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Oscillator noise: a nonlinear perturbative theory

including orbital fluctuations and phase-orbital

correlation
Fabio L. Traversa, Fabrizio Bonani, Senior Member, IEEE

Abstract

We derive a full statistical characterization of the noise spectrum of a free running oscillator perturbed by white

Gaussian noise sources, including the effect of orbital fluctuations and of their correlation with phase noise, thus

extending the previous theory based on the Floquet decomposition of the linearized oscillator equations [1]. This

allows to derive explicit relationships for the relevant phase, amplitude and correlation spectra. The examples provide

a validation of the theoretical results, and allow to assess the importance of the Floquet exponents and eigenvectors

on the magnitude of the orbital noise contribution.

Index Terms

Circuit simulation, Autononmous systems, Oscillator noise, Floquet theory

I. INTRODUCTION

Noise in free running oscillators is a classical topic in circuit analysis, mainly because of its practical importance in

the design and optimization of high sensitivity telecommunication systems [2]. The autonomous nature of oscillator

operation makes noise analysis particularly challenging: the absence of a fixed time reference due to the lack of

applied generators results in the appearance of fluctuations both into the timing properties of the circuit (expressed in

terms of phase noise or, equivalently, timing jitter) and into the amplitude of the oscillator working point [1], [2], [3]

(amplitude or orbital noise). In most practical cases, the very effects assuring the stability of the oscillator operation

imply also a quenching of the amplitude noise component, thus making phase noise the dominant fluctuation effect

[3]: amplitude noise, however, usually becomes important at frequencies far away from the nominal oscillation

frequency and its harmonics. Notice that, in particular in presence of a strong adjacent channel, also the noise

components far from the oscillation harmonics might have a significant impact on the dynamic range of the receiver

[2]. Therefore, the assessment of amplitude noise, besides being important per se to fully characterize the circuit

noise performance, also has, at least for specific applications, significant practical effects.
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In order to introduce the problem, let us consider an autonomous lumped circuit represented by an ordinary

differential equation:
dx
dt

− f(x) = 0, (1)

where x(t) ∈ Rn is the state vector, and f(·) : Rn → Rn is a nonlinear function. Assuming that (1) admits a

non-trivial periodic solution (limit cycle) xS(t) of period T , the noisy oscillator is modelled by perturbing (1) with

a set of p stochastic noise sources b(t):
dz
dt

− f(z) = B(z)b(t), (2)

where the solution-dependent matrix B(z) (of size n× p) takes into account the possible modulation of the noise

generators. For the sake of simplicity, in this work we consider white Gaussian noise sources only.

The addition of noise sources makes (2) a nonlinear stochastic ordinary differential equation (S-ODE), and

therefore z(t) is a stochastic process. Although general solution approaches of the S-ODE are available either

in time-domain or through the transformation into a deterministic partial differential equation (the Fokker-Planck

equation) [4], [5], from the standpoint of the circuit designer and, as a consequence, of the Electronic Design

Automation (EDA) tools developed for circuit design, a different approach is usually preferred. The S-ODE solution

is tackled using a perturbative approach, which in the simplest case leads to the Linear Time Varying (LTV) [1],

[2], [6], [7] approach where the effect of noise is expressed as a purely additive term to xS(t). The LTV approach

combines a relative simplicity of the mathematical machinery and an excellent accuracy of the results, at least not

too close to the oscillator output harmonics where a divergence of the phase noise spectrum appears [1]. This issue

has been discussed in [8] with reference to a specific example of oscillator, and overcome in the general case by

the nonlinear perturbative analysis proposed in [1], [9], partly based on the seminal study discussed in [10], [11].

Similar results have been derived from a geometrical standpoint in [12].

The noisy solution is expressed as the superposition of a time-shifted version of the limit cycle and of an orbital

deviation y(t)

z(t) = xS(t+ α(t)) + y(t), (3)

where α(t) is a stochastic process responsible for the oscillator phase noise, while y(t) is responsible for the

orbital fluctuations. Notice that the widely popular Impulse Sensitivity Function (ISF) methodology for phase noise

estimation proposed in [2], [13] is actually equivalent to the nonlinear perturbation approach in [1] if the “numerical

ISF” is used (see [14] for more details).

According to (3), the autocorrelation matrix of the noisy oscillator solution is given by:

Rz,z(t, τ) = E
{
z(t)z†(t+ τ)

}
= RxS,xS(t, τ)

+RxS,y(t, τ) +Ry,xS(t, τ) +Ry,y(t, τ)
(4)
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where E {·} is the ensemble average operator, † denotes the complex conjugate and transpose operation, and

RxS,xS(t, τ) = E
{
xS(t+ α(t))x†

S(t+ τ + α(t+ τ))
}
, (5a)

RxS,y(t, τ) = E
{
xS(t+ α(t))y†(t+ τ)

}
, (5b)

Ry,xS(t, τ) = E
{
y(t)x†

S(t+ τ + α(t+ τ))
}
, (5c)

Ry,y(t, τ) = E
{
y(t)y†(t+ τ)

}
. (5d)

The first term RxS,xS(t, τ) describes phase noise, and has been discussed in detail in [1], where the effect of orbital

deviations is neglected altogether. The orbital contribution and its correlation with the fluctuations along the orbit

have been sparsely addressed in the literature: a specific study of the 2-dimensional system in [15] and some of

its variants has been performed without resorting to any perturbative approach in [16], [17], [18], while a general

inclusion into nonlinear perturbative theories is proposed in [19], where however a simpler expression for Ry,y(τ)

is derived based on the assumption of a negligible correlation between α(t) and b(t). On the other hand, a general

theory deriving expressions for all the terms in (4) was proposed by Kaertner in [10] based on a decomposition

of phase noise defined by projecting the perturbation along the noiseless orbit. As a consequence of this choice,

the dynamic equation for phase fluctuations depends on orbital noise, thus requiring a self-consistent determination

of the two quantities. This issue is overcome projecting the noisy signal along the adjoint vector associated to the

orbit tangent, as proposed later in [11] and [1]: the main advantage of this projection choice is that the dynamic

equation for phase noise becomes asymptotically independent from y(t), thus allowing for a decoupled analysis.

The treatment of orbital noise in [11], however, still requires further developments since the orbital and phase-orbital

correlation spectra in [11] are based on two approximations: they are estimated assuming amplitude fluctuations

decading faster than phase noise, and orbital and phase orbital correlation are calculated on the basis of phase

noise which, as discussed in [1], is in turn obtained by solving a linear small-time approximation to the full phase

fluctuation stochastic nonlinear equation.

In this paper, we extend the analysis in [1] by deriving a consistent statistical characterization of the entire

correlation matrix under the assumption that the orbital deviation is a small amplitude perturbation of the limit

cycle. We shall follow the steps proposed in [1], in particular finding the proper stochastic differential equations

and assessing the asymptotic statistical properties of the solution making use of the Floquet representation of the

output of the linearized (with respect to the orbital deviation) oscillator system. This will allow us to derive a

full characterization of the asymptotic oscillator spectrum, thus completing, at least as far as the orbital deviation

remains small with respect to the steady-state solution, the analysis in [1] by deriving closed form expressions for

the orbital-orbital noise and phase-orbital noise correlation spectra. We validate the approach and show an example

of application in Section V.
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II. THE STOCHASTIC DIFFERENTIAL SYSTEM

According to the derivation in [1] (see in particular equation (12) and the proof of Theorem 6.1), the following

stochastic differential equation governs the dynamics of the phase and amplitude fluctuations:

dY
dt

= F [Y(t), t]Y(t) +G [Y(t), t]b(t), (6)

where YT(t) =
[
α(t),yT(t)

]T, and matrices F and G, of size (n+ 1)× (n+ 1) and (n+ 1)× p respectively, are

defined as

F [Y(t), t] =

0 0

0 A(t+ α(t))

 (7)

G [Y(t), t] =

 vT
1(t+ α(t))B(t+ α(t))

n∑
k=2

uk(t+ α(t))vT
k(t+ α(t))B(t+ α(t))

 . (8)

The T periodic vector functions uk(t) and vk(t) are the Floquet eigenvectors associated to the direct and adjoint,

respectively, linearized oscillator system corresponding to the Floquet exponent µk: see e.g. [1] for details. According

to [1], we choose µ1 = 0 as the zero Floquet exponent always present in any autonomous system. Furthermore, in

(7) and (8) we have

A(t+ α(t)) =
∂f

∂x

∣∣∣∣
xS(t+α(t))

(9)

B(t+ α(t)) = B [xS(t+ α(t))] . (10)

A thorough study of (6) carried out by estimating the characteristic function associated to process Y(t), here

omitted for the sake of brevity, allows to prove that fluctuations at the same time along the limit cycle xS(t+α(t))

(i.e., the phase noise contribution) and the corresponding orbital deviation y(t) asymptotically become statistically

independent [20]. This implies that we can avoid to discuss (5a) since the same results as in [1], [21] hold.

III. PROPERTIES OF THE CORRELATION FUNCTION AT DIFFERENT TIMES FOR WHITE NOISE SOURCES

We estimate the correlation functions by considering unit white, Gaussian noise sources, i.e. by assuming b(t) =

ξ(t).1

1This would rigorously require to make use of the generalized stochastic processes as defined, e.g., in [22], i.e. we should consider a sequence

of unit Gaussian processes b(t) dependent on a parameter a such that E
{
b(t1)b†(t2)

}
= Rb,b(t1 − t2; a) where

lim
a→0

Rb,b(t1 − t2; a) = Iδ(t1 − t2).

For the sake of conciseness, we avoid to exploit this rigorous approach, but rather consider it implicit in the following discussion.
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A. Calculation of RxS,y(t, τ) and Ry,xS(t, τ)

In order to calculate the correlation function between the fluctuations along the limit cycle and the orbital ones,

we need to prove a few preliminary Lemma.

Lemma 3.1: The correlation between random variables α(t1) and ξ(t2) is given by

E {α(t1)ξh(t2)} =

E
{
α(t+2 )ξh(t2)

}
if t2 < t1

0 if t2 > t1

(11)

where ξh is the h-th component of ξ, and t+2 denotes t2 +∆ for any 0 < ∆ < t1 − t2.

Proof: The proof is based on Ito’s interpretation of stochastic integral, as in [1]. Let us consider first t1 < t2.

According to the defining equation of α(t) [1, Eq. (12)]

E {α(t1)ξh(t2)} =

∫ t1

0

E
{
vT
1(t+ α(t))ξ(t)ξh(t2)

}
dt

where, as proved in [21, p. 67]∣∣E{
vT
1(t+ α(t))ξ(t)ξh(t2)

}∣∣ ≤Mδ(t− t2) M > 0.

Therefore

|E {α(t1)ξh(t2)}| ≤M

∫ t1

0

δ(t− t2) dt = 0 (12)

since t1 < t2.

We consider now the case t1 > t2. Posing t+2 = t2 +∆ (0 < ∆ < t1 − t2), we find

E {α(t1)ξh(t2)} = E
{
α(t+2 )ξh(t2)

}
+

∫ t1

t+2

E
{
vT
1(t+ α(t))ξ(t)ξh(t2)

}
dt

where, according to [21, p. 67]∣∣E{
vT
1(t+ α(t))ξ(t)ξh(t2)

}∣∣ ≤Mδ(t− t2) M > 0.

An argument similar to (12) proves that the integral is zero, and therefore E {α(t1)ξh(t2)} = E
{
α(t+2 )ξh(t2)

}
.

Lemma 3.2: The random variables α(t1) and ξ(t2) are jointly Gaussian asymptotically with time (i.e., for t1, t2 →

+∞).

Sketch of proof: We provide here a sketch of the formal proof of the lemma, based on Lemma 3.1 and on

calculations similar to those performed in [1], [21].

Since two random variables are jointly Gaussian iff any linear combination of them is a Gaussian random variable,

we consider the stochastic variable

ψ(t1, t2) = a1α(t1) + a2ξh(t2) a1, a2 ∈ R (13)

and show that all its cumulants of order higher than 2 are zero. We consider explicitly only the third cumulant,

since all the other cases can be treated similarly

κ3 = E
{
(ψ − E {ψ})3

}
(14)
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where, as shown in [1]

E {ψ} = a1E {α(t1)}+ a2E {ξh(t2)} = a1m. (15)

Furthermore, both α(t1) and ξh(t2) are, at least asymptotically for t1, t2 → +∞, Gaussian [1]. This means that κ3

can be expressed as

κ3 = 3a21a2E
{
[α(t1)−m]

2
ξh(t2)

}
+ 3a1a

2
2E

{
[α(t1)−m] ξ2h(t2)

}
. (16)

For t1 < t2, Lemma 3.1 proves that α(t1) and ξh(t2) are uncorrelated, therefore

E
{
[α(t1)−m]

2
ξh(t2)

}
= E

{
[α(t1)−m]

2
}

E {ξh(t2)} = 0

E
{
[α(t1)−m] ξ2h(t2)

}
= E {[α(t1)−m]}E

{
ξ2h(t2)

}
= 0.

In order to prove that κ3 = 0 for t1 > t2 we need some further results, which can be derived performing

calculations similar to those in [21, p. 67]. For the sake of conciseness, we provide here the result only: the two

expected values E
{
α(t1)ξ

2
h(t2)

}
and E

{
[α(t1)−m]2ξh(t2)

}
are continuous functions of t1 and t2. This implies

that

E
{
[α(t1)−m] ξ2h(t2)

}
= lim

∆→0+
E
{
[α(t1)− α(t2 +∆) + α(t2 −∆)−m] ξ2h(t2)

}
E
{
[α(t1)−m]

2
ξh(t2)

}
= lim

∆→0+
E
{
[α(t1)−m]

2

× [ξh(t2)− ξh(t1 −∆) + ξh(t1 +∆)]
}
.

This allows to prove that the two partial expected values are null, since from Lemma 3.1 it can be readily shown

that, for t2 > t1, α(t2)−α(t+1 ) is uncorrelated with ξh(t1) and ξh(t1)− ξh(t
−
2 ) is uncorrelated with α(t2) (where

t−2 denotes t2 −∆ for any 0 < ∆ < t2 − t1).

Similar calculations can be performed for the higher order cumulants, thus proving the Lemma.

Lemma 3.3: The correlation function Rα,ξ(t1, t2) = E
{
α(t1)ξ

†(t2)
}

is asymptotically (i.e., for t1, t2 → +∞)

constant and given by

R∞
α,ξ(t1, t2) =

ṼT
10 if t2 < t1

0 if t2 ≥ t1

(17)

where Ṽ10 is the DC harmonic component of v1(t)
TB(t).

Proof: See Appendix A.

These preliminary results makes possible to finalize the estimation of the phase-orbit correlation.
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Lemma 3.4: Asymptotically with time (i.e., for t → +∞), the correlation functions of the phase and orbital

deviations due to a white Gaussian noise b(t) = ξ(t) depend on τ only and are given by

R∞
xS,y(τ)

=



n∑
l=2

∑
h,j

Dlhj {exp [−i (jω0 + Im {µl}) τ +Re {µl}|τ |]

− exp [−ihω0τ ]} exp
[
−1

2
h2ω2

0c|τ |
]

if τ ≥ 0

0 if τ < 0

(18a)

R∞
y,xS

(τ)

=



0 if τ ≥ 0

n∑
l=2

∑
h,j

D†
lhj {exp [−i (jω0 + Im {µl}) τ +Re {µl}|τ |]

− exp [−ihω0τ ]} exp
[
−1

2
h2ω2

0c|τ |
]

if τ < 0

(18b)

where

c =
1

T

∫ T

0

vT
1BBTv1 dt (19)

and

Dlhj = X̃hṼ
T
10Λ̃

∗
lh−j

Ũ†
lj

ihω0

−µ∗
l − i(h− j)ω0

. (20)

Coefficients X̃h are the harmonic components of xS(t), while Ũlj and Λ̃T
lk

are the Fourier coefficients of ul(t)

and vT
l (t)B(t), respectively.

Proof: See Appendix B.

B. Calculation of Ry,y(t, τ)

The calculation of (5d) is performed according to the following Lemma:

Lemma 3.5: Asymptotically with time (i.e., for t → +∞), the correlation function of the orbital deviation due

to a white Gaussian noise b(t) = ξ(t) depends on τ only and is given by

R∞
y,y(τ) =

n∑
l=2

∑
h,j

Clhj exp [−i [jω0 + Im {µl}] τ ]

× exp

[[
Re {µl} −

1

2
h2ω2

0c

]
|τ |

]
if τ ≥ 0 (21a)

R∞
y,y(τ) =

n∑
l=2

∑
h,j

C†
lhj exp [−i [jω0 + Im {µl}] τ ]

× exp

[[
Re {µl} −

1

2
h2ω2

0c

]
|τ |

]
if τ < 0 (21b)
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where c is defined in (19) and

Clhj =
n∑

l′=2

∑
j′

1

i(j − j′)ω0 − µl′ − µ∗
l

Ũl′
j′
Λ̃T

l′
h−j′

Λ̃∗
lh−j

Ũ†
lj
. (22)

Proof: See Appendix C.

Notice that the denominator in (22) is never null, since for an orbitally stable oscillator we have Re {µl} < 0

irrespective of l ≥ 2. Finally, from (21) and (22) we have

R∞
y,y(0) =

n∑
l=2

∑
h,j

Clhj =

n∑
l=2

∑
h,j

C†
lhj , (23)

i.e. the sum of all Clhj is a real and symmetric matrix (as should be, since R∞
y,y(0) is the autocorrelation of y(t)).

This also implies that the autocorrelation matrix function R∞
y,y(τ) is not even with τ (apart from the diagonal

elements), resulting in an impact on the shape of the orbital noise spectrum.

Equations (20) and (22) show that Clhj ,Dlhj = 1/O(µl); therefore, the contribution of the orbital deviations

is expected to be more significant for oscillators whose limit cycle is characterized by at least a second Floquet

exponent near to zero. As discussed in [23], this is true for the entire class of high-Q oscillators. However, as we

shall see in Sec. V, this is not a necessary condition for an oscillator to have a significant orbital noise contribution,

in fact a major role in the C and D coefficients is also played by the Floquet eigenvectors, which could determine

large orbital fluctuations contributions even when the Floquet exponents are not near to zero.

IV. TOTAL OSCILLATOR NOISE SPECTRUM

The spectrum of the oscillator noisy state variables is obtained in analogy with the result in [1].

Theorem 4.1: The spectrum of z(t) = xS(t+α(t))+y(t) is determined by the asymptotic behaviour of Rz,z(t, τ)

for t → +∞. All the nontrivial cyclostationary components are zero, while the stationary part of the spectrum is

given by

Sz,z(ω) = SxS,xS(ω) + Scorr(ω) + Sy,y(ω) +X0X
†
0δ(ω), (24)

where ω is the (angular frequency) variable conjugated to τ , and the partial spectra are the Fourier transforms of

R∞
xS,xS

(τ), of R∞
xS,y(τ) +R∞

y,xS
(τ) and of R∞

y,y(τ), respectively

SxS,xS(ω) =
∑
h

X̃hX̃
†
h

h2ω2
0c

Ξ2
h(ω)

(25)

Scorr(ω) =
n∑

l=2

∑
h,j

(
D†

lhj +Dlhj

)[
1

2
h2ω2

0c− Re {µl}
]

∆2
lhj(ω)

+
i
(
D†

lhj −Dlhj

)
[ω + jω0 + Im {µl}]

∆2
lhj(ω)

February 14, 2011 DRAFT
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−

(
D†

lhj +Dlhj

)[
1

2
h2ω2

0c

]
Ξ2
h(ω)

−
i
(
D†

lhj −Dlhj

)
[ω + hω0]

Ξ2
h(ω)

 (26)

Sy,y(ω) =
n∑

l=2

∑
h,j

(
C†

lhj +Clhj

)[
1

2
h2ω2

0c− Re {µl}
]

∆2
lhj(ω)

+
i
(
C†

lhj −Clhj

)
(ω + jω0 + Im {µl})

∆2
lhj(ω)

 , (27)

where:

∆2
lhj(ω) =

[
1

2
h2ω2

0c− Re {µl}
]2

+ [ω + jω0 + Im {µl}]2 (28)

Ξ2
h(ω) =

[
1

2
h2ω2

0c

]2
+ [ω + hω0]

2
. (29)

Proof: See Lemma 3.4 and 3.5, and the proof of Lemma 8.5 in [1].

The presence of complex conjugate Floquet exponents may, according to (28), give rise to resonance-like peaks in

the oscillator noise spectrum, as discussed e.g. in [2].

Our derivation resulted into closed form equations (25)-(27) for the total (i.e., including phase and orbital

noise, and their correlation) noise oscillator spectrum, at least within the limits of small amplitude fluctuations.

Nevertheless, a fully closed form calculation of noise is hardly possible, besides some special cases (see e.g.

Sec. V-A), mainly because the basic ingredients of the coefficients entering the spectrum expression are the Floquet

exponents and the direct and adjoint Floquet eigenvectors of the linearized, noiseless oscillator equations. These

quantities, in general, can be obtained through numerical analysis only. This makes the present approach more

suitable for implementation into EDA tools, namely numerical circuit simulators such as Cadence SpectreRF [24]

which already implements phase noise analysis according to the theory in [1]. These tools can be effectively used

to refine and optimize the design initially carried out based on more circuit-dependent, albeit often less rigorous,

approaches.

V. VALIDATION AND EXAMPLES

A. Validation: a two-dimensional oscillator

In order to validate the results, we consider here the simple two-dimensional oscillator discussed in [16], which

admits of an analytical calculation of the total noise spectrum. The autonomous system discussed in [16] ultimately
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can be related to the oscillator proposed in [15] to discuss the decomposition of fluctuations into phase and orbital

noise. The noisy oscillator equations are written, in polar coordinates, as [16]

ρ̇ =
1

2
(1− ρ2) + ϵξρ(t) (30a)

θ̇ = ω0 −
1

2
υ(1− ρ2) +

ϵ

ρ
ξθ(t) (30b)

where ρ and θ are, respectively, the radial and angular coordinates, ω0, υ and ϵ are parameters, and ξ(t) are unit

white Gaussian noise sources.

In order to compare our results with those in [16], we consider the fluctuations of the first coordinate x(t) in the

cartesian representation of the nonlinear oscillator, and in particular we analyze the normalized correlation function

[16, equation (20)]

R(τ) =
E {x(t)x(t+ τ)}

E
{
x2(t)

} (31)

and the corresponding normalized spectrum S(ω).

This example is of great interest, since a semi-analytical solution San(ω) for the oscillator Fokker-Planck equation

derived in [16] can be obtained, thus providing a validation of the present theory.

Before starting the comparison of our approach with the theory we propose, we remark that the decomposition

proposed here, as well as the theory in [1, p. 661], is based on the assumption that |α̇(t)| ≪ 1. Since for this

example

α̇(t) = v1(t+ α(t))B(t+ α(t))b(t) =
ϵ

ω0
[υξρ(t) + ξθ(t)], (32)

we expect our (and Demir et al.) results to become less accurate as υ becomes large. In accordance with [16] we

assume ϵ =
√
10−3, therefore for υ of the order of a few dozen our approach should become inaccurate.

A direct calculation allows to show that for υ = 0 we find S(ω) = San(ω), thus providing a validation of our

approach. This is confirmed by the results in Fig. 1 (above). In the lower part of the same figure, we show the results

for the case υ = 4. The agreement is still good, although some discrepancies start to arise with the exact (analytical)

result, consistently with the fact that υϵ ≈ 0.1265. Notice that the approximate full normalized spectrum is lower

than the phase noise contribution, thus showing that the correlation between the phase and orbital deviations can

decrease the total noise. This effect is not present for υ = 0, since in this case the correlation spectrum is zero.

The comparison between our theory and the analytical normalized spectrum becomes, as expected, less favourable

for υ = 10 and υ = 30 (in fact, υϵ ≈ 0.3162 and υϵ ≈ 0.9487, respectively), as shown in Fig. 2. Notice however

that, for low frequency, our result still is a good approximation of the exact value.

B. Example: a Colpitts oscillator

The second example we discuss is the simple Colpitts oscillator based on the schematics in Fig. 3, where the

transistor is the InGaP/GaAs HBT described by the Gummell Poon model in [25], including device nonlinear

capacitances and parasitic effects. The circuit parameters are: VCC = 6 V, R1 = 10 kΩ, R2 = 4.2 kΩ, RC = 300

Ω, C1 = 5 pF, C2 = 5 pF, CS = 1 µF and L = 10 nH. The LC feedback network corresponds to an oscillation
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frequency of 1 GHz, while the ratio C1/C2 suggests a required voltage gain slightly larger than 1: different ratios

(keeping constant the oscillation frequency) might impact on the Floquet quantities, thus modifying the oscillator

noise properties.

The circuit has been analyzed with the harmonic balance technique including 300 harmonics, while the Floquet

exponents have been determined with the method in [26]. Harmonic balance was implemented according to the

standard technique discussed in [27], exploting the discrete Fourier transform algorithm to efficiently calculate time-

frequency transformations (see also [26]). The large number of harmonics was required by the highly nonlinear

operation of the device. The oscillation frequency is found to be f0 = 0.9944 GHz. The four non zero Floquet

exponents of the limit cycle are

µ2 = −1159.4 (33)

µ3 = −2.2375× 109 (34)

µ4 = −3.2228× 109 + 3.1241× 109i (35)

µ5 = −4.2187× 1012. (36)

Notice that µ4, albeit complex, is not present in a complex conjugate pair since the imaginary part is equal to ω0/2,

thus leading to a real Floquet multiplier.

Considering as an output variable the collector current iC, the calculation of the c costant yields c = 2.6523 ×

10−19 s2 Hz, assuming for simplicity that only the transistor is noisy, and affected by white shot noise. Since

the determination of the fluctuation spectrum for a scalar circuit quantity (rather than the correlation matrix of all

the state variables) is more efficiently performed making use of dedicated relationships, we provide the relevant

derivation in Appendix D. The collector current noise spectrum, in dBW/Hz, is reported in Fig. 4 as a function

of frequency, showing that, at least far from the limit cycle harmonics, the spectrum is dominated by the orbital

deviation contribution (98). The correlation between phase and orbital noise (99), on the other hand, is negligible.

A better insight is obtained by considering the upper (i.e., ω > ω0) and lower (i.e., ω < ω0) sidebands of

the fundamental frequency. The two spectra as a function of the sideband frequency (i.e., |f − f0|) are shown in

Fig. 5, highlighting the effect of the orbital and phase-orbital contributions which are nor symmetric with respect

to the central frequency f0, neither Lorentzian in shape. This suggests that orbital effects might be responsible

for asymmetries in the noise spectrum with respect to the harmonics of the oscillation frequency, as found also

in [28]. This is clearly shown in Fig. 6, where the partial contributions to the orbital noise spectrum due to the

four non zero Floquet exponents are reported. The asymmetric behaviour is even more visible around the second

harmonic of the oscillation frequency. Furthermore, notice that six orders of magnitude separate µ2 and µ3, while

the corresponding contribution to orbital noise are not in the same ratio. Rather, far from the oscillator harmonics,

the contribution of µ3 is dominant with respect to µ2: this clearly shows that also the eigenvectors may give an

important contribution to the orbital noise spectrum, which might also dominate over the 1/µl factor.
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VI. CONCLUSIONS

We have presented a general theory for the nonlinear perturbative analysis of noise in free running oscillators

affected by white Gaussian noise sources, consistently including the effect of phase noise, orbital fluctuations and

their correlation. The theory, extending the results in [1] in which phase noise only was considered, proves that,

asymptotically with time, Gaussian stationary fluctuations affect the oscillator solution. General expressions for the

full oscillator spectrum have been derived, based on the Fourier components of the noiseless solution and on the

Floquet exponents and eigenvectors (direct and adjoint) of the linearized oscillator equations. This makes the theory

readily implementable into any EDA tool for lumped circuit analysis.

The resulting total noise spectrum may be significantly affected by the orbital deviation and by its correlation

with the fluctuations along the orbit. The identification of the oscillator classes mostly impacted by this effect

is not an easy task: at first glance, the high-Q oscillators [23], for which more than one Floquet exponent is

near zero, are good candidates, since the amplitude of the orbital spectra is inversely proportional to the Floquet

exponents. Nevertheless, the examples discussed in Sec. V show that the magnitude of the Floquet eigenvectors

may play an even more important role. Furthermore, the presence of the correlation terms, in particular, allows

for the reduction of the total noise spectrum with respect to the phase noise component only, while the orbital

deviation power spectrum may present additive peaks with respect to the harmonics of the steady-state in presence

of Floquet exponents with non null imaginary part. Finally, the superposition of the various components (each of

them Lorentzian as a function of frequency) may result into a non strictly Lorentzian frequency shape.
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APPENDIX A

PROOF OF LEMMA 3.3

The first component of (6) yields

α(t1) =

∫ t1

0

vT
1(r + α(r))B(r + α(r))ξ(r) dr. (37)

Therefore, using the Fourier expansion of vT
1(t)B(t) and denoting the corresponding j-th Fourier coefficient as

ṼT
1j , we find for the correlation function between α(t1) and the h-th component ξh(t2) of the (real) unit Gaussian

white noise source ξ(t2)

Rα,ξh(t1, t2) = E {α(t1)ξh(t2)} =

p∑
k=1

∑
j

(
ṼT

1j

)
k

×
∫ t1

0

exp [ijω0r]E {exp [ijω0α(r)] ξk(r)ξh(t2)} dr (38)
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where
(
ṼT

1j

)
k

is the k-th component of vector ṼT
1j . Because of Lemma 3.2, the three random variables in the

expectation value in (38) are jointly Gaussian, therefore the stochastic variable

η(r, t2) = jα(r) +
ωk

ω0
ξk(r) +

ωh

ω0
ξh(t2) (39)

is Gaussian. Furthermore, since

E {exp [ijω0α(r)] ξk(r)ξh(t2)}

= − ∂2

∂ωk∂ωh
E {exp [iω0η(r, t2)]}

∣∣∣∣
ωh=ωk=0

(40)

to estimate (38) we need the characteristic function of η(r, t2), which is completely defined by the first two momenta

because of the Gaussian nature of the same variable. By defining

fξk(r) = E
{
ξ2k(r)

}
(41)

fξk,h
(r, s) = E {ξk(r)ξh(s)} (42)

fk(r, s) = E {α(r)ξk(s)} (43)

we can express, asymptotically with time

E {η(r, t2)} = mj (44)

E
{
η2(r, t2)

}
− E {η(r, t2)}2 = j2cr +

ω2
k

ω2
0

fξk(r)

+
ω2
h

ω2
0

fξh(t2) +
2

ω2
0

[jω0ωhfh(r, t2)

+jω0ωkfk(r, r) + ωhωkfξk,h
(r, t2)

]
(45)

therefore

E {exp [iω0η(r, t2)]} = exp [ijmω0]

× exp
[
−ω2

0j
2cr/2− ω2

kfξk(r)/2
]

× exp
[
−ω2

hfξh(t2)/2− jω0ωhfh(r, t2)− jω0ωkfk(r, r)
]

× exp
[
−ωhωkfξk,h

(r, t2)
]
. (46)

From (40) follows

E {exp [ijω0α(r)] ξk(r)ξh(t2)} =
[
fξk,h

(r, t2)

−j2ω2
0fh(r, t2)fk(r, r)

]
exp [ijmω0] exp

[
−ω2

0j
2cr/2

]
(47)
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which, substituted into (38), yields the integral equation

fh(t1, t2) =

∫ t1

t2

fh(r, t2)H(r, {fk(r, r)}pk=1) dr

+ Lh(t1, t2) (48)

where the integral limits include the condition fk(r, s) = 0 if s > r (since α(r) is uncorrelated with any “future”

noise source ξk(s)), and

H(r, {fk(r, r)}pk=1) =
∑
j

p∑
k=1

(
ṼT

1j

)
k
j2ω2

0fk(r, r)

× exp [ijω0r] exp [ijmω0] exp
[
−ω2

0j
2cr/2

]
(49)

Lh(t1, t2) =
∑
j

p∑
k=1

(
ṼT

1j

)
k

×
∫ t1

0

exp
[
ijω0r + ijmω0 − ω2

0j
2cr/2

]
δk,hδ(r − t2) dr

=



∑
j

(
ṼT

1j

)
h
exp [ijω0(t2 +m)]

× exp
[
−ω2

0j
2ct2/2

]
if t2 ≤ t1

0 if t2 > t1

(50)

For t2 < t1, (48) can be derived with respect to t1 obtaining

dfh(t1, t2)
dt1

= fh(t1, t2)H(t1, {fk(t1, t1)}pk=1), (51)

whose solution is

fh(t1, t2) = ah(t2) exp

[∫ t1

t2

H(s, {fk(s, s)}pk=1) ds
]
. (52)

Substituting into (48) we get

ah(t2) = Lh(t1, t2), (53)

which is only apparently a contradiction, in fact for t2 < t1 (our initial assumption for estimating fh(t1, t2))

Lh(t1, t2) is actually a function of t2 only (see (50)). Furthermore, (53) can be extended for t2 ≥ t1 since in this

case Lh(t1, t2) = 0, and therefore we correctly have fh(t1, t2) = 0. Finally, since

fq(r, r) = Lq(r, r)

exp

[∫ r

r

H(s, {fk(s, s)}pk=1) ds
]
= Lq(r, r), (54)

we can conclude

fh(t1, t2) = Lh(t1, t2) exp

[∫ t1

t2

H(s, {Lk(s, s)}pk=1) ds
]
. (55)
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The integral can be evaluated explicitly obtaining∫ t1

t2

H(s, {Lk(s, s)}pk=1) ds =

−
∑
j1,j2

p∑
k=1

(
ṼT

1j1

)
k

(
ṼT

1j2

)
k
j21ω

2
0

×

[
exp [i(j1 + j2)ω0(t1 +m)] exp

[
ω2
0(j

2
1 + j22)ct1/2

]
i(j1 + j2)ω0 − ω2

0(j
2
1 + j22)c/2

−
exp [i(j1 + j2)ω0(t2 +m)] exp

[
ω2
0(j

2
1 + j22)ct2/2

]
i(j1 + j2)ω0 − ω2

0(j
2
1 + j22)c/2

]
(56)

which tends to zero for t1, t2 → +∞. Therefore, (55) asymptotically yields (17).

APPENDIX B

PROOF OF LEMMA 3.4

The proof of Lemma 3.4 starts from the Fourier expansions of the orbit

xS(t) =
∑
h

X̃h exp [ihω0t] (57)

and of the orbital deviation y(t). According to [1, p. 661]

y(t) =

n∑
l=2

ul(t̂)

∫ t̂

0

exp
[
µl(t̂− s)

]
vT
l (s)B(s)b̂(s) ds, (58)

where t̂ = t+ α(t). Exploiting the Fourier series representation of the periodic functions, (58) reads

y(t) =

n∑
l=2

∑
j,k

Ũlj Λ̃
T
lk
exp

[
(ijω0 + µl)t̂

]
×

∫ t̂

0

exp [(ikω0 − µl)s] b̂(s) ds, (59)

where Ũlj and Λ̃T
lk

are the Fourier coefficients of ul(t) and vT
l (t)B(t), respectively. For the integral in (59) we

make the ansatz ∫ t̂

0

exp [(ikω0 − µl)s] b̂(s) ds =
exp

[
(ikω0 − µl)t̂

]
f̂(t̂)− f̂(0)

ikω0 − µl
, (60)

where f̂(t̂) = f̂(b̂(t̂)). Deriving both sides of (60) with respect to t̂ and using the relations (see [1])

b̂(t̂) = b(t) (61)

d
dt̂

=
1

1 + α̇(t)

d
dt

≈ d
dt
, (62)

we derive the following differential equation for the unknown function f̂(t̂) = f̂(b̂(t̂)) = f(t):

df
dt

+ (ikω0 − µl)f(t) = (ikω0 − µl)b(t), (63)
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whose general solution is

f(t) = exp [(µl − ikω0)t] f(0) + (ikω0 − µl)

× exp [(µl − ikω0)t]

∫ t

0

exp [(ikω0 − µl)s]b(s) ds. (64)

A consistent evaluation of f(0) requires some further remarks. Let us assume, in accordance with [1], that α(t) = ϵαt

with 0 < ϵα ≪ 1, and that the noise source is an harmonic function b(t) = ϵb exp(iωt). This corresponds to represent

b(t) as a superposition of stochastic amplitude sinusoidal terms. From (61)

b̂(s) = b(s− α(s)) = ϵb exp [iω(s− α(s))] , (65)

therefore (60) can be evaluated as∫ t̂

0

exp [(ikω0 − µl)s] b̂(s) ds

= ϵb

∫ t+ϵαt

0

exp [(ikω0 − µl)s] exp [iω(1− ϵα)s] ds

= ϵb
exp [(ikω0 − µl)(1 + ϵα)t] exp [iω(1− ϵα)(1 + ϵα)t]− 1

ikω0 − µl + iω(1− ϵα)

≈ ϵb
exp [(ikω0 − µl)t] exp [iωt]− 1

ikω0 − µl + iω
(66)

since ϵα ≪ 1. Similarly, substituting (64) into (60) and using the condition ϵα ≪ 1 we find∫ t̂

0

exp [(ikω0 − µl)s] b̂(s) ds

≈ exp [(ikω0 − µl)ϵαt]− 1

ikω0 − µl
f(0)

+ ϵb
exp [(ikω0 − µl)t] exp [iωt]− 1

ikω0 − µl + iω
, (67)

therefore comparing (66) and (67) we conclude that f(0) = 0.

Substituting into (60) and using f(0) = 0 we finally find∫ t̂

0

exp [(ikω0 − µl)s] b̂(s) ds

= exp [(ikω0 − µl)α(t)]

∫ t

0

exp [(ikω0 − µl)s]b(s) ds. (68)

Using (68) into (59), we can express RxS,y(t, τ) as

RxS,y(t, τ) =
n∑

l=2

∑
j,k,h

X̃h exp [ihω0t]

× exp [(−ijω0 + µ∗
l )(t+ τ)]

∫ t+τ

0

exp [−(ikω0 + µ∗
l )r]

× E
{
exp [ihω0α(t)− iω0(j + k)α(t+ τ)]bT(r)

}
dr

× Λ̃∗
lk
Ũ†

lj
. (69)
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The next step consists of the determination of the average value in (69), which is performed taking into consideration

that

E
{
exp [ihω0α(t)− iω0(j + k)α(t+ τ)]bT(r)

}
= ∇T

ωb
E {exp [iω0β(t, τ, r)]}

∣∣
ωb=0

(70)

where ωb is a p-dimensional vector, ∇T
ωb

is the (row) gradient operator with respect to ωb, and

β(t, τ, r) = hα(t)− (j + k)α(t+ τ)− i
ωT

b

ω0
b(r) (71)

is a Gaussian random variable because of Lemma 3.2. From [1] we have asymptotically with time

E {β(t, τ, r)} = (h− j − k)m, (72)

while because of [1, Theorem 7.1, Lemma 7.2, Corollary 7.1] we find

E
{
β2(t, τ, r)

}
− E {β(t, τ, r)}2 = (h− j − k)2ct

+ (j + k)2cτ − 2h(j + k)cmin(0, τ)

− ωT
b

ω2
0

w1(r)ωb − 2i
ωT

b

ω0
w2(r, t, τ) (73)

where, using Lemma 3.3

w1(r) = E
{
b(r)bT(r)

}
(74)

w2(r, t, τ) = E {[hα(t)− (j + k)α(t+ τ)]b(r)}

=


(h− j − k)Ṽ10 if r ≤ t and r ≤ t+ τ

(−j − k)Ṽ10 if r > t and r ≤ t+ τ

hṼ10 if r ≤ t and r > t+ τ .

(75)

Since β(t, τ, r) is Gaussian, (72) and (73) completely define its characteristic function. Taking the limit for t→ +∞

E {exp [iω0β(t, τ, r)]} = δh,j+k exp

[
−ω

2
0

2
h2c|τ |

]

× exp

[
ω2
0

2

(
ωT

b

ω2
0

w1(r)ωb + 2i
ωT

b

ω0
w2(r, t, τ)

)]
(76)

therefore, from (70)

E
{
exp [ihω0α(t)− iω0(j + k)α(t+ τ)]bT(r)

}
= δh,j+kiω0w

T
2(r, t, τ) exp

[
−ω

2
0

2
h2c|τ |

]
. (77)
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Substituting (75) and (77) into (69), and performing the integral yields

R∞
xS,y(τ)

=



n∑
l=2

∑
h,j

X̃hṼ
T
10Λ̃

∗
lh−j

Ũ†
lj

ihω0 exp

[
−ω

2
0

2
h2c|τ |

]
× exp [(−ijω0 + µ∗

l )τ ]− exp [−ihω0τ ]
−µ∗

l − i(h− j)ω0
if τ ≥ 0

0 if τ > 0.

(78)

Defining the coefficients Dlhj as in (20), (78) reduces to (18a).

Repeating the calculation for Ry,xS(t, τ), we find (18b).

APPENDIX C

PROOF OF LEMMA 3.5

We consider first the case τ ≥ 0. Using (68) into (59), we can express Ry,y(t, τ) as

Ry,y(t, τ) =
n∑

l,l′=2

∑
j,k,j′,k′

Ũlj Λ̃
T
lk
exp [(ijω0 + µl)t]

× exp [(−ij′ω0 + µ∗
l′)(t+ τ)]

∫ t

0

∫ t+τ

0

exp [(ikω0 − µl)s]

× exp [(−ik′ω0 − µ∗
l′)s

′]E {exp [i(j + k)ω0α(t)]

× exp [−i(j′ + k′)ω0α(t+ τ)]b(s)b†(s′)
}

ds′ds

× Λ̃∗
l′
k′
Ũ†

l′
j′
. (79)

Expanding the expectation value in the integral according to its components, we have

E {exp [i(j + k)ω0α(t)] exp [−i(j′ + k′)ω0α(t+ τ)] ξl(s)

×ξm(s′)} =
∂

∂ωb

∂

∂ωb′
E {exp [iω0ζ(t, τ, s, s

′)]}
∣∣∣∣
ωb=ωb′=0

(80)

where ωb and ωb′ are scalars, and

ζ(t, τ, s, s′) = (j + k)α(t)− (j′ + k′)α(t+ τ)

− i
ωb

ω0
ξl(s)− i

ωb′

ω0
ξm(s′) (81)

February 14, 2011 DRAFT



19

is a Gaussian random variable because of Lemma 3.2. A calculation similar to that performed in Appendix B shows

that asymptotically with time t∫ t

0

∫ t+τ

0

exp [(ikω0 − µl)s] exp [(−ik′ω0 − µ∗
l′)s

′]

× E {exp [i(j + k)ω0α(t)] exp [−i(j′ + k′)ω0α(t+ τ)]

× ξl(s)ξm(s′)} ds′ds

=

∫ t

0

∫ t+τ

0

exp [(ikω0 − µl)s] exp [(−ik′ω0 − µ∗
l′)s

′]

× δj+k,j′+k′ exp

[
−ω

2
0

2
(j + k)2c|τ |

]
δ(s− s′) ds′ds. (82)

Since τ ≥ 0, the double integral can be decomposed as follows:∫ t

0

∫ t+τ

0

· ds′ds =
∫ t

0

∫ t

0

· ds′ds+
∫ t

0

∫ t+τ

t

· ds′ds, (83)

and a discussion similar to that in [21, pp. 66–68] shows that the second double integral at the rhs of (83) is null.

The first integral can be calculated explicitly, obtaining

Ry,y(t, τ) =

n∑
l,l′=2

∑
j,k,j′,k′

j+k=j′+k′

Ũlj Λ̃
T
lk
Λ̃∗

l′
k′
Ũ†

l′
j′

× 1− exp [(ijω0 + µl)t] exp [(−ij′ω0 + µ∗
l′)t]

i(k − k′)ω0 − µl − µ∗
l′

× exp [(−ij′ω0 + µ∗
l′)τ ] exp

[
−(j + k)2ω2

0c|τ |/2
]
. (84)

The asymptotic behaviour of Ry,y(t, τ) is obtained taking the limit for t→ +∞ in (84), posing h = j+k = j′+k′

and using the fact that because of the assumed orbital stability Re {µl} < 0 (l = 2, . . . , n)

R∞
y,y(τ) =

n∑
l,l′=2

∑
h,j,j′

Ũlj Λ̃
T
lh−j

Λ̃∗
l′
h−j′

Ũ†
l′
j′

× exp [(−ij′ω0 + µ∗
l′)τ ]

i(j′ − j)ω0 − µl − µ∗
l′
exp

[
−h2ω2

0c|τ |/2
]
. (85)

A similar derivation can be carried out for τ < 0, obtaining

R∞
y,y(τ) =

n∑
l,l′=2

∑
h,j,j′

Ũlj Λ̃
T
lh−j

Λ̃∗
l′
h−j′

Ũ†
l′
j′

× exp [(−ijω0 − µl)τ ]

i(j′ − j)ω0 − µl − µ∗
l′
exp

[
−h2ω2

0c|τ |/2
]
. (86)

After defining the coefficients Clhj as in (22), (85) and (86) yield (21).

APPENDIX D

DERIVED VARIABLE OSCILLATOR NOISE SPECTRUM

Although Theorem 4.1 fully characterizes the spectrum of the state variables noise of the oscillator, in most cases

we are interested into the noise spectrum of other circuit variables. The details of this calculation are, at least for
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the orbital part, not trivial. Let us consider an output scalar variable γ(x(t)) derived from the circuit state variables.

When noise is included, assuming a small orbital contribution we have the noisy output

γ(z(t)) ≈ γ(xS(t+ α(t))) + Jγ(t+ α(t))y(t) (87)

where Jγ(t) is the Jacobian of γ(x) evaluated in the steady-state solution xS(t), and therefore is a T -periodic

function of time. Clearly, we can decompose the autocorrelation function of γ(t) as

Rγ,γ(t, τ) = R(xS,xS)
γ,γ (t, τ) +R(xS,y)

γ,γ (t, τ)

+R(y,xS)
γ,γ (t, τ) +R(y,y)

γ,γ (t, τ). (88)

A simple calculation allows to estimate the phase noise contribution as

S(xS,xS)
γ,γ (ω) =

∑
h

∣∣∣Γ̃h

∣∣∣2 h2ω2
0c

Ξ2
h(ω)

(89)

where Γ̃h is the h-th harmonic component of γ(xS(t)).

The correlation between phase and orbital fluctuations is treated in the following

Lemma D.1: The asymptotic value for t→ +∞ of the correlation functions R(xS,y)
γ,γ (t, τ) = E

{
γ(xS(t+ α(t)))yT(t+ τ)JT

γ(t+ τ + α(t+ τ))
}

and R(y,xS)
γ,γ (t, τ) = E {Jγ(t+ α(t))y(t)γ(xS(t+ τ + α(t+ τ)))} of an output variable of the oscillator are given

by

R(xS,y)∞
γ,γ (τ)

=



n∑
l=2

∑
h,j

dlhj {exp [−i (jω0 + Im {µl}) τ ]

× exp [Re {µl}|τ |]− exp [−ihω0τ ]}

× exp

[
−1

2
h2ω2

0c|τ |
]

if τ ≥ 0

0 if τ < 0

(90)

R(y,xS)∞
γ,γ (τ)

=



0 if τ ≥ 0

n∑
l=2

∑
h,j

d∗lhj {exp [−i (jω0 + Im {µl}) τ ]

× exp [Re {µl}|τ |]− exp [−ihω0τ ]}

× exp

[
−1

2
h2ω2

0c|τ |
]

if τ < 0

(91)

where

dlhj = Γ̃hṼ
T
10Λ̃

∗
lh−j

Ψ∗
lj

ihω0

−µ∗
l − i(h− j)ω0

(92)

and Ψ∗
lj

is the j-th harmonic amplitude of Jγ(t)ul(t).
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Proof: Using (76), we find

R(xS,y)
γ,γ (t, τ) =

n∑
l=2

∑
j,h,k

Γ̃h exp [ihω0t+ (−ijω0 + µ∗
l )(t+ τ)]

×
∫ t+τ

0

exp [(−µ∗
l − ikω0)r]

× E
{
exp [ihω0α(t)− iω0(j + k)α(t+ τ)]bT(r)

}
dr

× Λ̃∗
lh−j

Ψ∗
lj . (93)

Performing calculations similar to those in Appendix B we find (90).

A similar procedure yields also (91).

Concerning the orbital noise autocorrelation function, we prove the following:

Lemma D.2: The asymptotic value for t→ +∞ of the correlation function R(y,y)
γ,γ (t, τ) = E

{
Jγ(t+ α(t)y(t)yT(t+ τ)JT

γ(t+ τ + α(t+ τ))
}

of an output variable of the oscillator is given by

R(y,y)∞
γ,γ (τ)

=



n∑
l=2

∑
h,j

clhj exp [−i (jω0 + Im {µl}) τ ]

× exp [Re {µl}|τ |] exp
[
−1

2
h2ω2

0c|τ |
]

if τ ≥ 0

n∑
l=2

∑
h,j

c∗lhj exp [−i (jω0 + Im {µl}) τ ]

× exp [Re {µl}|τ |] exp
[
−1

2
h2ω2

0c|τ |
]

if τ < 0

(94)

where

clhj =
n∑

l′=2

∑
j′

1

i(j − j′)ω0 − µl′ − µ∗
l

Ψl′
j′
Λ̃T

l′
h−j′

Λ̃∗
lh−j

Ψ∗
lj . (95)

Proof: The proof is easily carried out expressing the variables to be included into the expectation operator

according to their Fourier series, and performing calculations similar to those in Appendix C.

Finally, we can calculate the spectrum of the output variable according to the Theorem below.

Theorem D.1: The spectrum of γ(z(t)) = γ(xS(t+ α(t))) + Jγ(t+ α(t))y(t) is determined by the asymptotic

behaviour of Rγ,γ(t, τ) for t → +∞. All the nontrivial cyclostationary components are zero, while the stationary

part of the spectrum is given by

Sγ,γ(ω) = S(xS,xS)
γ,γ (ω) + S(corr)

γ,γ (ω) + S(y,y)
γ,γ (ω) +

∣∣∣Γ̃0

∣∣∣2 δ(ω), (96)

where ω is the (angular frequency) variable conjugated to τ , and the partial spectra are, respectively, the Fourier

transforms of the asymptotic correlation functions R
(xS,xS)∞
γ,γ (τ), R(xS,y)∞

γ,γ (τ) + R
(y,xS)∞
γ,γ (τ) and R

(y,y)∞
γ,γ (τ)
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calculated in Lemma D.1 and D.2

S(xS,xS)
γ,γ (ω) =

∑
h

∣∣∣Γ̃h

∣∣∣2 h2ω2
0c

Ξ2
h(ω)

(97)

S(y,y)
γ,γ (ω) =

n∑
l=2

∑
h,j

2


Re {clhj}

[
1

2
h2ω2

0c− Re {µl}
]

∆2
lhj(ω)

+
Im {clhj} [jω0 + Im {µl}+ ω]

∆2
lhj(ω)

 (98)

S(corr)
γ,γ (ω) =

n∑
l=2

∑
h,j

2


Re {dlhj}

[
1

2
h2ω2

0c− Re {µl}
]

∆2
lhj(ω)

+
Im {dlhj} [jω0 + Im {µl}+ ω]

∆2
lhj(ω)

−
Re {dlhj}

1

2
h2ω2

0c+ Im {dlhj} [hω0 + ω]

Ξ2
h(ω)

 . (99)

Proof: See Lemma D.1, Lemma D.2 and the proof of Lemma 8.5 in [1].
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Fig. 5. Upper (above) and lower (below) sideband frequency dependence of the collector current noise spectrum of the Colpitts oscillator

around the fundamental frequency f0.
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