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Hybrid Filterbank ADCs with Blind Filterbank
Estimation

Damián Marelli1, Kaushik Mahata1 and Minyue Fu2, Fellow, IEEE

Abstract—The hybrid filterbank architecture permits imple-
menting accurate, high speed analog-to-digital converters. How-
ever, its design requires an accurate knowledge of the analog
filterbank parameters, which is difficult to have due to the non-
stationary nature of these parameters. This paper proposesa
blind estimation method for the analog filterbank parameters,
which is able to cope with non-stationary input signals. This is
achieved by using the notion of averaged input spectrum. The
estimated parameters are used to reconstruct the samples in
a least mean squares (LMS) sense. The proposed LMS design
generalizes existing approaches by dropping the bandlimited
assumption on the input signal. Instead, it assumes that the
input has an arbitrary power spectrum which is adaptively
estimated. Numerical experiments are presented showing the
good performance of the blind estimation stage, and the clear
advantage of the proposed LMS design.

I. I NTRODUCTION

A high speed analog-to-digital converter (ADC) can be
realized by using the so-called time-interleaved ADC (TI-
ADC) architecture [1]. It consists of using a number of
parallel ADCs having the same sampling rate but different
sampling phases, as if they were a single ADC operating at a
higher sampling rate. In spite of its conceptual simplicity, the
design of a TI-ADC needs to account for mismatches between
different channel ADCs [2], [3]. A drawback of this technique
is its extreme sensitivity to timing mismatches [4], [5]. To
overcome this limitation, the hybrid filterbank ADC (HFB-
ADC) architecture was proposed in [4]. This technique uses
a continuous-time analysis filterbank to split the input signal
into different frequency bands, each of which is assigned
to a different ADC. In contrast to the TI-ADC architecture,
all the ADCs in a HFB-ADC are synchronously sampled. A
discrete-time synthesis filterbank is then used to reconstruct
the required samples. A variant of this technique carries out the
frequency band splitting using lowpass filtering and frequency
translation, to relax the design constraints on sample-and-
hold devices at high-frequencies [6]. This simplification in
design has motivated HFB-ADCs in challenging applications
with wideband and bandpass signals [7], as well as efficient
architectures for the digital synthesis bank [8].
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The design of the discrete-time synthesis filterbank requires
the knowledge of the frequency response of the analysis
filters. It is often unrealistic to assume that this is known
in advance accurately enough, since analog circuits are sub-
ject to imperfections, e.g., deviations from nominal values,
aging, temperature drifts, etc. An approach to deal with this
uncertainty is to use a reference input signal to estimate the
analog filterbank parameters [9]. A similar approach is used
in [10], [11], [12], where instead of estimating the analog
filterbank, the digital synthesis bank is directly tuned, via an
adaptive filtering technique, to minimize the reconstruction
error. However, as pointed out in [13], a blind estimation
technique (i.e., one carrying out the estimation without the
knowledge of the input signal) is preferred, since it does not
interfere with the ADC operation, and is able to track analog
parameter drifts during the ADC operation. Towards this goal,
in this paper we propose a blind method for estimating the
analog filterbank parameters. The proposed method is adaptive
(i.e., on-line), so it can run continuously in parallel withthe
ADC operation.

Once the analysis filterbank parameters are known, the
discrete-time synthesis filterbank can be designed to recon-
struct the desired samples. An approach for doing so relies
on the assumption that the input signal is bandlimited [5],
[13]. Under this assumption, these methods are able to achieve
perfect reconstruction if the impulse response of the synthesis
filterbank can be arbitrarily long. An arguable point of this
approach is that the bandlimited assumption might not be
realistic in many applications. One way to address this issue
is to assume that the input signal has finite energy, and design
the compensation in a minmax sense [14], [15]. In this paper
we use a different criterion. We assume that the input signal
is a random process and we carry out a compensation in
a statistically optimal (least mean squares (LMS)) sense. A
similar approach was proposed by the authors in [16], [17], to
design a compensation for timing mismatch in TI-ADCs. The
proposed method permits designing the synthesis filterbank
so that the reconstructed samples match those that would be
obtained if the input signal was passed through a prescribed
anti-alias filter before sampling. This is particularly important
in view of our non-bandlimited assumption on the input signal.
We show that the methods in [5], [13], derived under a
bandlimited assumption, are particular cases of the proposed
method.

The proposed synthesis filterbank design method requires
the knowledge of the power spectrum of the input signal. Since
it is impractical to assume that this is known in advance, we
propose a real-time method for estimating it. Nevertheless,



2

numerical experiments suggest that an accurate knowledge
of the input power spectrum is not necessary, since the
reconstruction error is to some extent insensitive to input
spectrum estimation errors.

Apart from being conceptually intuitive, an advantage of
the TI-ADC over the HFB-ADC architecture is that, when
there are neither timing nor gain mismatches, the desired
samples are readily available, without the need for digital
processing. However, when these mismatches are unavoidable,
compensating for them is a non-trivial problem, which has
been addressed in a number of works [18], [19], [20], [17].
Additionally, as in the case of HBF-ADCs, these mismatches
are subject to drifts, and they need to be estimated, either off-
line [21], [22] or on-line [23], [24], [25]. Notice that a TI-ADC
is a particular case of a HFB-ADC, where the analysis filters
are chosen as time delays. Hence, while the adaptive methods
proposed in this work are intended for estimating the analog
parameters and input spectrum in a HFB-ADC, these methods
can also be used for estimating timing and gain mismatches,
as well as the input spectrum, in a TI-ADC. Finally, we point
out that, in both architectures, the complexity of the estimation
task is dominant over that of the sample reconstruction task.

The rest of the paper is organized as follows. We give
an overview of hybrid filterbank ADCs in Section II. In
Section III we describe the proposed adaptive blind method
for estimating the analysis filterbank parameters. In Section IV
we describe the proposed synthesis filterbank design method,
as well as the adaptive method for estimating the input power
spectrum. Also in Subsection IV-C, we show that the design
method derived under a bandlimited assumption is a particular
case of the proposed method. Finally, some simulation results
are presented in Section VI, and concluding remarks are given
in Section VII. This paper is partly based on the work reported
in the conference paper [26].

Discrete-time functions (i.e., signals and impulse responses)
are denoted using bold letters and their continuous-time coun-
terparts using non-bold letters. Also, time-domain functions
are denoted in lowercase and their frequency-domain counter-
parts in uppercase. The convolution between the continuous-
time signalsa(t) andb(t) is denoted by(a∗b)(t). The adjoint
a∗(t) of a(t) is defined bya∗(t) = aT (−t), andA∗(s) denotes
the two-sided Laplace transform ofa∗(t) (with s being the
Laplace variable). The same notation holds for convolution
and adjoint of discrete-time functions.

II. H YBRID FILTERBANK ANALOG-TO-DIGITAL

CONVERTERS

The HFB-ADC scheme is depicted in Figure 1. The
continuous-time signalx(t) is split into M signals using
an array of analog filters with transfer functionsH(s) =
[H1(s), · · · , HM (s)]T , whose outputs are then sampled at
the rate of 1/DT . In this way, the discrete-time signals
x(k) = [x1(k), · · · ,xM (k)]T are generated. The idea is to
processx(k) to generate an estimatêy(k) of the samples
y(k) = (g ∗ x)(kT ), collected after the anti-alias filterG(s).
This is typically done by upsampling the signalsx(k) by a
factor ofD (i.e.,D−1 zero valued samples are added between

every two samples), then filtering each component using the
array of discrete-time filtersF(z) = [F1(z), · · · ,FM (z)]T ,
and finally adding together all the resulting signals.

+
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Figure 1. Slightly generalized HFB-ADC scheme considered in this work.

As mentioned in Section I, the design of a HBF-ADC com-
prises of two stages. The first is to estimate the continuous-
time filtersH(s) using the samplesx(k), and the second is
to use this estimate to design the discrete-time filtersF(z)
for reconstruction. We will address these two problems in
Sections III and IV below.

The scheme considered in Figure 1 is somewhat more
general than the one considered in [5], [13], in that it permits
placing an anti-alias filterG(s) before generating the samples
y(k) to be reconstructed (in the results below, the anti-alias
filter can be removed by choosingG(s) = 1), as well
as using oversampling (i.e.,D < M ). Notice that, when
using oversampling, while the average rate of the samples
xm(k), m = 1, · · · ,M is M/(DT ) > 1/T , the sampleŝy(k)
are still reconstructed at the desired rate1/T . Therefore, this
form of oversampling differs from the usual form in which the
samples are reconstructed at a rate higher than the desired one.
WhenM > D, the choice of filtersF(z) which produce some
given sampleŝy(k) is not unique. Hence, oversampling adds
flexibility in the design ofF(z), at the expense of a higher
average sampling rate.

III. A DAPTIVE BLIND ESTIMATION OF THE ANALYSIS

FILTERBANK

In this section we propose an adaptive blind algorithm for
estimatingH(s). We assume that the input signal is a random
process with possibly non-stationary statistics. Our algorithm
is derived to deal with the case whenH(s) is unknown and
slowly time-varying.

A. Estimation criterion

Sincex(t) is not necessarily stationary, we define its (time-
varying) autocorrelation by

r(t, τ) = E{x(t+ τ)x(t)}. (1)
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We also define its averaged autocorrelation up to timeN by

rN (τ) =
1

γ(N)

N
∑

n=1

λN−nr(nDT, τ), (2)

where theforgetting factorλ is used to assign less weights to
older measurements (to count for the slow time-varying nature
of H(s)), and the scaling constantγ(N) =

∑N−1
n=0 λn is used

so thatrN (τ) = r(0, τ) in the stationary case. Finally, the
averaged autocorrelation of the samples is defined by

rN (k) =
1

γ(N)

N
∑

n=1

λN−nE{x(n+ k)xT (n)}. (3)

We then have the following result:

Lemma 1. If x(t) has uniformly bounded second moments
(i.e., there existsC > 0 such thatE{x2(t)} < C, for all
t ∈ R),

∫∞

−∞
|hm(t)|dt < ∞, for all m = 1, · · · ,M , and

there exist functions̃r ∈ L1(R) (i.e.,
∫∞

−∞
|r̃(τ)|dτ < ∞) and

κ : R → R
+ (R+ denotes the set of positive real numbers)

such that, for allt, τ, δ ∈ R,

|r(t, τ) − r(t + δ, τ)| ≤ κ(δ)r̃(τ), (4)

then

rN (k) = L−1 {H(s)ΦN (s)H∗(s)} (kDT ) + ε(kDT ),(5)

where the averaged input power spectrumΦN (s) =
L{rN (τ)} is the two-sided Laplace transform of the averaged
input autocorrelationrN (τ). Also, for all t ∈ R,

|ε(t)| ≤ (|h| ∗ r̃ ∗ |κ ◦ h|∗)(t), (6)

where, |a| denotes the vector/matrix formed by the absolute
values of each of the entries ofa and ◦ denotes pointwise
multiplication (i.e.,κ ◦ h(t) = κ(t)h(t)).

Proof: See the Appendix.

Remark2. The functionκ(δ) in (4) states a bound on the
rate of change of the autocorrelation ofx(t). Hence, for
small values ofδ where these statistics remain approximately
constant, we have thatκ(δ) ≃ 0. If this condition holds within
a time interval longer than the settling-time of the impulse
responseh(t), then κ(t)h(t) ≃ 0. Hence, under this mild
assumption,ε(t) ≃ 0 and therefore (5) becomes

rN (k) ≃ L−1 {H(s)ΦN (s)H∗(s)} (kDT ). (7)

Now, define the sample-average time-varying correlation by

rN (k) =
1

γ(N)

N
∑

n=1

λN−nx(n+ k)xT (n)

= rN−1(k) +
1

γ(N)

(

x(N + k)xT (N)− rN−1(k)
)

.(8)

For a givenN , we can approximateΦN (s) by a linear
expansionΦ(s, β) as follows:

ΦN (s) ≃ Φ(s, β) =

I
∑

i=1

[β]iEi(s) (9)

where [β]i denotes thei-th entry of the vectorβ ∈ R
I of

expansion coefficients ofΦN (s) on the basisEi(s), i =
1, · · · , I. This approximation is realistic since any function can
be approximated with an arbitrary accuracy by a linear expan-
sion with sufficiently large number of basis elements. Sincethe
orders of the analysis filterbank filtersHm(s), m = 1, · · · ,M
are known, we can write a parametric versionH(s, θ) of H(s),
whereθ = [θ1, · · · , θP ] denotes the vector of numerator and
denominator coefficients of the filtersHm(s), m = 1, · · · ,M .
For a givenrN (k), we can compute an estimateβN of β up
to timeN as follows:

βN (θ) = W−1(θ)vN (θ), (10)

where the the entries[W (θ)]i,j , i, j = 1, · · · , I and
[vN (θ)]i, i,= 1, · · · , I of the matrixW (θ) ∈ R

I×I and the
vectorvN (θ) ∈ R

I , respectively, are defined by

[W (θ)]i,j = 〈↓DT {H(s, θ)Ej(s)H
∗(s, θ)},

↓DT {H(s, θ)Ei(s)H
∗(s, θ)}〉 , (11)

[vN (θ)]i = 〈rN , ↓DT {H(s, θ)Ei(s)H
∗(s, θ)}〉 , (12)

with ↓DT {A(s)}(k) = L−1 {A(s)} (kDT ), for any matrix
transfer functionA(s), and 〈a,b〉 = Tr{a ∗ b∗}(0) (Tr{·}
denotes the trace operation), for any matrix discrete-time
impulse responsesa(k) and b(k). We can hence define,
using (7), a parametric time-varying correlation by

rN (k, θ) =↓DT {H(s, θ)Φ(s, βN (θ))H∗(s, θ)} (k). (13)

Then, the parametersθN up to timeN can be estimated by
solving the following minimization problem:

θN = argmin
θ̃

VN (θ̃) (14)

VN (θ) =

K−1
∑

k=0

‖rN (k)− rN (k, θ)‖
2
2 (15)

where, for a matrixA = [Ai,j ]
M
i,j=1, the norm‖·‖2 is defined

by ‖A‖2 =
∑M

i,j=1 |Ai,j |
2.

B. Adaptive optimization algorithm

For a fixedN , the minimization problem (14)-(15) can
be solved using a quasi-Newton method. These are iterative
algorithms which use the parametersθN,i estimated at thei-th
iteration in the following updating formula:

θN,i+1 = θN,i − µN,iTN,igN,i, (16)

where the scalarµN,i denotes the step-size at iterationi, the
vector gN,i denotes the gradient ofVN (θ) at θN,i, and the
matrix TN,i denotes an approximation of the inverse of the
Hessian ofVN (θ) at θN,i. Following ideas from discrete-time
system identification [27, Section 11.4], we can obtain an
adaptive algorithm by carrying out one iteration of (16) for
each new available sample. Hence, using the notationθN , µN ,
TN andgN for the sequence of values so obtained, we have
that

θN+1 = θN − µNTNgN , (17)
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The p-th component[gN ]p of the gradientgN is given by

[gN ]p = −2

K−1
∑

k=0

〈

rN(k)− rN (k, θN ),
∂

∂θp
rN (k, θN )

〉

where for matricesA = [Ai,j ]
M
i,j=1 andB = [Bi,j ]

M
i,j=1, the

inner product〈·, ·〉 is defined by〈A,B〉 =
∑M

i,j=1 Ai,jBi,j .
The derivatives ofrN (k, θ) with respect to the componentsθp
of θ are given by

∂

∂θp
rN (k, θ) =

I
∑

i=1

[βN (θ)]idp,i(k)

+

I
∑

i=1

∂

∂θp
[βN (θ)]ici(k), (18)

where

ci(k) = ↓DT {H(s, θ)Ei(s)H
∗(s, θ)} (k) (19)

dp,,i(k) = ↓DT

{

∂

∂θp
H(s, θ)Ei(s)H

∗(s, θ)+

+ H(s, θ)Ei(s)
∂

∂θp
H∗(s, θ)

}

(k). (20)

Also, ∂
∂θp

βN (θ) =
[

∂
∂θp

[βN (θ)]1, · · · ,
∂

∂θp
[βN (θ)]I

]T

, is
computed by

∂

∂θp
βN (θ) = W (θ)−1 ∂v(θ)

∂θp
−

−W (θ)−1 ∂W (θ)

∂θp
W (θ)−1v(θ), (21)

with
[

∂v(θ)

∂θp

]

i

= 〈rN ,dp,i〉 , (22)
[

∂W (θ)

∂θp

]

ij

= 〈dp,j , ci〉+ 〈cj ,dp,i〉 . (23)

To computeTN we use the Broyden-Fletcher-Goldfarb-
Shanno (BFGS) formula [28], which is initialized byT1 = I
and proceeds as follows:

TN+1 = TN +

(

1 +
γT
NTNγN
δTNγN

)

δNδTN
δTNγN

−

−
δNγT

NTN + TNγNδTN
δTNγN

, (24)

δN = θN+1 − θN ,

γN = gN+1 − gN .

Notice that the BFGS formula is typically used for minimizing
a cost function which does not change from one iteration
to the next one. This property is not satisfied by the time-
varying cost functionVN (θ) in (15). However, as we explain in
Appendix B, this formula still applies when the cost function
is time-varying.

Finally, the step-size parameterµN is obtained from a
linear search algorithm. In this work we implement it using
a backtracking procedure formedby sub-iterationsof the
main iterations(17), in which, starting from the initial value

µN,1 = 1, the value ofµN,i is halved at each sub-iteration
until

VN+1(θN − µN,iTNgN ) < VN+1(θN ), (25)

or a maximum number of sub-iterations is reached.
The recursive estimation method (17) requires an initial-

ization, i.e., the choice of initial valueθ1. This can be easily
obtained by choosing the nominal design values. Alternatively,
a reference input can be used to obtain an initial estimate, as
described in [9].

IV. D ESIGN OF THERECONSTRUCTIONFILTERS

In this section we propose an alternative to the method
in [5], [13], for designing the reconstruction filtersf(z). More
precisely, we drop the bandlimited constraint on the input
signal x(t), and we assume instead that it has a (quasi-
)stationary power spectrumΦ(s). In Section IV-A we assume
thatΦ(s) is known, and we design the synthesis filterbankf(z)
using a linear LMS criterion [29], i.e., aiming at minimizing
the power of the reconstruction error

e(k) = y(k)− ŷ(k). (26)

In Section IV-B we explain how to estimate the input spectrum
Φ(s), using a variant of the estimation algorithm described in
Section III. Finally, in Section IV-C we show that the design
proposed in [5], [13] is a particular case of our proposed
design.

A. Design assuming that the input spectrum is known

Using the polyphase representation [30], the scheme in
Figure 1 can be transformed into that of Figure 2, where

y(k) = [y(kD),y(kD − 1), · · · ,y(kD −D + 1)]T

ŷ(k) = [ŷ(kD), ŷ(kD − 1), · · · , ŷ(kD −D + 1)]T

are the polyphase representations ofy(k) and ŷ(k), respec-
tively. Notice that we use underlined letters to denote the
polyphase representation of a quantity. Also, theD × M
matrix F(z) is the polyphase representation of the synthesis
filterbank, defined such that the impulse response[f(k)]d,m of
its (d,m)-entry is given by:

[f (k)]d,m = fm(kD + d− 1),

wherefm(k) denotes the impulse response ofFm(z).
In view of Figure 2, we can restate the problem as that of

designingF(z) for estimatingy(k) usingx(k). If the support
of the impulse responsef(k) of F(z) is constrained so that
f(k) = 0 if k < a or k > b, the LMS solution can be found
by solving

F = argmin
F̃

E







∥

∥

∥

∥

∥

y(0)−
b
∑

l=a

f̃ (l)x(−l)

∥

∥

∥

∥

∥

2

2







(27)

whereE{·} denotes expected value. Now, the solution of (27)
requires that the estimation error is orthogonal to the the data
used in the estimation, i.e.,

E

{(

y(0)−

b
∑

l=a

f(l)x(−l)

)

xT (−k)

}

= 0,
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Figure 2. Transformed scheme using polyphase representation.

for all k ∈ {a, · · · , b}, or equivalently,

ryx(k) =

b
∑

l=a

f (l)rx(k − l), for all k ∈ {a, · · · , b}, (28)

where rx(k) and ryx(k) denote the correlation matrix of
x(k) and the cross-correlation matrix betweeny(k) andx(k),
respectively, i.e.,

rx(k) = E{x(k)xT (0)}, (29)

ryx(k) = E{y(k)xT (0)}. (30)

Hence, the impulse responsef(k) of the polyphase matrix
F(z) can be obtained by solving the linear problem (28). More
precisely,






f(a)
...

f(b)






=







rx(0) · · · rx(a− b)
...

. . .
...

rx(b− a) · · · rx(0)







† 





ryx(a)
...

ryx(b)






,

(31)
where the superscript† denotes the (Moore-Penrose) pseu-
doinverse [31]. Finally, we need the expressions ofrx(k) and
ryx(k). It is straightforward to verify that

rx(k) = ↓DT {H(s)Φ(s)H∗(s)} (k) (32)

ryx(k) = ↓DT {∆(s)G(s)Φ(s)H∗(s)} (k) (33)

where∆(s) = [1, e−s, · · · , e−(M−1)s].

B. Input spectrum estimation

At sample-timeN , the design of the reconstruction filters,
presented in Section IV-A, requires knowledge of the input
spectrumΦ(t, s) = Lτ{r(t, τ)} (Lτ{·} denotes the two-sided
Laplace transform with respect toτ ) at time t = DTN .

Now, the criterion (14)-(15), introduced in Section III-A for
estimating the input filtersH(s), produces as a by-product an
estimateΦ(s, βN (θN )) of the averaged input spectrumΦN (s),
up to timet = DTN . This estimate is obtained as follows:

(S1) Use the estimateθN of θ, available at sample timeN ,
in (10), to obtain an estimateβN (θN ) of β.

(S2) UseβN (θN ) in (9) to obtainΦ(s, βN (θN )).

The averageΦN (s) is obtained over a time span which is
determined by the magnitude of the forgetting factorλ, and
hence differs from the instantaneous input spectrumΦ(t, s),
at t = DTN . As we show in Section VI-E, via simulation
results, the accurate knowledge of the input spectrum is not
critical for designing the reconstruction filters. Hence, one
possibility is to simply use the estimateΦ(s, βN (θN )) in place
of Φ(DTN, s) for designing these filters. However, a problem
in doing so is that, since the filtersH(s) change slowly
with time, its estimation uses a long time span for averaging.
Depending on the application, it may happen that using such
a long averaging time prevents the tracking of changes on the
input spectrum, if they are sufficiently fast. As a consequence
of this, it may happens thatΦN (s) is not good enough, and a
better approximaiton ofΦ(DTN, s) is needed.

If this is the case, we can do so using a second algorithm
for estimatingΦ(DTN, s), which runs in parallel to the one
used for estimatingH(s). This second algorithm uses the
estimateθN of the analysis filter parameters, available at time
t = DTN , to obtain an estimatĕΦ(s, β̆N (θN )) of the input
spectrumΦ(DTN, s), using (9)-(10). To track fast changes in
the input spectrum, the sample-average autocorrelationr̆N (k),
used for this second algorithm, is built using a forgetting factor
λ̆ smaller than the one (λ) used for estimatingH(s). More
precisely, choosing a suitable forgetting factorλ̆ < λ, we
compute

r̆N (k) =
1

γ̆(N)

N
∑

n=1

λ̆N−nx(n+ k)xT (n)

whereγ̆(N) =
∑N−1

n=0 λ̆n. Then we computĕvN (θN ) using

v̆N (θN ) =
〈

r̆N (k), ↓DT {H(s, θN)Ei(s)H
∗(s, θN )}

〉

.

Subsequently, we compute the estimateβ̆N (θN ) of β using

β̆(θN ) = W−1(θN )v̆N (θN ),

whereW (θN ) is given by (11). Finally,̆Φ(s, β̆N (θN )) is given
by

Φ̆(s, β̆N (θN )) =
I
∑

i=1

[β̆N (θN )]iEi(s).

Notice, that the speed of change of the input spectrum that
can be tracked is limited by the property stated in Remark 2.
More precisely, changes on the input spectrum need to be slow
enough so that it can be considered quasi-stationary over a
time span equal to the impulse response length of the analisys
filters, which is a mild requirement.
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C. Comparison with the approach in [13] and [5]

An approach for designing the reconstruction filtersF(z)
was proposed in [5], and improved in [13]. This method
assumes thatM = D, G(s) = 1 and the signalx(t) is
bandlimited to1/2T . Under this assumption,F(z) is designed
as follows:

F = argmin
F̃

∫ π

−π

∣

∣

∣

∣

∣

1

M

M−1
∑

m=0

(

Um − FT (ejω)H
(

ej(ω− 2πm
M

)
))

∣

∣

∣

∣

∣

2

(34)
whereUm = 1 for m = 0 and 0 otherwise, andH(z) is a
discrete-time equivalent of the analysis filterbankH(s), whose
frequency response is given by

H(ejω) = H
(

j
ω

T

)

, ω ∈ [−π, π]. (35)

Moreover, perfect reconstruction can be achieved (i.e.,ŷ(k) =
y(k)) if the impulse responsef(k) can be arbitrary large (i.e.,
if f(k) 6= 0 can hold for allk ∈ Z).

In this section we show that the synthesis filterbank de-
sign (34) is equivalent to our proposed design (28)-(33) when
M = D, G(s) = 1 and the input power spectrum is given by

Φ(jω) =

{

1, |ω| < π
T

0, otherwise
. (36)

Under these assumptions, it holds thatx(t) =
∑∞

k=−∞ y(k) sinc
(

t
T
− k
)

, and therefore

x(k) =

∞
∑

l=−∞

h(l)y(k − l), (37)

where h(k) = Z−1 {H(z)} is the impulse response the
discrete-time equivalent analysis filterbank (35). Lety′(k),
ŷ′(k) and e′(k) denote truncated realizations ofy(k), ŷ(k)
and e(k), respectively1. Then, using the alias representa-
tion [30], we can write

Ŷ′(z) =
1

M
FT (z)HA(z)Y

′
A(z)

whereHA(z) andY′
A(z) denote the alias representations of

H(z) andY′(z), respectively, which are given by

HA(z) = [H(z),H(ej
2π
D z), · · · ,H(ej

2π(D−1)
D z)] (38)

Y′
A(z) = [Y′(z),Y′(ej

2π
D z), · · · ,Y′(ej

2π(D−1)
D z)]T(39)

Now, lettingu = [1, 0, · · · , 0], we can writeY′(z) = uY′
A(z)

and E′(z) =
(

1
M
FT (z)HA(z)− u

)

Y′
A(z). Now, (36) im-

plies thaty′
A(k) is a white vector random process, then the

LMS criterion for designingF(z) becomes

F = argmin
F̃

∫ π

−π

∥

∥

∥

∥

1

M
F̃T (ejω)HA(e

jω)− u

∥

∥

∥

∥

2

2

dω

which, in view of (38), is equivalent to (34).

1So that theirz-transformsY′(z), Ŷ′(z) andE
′(z) are well defined on

the unit circle.

Equation Complexity [mult./DT sec.]

v(θN ) Ψv = PM2K

W (θN ) ΨW = P 2M2K
∂

∂θp
rN (k, θN ), ∀k, p Ψ∇r = 2PKI

gN Ψg = PM2K +Ψ∇r

TN ΨT = 3P 2 + 7P + 2
µNTNgN P (1 + P ) + Ψg +ΨT

Table II
COMPLEXITY OF INTERMEDIATE TERMS NEEDED FOR THE BLIND

ESTIMATION ALGORITHM .

V. COMPLEXITY AND IMPLEMENTATION

In this section we analyze the numerical complexity of
the proposed algorithms. To this end we use the number
of multiplications as the complexity measure. In particular,
solving a positive definite linear system ofn equations re-
quiresΨcho(n) = n3/3 multiplications [32, Sec. 4.2]. Also,
computing the impulse response of a continuous system, atn
given sample times, requires the computation of a residue-
pole decomposition, plusn times that of the exponential
function. To estimate the associated complexity, we assume
that the system’s poles and zeros are readily available. This
assumption is valid since system orders are relatively low,
and the complexity associated with computing their poles and
zeros is negligible compared to the overall complexity. Then,
the computation of a residue of a system ofm zeros and
n poles requiresΨres(m,n) = m + n − 3 multiplications.
Also, computing the exponential function requiresΨexp = 20
multiplications, because we consider 20 terms in the expansion
ex =

∑∞

k=0
xk

k! , which guarantees that the residual error is
smaller than10−6, for x ∈ [−6, 0].

Using the above, we state the complexity of each proposed
algorithm. Since these algorithms are recursively computed
once per sample time, we express their complexity in mul-
tiplications perDT seconds. We assume that the order of
the numerator and the denominator ofEi(s) are the same,
for all i = 1, · · · , I, and that the same condition holds
for Hm(s), for all m = 1, · · · ,M . We then denote by
nE , dE , nH , dH , nG and dG, the number of roots of the
numerator ofEi(s), the denominator ofEi(s), the numerator
of Hm(s), the denominator ofHm(s), the numerator ofG(s)
and the denominator ofG(s), respectively. We also define
n1 = nE + 2nH , d1 = dE + 2dH , n2 = nE + 2nH ,
d2 = dE+3dH , n3 = nE+nH+nG andd3 = dE+dH+dG.

In Table I we state the complexity of a number of terms used
in different parts of the blind estimation algorithm presented
in Section III. They need to be computed only once per sample
time.

Using the terms shown in Table I, we can compute those
whose complexity is given in Table II.

In addition to the terms shown in Tables I and II, the linear
search algorithm (25) requires the evaluation ofVN (θ) at dif-
ferent values ofθ. Each evaluation requiresΨV = M2K+Ψ1

multiplications. Then, denoting byQ the number of linear
search steps in (25), Table III shows the complexity of each
task involved in the blind estimation algorithm, as well as the
sample reconstruction algorithm.
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Equation Complexity [mult./DT sec.]

↓DT {H(s, θN )Ei(s)H∗(s, θN )} (k), ∀k, i Ψ1 = IM2 d1
4
(Ψres(n1, d1) +KΨexp)

↓DT

{

∂
∂θp

H(s, θN )Ei(s)H
∗(s, θN )

}

(k), ∀k, i, p Ψ2 = IPM
d2
2
(Ψres(n2, d2) +KΨexp)

↓DT {∆(s)G(s)Ei(s)H
∗(s, θN )} (k), ∀k, i Ψ3 = IM

d3
2
(Ψres(n3, d3) +KΨexp)

rN (k), ∀k Ψr̄ =
M(M+1)

2
K

Table I
COMPLEXITY OF BASIC TERMS NEEDED FOR THE BLIND ESTIMATION ALGORITHM.

Algorithm Complexity [mult./DT sec.]

Input spectrum estimation Ψcho(P ) + Ψv +ΨW

Filterbank estimation P (1 + P ) + Ψg +ΨT +QΨV

Computing reconstruction filters MΨcho(KM)
Sample reconstruction M2(b− a+ 1)

Table III
COMPLEXITY OF EACH TASK.

In a practical implementation, the digital processing al-
gorithm needs first to compute the terms listed in Table I.
These terms are then used to compute the tasks listed in
Table III, whose components are detailed in Table II. Now,
it can be computationally unaffordable to repeat these steps
at the arrival of each new sample. However, notice that from
all these computations, only the sample reconstruction task
needs to be strictly carried out once per sample. The remaining
computations are related to the estimation task. Hence, their
computation can be carried out asynchronously to sample
arrivals, to accommodate computational power limitations.

To explain this point in more detail, we provide below a
sketch of the digital processing algorithm. The algorithm is
divided in two routines. Thesynchronous routineis executed
each time a new sample arrives, and carries out the sample
reconstruction task. On the other hand, theasynchronous
routine is continuously executed in the background and carries
out the estimation task. In the sketch below we assume that the
input spectrum is jointly estimated with the analysis filterbank
parameters, as described in (S1)-(S2) in Section IV-B. If
instead, a second algorithm is used for estimating the input
spectrum with a smaller forgetting factor, this algorithm needs
to be added to the asynchronous routine.
Digital processing algorithm:

• Synchronous routine: Whenever a new (vector) sample
x(t) arrives (i.e., once everyDT seconds),

1) addx(t) to a temporary buffer;
2) reconstruct the samples ŷ(kD), ŷ(kD −

1), · · · , ŷ(kD − D + 1) using the available
reconstruction filtersfm(k), m = 1, · · · ,M .

• Asynchronous routine: Continuously iterate over the
following steps,

1) update the available cost functionVN (θ) to
VN+n(θ), wheren is the number of samples ac-
cumulated in the temporary buffer during the last
iteration, and empty the buffer;

2) execute a quasi-Newton iteration (17), to obtain a
new estimateθN+n of the parametersθ, and hence
a new estimate of the analysis filterbankH(z);

3) useθ to build a new estimate of the input spectrum
Φ(s) (using (S1)-(S2) in Section IV-B);

4) use the new estimates ofH(z) andΦ(s) to compute
the reconstruction filtersfm(k), m = 1, · · · ,M ,
using (31)-(33).

VI. N UMERICAL EXPERIMENTS

In this section we present numerical experiments to illustrate
the performance of the blind estimation method presented in
Section III, as well as the sample reconstruction method pre-
sented in Section IV. To this end, following [13], we consider
an eight-channel HFB-ADC, where for simplicity, we use the
sampling periodT = 1. The analysis filterbank is composed
of Butterworth second-order bandpass filters of bandwidth
1/16 Hz, except for the first one which is a first-order lowpass
filter of the same bandwidth. The bandwidths are contiguously
allocated so that they cover the whole frequency range from
0 Hz to 0.5 Hz. The output of each filter is sampled at1/8 Hz
(i.e., the upsampling factorD in Figure 1 equals the number
M of channels).

A. Performance of the proposed sample reconstruction method

In order to evaluate the proposed sample reconstruc-
tion method, we compare its performance with that of the
method (34) (derived under a bandlimited assumption on the
input signal), which we denote by (BL). The comparison is
done in terms of the signal-to-distortion ratio (SDR) of the
reconstructed samples, which is defined by

SDR = 10 log10

(

∑N

k=1 |y(k)|
2

∑N

k=1 |y(k)− ŷ(k)|2

)

.

For both methods we usea = −3 and b = 4 in (27), which
results in the discrete-time filtersFm(z), m = 1, · · · ,M
having 64 taps with 31 non-causal taps. From Table III, the
resulting reconstruction scheme requires 512 multiplications
eachDT seconds.

In the first simulation we useG(s) = 1. We generate the
input signal as filtered white noise using a Butterworth lowpass
filter L(s) of 20-th order and varying cutoff frequencyfc.
We callL(s) the input filter, and its relation to the spectrum
Φ(s) of the input signalx(t) is given byΦ(s) = |L(s)|2. The
frequency responses of several such filters with different values
of fc are shown in Figure 3. We compare the performances
of the BL method and the proposed LMS method for several
values offc. The result is shown in Figure 4. We see how the
LMS method clearly outperforms the BL method, especially
for low cutoff frequency values. The difference in performance
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is caused by the assumption (36) on the input spectrum, under
which the BL method is designed. As pointed out in [17],
this assumption results in reconstruction filtersFm(z), m =
1, · · · ,M having very long impulse responses. Then, when
theses filters are truncated to 64 taps, as described above, the
reconstruction performance is significantly impaired.

Figure 4 also shows that the SDR in both methods decreases
as the cutoff frequencyfc increases. This is a consequence of
the generalized sampling theorem, which states that a signal
which is bandlimited toM/2DT , can be reconstructed from
the samples obtained after filtering it usingM filters and at
1/D-th of the Nyquist rate [33]. This implies that it is possible
to perfectly reconstruct the input signalx(t), at any timet
(including t = kT , k ∈ Z as is our goal), only if it is
bandlimited to0.5 Hz. Hence, the reduced performance for
high values offc is due to the leakage energy above0.5 Hz.
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Figure 3. Frequency response of a family of input filtersL(s) with different
cutoff frequency values.
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Figure 4. Performance comparison of the BL and LMS methods for different
values of the input filter cutoff frequency.

B. Sample reconstruction using an anti-alias filter

In the second simulation we evaluate the performance of
the proposed method when reconstructing the samples that
would be obtained after filtering the input signal using a
prescribed anti-alias filterG(s). For the input filterL(s) we
use a Butterworth lowpass filter of5-th order and varying
cutoff frequency. Also, for the anti-alias filterG(s) we use
a Butterworth lowpass filter of20-th order and fixed cutoff

frequency at0.4 Hz. The obtained SDR values for different
cutoff frequencies are shown in Figure 5. As expected, the
performance of the LMS method improves with the use of the
anti-alias filter.
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Figure 5. Performance of the LMS method, with and without anti-alias filter
using a5-th order Butterworth lowpass input filter.

C. Effect of Quantization

The effect of quantization in HFB-ADCs, under the ban-
dlimited assumption described in Section IV-C, has been ana-
lyzed in [34]. In this section we study the effect of quantization
on the proposed sample reconstruction method, via numerical
simulations. We useG(s) = 1 and for L(s) we use a
Butterworth lowpass filter of5-th order and cutoff frequency
fc = 0.3 Hz. In Figure 6 we compare the SDR obtained after
quantizing the ideal samplesy(k), with that obtained after
quantizing the HFB-ADC samplesxm(k), m = 1, · · · ,M .
For comparison purposes, we use the same number of bits per
sample in both schemes2. Since the HFB-ADC hasM = 8
channels, each of which is sampledD = 8 times slower
than the ideal samples, the ADC on each channel uses the
same number of bits than that used for quantizing the ideal
samples. In Figure 6 we show the SDR obtained using different
quantization bits. We see that the consequence of quantization
is similar in both schemes.
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Figure 6. SRD obtained after quantization of ideal and HFB-ADC samples.

2Keeping constant the number of bits per sample is natural, asthis is
the fundamental constraint in commercial ADCs. If the proposed scheme is
implemented on a standard embedded platform like a DSP, thenit is typical
that the number of available bits per channel depends on the number of
channels used, keeping constant the total number of bits. See for example [35].



9

D. Performance of the proposed blind estimation method

In this section we evaluate the performance of the blind
estimation method proposed in Section III. We use an analysis
filterbank which is obtained by perturbing thenominal analysis
filterbankused in the previous simulation. The perturbation is
done by multiplying the real and imaginary components of
each pole by1 + ǫ, with ǫ being a Gaussian random variable
with standard deviationσǫ = 0.2. For the adaptive blind esti-
mation algorithm we use a forgetting factor ofλ = 1−10−5, so
that measurements that are older than105 samples are included
in the criterion with a weight that is at moste−1 = 0.3679
the weight of the most recent measurement. We then run the
algorithm over106 samples.

For the linear expansion (9), we use 12 basis elements
Ei(s), i = 1, · · · , 12, chosen as

E1(s) =
1

(s− a1)(s− ā1)(s+ a1)(s+ ā1)
,

Ei(s) =
s2

(s− ai)(s− āi)(s+ ai)(s+ āi)
, i = 2, · · · , 12,

with a1 = 0.1714 and ai = 0.1714 (1 + j(2i− 1)), i =
2, · · · , 12, and the overbar denoting complex conjugation.
Their frequency response is shown in Figure 7.

In view of Table III, the joint estimation of the input
spectrum and the filterbank requires1.322 × 106 multipli-
cations, eachDT seconds, plus137 × 103 multiplications
for each linear search iteration. Then, the computation of the
reconstruction filters requires87.38× 103 multiplications.
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Figure 7. Basis elementsEi(s), i = 1, · · · , 12 used for approximating the
input power spectrum.

We evaluate the performance of the blind estimation method
using two scenarios:

(a) In the first simulation we generate an input signal with
a time-varying power spectrumΦ(t, s), t ∈ R. We do
so using a3-th order time-varying input filterL(t, s), so
thatΦ(t, s) = |L(t, s)|2, t ∈ R. The input filterL(t, s)
is designed so that it has no zeros, and poles at−3.142
and−0.4854 ± j1.494 + 0.5 × sin(2πt/5000). Hence,
the imaginary component of the complex poles oscillate
so that1600 cycles are included within105 samples.
Also, each cycle is100 times longer than the impulse
response length of the analysis filtersH(s), so that the
quasi-stationary requirement in Remark 2 is satisfied. In

Figs. 8 and 9 we show the estimated input spectrum and
analysis filters, respectively. We see that both, the input
spectrum and the analysis filters are accurately estimated
up to a threshold frequency of about0.4 Hz. This is due
to the low power level available at high frequencies.
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Figure 8. Actual and estimated input power spectra, when lowpower is
available at high frequencies.
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Figure 9. Frequency responses of the actual, nominal and estimated analysis
filterbanks, when low power is available at high frequencies.

(b) In the second simulation we repeat the same experiment,
but we modify the input filterL(t, s) so that a more
significant power level is available in the high frequency
range. To this end, we chooseL(t, s) having no zeros,
and poles at−3.142 and −0.6796 ± j2.092 + 0.5 ×
sin(2πt/5000). The results are shown in Figures 10 and
11. In this case, both the input spectrum and the analysis
filters are properly estimated.

In Table IV we show the SDR values obtained using the
actual, the nominal and the estimated filterbanks. We do
so considering the filterbanks estimated in both scenarios,
namely: (a) when low power is available at high frequencies,
and (b) with a significant power level at all frequencies. For
this comparison we generate the input signal as described in
scenario (a).

We conclude that an accurate estimate of the analysis
filterbank is relevant in the HFB-ADC design. Also, while
analysis filters having a low power level in their passbands are
not accuratley estimated, this does not seriously undermine the
reconstruction performance.
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Actual filterbank Nominal filterbank Estimated filterbank (a) Estimated filterbank (b)

−19.82 dB −3.21 dB −16.64 dB −18.48 dB

Table IV
COMPARISON OFSDR−1 OBTAINED USING THE ACTUAL, THE NOMINAL AND THE ESTIMATED ANALYSIS FILTERBANKS .
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Figure 10. Actual and estimated input power spectra, with significant power
level at all frequencies.
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Figure 11. Frequency responses of the actual, nominal and estimated analysis
filterbanks, with significant power level at all frequencies.

E. Irrelevance of an accurate input spectrum estimate

In this last simulation we illustrate that an accurate estima-
tion of the input spectrum is not critical to the reconstruction
error. To this end, we evaluate the performance degradation
of the proposed LMS design method when there is perfect
knowledge of the analysis filtersH(s) but imperfect knowl-
edge of the input power spectrum. The actual input signal
power spectrum is determined by theactual input filter, while
the available input power spectrum used to design the LMS
compensator is determined by anavailable input filter. We
design the available input filter as a Butterworth lowpass filter
of 20-th order and varying cutoff frequencyfc. For the actual
input filter we use a Butterworth lowpass filter of10-th order
and varying cutoff frequencyfc in cascade with a second order
filter with poles in −0.0782fc ± j0.4938fc. The frequency
responses of the available and the actual input filters are shown
in Figure 12, and the simulation result is shown in Figure 13.
We see that, while not being optimal, the performance of the
LMS method does not deteriorate significantly.
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Figure 12. Frequency responses of available and actual input filters for
different cutoff frequency values.
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Figure 13. Performance degradation of the LMS method in the presence of
input power spectrum mismatch.

VII. C ONCLUSION

We have proposed an adaptive blind method for estimating
the analysis filterbank parameters in a hybrid filterbank analog-
to-digital converter. This estimation method is able to cope
with non-stationary input signals. We have also presented a
design method for the sample reconstruction stage, by using
the estimated analog parameters. The reconstruction is done
by minimizing the power of the reconstruction error in the
samples. To this end, the spectrum of the input signal is
adaptively estimated. We have shown that existing approaches
based on a bandlimited assumption on the input signal are
particular cases of our proposed design. We have presented
numerical experiments showing the improved performance of
the blind estimation method, and the clear advantage of the
proposed LMS design.
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APPENDIX A
PROOFS

Proof of Lemma 1: We have that x(n) =
∫∞

−∞
h(t)x(nDT − t) dt. Then, from (3) we obtain

rN (k) =
1

γ(N)

N
∑

n=1

λN−n ×

×E

{
∫ ∞

−∞

h(t)x((n + k)DT − t) dt ×

×

∫ ∞

−∞

x(nDT − δ)hT (δ) dδ

}

.

Now, since
∫∞

−∞
|hm(t)|dt < ∞, m = 1, · · · ,M and

E{x2(t)} < C for all t ∈ R, in view of Fubini’s theorem, we
can exchange the expectation with the integrations. By doing
so we obtain

rN (k) =

∫ ∞

−∞

∫ ∞

−∞

h(t)
1

γ(N)

N
∑

n=1

λN−n ×

×E {x((n + k)DT − t)x(nDT − δ)} hT (δ) dtdδ

=

∫ ∞

−∞

∫ ∞

−∞

h(t)
1

γ(N)

N
∑

n=1

λN−n ×

×r(nDT − δ, kDT + δ − t)hT (δ) dtdδ

Now, using (1) and defining

ε(ξ) =

∫ ∞

−∞

∫ ∞

−∞

h(t)
1

γ(N)

N
∑

n=1

λN−n ×

× (r(nDT − δ, ξ + δ − t) −

−r(nDT, ξ + δ − t)) hT (δ) dtdδ,

we have that

rN (k) =

∫ ∞

−∞

∫ ∞

−∞

h(t)
1

γ(N)

N
∑

n=1

λN−n ×

×r(nDT, kDT + δ − t)hT (δ) dtdδ + ε(kDT )

=

∫ ∞

−∞

∫ ∞

−∞

h(t)rN (kDT + δ − t)hT (δ) dtdδ +

+ε(kDT )

= (h ∗ rN ∗ h∗)(kDT ) + ε(kDT )

= L−1
{

H(s)ΦN (s)H∗(s)
}

(kDT ) + ε(kDT ).

Finally, to show 6, from 4 we have that

|ε(ξ)| ≤

∫ ∞

−∞

∫ ∞

−∞

|h(t)|
1

γ(N)

N
∑

n=1

λN−n ×

×
w

�r(nDT − δ, ξ + δ − t) −

− r(nDT, ξ + δ − t)| |hT (δ)| dtdδ

≤

∫ ∞

−∞

∫ ∞

−∞

|h(t)|
1

γ(N)

N
∑

n=1

λN−nκ(δ)×

×r̃(ξ + δ − t)|hT (δ)| dtdδ

= (|h| ∗ r̃ ∗ |κ ◦ h∗|) (ξ).

Proof of (18)-(23): From (13), (9) we have that

∂

∂θp
rN (k, θ) =

=
∂

∂θp
↓DT {H(s, θ)ΦN (s, βN (θ))H∗(s, θ)} (k)

=
I
∑

i=1

∂

∂θp
([βN (θ)]i ↓DT {H(s, θ)Ei(s)H

∗(s, θ)} (k))

=
I
∑

i=1

[βN (θ)]i
∂

∂θp
↓DT {H(s, θ)Ei(s)H

∗(s, θ)} (k)

+
I
∑

i=1

∂

∂θp
[βN(θ)]i ↓DT {H(s, θ)Ei(s)H

∗(s, θ)} (k)

=
I
∑

i=1

[βN (θ)]idp,i(k)

+

I
∑

i=1

∂

∂θp
[βN(θ)]ici(k).

Now, equation (21) follows from (10) and the following
property:

M(θ)M−1(θ) = I

⇔
∂M(θ)

∂θp
M(θ)−1 +M(θ)

∂M(θ)−1

∂θp
= 0

⇔
∂M(θ)−1

∂θp
= M(θ)−1 ∂M(θ)

∂θp
M(θ)−1.

Also, equation (22) follows from (12) and (20), and equa-
tion (23) follows from (11), (19) and (20).

APPENDIX B
BFGS FORMULA FOR ADAPTIVE OPTIMIZATION

For a givenn ∈ N, let gn(θ) andHn(θ) denote the gradient
and the Hessian matrix ofVn(θ), respectively. Using a Taylor
expansion we have that

gn(θn+1) = gn(θn) +Hn(θn)δn + ǫn,

whereθn+1 is obtained from (17),δn = θn+1 − θn andǫn =

O
(

‖δn‖
2
2

)

. Also, let ρn be defined so that

gn+1(θn+1) = gn(θn+1) + ρn.

Then,

gn+1(θn+1) = gn(θn) +Hn(θn)δn + ǫn + ρn. (40)

Now, suppose thatVn+1(θ) = Vn(θ), for all θ ∈ R
P (i.e.,

the cost function is stationary). We then have thatρn = 0,
for all n ∈ N. Also, if Vn(θ) is a quadratic function, we have
that ǫn = 0 and Hn(θn) = H (i.e., the Hessian matrix is
independent ofn andθ), for all n ∈ N. Hence, (40) becomes

γn = Hδn, (41)

whereγn = gn+1(θn+1) − gn(θn). In this case, for a given
N ∈ N, we can findH by solving (41) forn = 1, · · · , N ,
provided the matrix∆N = [δ1, · · · , δN ] has full row rank.
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In practice, neitherVN+1(θ) = VN (θ) nor VN (θ) is
quadratic. Then, assuming that we know an approximation
SN of HN−1(θN−1), in view of (41), we can buildSN+1

by adding an update toSN so that

γn = SN+1δn. (42)

This is the starting point of the derivation of the BFGS
method for a stationary cost function. The details on how to
obtain (24) from (42) can be found in [28, Sec. 3.2]. The only
difference between the stationary and non-stationary cases is
that in the former, the updates onSN are done to account for
the fact thatVN (θ) is non-quadratic, while in the latter, these
updates also account for the fact thatVN (θ) is non-stationary.
The validity of this approach is justified as follows. When
VN (θ) is stationary (i.e.,VN (θ) = V (θ)), it follows from [28,
Th. 3.4.1] that if there existsN0 such that the sequenceθN ,
N ≥ N0, belongs to a set whereV (θ) is quadratic, then the
BFGS formula converges to the minimum ofV (θ) in at most
p steps, provided the line searches in (25) are exact. In the
non-stationary case, the same condition holds if additionally,
VN (θ) becomes stationary forN ≥ N0.
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