Tecnologico Buenos Aires, Ar-
gentina (ITBA) in 1998. He is currently working to-
ward the Ph.D. degree in control systems at the Uni-
versidad Nacional del Sur (UNS), Bahía Blanca, Ar-
gentina
From 1999 to 2007 he worked as Hardware Engi-

neer for Intel Israel with the analog validation group.
He specialized in signal integrity.

Víctor Manuel Jiménez-Fernández was born in
Puebla, Mexico, in 1974. He received the B.S.
degree in electronics engineering from the Instituto
Tecnológico de Veracruz in 1998, the M.Sc. degree
from the Universidad de las Américas-Puebla in
2000, and the Ph.D. degree from the Instituto Na-
cional de Astrofísica,Óptica y Electrónica (INAOE)
Puebla, Mexico, in 2006.
From 2006 to 2007 he was a postdoctoral student

in the Departamento de Ingeniería Eléctrica y de
Computadoras at the Universidad Nacional del Sur,

Bahía Blanca, Argentina. From 2008 to 2009, he was an Assistant Researcher
at the INAOE-Mexico. He is currently an Associate Professor in the Facultad
de Instrumentación Electrónica-Universidad Veracruzana, México. His main
research interests are integrated circuits design and nonlinear circuit modeling.

Pedro Julián (S’93–M’99–SM’05) received the
Electronic Engineer degree in 1994 and the Ph.D.
degree in “Control de Sistemas” in 1999, both from
Universidad Nacional del Sur (UNS), Bahía Blanca,
Argentina.
He was a Visiting Scholar at the University of Cal-

ifornia Berkeley (2000 to 2002) and Visiting Scholar
(2002 to 2003) and Visiting Fulbright Professor
(2009) at Johns Hopkins University. He holds posi-
tions as an Associate Professor in the Departamento
de Ingeniería Eléctrica y Computadoras (DIEC) at

UNS, and as an Independent Researcher with the National Research Council of
Argentina (CONICET). His research interests include theory and applications
of computational circuits and systems, electronic systems, in particular sensory
processors (acoustic and vision), with emphasis on low power VLSI systems.
Prof. Julián served as the Region 9 (Latin America) Vice President and on

the Board of Governors of the IEEE Circuits and Systems Society (CASS)
from 2004–2007, and he is a founding member of the Latin American Con-
sortium for Integrated Services (LACIS) and the Argentine School of Micro-
electronics (EAMTA). He is the recipient of the Bernardo Houssay 2009 Prize
of the Ministerio de Ciencia, Tecnología e Innovación Productiva (MINCyT)
and the 2009 Electronic Engineering Prize of Academia Nacional de Ciencias
Exactas, Físicas y Naturales (ANCEFN). He also serves as Associate Editor of
the International Journal of Circuit Theory and Applications, the CASS Maga-
zine, and the CASS Newsletter.

Osvaldo Enrique Agamennoni was born in Bahía
Blanca, Argentina, on December 21, 1953. He
received the Electrical Engineering degree and
the Doctorate in control systems both from the
Universidad Nacional del Sur (UNS), Bahía Blanca,
Argentina, in 1979 and 1991, respectively.
From 1980 to 1983 he worked in electronic circuits

design. From 1983 to 2001 he was involved in dif-
ferent areas of process control at Planta Piloto de In-
geniería Química (PLAPIQUI). From 1992 to 1994
he was a postdoctoral fellow in the Chemical Engi-

neering Department of the University of Sydney. Since 1986 he has been with
the Comisión de Investigaciones Científicas de la Provincia de Buenos Aires
(CIC). He is Profesor Titular in the Departamento de Ingeniería Eléctrica y de
Computadoras, UNS. He teaches undergraduate courses in control theory and
a graduate course in system modeling and identification. His research interests
include nonlinear system modeling, identification and control of nonlinear sys-
tems.

