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Abstract—We present a novel channel estimator/predictor for
OFDM systems over time-varying channels using a recursive for-
mulation of a basis expansion model (BEM) based on an approxi-
mated discrete cosine transform (DCT). We derive a recursive im-
plementation of the approximated DCT-BEM for tracking time-
varying channels based on a filter bank. The recursive approxi-
mated DCT-BEM structure is then used for long range channel
prediction by proper scaling and time extrapolation of the filter
bank. As the implicit BEM is time invariant we further simplify the
implementation by employing a steady-state Kalman filter whose
overall complexity is comparable to an LMS algorithm. The de-
rived predictor outperforms, in terms of predictor range, previ-
ously proposed long range predictors that are based on autore-
gressive (AR) modeling of the time-varying channel. For a sim-
ilar performance, in terms of MSE, the computational complexity
of the proposed predictor is significantly lower than conventional
sum-of-sinusoids (SOS) channel predictors as no channel delays
nor Doppler frequencies need to be estimated.

Index Terms—Basis function approximation, channel predic-
tion, discrete cosine transform, Doppler spectrum, fast-fading
channel, Kalman filter, narrowband filters.

I. INTRODUCTION

HANNEL prediction facilitates efficient sharing of
C channel resources in wireless communication systems.
For example, in long-term evolution (LTE) downlink [1], phys-
ical layer scheduler allocates channel resources between users
in 2 ms resolution. The resource allocation is based on SNR
values reported by the users through a feedback channel. The
feedback channel is subject to latency and therefore efficient
link adaptation requires prediction of the received SNR around
2 ms ahead. Moreover, channel prediction is indispensable for
secondary receivers in cognitive radio systems [2].
Based on [3] and [4], a BEM using discrete prolate spheroidal
sequences (DPSS) was proposed in [5] for the estimation of a
time varying channel, and the performance of several different
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basis sets have been studied and compared in [6]. Other BEMs
were also reported in [7] and [8] for receiver design in wide-
band mobile communication systems. Apart from the BEM,
time varying channel estimators based on a physical model of
the Doppler have been reported in [9], [10] where an AR or an
ARMA model is adjusted to fit the Jakes Doppler spectrum [11]
and inserted in a Kalman formulation for channel estimation.

BEM estimators are robust to the spectrum shape and thus
outperform, in terms of MSE performance, the estimators based
on a physical model of the Doppler spectrum in case of model
mismatch. However, as the estimation in practice is frame based,
the achievable prediction horizon is limited by the basis expan-
sion extension error [12]. On the other hand, following the phys-
ical model estimation approach, long range channel predictors
have been developed in [13]-[15] exploiting the fact that the
signal bandwidth is much larger than the maximum Doppler
shift. However, this solution exhibits an error floor due to the
mismatch between the Doppler model and that of practical chan-
nels which do not always fulfill the Jakes assumption [16]. A
review of existing channel prediction approaches is presented
in [17] where it is concluded that AR-based predictors perform
better than sum-of-sinusoids (SOS) based predictors for short
prediction horizons on statistical channel models, while SOS
predictors attain larger prediction horizons on synthetic chan-
nels. In spite of that, combination of these two approaches has
not been reported yet.

In this paper, we propose a recursive-BEM approach for
channel estimation and prediction for OFDM. We develop
a recursive BEM based on an approximation of the discrete
cosine transform (DCT). The benefits of DCT energy com-
paction property in wireless applications have been reported
by many contributions in the past few years [18]-[20] and re-
cently [21]-[26]. Further, Kalman filter proposals for tracking
subspace models in different applications context have been
reported in [27], [28]. We show that our recursive BEM can
be inserted into a Kalman filter formulation, similar to [9],
[10], and [29] but with a stationary solution as the recursive
modeling of the basis functions is time invariant. This results in
a significant complexity saving, because the Kalman gain does
not have to be updated, making the proposed approach compa-
rable in terms of complexity with the other BEM proposals [3],
[5] and AR-based predictor proposals [14], [15], [30]. At the
same time DCT-BEM gives better prediction performance as it
achieves larger prediction horizons without exhibiting a model
mismatch error floor.

The outline of the paper is as follows. In Section II we de-
fine the system model, and introduce the notation. The recursive
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BEM is introduced in Section III. The Kalman filter Doppler
estimator is presented in Section IV and the proposed channel
predictor is derived in Section V. A computational complexity
analysis is presented in Section VI. Section VII evaluates the
performance of the proposed scheme by comparing it with other
schemes available in the literature. Finally, Section VIII pro-
vides our conclusions.

II. SYSTEM MODEL

We consider a SISO OFDM system using QPSK modulation,
where QPSK symbols are grouped in blocks of length /V, where
N is the number of used subcarriers. The resulting blocks are
then processed by an IDFT to obtain the time-domain samples
to be transmitted serially through the £ tap frequency selective
channel. To avoid intersymbol interference (ISI) the blocks are
preceded by a cyclic prefix (CP), which should be longer than
the channel impulse response £. The OFDM symbols are further
organized in data frames of M symbols. P, and Py pilot sym-
bols are placed uniformly in time and frequency respectively
within data frames according to [31].

The received samples after passing through the noisy channel,
CP removal, and DFT processing can be written in vector nota-
tion as

r=FHFs+ Fw=Hs+w, )

where the vectors s € C¥*! and r € CV*! contain trans-
mitted and received symbol samples respectively, F' is the DFT
matrix with elements [F|.; = (1/V/N)e 727 /N M is the
time domain channel matrix affecting the current symbol, and
H = FHF" is the channel matrix in frequency domain. Fi-
nally, w € CV*! is a vector of complex AWGN samples. In this
paper we will assume that the channel remains static for a whole
symbol but is allowed to vary from symbol to symbol such that
matrix H becomes diagonal for each OFDM symbol, with diag-
onal elements given by vector h[m] = [ho[m],...hx_1[m]]T
for symbol time m.

This assumption is reasonable for the considered channel pre-
diction application as the system parameters and mobile speeds
of interest in practical implementations result indeed in an al-
most diagonal structure for H. Nevertheless, if ICI must be
taken into consideration, ICI equalizers like those presented in
[32] and [33] can be used in conjunction with the estimation/pre-
diction schemes presented here with only a minor modification
in the pilot signaling.

We can thus rewrite (1) in terms of the diagonal elements of
H for each subcarrier hg, (k = 0,..., N — 1) at symbol time
m(m=0,...,M —1)as

rr[m] = hp[m]sig[m] + wi[m]. 2)

III. RECURSIVE BEM DESIGN

In this section we model the dynamics of the time evolution of
the channel with a small set of parameters that can be extracted
from the received samples in (2). In the following, the main
design steps involved are described.
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A. Channel Time Evolution Basics

Let us consider the channel variation on the kth OFDM sub-
carrier of (2) during a data frame of M/ OFDM symbols. This
can be denoted by arranging the values of hg[m] in (2) for
m=0,..., M—1inavectorashy = [ht[0],..., hx[M —1]]7.
As we focus for now on only one subcarrier, we drop the sub-
script £ to simplify the notation.

Vector h can be described by means of an adequate linear
transform as h = T#+, where T is an (M x M) orthonormal
transformation matrix and v = [y[0],...,v[M — 1]]T is an
(M x 1) vector containing the transformed description coeffi-
cients on the current data frame. It is known [3] that with an ap-
propriate choice of the transformation matrix T, h can be accu-
rately fitted by a BEM with dimension reduced to G (G < M)
such that

h = T#5, 3)

where h is the vector with the approximated channel values for
current data frame, T is an (G' x M) matrix built from the first
G rows of T, and 4= [y[0],...,v[G — 1]]T is the vector with
the truncated basis expansion coefficients. The number of basis
functions G required for a good fit of h depends on the energy
compaction characteristic of the particular transformation used
[3].

Using (3) we have that the expected value of the energy asso-
ciated to the realizations of h is given by

E { 2_: |h[m]|2} = E{ z_: |fz[m]|2} + 02, 4)

where the first term on the right-hand side represents the energy
of h which is captured by the BEM of (3), and the second term
is the residual energy from the coefficients of -y discarded in (3).

B. DCT Approximation

It has been shown in [22] that the DFT has worse energy
compression than DCT for Jakes Doppler spectrum. In [5]
it was also shown that DPSS are optimal for ideal low-pass
Doppler spectrum. Although the performance, in terms of
MSE, of DPSS-BEM is slightly better than that of DCT-BEM,
the basis functions of DPSS-BEM are not well suited for a
low order recursive implementation. On the other hand, the
sinusoidal basis functions of DCT-BEM can be efficiently
approximated with low order and numerically stable recursive
filters taken from the well known theory of notch filters [34] as
will be shown in the following subsection.

The classical approach for selecting the value of G when
constructing a BEM is to set G = [2rygM| + G', where v,
refers to normalized Doppler shift, and G’ is a bandwidth margin
chosen to compensate for the spectral leakage introduced by the
BEM representation. Excessively small values of G degrade the
MSE performance of the BEM, because the discarded spectral
leakage can be significant. On the other hand, if G’ is set too
large, the included low energy BEM coefficients would also de-
grade the performance as they are more sensitive to noise.

Based on the energy compaction property of DCT, a criterion
for selecting the appropriate value of G, which we use here, was
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—&— DCT-Jakes Doppler
= B - DCT-Flat Doppler
+@ DCT-Theoretic (7)
—&— DFT-Jakes Doppler
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Fig. 1. Comparison of the energy compactation for different BEMs. Results are
shown for Jakes and Flat Doppler models with a maximum normalized Doppler
shift 4 = 0.01. The block length is set to 256 OFDM symbols and results are
averaged over 100 channel realizations. The theoretical performance evaluated
for DCT using (7) for Jakes Doppler model is also shown for reference.

proposed in [22]. The criterion is based on the characterization
of the spectral leakage introduced by DCT when used to repre-
sent the channel Doppler. The value of G is selected according
to

1
(M — G)Lpcr(G)

G = argmin |1 — (®)]
G

where Lpcr is the spectral leakage associated to trial value G.
That is,

Lper(G) = }: oherlm 6)

where o} is the energy of h and o3 p[m] the variance asso-
ciated to the mth coefficient of the DCT representation of the
channel Doppler, which can be written in terms of the autocor-
relation function of the channel Ry (4) as

M-1M-1

Z Zth i—7)

=0 7=0
m(it3)m m(it3)m
X COS (T) cos (T , (D

where A(m) = 1/v/M form = 0 and \/2/M for 1 < m <
M — 1. Fig. 1 plots the channel energy representation [the first
term on the right hand side of (4)] as a function of the truncation
order for DCT, DFT, and DPSS BEMs. This figure illustrates
the truncated BEM modeling error showing that for a modeling
error below 2%, DCT-BEM and DPSS-BEM require roughly
the same number of basis functions. On the other hand, DFT-
BEM, which has a poor compactation characteristic, requires
many more basis functions.

UIQDCT [m] = UhA2
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Another frequently used approach for model order selection,
typically used in SOS based estimators [35] is based on the min-
imum description length (MDL) method. MDL criterion is sim-
ilar in spirit to the criterion proposed in [22], while being more
general and better suited for SOS estimators where all parame-
ters of the associated SOS-BEM are determined from a sample
estimation of the autocorrelation function of the channel [35].
Different from DCT-BEM where the basis function frequencies
are known, SOS-BEM relies on the estimation of the frequen-
cies of the sinusoidal basis functions through spectral estima-
tion techniques. In that case, the criterion used here and derived
specifically for DCT-BEM (where the sinusoidal frequencies
are known) does not apply.

C. Recursive BEM

Considering DCT in (3), the elements of matrix T can be
written for: =0...G—landm =0...M — 1 as

i+ m
[T)im = A(m) cos <%> , )

such that iL(DCT)[m] is given by the linear combination of the
corresponding DCT basis functions. These basis are cosine
functions at harmonic frequencies, defined by the frame length
M and the corresponding basis function index 7. Each row of
matrix T in (8) can be interpreted as the impulse response of
an ideal bandpass filter centered at the corresponding cosine
frequency. Based on [36], the corresponding transfer function
of each DCT row 0 < 7 < G — 1 is given by

Hper, (¢7¥)
(1) = (~yie 3 -
1+ 2cos(im/M)e=i% + e=i2

e IwM 4 —iw(M+1)

=c ©)
where notation Hpcr, indicates the filter that outputs
h(DCT) [m] (the ith DCT component of the channel) when
the input is given by the channel sequence h[m], and where
ci = A(i) cos((mi)/(2M)). Filters in (9) can be used to obtain
h(pcr)[m] in (3) recursively by extracting the DCT frequency
representation components (8) of h[m] (weighted by their
corresponding -y; coefficient). Then the time domain channel
evolution representation in terms of DCT can be expressed,
using the difference equation notation of Hpcr for a compact
description, as the sum of the output of these filters when fed
with the channel sequence as

= HDCT( l)h[m]7

(10)

Z Hper, (¢

hor[m] Yh[m] =

being Hpcr(¢~') and Hpcr,(¢~') the difference equation
representation of the DCT filter bank and the DCT components
filters of (9) respectively.

Using a low complexity recursive filter bank to approximate
each of these rows we can obtain an estimate of A[rn] from its
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noisy samples. The lattice realization is known to be orthog-
onal and have very good numerical behavior for the implemen-
tation of narrow passband filters [37]. Thus, the proposed model
for fz( F)[m] is based on the approximation of the FIR filter de-
scribed by (10), by a bank of narrow passband filters such that

hpy[m] = Hr (g~ )h[m] = Z BiHp (¢~ Y)h[m], (1)
where
prﬂozﬁkualffiﬁflfﬁm)
T F T e (02
and s1; = sinfy; = — cos((wi)/(M)) is the lattice parameter

defining the central frequency, so; = sinfly; (0 < sg; < 1) is
related to the 3 dB bandwidth B; of each narrow band filter by
sinfa; = [(1 — tan(B;/2))/(1 + tan(B;/2))] and S; are real
valued scaling coefficients. Except for the first filter, the filter
bank is based on the normalized allpass realization [37].

Remarks:

* It is worth noting that (9) has M zeros and two poles. The
zeros are located on the unit circle equispaced in 2iw /M
starting at frequency im/M, and the poles, also on the
unit circle, are located at frequencies im /M. After the
pole/zero cancellations, the frequency response obtains its
maxima at +iw /M.

* The main objective to replace (10) (FIR) with the recursive
(ITR) realization of (11) is to obtain a low complexity esti-
mator-predictor as discussed in the next sections.

* Since basis function of the proposed realization is an ap-
proximation of the DCT basis, its energy compaction prop-
erties are also suitable for Doppler representation. To con-
trol the approximation error to the corresponding DCT of
(9), the proposed realization has two tuning parameters, s;
and ;. The characteristics of this approximation error and
its relation to the tuning parameters are discussed in the
next subsection.

D. DCT—Filter Bank Approximation Error

We conclude this section by studying the characteristics of
the approximation error involved between (10) and (11). To
that purpose, disregarding measurement noise for this analysis,
and assuming that the Doppler power spectral density of h[m],
Sp(e?*) is perfectly represented by the DCT basis, we obtain
the scaling coefficients [3; in (12) that minimize the mean-square
error (MSE) representation when using (11).

The mean-square error with respect to the reconstructed se-
quence iL( F)[m] at the proposed filter bank output can be ex-
pressed as

¢= B {leml?} = £ {|ufl b ], a3

where hlm] = HBQT(Q_I)iL(DCT) [m] giving '}AL(F)[m]
Hp(q_l)HBCT(q_l)h(DCT)[m], with Hf o (e?“) the fre-
quency response of the inverse DCT transfer function. If the
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channel Doppler spectrum is bandlimited to a normalized
Doppler frequency v = v4, (13) can be written as

vy

SMSE(ejw)dw

&=

J—vy

va )
:/ |1—HF<ejw
—vy

By defining

YHpor ()] Sp(ei®) dw. (14)

l/d . . .
= / Re{ Hp, (¢7) Hyor (67) } Sp (¢7*) du,

@Jz/dRqHEWﬂHmaﬂﬂﬂmﬂaﬂf

—vq

x Sp(e’*) dw,
for 0 < 4,1 < G — 1, (14) can be rewritten as
¢=d—28"a+p 2,

where d = [") Sp(e’¥)dw, @ = [ag,...,ag1]", ®isa
G x G matrix formed by ¢; ; and 8 = [Bo, - .., Bc—-1]". As can
be easily concluded, the MSE is quadratic in 3, and the optimum
is given by

15)

B=%&'a. (16)
Furthermore, the minimum MSE is then given by
bmin=d—a"® 'a. (17)

Remarks:

» If we assume, to assess the filter bank approximation error,
that the channel Doppler power spectral density Sp(e/*)
can be perfectly represented by the DCT, the MSE so de-
fined is only due to the mismatch between the filter bank
and the DCT representations.

« Note that using B;Hr (e’*) = Hpcr,(6/“) in
(15), the residual MSE &, < &nin verifies & =
[ (1 — |Hpcr(e?*)[*)2Sp(ei*) dw, as required in
(14).

* Clearly, (17) gives a lower bound to the mean square ap-
proximation error between the proposed Doppler represen-
tation and the DCT.

Figs. 2 and 3 illustrate Sysg(e?“) of (14) for Jakes and Flat
Doppler spectrum, respectively. In both figures, the filter bank
coefficients (3; are either optimized using (16) or just set all
equal to one (to simplify the representation). Syisg(e’*) is
plotted for a typical value of so; = 0.9978 (set equal for all
passband filters in the filter bank) for both Doppler models.
Since s9; determines the bandwidth of the filters, it also controls
the overlap among them. When using the optimum g;, this
overlap among filters is included in the design of the filter bank
thus leading to an improvement on the approximation error, as
can be seen in Figs. 2 and 3.

Note that Syisg(e?“) in Fig. 3 is not perfectly uniform over
the Doppler frequency band. This is because the passband
filters’ frequency responses are not symmetrical around their
central frequencies leading to more overlapping to higher than
to lower frequencies. This makes SMSE(ej‘“) to be lower for
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Fig.2. Swusr(e?*) for Jakes Doppler model with 3; optimized and 3; = 1 and
parameter s2; = S» set to a typical value. Equation (14) gives £ = —28.25dB
for optimized 3; and { = —21.78 dB for 3, = 1.
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Fig. 3. Swusr(e?*) for Flat Doppler model with 3; optimized and 3; = 1 and
parameter s»; = S» set to a typical value. Equation (14) gives { = —24.70 dB
for optimized 3; and £ = —19.85 dB for 3; = 1.

higher frequencies as the notches between different passbands
are smother because of the higher overlap.

Fig. 2 (Jakes Doppler), shows that Syisg(e’*) increases
around the frequency where the Doppler has its typical peak.
As this peak does not coincide with the central frequency of
any passband filter but lies between two of them, the notch
between the passbands leads to this increase in S’MSE(ej “).

Formally, if a priori information about the Doppler shape is
available, so; can be tuned to better fit its characteristic. Fig. 4
illustrates this tuning for Jakes Doppler model, where the pass-
band filters bandwidth is set slightly broader for the high fre-
quency filters to better capture the spectrum peak present in
Jakes model. Comparing Figs. 2 and 4 it can be seen that the tun-
ning of s9; effectively reduces the error around the Doppler peak
at 5. When so; is tuned according to the Doppler model, the
plot for Syrsg(e?*) for 3 = 1 is seen to be higher towards v4 as
compared to the equal so; case of Fig. 2. This happens because
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Fig. 4. Swusre(e?) for Jakes Doppler model with 3; optimized and 3; = 1

and parameter s2; tuned according to the Doppler Model. Equation (14) gives
¢ = —30.65 dB for optimized 3; and ¢ = —16.67 dB for 3; = 1.

the increase in bandwidth in the higher frequency passband fil-
ters results in more overlapping among filters in that frequency
region. Without the f3; to scale this extra overlap, Sysg(e’*)
increases in that region.

Figs. 2 to 4 are calculated for a maximum normalized Doppler
frequency of vy = 2.8 x 1073, a DCT size of M = 1100 and
G = 8 chosen according to (5).

IV. CHANNEL ESTIMATOR

By defining x;[m], 0 < i < G — 1, the (2 x 1) state vector
for each passband filter, we can express the filter bank structure
for the recursive BEM implementation in state space form as

i}i(F) [m] = c:xi [m)] + d;h[m)

Zﬂh ([,

where, for7 = 0

_ 0 S920 _ 1
so-[1 %] =]

Co = [0 1—820] dz 0 (1—820)
and for 1 < ¢ < G — 1, defining ¢;; = 5%
A, = [—SM —821'012} 021012}
C1i —52i514 C2iS51i
c;=[0 —cpi] di=1- sy

From (2) we have that the input signal to the filter bank is not
h[m] but its equalized version given by h[m] = r[m]/5[m] +
w[m]/§[m], where §[m] is either a known pilot symbol or an es-
timate of the transmitted symbol based on the previous channel
estimate. Then, as w[m] is assumed to be AWGN, the optimum
algorithm for estimating h[m] is a set of G scalar Kalman filters
for the filter bank of (18).
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In order to obtain the estimator, the Kalman filter gain for
each narrow passband filter of (18) is given by the solution of
the following Riccati equation:

P'i = Al (Pz — PZ‘CT (CPCT

+d202)” ciPi) AT £ bo2bT,  (19)
that allows to obtain the steady-state Kalman gain for filter ¢
given by
K, = P,L»ci (c P c + d20h) (20)
More importantly, and different to the Kalman formulations
presented in [9], [29], the matrices in (18) describing the filter
bank are time invariant since the BEM is kept fixed for the
whole transmission. Thus, the Kalman formulation will have
a steady-state solution avoiding most of the complexity of the
Kalman filter as the steady-state gains K; can be calculated of-
fline. Moreover, in view of [38, Th. 6.3, Ch. 6], the steady-state
estimate and the optimal estimate are exponentially close to
each other. The resulting limiting Kalman filter is given by

e[m] = r[m] — §[m]fL(K) [m —1]
x;[m] = A;x;[m — 1] + K; 8% [m]e[m)]

iLi(K) [m] = c‘xi[m]
Z Bihicxe)[m

We finally note that the solution of the Riccati equation of
(19) can be obtained using the algorithms described in [39]. The
issues related to the numerical condition of the solution process
and balancing to improve the condition are discussed therein,
and low complexity iterative refinement procedures for the so-
lution are provided. These iterative methods have the advantage
of improving the accuracy of computed solutions in case of ill
conditioned equations [39].

}L(K) m] (21)

V. CHANNEL PREDICTOR

The structure presented in Section IV, given by (21), is useful
to obtain an ARMA-model-based long-range predictor (LRP)
[13], [40]. To that purpose, and considering that the channel esti-
mated vector is highly oversampled, a properly frequency scaled
version of the filter bank of (18) is fed with channel estimates
iL( &)[m] decimated by a factor T'. Since relative frequencies of
the decimated input are 7" times higher, frequency scaling of the
filter bank is necessary to compensate for the decimation.

Factor T' is chosen such that the decimated channel estimates
are slightly oversampled. The resulting prediction range be-
comes T' X L. where L is the extrapolation factor of the Kalman
filter predictor. As result, the limiting Kalman filter predictor
is given by

Plm + 4] = hiylm + € — T) — hP[m + £ — T
xP[m 4+ ] = (AL)ExE,[m 4+ £ — TL] + KZeP [m + (]
he[m + €] = cPxL,[m + ]

2525
~ G71 ~
Wlm+L+T(L—-1)] =Y Bihl[m+1], (22)
1=0

where £ = 0, ..., (T x L) — 1 are the state vector samples used
at each iteration, x?, is the predictor state vector (analogous to
X; in (21)), Af and cf are the transition matrix and output vector
of the passband filters scaled up in frequency by 7', and given
for: = 0 by

0 sb
Ag:[l (2)0} co=1[0 1-sh],

andfor1 < i< G—1by

AP — =t —shch; & =[0 —c]
’ ;  —sasu] 2
where 7, = —cos((miT)/(M)) is the lattice parameter
defining the scaled up in frequency narrowband filter central
frequency, s5; (0 < sb, < 1) sets the selectivity of the pass-
band filters, and cfz =4/1- s

(offline) by solving

®. Finally K? can be obtained

qu = Af (P1 — PiC,];T (C?Pich

+dp2gh) - csz-) AP 1 blopb!T, (23)
that allows to obtain the steady-state Kalman gain for filter &
given by

K? = Pict" (fPict” + &0} (24)
A block diagram of the estimator-predictor proposed is depicted
in Fig. 5.

In the conventional LRP [40] a specific model for the
Doppler spectrum is assumed (AR Jakes approximation in
general), which is not the case in practical channels. This leads
to a modeling error floor that reduces the prediction range.
This is not the case in the proposed structure due to the BEM
formulation. The proposed predictor can also be interpreted as a
low complexity variation of a sum of sinusoids (SOS) predictor
([17] and references therein) as it is based on the prediction of
approximated superimposed sinusoidal components. Different
to SOS predictors, the proposed BEM does not requires esti-
mation of the frequencies associated with individual sinusoids.
Thus, complexity of the approximated DCT BEM predictor is
significantly reduced compared to SOS predictors.

It remains to extend the developed channel estimator/pre-
dictor scheme for frequency selective channels. According to
[31, Th. 1], an estimate of diag(H) in (1) for each symbol
can be obtained by using Py > L pilot subcarriers that are
equispaced within the OFDM symbol. We can thus design a
selective channel predictor by using the flat fading estimator
and predictor proposed on each of these Py pilot subcarriers.
The channel coefficients for all subcarriers can be then obtained
using DFT interpolation in frequency.

An alternative to this last step is to use truncated DCT inter-
polation as in [41] (see also [18]-[20], [26]). Although in the
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Fig. 5. Estimator-predictor block diagram for each channel coefficient.

case of an ideal FIR channel, DFT gives the lowest truncation
order (length of the FIR channel) and no interpolation error, in
practical channel realizations the channel delays are not mul-
tiples of the sampling time [42]. In this general case, energy
dispersion over DFT coefficients is larger than for DCT. Hence
DCT renders a lower computational cost than DFT, because the
better energy compactation property of DCT allows the DCT
interpolation matrix to be truncated to G ¢ rows similarly to (3).
Further, the aliasing effect in case of nonsample spaced path de-
lays is significantly mitigated in the DCT approach [18], [19],
[25].

VI. COMPLEXITY ANALYSIS

We consider the computational complexity of the proposed
channel estimator/predictor assuming operation over a fre-
quency selective fading channel.

The complexity involved in the solution of the Riccati equa-
tions of the proposed scheme can be high, because of the it-
erative refinement of the solution [39]. However, the limiting
Kalman gains for (21) and (22) can be computed offline, and
therefore the corresponding computational cost is not consid-
ered in this analysis. Equation (21) requires 2 4+ 15G complex
operations to output each channel estimate while (22) requires
T x L x (1+25G) complex operations to output 7" x L symbol
sampled channel predictions. The complexity for the frequency
selective scenario would be Py times this computational load,
for the estimation/prediction over the Py pilot subcarriers (for
a maximum of P; channel taps), plus the computational load
involved in the frequency interpolation operation to obtain the
channel prediction for all subcarriers.

As no model parameters need to be estimated, the complexity
corresponding to the iteration of both limiting Kalman filters re-
sults in a complexity of O(G) times the complexity of the LMS
algorithm for each of the P filter banks used. Moreover, as G ¢
(<Py) is usually much lower than N the overall complexity is
small. The interpolation task has a computational complexity in
the order of O(Gylog, N) for a truncated DCT of dimension
G, being G ¢ upper bounded by Ps.

Table I summarizes the complexity analysis for the pro-
posed recursive-BEM-LR channel predictor. For comparison

dimension G basis set

TABLE 1
COMPUTATIONAL COMPLEXITY COMPARISON

Initialization Pred. Iteration Coeff. Update

R-BEM
proposed
estim./pred.
Low compl.
RLS-MMSE
pred. [43]
Red. compl.
ESPRIT
pred. [35]

O(PyG + Gylogy N)

O(PyM?) O(PfM + Nlogy N) O(PrM?)

O(P} + LP?) O(NL + R) O(P} + P:R)

purposes the table includes also a low complexity RLS based
MMSE-LR channel predictor [43] and a reduced complexity
ESPRIT based SOS channel predictor [35] both available in the
literature. For the predictor of [43], M is the amount of memory
used by the predictor. For the SOS predictor of [35], P; plays
a similar role as parameter GG in our design and determines the
Doppler frequency resolution of the estimator/predictor. P
together with P; determine the time-frequency grid over which
the algorithm calculates the estimated number of channel taps
L (upper bounded by Py). R and R stand for the maximum and
average number of rays per channel tap respectively and are
upper bounded by the value of F;. For the same system parame-
ters the predictor of [35] is considerably more computationally
expensive than the other two since R and R are comparable
in magnitude to G’ and M and the initialization step requires
several data frames. It is worth noting that the RLS-MMSE
initialization complexity is not detailed in [43]. This predictor
is initialized as described in the last two equations of [43, Sec.
IV-B], whose computational cost was evaluated for Table I as
the computational cost of the coefficient update operation.

VII. SIMULATIONS

An appropriate measure for evaluating channel prediction
performance is the normalized mean square error (NMSE)
defined by

B {|hlm] - e [m]|?}

NMSE = =5 )

(25)
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The performance of the proposed tecursive-BEM (R-BEM)
LRP is evaluated in terms of the NMSE and compared with a
MMSE LRP [13] and ESPRIT based SOS predictor [44]. The
performance measure of interest in this work is the length of
the achievable prediction horizon, subject to a certain NMSE
constraint.

In [43] it was shown that a reduced complexity MMSE pre-
dictor based on RLS algorithm can attain almost the same per-
formance as the MMSE channel predictor of [13]. Thus, the
comparison with the conventional MMSE LRP of [13] serves
as the best performance bound for the low complexity predictor
of [43]. We also compare our predictor with the ESPRIT based
SOS predictor of [44]. In [35], the authors present a reduced
complexity version of [44] so that comparison with [44] can be
used as the best performance bound of the reduced complexity
version presented in [35].

To normalize the prediction range with respect to mo-
bile velocity, we use the spatial unit wavelength A\, where a
prediction of 7 seconds ahead corresponds to A = f4,,,7 wave-
lengths, being fy4,, the maximum Doppler shift [17]. An NMSE
threshold of —20 dB as proposed in [45] is used to determine
the limit of prediction horizon. We consider an OFDM system
operating at a carrier frequency fo = 2 GHz with 10.24 MHz
bandwidth and 20 KHz subcarrier spacing. The number of
subcarriers is set to /N = 512 and the length of the cyclic prefix
is 27. The frame length is set to M = 22 OFDM symbols,
equivalent to 2 ms. The system uses 5% pilot ratio, distributed
uniformly in time and in frequency, using |2.8£| pilots in fre-
quency, and the number of DCT basis functions for frequency
domain channel interpolation is set to Gy = |1.2£] = 32. The
parameters for the proposed filter bank realization are based on
12 frames such that s1;, = —cos((wi)/(M,)), M, = 12M.
The value of G was chosen from the maximum normalized
Doppler shift v, according to (5) (G = 6 for mobile speed
of 30 km/h). Also, a simplified form of the filter bank is used,
i.e., §; = 1 (not optimized) and equal s9;, 0 < 7+ < G — 1.
For realistic results, we consider a wireless fading channel
following the ITU-Vehicular A specification, which results
in a 27-tap frequency selective channel for the given system
parameters. All channel taps vary in time following the same
Doppler spectrum. Different Doppler spectrums were evaluated
to show the robustness of the proposed prediction scheme to
the Doppler shape. All the simulation results were obtained by
averaging over 11000 OFDM symbols equivalent to 55 data
frames.

Fig. 6 shows the NMSE as a function of the prediction range
for the R-BEM LRP, the MMSE LRP of [13] with a memory
of 10 samples and the ESPRIT based SOS predictor of [44].
The —20 dB threshold is also depicted for reference. For a fair
comparison of the different prediction schemes, independent of
the channel estimator used to deliver the predictors input, the
performance when true channel samples are fed to the predic-
tors (SNR — 00) is shown. The performance degradation when
the practical channel estimator of Section IV is used in con-
junction with the R-BEM LRP proposed is also shown. It can
be seen that the prediction horizon of the proposed predictor is
better than the one corresponding to the AR predictor (MMSE)
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Fig. 6. NMSE performance for R-BEM LRP, MMSE LRP [13], and ESPRIT
SOS predictor [44]. Predictors of [ 13] and [44] are fed with true channel samples
(SNR — oo) and R-BEM LRP with both true channel samples and 30 dB SNR
estimated channel samples using (18). One frame prediction (22 symbols) is
equivalent to A = 0.037 and A = 0.222 for mobile speeds of 10 km/h and 60
km/h respectively.

and similar to that of the SOS (ESPRIT). R-BEM LRP attains a
prediction horizon of 0.33\ at the —20 dB threshold while the
MMSE predictor and SOS predictor achieve 0.25 and 0.32 re-
spectively, being the performance of the R-BEM predictor better
than that of the MMSE predictor from 0.15\. The R-BEM pre-
dictor outperforms the MMSE predictor both in terms of low
computational complexity and prediction range while having a
prediction range comparable to the ESPRIT predictor at a much
lower computational cost. For the given simulation parameters
Table I shows the computational cost of the compared channel
predictors. The number of complex operations for the predictor
[43] was computed using a memory of 10 samples. For the ES-
PRIT predictor, the approximated computational cost provided
in [35] was used for the evaluation of the coefficient update cost
assuming that 6 nonzero channel taps are identified with an av-
erage of 8 rays each and a maximum of 16 rays per tap. We
have that although the R-BEM-LRP results in only 30% com-
putational saving for the given parameters, the complexity of
the proposed predictor grows linearly with G while the com-
plexity of [43], dominated by the coefficients update operation,
grows quadratically with the predictor memory M. Compared
with the predictor in [35], the proposed scheme results in a com-
putational saving of approximately 62%, without considering
the initialization step required in [35].

Fig. 7 shows the performance of the proposed predictor when
the channel Doppler spectrum does not follow the Jakes model.
The Jakes Doppler result is plotted for comparison, together
with a flat Doppler spectrum limited to v4,,,. Bandpass Doppler
spectrum shapes were also tested. The wide bandpass Doppler
spectrum is centered at vg, with a bandwidth of v, and the
narrow bandpass filter, also centered at v4,,, has a bandwidth
of 0.3v4,, . It can be seen that the results are very similar for all
tested Doppler spectra which shows that the proposed technique
is robust to non-Jakes Doppler spectrum as expected from the
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TABLE II
COMPUTATIONAL COST EXAMPLE FOR THE SIMULATIONS SETTING

Pred. Iteration | Coeff. Update
R-BEM
proposed 18,756 -
estim./pred.
RLS-MMSE 3,824 22,953
pred. [43]
ESPRIT 19,456 = 30, 000
pred. [35]

A memory of 10 samples was used for the RLS-MMSE predictor. For the
ESPRIT predictor, it is assumed that 6 nonzero channel taps are identified
with an average of 8 rays each and a maximum of 16 rays per tap.

-15 T T T T T T T
-20
=251
S -sof
L
D]
= -35f
Z
a0t -/ ! . A REEERRE —20dB threshold i
£ : Jakes Doppler Spectrum
4 . = = = Flat Doppler Spectrum
-45 "'l-' o= = Wide Bandpass Doppler Spectrum |
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A

Fig. 7. NMSE versus A performance for R-BEM LRP undergoing different
Doppler shape channels. All curves attain the same prediction range showing
that the prediction algorithm is robust to non-Jakes Doppler spectra. The pre-
dictor is fed with true channel samples (SNR — o0).

DCT approach. For this test the predictor is fed with true channel
samples.

The above test with non-Jakes Doppler spectra was also car-
ried out for the MMSE LRP and the ESPRIT predictor, and the
results are shown in Fig. 8 along with the corresponding results
of the R-BEM LRP. As expected, both the MMSE LRP and the
ESPRIT predictor achieve roughly the same prediction horizons
with the different Doppler spectra tested. These two predictors
explicitly estimate the time domain autocorrelation function of
the channel, and so they are robust to the Doppler model at the
expense of increased computational load. On the other hand, the
DCT modeling of the R-BEM LRP, makes the estimation of this
autocorrelation function unnecessary thus avoiding the compu-
tational complexity involved.

Finally, Fig. 9 shows the performance of the R-BEM predictor
as a function of SNR for a fixed prediction horizon of 1 frame (2
ms) for different mobile speeds. The curves show that the pro-
posed predictor can reliably predict the channel one frame ahead
from pedestrian to vehicular speeds for moderate to high SNR.
The design objective of the proposed scheme prioritizes Doppler
modeling before noise minimization. This enables to obtain low
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Fig. 8. NMSE versus A performance for R-BEM LRP, MMSE LRP, and ES-
PRIT predictor undergoing different Doppler shape channels. Different from
R-BEM LRP, the MMSE LRP and ESPRIT predictor explicitly estimate the
time autocorrelation of the channel, leading to higher computational cost as
compared to R-BEM LRP.
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Fig. 9. NMSE versus SNR for R-BEM LRP at different mobile speeds and
at a fixed prediction horizon of 1 frame. Mobile speeds of 3, 10, 30, 50, and 60
km/h correspond to fractions of A equal to 0.011, 0.037,0.111, 0.185, and 0.222
respectively.

complexity solutions to the prediction problem without sacri-
ficing too much in modeling accuracy. Equation (5) gives an
accurate value of G for a moderate to high SNR environment
by discarding low energy basis coefficients more sensitive to
noise. In a low SNR scenario more basis coefficients will be
sensitive to noise and the classical more conservative criterion
G = [2mvgM| + 1 results more appropriate for selecting the
basis dimension G.

VIII. CONCLUSION

We proposed a recursive implementation for the basis expan-
sion model (BEM) based on an approximation of the spectral
characteristics of discrete cosine transform (DCT). This BEM
formulation avoids the estimation and online updating of the
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Doppler statistics of the time-varying channel. Moreover, it re-
sults in a time invariant structure that leads to a low complexity
Kalman formulation of the estimation problem.

A long range channel predictor was derived from the pro-
posed estimation structure. This predictor makes use of the good
fitting properties of the estimators based on BEMs and the good
prediction characteristic of recursive implementation. In addi-
tion, it renders low computational complexity as the proposed
estimation structure is time invariant. Simulation results show
that the proposed predictor is a good alternative for low com-
plexity channel prediction at moderate to high SNR, because it
attains a reliable prediction horizon comparable to that of the
sum-of-sinusoids (SOS) prediction approach at a small fraction
of the required computational cost of SOS.
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