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Abstract—We propose novel direct and indirect learning pre-
distorters (PDs) that employ a new baseband simplicial canonical
piecewise linear (SCPWL) function. The performance of the pro-
posed PDs is easily controlled by varying the number of segments
of the SCPWL function. When comparing to polynomial-based
PDs, our SCPWL-based PDs are more robust for modeling strong
nonlinearities and are less sensitive to input noise. In particular,
we show that noise appearing in the feedback path of an indirect
learning SCPWL-PD has negligible effect on the performance
while the polynomial counterpart suffers from a noise-induced
coefficient bias. We consider adaptive implementations of both
Hammerstein-based and memory-based SCPWL PDs; the former
featuring less parameters to be identified while the latter renders
more straightforward parameter identification.When deriving the
PD algorithms, we avoid a separate PA identification step which
allows for a true real-time, or sample-by-sample, implementa-
tion without an alternating PA and PD identification procedure.
However, to arrive at efficient sample-by-sample algorithms for
Hammerstein PDs we need to bypass the problem of the associated
nonconvex cost function. This is done by employing a modified,
linear-in-the-parameter, Wiener model whose parameters can be
explicitly or implicitly used for both indirect and direct learning.
Extensive simulations confirm that the proposed SCPWL PDs out-
perform their polynomial counterparts, especially when noise is
present in the feedback path of the indirect learning structure. The
same is also verified by circuit level simulations on the Freescale
MRF6S23100H class-AB PA in an 802.16d WiMAX system.

Index Terms—Adaptive predistorter, digital predistorter, direct
learning, indirect learning, piecewise linear function, power ampli-
fier with memory.

I. INTRODUCTION

M ODERN communications systems such as the third
generation (3G) system, the long term evolution of

3G system (3G-LTE), and WiMAX all emphasize spectral
efficiency and power efficiency. These systems employ linear
modulation techniques to fill more bits into the available spec-
trum and multicarrier transmission schemes such as orthogonal
frequency-division multiplexing (OFDM) to gain spectral
efficiency. The drawback of the OFDM scheme is its high
peak-to-average power ratio (PAPR). High PAPR signals re-
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quire the power amplifier (PA) to be operated in its linear region
to avoid nonlinear distortion due to excessive signal clipping
and compression. In wideband systems, memory effects result
in a nonflat PA transfer function. Effects of nonlinear distortion
include inband signal distortion and spectral spreading into the
adjacent channels. Spectral spreading has to be mitigated at the
transmitter side to avoid adjacent channel interference (ACI).
On the other hand, linear PAs are power inefficient. For battery
operated devices, power efficiency helps prolong battery life. In
mobile network base stations, the PA systems account for more
than 50% of the total power consumption [1]. Thus, power
efficiency of the PA is crucial for effective operational cost
savings as well as for alleviation of heat dissipation problems.
Linearization techniques can be employed to achieve a

balance between power efficiency and linearity. Linearizers
alter the transmitted signal so that the resulting output of the
PA is linear. They can be realized using extra circuitry or by
signal processing methods. Recent examples of the former
include the reverse MM-LINC technique [2] and an adaptive
predistortion employing a modulator [3]. Digital predis-
tortion is a method most commonly implemented by a signal
processing approach. For narrowband systems, memoryless
predistorters (PDs) can be employed [4], [5]. For broadband
systems, PDs that compensate nonlinearity with memory are
required, e.g., [6]–[11], and are also considered in this paper.
Recent developments of digital PDs have mainly focused on
the following two areas:
Firstly, many recent papers have introduced efficient memory

structures into the PD models to enable linearization of broad-
band PAs that exhibit memory effects. Although the Volterra
model is known as the most complete nonlinear model with
memory [12], its complexity prohibits its practical application.
Block models such as the Wiener and Hammerstein systems
and their variants are often used for PA and PD modeling [6],
[13]–[15] as they can be described by much less parameters.
However, parameter estimation of these models is often com-
plicated by their nonconvex cost function. Simplified Volterra
models, e.g., memory polynomial models [7], [8], [16], gen-
eralized memory polynomial [9], or the dynamic deviation re-
duction-based Volterra model [10] are linear-in-the-parameter
models that have been used for efficient modeling of PA and PD
with memory. Recently, a more general expression formulated
using sum of separable functions has emerged [11], in which the
Volterra model and its variants mentioned above are shown to
be special cases of the expression, where polynomials are used
as the bases to form the separable functions. However, a draw-
back of polynomial model is the numerical problem associated
with higher order polynomials. Thus, polynomials are limited
for modeling mild nonlinearities. Various orthogonal polyno-
mials have been proposed [17], [18] for alleviating the numer-
ical problem, but with the trade-off of having nonlinear basis
functions which are more complex to generate.
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Secondly, adaptive PD algorithms that allow for tracking of
time-varying PA characteristics are becoming more important
in modern communications systems. In the literature, PD adap-
tation algorithms are mainly based on the indirect learning [7],
[19] and direct learning [13], [20], [21] approaches. The former
is inherently adaptive to fluctuation in the PA characteristics. It
identifies the postinverse model of the PA which is directly used
for predistortion. Its computational complexity is lower com-
pared to the latter. A major concern for the method is the effect
of measurement noise due to downconversion and analog-to-
digital (A/D) conversion, at the feedback path. Due to the non-
linear basis functions of polynomial models, noise causes co-
efficient bias effects [9] in polynomial PDs, leading to spectral
regrowth at the PA output [9], [21], [22]. The direct learning
method identifies the preinverse model of the PA [13], [21], [23]
and measurement noise is not a concern. However, it requires
explicit knowledge of the PA model. The need for PA model
estimation and input signal filtering with the PA model signif-
icantly increase the computational complexity. In addition, an
online or periodically active PA model estimator is required to
enable tracking of changes in the PA characteristics. Due to the
complexity of implementation, some authors assumed the PA
model to be known [20], [21] or is identified offline [13]. In [23],
in order to reduce the computational complexity, the PA static
nonlinearities are modeled using piecewise linear (PWL) func-
tions. However, the AM/AM and AM/PM functions are mod-
eled as two separate PWL functions.
In this paper, we propose novel complex-valued simplicial

canonical piecewise linear (SCPWL) [24] functions, namely a
static SCPWL model and a memory-SCPWL model, that are
suitable for modeling baseband nonlinearities. Unlike previous
real-valued PWL functions used for modeling PA and PD (e.g.,
see [23]), the proposed baseband SCPWL functions are able
to capture both amplitude and phase information in a single
function. The proposed SCPWL models are more robust for
modeling strong nonlinearities as they do not exhibit numerical
problem as higher order polynomials. Their modeling capability
can be improved by increasing the number of breakpoints. In
terms of intermodulation distortion (IMD) products, it has been
shown that the SCPWL model is capable of modeling infinite
IMD products [25]. Unlike polynomial models, its modeling
capability does not degrade but saturates when the amount of
breakpoints exceeds an optimum number. It also allows flexible
distribution of the breakpoints to better fit a given shape of a
nonlinearity [26].
The proposed SCPWL models are used for implementing a

Hammerstein-SCPWL PD and a memory-SCPWL PD, respec-
tively.We derive both the indirect and direct learning algorithms
for adaptive identification of the PD parameters. To overcome
the nonconvex cost function problem of the Hammersteinmodel
PD identification, we employ a modified Wiener model esti-
mator. For the direct learning PDs, we incorporate online PA
model estimators so that the PA characteristics variation can
be tracked. We present a solution to simplify the overall com-
plexity of the direct learning Hammerstein PD algorithm. Con-
cerning measurement noise at the feedback path of the indirect
learning PD, we show that due to its linear basis function, the
SCPWL model does not suffer from noise induced coefficient
bias effects which affect polynomials. Thus, noise has negli-
gible effects on the SCPWL PD spectral regrowth compensation
performance. We evaluate and compare the proposed SCPWL
PDs with existing polynomial PDs [7], [9], [21], first by base-
band system-level simulations in MATLAB® followed by cir-

cuit level simulations in the Agilent Advanced Design System
(ADS) simulator. The PA used in the circuit level simulations
was designed in ADS system for WiMAX system based on the
Freescale MRF6S23100H LDMOS PA component model. The
PA design has been prototyped and validated in a laboratory by
IMD test [27].
In Section II, we present the proposed baseband memoryless

and memory-SCPWL models. The indirect learning algorithms
for the SCPWL PDs are derived in Section III. In the same
section, we describe the modified Wiener model estimator that
is employed with the Hammerstein PD algorithms in order to
circumvent the nonconvex cost function of block models. The
section ends with an analysis and comparison of measurement
noise effects on the SCPWL and polynomial models. The direct
learning algorithms for the proposed SCPWL PDs are derived
in Section IV. We present solutions for simplifying the direct
learning algorithms, e.g., by exploiting the known structure of
the SCPWL function and by employing the modified Wiener
model estimator. Section V presents the simulation results. The
SCPWL PDs are first evaluated and compared with polynomial
PDs in baseband level simulations in MATLAB®. Effects of
measurement noise on the indirect learning PDs are also evalu-
ated. Then, the indirect learning memory-SCPWL PD is further
evaluated on the broadband PA in 802.16d downlink by circuit
level simulations in the ADS simulator. The computational re-
quirements for the indirect and direct learning algorithms are
also provided in this section. Finally, conclusions are drawn in
Section VI.

II. BASEBAND MEMORY SCPWL FUNCTION

The SCPWL PDs proposed in the following sections are de-
veloped for the case of complex-valued (baseband) input-output
signals. In this section, we develop a new baseband SCPWL
model by modifying the single-input real-valued SCPWL map-
ping , which is a particular case of the multidimensional
SCPWL mapping [24] given by

(1)

where is the number of breakpoints used for defining
the piecewise linear (PWL) segments and are the real-
valued coefficients. The SCPWL basis function is given by

(2)

where , are the user-defined breakpoints.
In order to model baseband signals, we need to modify (1)

to include phase information and allowing coefficients to be
complex-valued. Furthermore, memory effects originating from
past input samples are included. The resulting
complex-valued SCPWL mapping can be viewed as a
simplified variant of a parallel Hammerstein structure [9]. The
output of the memory-SCPWL model is formed by summing
the output signals described by a baseband mapping at
the current and past time instants, i.e.,

(3)
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Fig. 1. Indirect learning Hammerstein model PD.

where is the
vector of input samples, and are the respective am-
plitude and phase of the baseband signal , and vectors

and are given by

(4)

The term in the curly bracket in (3) has a similar expression as
the baseband equivalent of passband quasi-memoryless model
(AM/AM and AM/PM conversion) discussed in [14, Sec. IV].
Equation (3) reduces to a memoryless (static) mapping when

.
In what follows, we propose a Hammerstein-SCPWL PD and

a memory-SCPWL PD. The memoryless mapping is used as a
building block in the proposed Hammerstein predistorter. The
more general memory mapping, i.e., , is used to model
the broadband PD as a single nonlinear function with memory.
The memory-SCPWL function is particularly attractive for PD
design as it renders simple adaptive predistorter algorithms.
This is due to its linear-in-the-parameter expression, which in
turn, makes parameter adaptation more straightforward than the
Wiener or Hammerstein systems, which is often complicated
by the nonconvex cost function problem [26], [28], [29].

III. INDIRECT LEARNING SCPWL PREDISTORTERS

The indirect learning method is a conceptually simple ap-
proach where a learning loop is closed around the PA system.
Input and output signals of the PA are fed to the indirect learning
filter such that the postinverse of the PA model is identified.
Then the parameters are directly copied to the PD block, see,
e.g., [7], [19]. In this section, we derive indirect learning algo-
rithms for Hammerstein-SCPWL PD and memory-SCPWL PD.
Then, we analyze the effects of noise at the feedback path on the
identified polynomial and SCPWL coefficients.

A. Indirect Learning Hammerstein-SCPWL PD

A Hammerstein model PD consists of a static nonlinearity
followed by a linear filter . Fig. 1 illustrates the configura-

tion of the proposed indirect learning Hammerstein model PD.
To identify the Hammerstein model PD, the PA is assumed to
be a Wiener system, consisting of a linear subsystem fol-
lowed by a static nonlinear subsystem . In order to avoid
the nonconvex cost function problem of Wiener/Hammerstein
system identification, we employ a modified Wiener model es-
timator shown in Fig. 2. The estimator provides the estimates
of the postinverse of the PA static nonlinearity and the
PA memory . The estimate is then directly copied to
the nonlinear block of the PD. The estimate is used for
adapting the PD linear filter . Thus, the indirect learning

Fig. 2. Modified Wiener model estimator.

Hammerstein PD consists of two identification algorithms run-
ning simultaneously. The algorithms for the two loops are de-
rived in the following.
1) Loop 1 : Estimation of and : Fig. 2 illustrates the mod-

ified Wiener model estimator employed in the indirect learning
branch. The configuration of the estimator renders a linear-in-
the-parameter error equation, leading to a convex cost function
[30]. The algorithm estimates the intermediate signal in
Fig. 2 from the input-output signals { } byminimizing
the error , where

(5)

and and are defined in Section II. To avoid ambi-
guity in the filter gain, is anchored to a fixed value
[26], [28]. The error signal to be minimized can now be written
as

(6)

where the parameter vector and regression
vector are given by

(7)

and vector is defined by (4). Using the instan-
taneous squared error as an objective function, the sto-
chastic gradient algorithm that updates is given by

(8)

where is the adaptation step size that controls the conver-
gence speed and final error. To ensure convergence, is chosen
in the range [31]

(9)

where is the maximum eigenvalue of . A
more practical step size range is obtained by replacing
with its upper bound

(10)
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where is the variance of the signal . The inequality
in (10) resulted from the fact that the first entry of is
bounded in magnitude by 1, and the rest by . Equation
(10) indicates that the PWL partition sizes of , the filter
length of and the input signal power affect the adaptation
step size, and therefore the convergence speed of the estimator.
For example, for a given and a fixed set of , increasing the
input signal power renders a smaller upper bound for , leading
to slower convergence.
Remark 1: Considering an SCPWLPD, the PD output is

bounded in amplitude by the saturation imposed by the function
following the last breakpoint, see (2). Thus, there is a practical
limit for the upper bound of which is determined by the satu-
ration level and the gain of the linear filter . In contrast, the
polynomial PD has an expanding characteristic without a satu-
ration level. In case of high level input, has to be very small
in order to avoid algorithm instability, which in turn, leads to
very slow convergence.
2) Loop 2 : Adaptation of the PD Linear Filter : The linear

filter of the PD shall equalize the memory of the
Wiener model PA. In other words, the intermediate signals
and in Figs. 1 should ideally be identical. Since the Wiener
model estimator provides us with an estimate , we can re-
produce an estimate through (5). By forming the error

(11)

a stochastic gradient algorithm that updates the parameter vector
of , is given by

(12)

where . The last approxi-
mation in (12) is valid for sufficiently small value of so that

for .
Equations (8) and (12) constitute the indirect learning Ham-

merstein PD algorithm. Note that (12) is a filtered-x LMS al-
gorithm. Thus, the stability of the recursion in (12) depends on
the quality of the estimates . To ensure stability, the
phase response error between the estimate and the actual PA
dynamics must be within the range and [32],
[33].

B. Indirect Learning Memory-SCPWL PD

Fig. 3 illustrates the indirect learning configuration for the
memory-SCPWL PD. The postinverse of the broadband PA is
modeled using the memory-SCPWL model in (3). Following
from Fig. 3, the output of the memory-SCPWL filter is
given by

(13)

Fig. 3. Indirect learning memory SCPWL PD.

Then, the error signal is given by

(14)

The adaptation of the memory-SCPWL PD is greatly simpli-
fied compared to that of the Hammerstein PD, as the filtering
problem is linear in the parameters. By minimizing the the in-
stantaneous squared error with respect to , we ob-
tain the update equation

(15)

where . Finally, the memory-SCPWL PD
is updated by directly copying the postinverse filters as

for .
The computational complexity of implementing the indirect

learning algorithms for the two SCPWL PDs are presented in
Table II.

C. Measurement Noise Effects

Measurement noise at the PA output, which constitutes
perturbations due to down-conversion and A/D conversion is
shown to cause errors in the identified polynomial PD coef-
ficients, known as coefficient bias effect [22] caused by the
nonlinear model. Here, we examine the disturbance in the mean
amplitude of each noise corrupted basis of the polynomial and
SCPWL models.
In the context of predistortion, we assume in the following

that convergence has taken place. Furthermore, the step size
is assumed sufficiently small so that effects due to parameter
copying (associated with indirect learning) can be neglected.
We also assume that the input signal is backed off sufficiently
so that no signal is clipped by the PD nor PA. Then, is
Gaussian distributed with zero mean and variance . Its ampli-
tude , denoted by follows the Rayleigh distribution

with parameter .
1) Polynomial Model: The mean amplitude of the th basis

can be expressed as [18]

(16)

where . Let be the noisy
input signal where is a zero-mean Gaussian noise process
with variance . Then,
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(17)

where denotes signal-to-noise-ratio (SNR). The
approximation in the third line is valid for sufficiently high SNR
so that terms with and higher order can be ne-
glected. The last line of (17) shows that the effect of noise on
the polynomial basis is a bias that is proportional to the mean of
the unperturbed basis and increases with the order of the basis
. Consequently, the identified polynomial coefficients are bi-
ased by different factors, with larger bias for higher order coef-
ficients. In effect, this alters the spectral shape of the PD, leading
to an increase in out-of-band power at the PA output.
2) SCPWL Model: The mean amplitude of the th SCPWL

basis, derived in the Appendix, is given by

(18)

The expression in the square bracket is the probability that the
signal amplitude falls between and . For sufficiently
high SNR,1 .
Then from (18), the error in the SCPWL basis caused by input
noise can be expressed as

(19)

The approximation in the third line is valid for sufficiently high
SNR, i.e., . We see from (19) that the noise-induced
bias is only proportional to the unperturbed basis but not the
basis number . In effect, each SCPWL basis is scaled by the
factor , which also leads to uniform scaling of
the coefficients when a stochastic gradient algorithm as in (15)
is employed. Thus, the spectral profile of the identified SCPWL
PD is not affected by the measurement noise.

IV. DIRECT LEARNING SCPWL PREDISTORTERS

This section derives the direct-learning versions of the Ham-
merstein-based and memory-based SCPWL predistorters. Com-
paring to the indirect learning versions of the previous section,
the direct learning algorithms attempt to minimize the more
relevant error signal formed by the PA output and the desired
output (i.e., a scaled version of the PD input). The error function
used for parameter updates depends explicitly on an assumed
PA model. As a consequence, direct learning algorithms require
knowledge of the PA model. The estimate of the PA model is
required to be accurate to within 90 of the actual PA phase re-
sponse [33], [34] to ensure the algorithm is stable. Our solutions
will simultaneously find the necessary PA and PD parameters.
In the case of the Hammerstein PD, we show how to avoid a

1Simulations verify that dB is sufficient.

Fig. 4. Direct learning Hammerstein model PD.

complicated Wiener model identification by exploiting the es-
timates provided by the modified Wiener model described in
Section III, instead.

A. Direct Learning Hammerstein SCPWL Predistorter

Fig. 4 illustrates the direct learning configuration for the
Hammerstein model PD. In the following, the PA is modeled
by a Wiener system characterized by the cascade system

as depicted in Fig. 3. At each algorithm iteration
, estimates of and obtained from the Wiener model
estimator are used in the PD adaptive algorithms as shown in
Fig. 4. Later on we show that the PD algorithm can be imple-
mented using knowledge of and . This will significantly
simplify online adaptation, since we only need to identify the
modified Wiener model which is linear in the parameters.
The error signal that drives the direct learning algorithm can

be written as

(20)

where is as defined in (5). Note that the approximation of
the error signal in (20), which involves , is used when
deriving the adaptive algorithms. By minimizing the instanta-
neous squared error with respect to and ,
and using the chain rule, we obtain the stochastic gradient al-
gorithms

(21)

(22)
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where
, and stands for

convolution. The approximations on the last lines of (21)
and (22) are valid for sufficiently small step sizes such that

for and
for , respectively.
Equations (21) and (22) resemble the nonlinear filtered-x al-

gorithms as in [35], and constitute the adaptive algorithms for
the direct-learning Hammerstein model PD. We see that the
computation of requires the knowledge of . Estimation
of is not attractive from the perspective of computational
complexity. Our solutions are summarized in the following re-
marks.
Remark 2: To reduce the overall complexity of the direct

learning Hammerstein PD in (21) and (22), we may employ
the modified Wiener model estimator described in Section III,
which provides us with and . Although an estimate of
is not available, we recognize that approximates the inverse
of . By using the fact that the derivative of inverse functions
are reciprocals of each other we may use the parameters of ,
see (8), to obtain the following approximation of (see
Appendix for details)

(23)

where specifies the PWL segment number that falls
into. In (23) are the parameters of the PD static nonlinearity,
where the first two parameters and determine the small
signal gain of the PD. In our simulations, the initial value of
is chosen to be 1 and 0 for other ’s. This in effect gives a linear
response of gain 1, which means that initially (begining of the
first iteration), the PD does not change the signal that passes
through it.
Remark 3: The complex-valued gain can be dropped at

the expense of a decrease in convergence speed [35].

B. Direct Learning Memory SCPWL Predistorter

Fig. 5 illustrates the direct learning configuration for the
memory-SCPWL PD. In the following we assume that the PA
system is accurately modeled as a memory-SCPWL system
with memory length . That is, the PA model output may be
written as

(24)

Since the PA model leads to a linear-in-the-parameter error
equation, we can directly formulate the stochastic gradient
algorithm for updating PA model parameter vectors
via input-output measurements

(25)

The PA model estimates obtained through (25) are fed to the
direct learning algorithm of the PD that will be derived next.

Fig. 5. Direct learning memory SCPWL PD.

Let thememory length of thememory-SCPWLPD be , and
PD parameter vectors . Then, the PD output signal is
expressed as

(26)

The error signal for the PD adaptive algorithm can be expressed
in terms of the PA model as

(27)

By minimizing the instantaneous squared error with
respect to , the stochastic gradient algorithm for adapting
the PD is given by

(28)

where the last line is valid for sufficiently small such that
for

. Here, the PA parameters are available and using (36) the
derivative of the PA model is given by

(29)

where is the segment number that falls into.
Equation (28) constitutes the adaptive algorithm of the direct

learning memory-SCPWL PD and (25) is the online PA model
estimator.
Remark 4: Unlike the case of a static nonlinearity,

cannot be omitted from (28). It contains
the coefficients filtering as well as the
phase response information of the PA which is crucial for the
algorithm stability.
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V. SIMULATIONS

In this section we evaluate the performance of the proposed
SCPWL PDs by simulations, first in MATLAB environment,
followed by circuit level simulations in the Agilent Advanced
Design System (ADS) simulator. In Section V-A, we confirm
our analysis results on the effect of measurement noise at the
feedback path of the indirect learning PDs by MATLAB simu-
lations. We demonstrate how noise affect the adjacent channel
power ratio (ACPR) performance of the memory-SCPWL PD
and memory polynomial PD as the number of PD parameters is
increased. Then, we compare the performance of the proposed
SCPWL PDs with polynomial PDs with similar model struc-
tures, i.e., memory-SCPWL PD with memory polynomial [7]
and generalizedmemory polynomial (GMP) PDs [9], and, Ham-
merstein-SCPWL PD with Hammerstein polynomial PD [37],
[38]. The performance comparison results for the indirect and
direct learning PDs are presented in Sections V-B and V-C, re-
spectively.
It will be evident from the MATLAB simulation results

that the memory-SCPWL PD provides robust performance,
whether adapted by the indirect or direct learning methods.
Although the direct learning Hammerstein-SCPWL PD shows
as good performance as the memory-SCPWL PD, it is shown in
Section V-E that it requires 70% more multiplications than the
indirect learning memory-SCPWL PD. Thus, in Section V-D,
the indirect learning memory-SCPWL PD is further evaluated
on a circuit level LDMOS PA in WiMAX 802.16d system in
the ADS simulator.
The PD performances are evaluated based on the ACPR and

the amount of inband distortion it compensates. The ACPR per-
formance is observed through the spectrum of the linearized PA
output. The compensation of inband distortion is evaluated by
the error vector magnitude (EVM) given in (30).

(30)

where and are the received symbols and reference sym-
bols, respectively, and is the total number of QAM symbols
used in the calculation.

A. Measurement Noise and Model Order

In all the MATLAB simulations, the transmitted signal is an
OFDM signal generated by 128 subcarriers with carrier spacing
of 50 kHz, each modulated by 16-QAM data. The OFDM signal
was oversampled by 8 times and a root-raised cosine (RRC)
filter with rolloff factor was used for pulse shaping.
The PAPR of the OFDM signal is approximately 12 dB. In the
simulations, the input signal is backed off by approximately 12
dB from the PA saturation point so that the peak amplitude of
the signal falls around the PA saturation point. The linearization
performances are measured by averaging the ACPR and EVM
of 500 linearized OFDM symbols over 10 realizations.
In this part, the PA is implemented as a Wiener system char-

acterized by a minimum phase filter [36] followed by a static
nonlinearity given by

(31)

Fig. 6. ACPR performance of the indirect learning memory-SCPWL PDs with
. The solid plots indicate SNR = 40 dB and dotted plots indicate
dB. As the number of breakpoints increases, the performance of the

PD improves. The effect of measurement noise is insignificant on the memory-
SCPWL PD.

As noise effect is more pronounced in models with memory,
we use the memory-SCPWL PD and memory polynomial PD
for this experiment. The noise at the feedback path is set
so that the SNR at the PA output is 30 dB, 40 dB, or 50 dB.
The memory-SCPWL PD is implemented with and
memory length and identified by the indirect learning al-
gorithm in (15). In all the simulations, the breakpoints of the
SCPWL PDs are evenly distributed between zero and the sat-
uration point of the PA.2 The PD parameter were initialized to

and zero for all other coefficients. Adaptation step size
was employed when the SNR at the PA output was 30

dB and was used otherwise. The memory polynomial
PD of order 3, 5, and 7, andmemory length 4, are simulated. The
memory length is chosen so that the ACPR performance (at the
immediate adjacent channels) at SNR 40 dB is almost the same
as that of the memory-SCPWL PD. The parameters are identi-
fied using the damped-Newton algorithm as in [9]. The PDs are
identified using data block of 5 OFDM symbols in each iteration
for 35 iterations. The PD parameters were initialized such that
the first order, zero memory coefficient was one and all other co-
efficients were zero. Adaptation step size of 0.4 was employed
for adapting the 7th order PD and step size 0.3 were used for
adapting PDs of orders 3 and 5.
Fig. 6 shows the ACPR performance of the memory-SCPWL

PD as the number of breakpoints is increased from to
. The solid and dotted plots indicate the performance

of the PDs when SNR at the feedback path is 40 dB and 50
dB, respectively. It can be seen that the effect noise on SCPWL
PD performance is negligible. In contrast, at dB, in-
creasing the polynomial order from 5 to 7 results in performance
degradation as shown in Fig. 7. It can also be seen that, the per-
formance degradation of the 7th order PD is much more signif-
icant than the 5th order PD when the noise level is increased,
which indicates that noise effect is more pronounced in higher
order polynomial.
Fig. 8 shows the average normalized adjacent channel power

(ACP) versus SNR at the PA output for thememory-SCPWLPD
and memory-polynomial PD. The ACPs are calculated from the

2If a priori knowledge of the nonlinearity shape is available, more break-
points can be used in regions where slope of the nonlinearity changes rapidly
than regions which are almost linear ([26, Ch. 3]). Otherwise, common practice
is to use uniform partition.
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Fig. 7. ACPR performance of the indirect learning memory polynomial PDs of
order 5 and 7. The solid plots indicate dB and dotted plots indicate

dB. The noise effects are more pronounced on the higher order
memory-polynomial PD, as can be seen in the performance degradation of the
7th order PD at SNR 40 dB.

Fig. 8. Normalized ACP of linearized PA output vs. SNR at the PA output.
Solid lines and dashed lines represent the performance of the memory-SCPWL
PD and memory polynomial PD, respectively.

average power of the immediate adjacent channels indicated by
the double arrows in Fig. 6. For different SNR levels at the PA
output, it is shown that as the number of breakpoints of the
memory-SCPWL PD increases, the ACP decreases, see Fig. 6.
In contrast, when the SNR at the PA output is low, the ACP at
the linearized PA output is higher as the order of the polynomial
increases, see Fig. 7. This shows that noise has insignificant
effect on the memory-SCPWL PD performance, whereas, it has
increasing effect on the memory-polynomial PD performance
as the PD model order is increased.

B. Performance Comparison of Indirect Learning PDs

In this section, we compare the performance of the indirect
learning memory-SCPWL PDs with memory polynomial [7]
and generalized memory polynomial (GMP) [9] PDs, identi-
fied using the “damped” Newton algorithm [9]. For comparison
with the Hammerstein-SCPWL PD, we have implemented the
Hammerstein-polynomial PDs, identified using the Narrendra-
Gallman (NG) method as in [37], [38]. In the following exam-
ples, the SNR at the feedback path is 40 dB, unless otherwise
specified.
The PDs are evaluated on a Wiener-Hammerstein (W-H) PA

consisting of a static nonlinear system in between two
linear filters and . The linear filters are taken
from [7, eq. (8)]. Instead of employing the complete W-H PA

Fig. 9. Comparison of the indirect learning memory-SCPWL PD with various
polynomial-based PDs for a W-H model PA. (a) Memory polynomial PD,
, odd orders only, . (b) Memory polynomial PD , even and
odd orders, . (c) Memory polynomial PD , even and odd orders,

dB. (d) GMP PD,
. (e) GMP PD at dB (dashed plot). (f)

The proposed indirect learning memory-SCPWL PD, .

in [7], we consider a stronger nonlinearity described by a Saleh
model. The ACPR of the unlinearizedW-H PA is approximately
35 dB at dB. The static nonlinearity and linear filters
of the W-H PA are as follows:

(32)

1) Memory-SCPWL PD vs. Memory Polynomial and GMP
PDs: The memory-SCPWL PD employs breakpoints
and memory lengths are . Initially, the PD parameter
vector are all zero except , and the adaptation step size

was used. The memory polynomial PD is of order
and memory length . The GMP PD employs 5th

order aligned terms, i.e., and memory length
4, i.e., . The cross-terms parameters

and are employed.3 The polynomial
PD parameters were initialized to 1 for the first parameter (first
order and memory ) and zero for all other parameters.
The “damped” Newton algorithm employed data blocks of 5
OFDM symbols, adaptation step size of 0.4 and 30 iterations
(convergence achieved between 10–15 iterations).
Fig. 9 shows the ACPR performance of the PDs in linearizing

the W-H model PA. When the SNR at the feedback path is 40
dB, the polynomial PDs are only able to suppress the ACP by
approximately 15 dB, achieving an ACPR of approximately 50
dB. The memory-SCPWL PD outperforms the polynomial PDs
by at least 10 dB, suppressing the ACP to 60 dB below the in-
band signal level. By reducing the noise level to
dB, the GMP PD is able to attain a similar performance as the
memory-SCPWL PD, while the memory polynomial PD with
odd and even order terms attains an ACPR of 55 dB.
Table I shows the EVMs of the unlinearized and linearized

W-H PA. The average EVM without predistortion for the W-H
PA output is dB. The memory-SCPWL PD attains an

3Please refer to [9] for detailed description of and .
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TABLE I
LINEARIZED OUTPUT EVM

EVM of dB, compared to approximately dB at-
tained by the memory polynomial PDs and the GMP PDs. An
improvement of approximately 2 dB can be obtained by in-
creasing the memory length of the memory-SCPWL PD to
, in order to level the EVM performance of the polynomial
PDs. However, for a lower computational complexity, the 2
dB can be considered a good tradeoff. Furthermore, it is more
crucial to achieve a better ACPR performance than improving
EVM performance, which has a less stringent target.
2) Hammerstein-SCPWL PD vs. Hammerstein-Polynomial

PD: TheHammerstein-SCPWLPDs are implemented with
breakpoints for the static nonlinear blocks of the PD and PA

model estimators. The linear filters of the PD and PA model
estimator employ and , respectively. The initial
parameters are all zero except , and . For
the initial 200 OFDM symbols, the step sizes and

were used. After the initial adaptation,
and were employed.
The Hammerstein-polynomial PDs are identified using the

Narrendra-Gallman (NG) method [37], [38], employing blocks
of data with 5 OFDM symbols in each iteration. The PDs are
modeled with fifth order polynomials and linear filter of length

. Adaptation step size of 0.2 and 15 iterations were used.
Fig. 10 compares the ACPR performance of the Hammerstein

model PDs. The Hammerstein-SCPWL PD reduces the adjacent
channel power to 58 dB below the inband signal level compared
to ACPR of approximately 50 dB attained by the polynomial
PDs. The Hammerstein-polynomial PD that includes odd and
even order terms gives no significant improvement in the ACPR
performance compared to the odd-order-only PD. In terms of
EVM, the Hammerstein-SCPWL PD outperforms the Hammer-
stein-polynomial PDs by 4 dB, as can be seen from Table I.

C. Performance Comparison of Direct Learning PDs

We compare the direct learning SCPWLPDswith polynomial
PDs adapted using the nonlinear filtered-x LMS (NFXLMS) al-
gorithm [21]. The Instantaneous Equivalent Linear (IEL) filter
employed in the NFXLMS algorithm in [21] is developed by
assuming a Wiener model PA and that the PA model is known.
Thus, for fair comparison, we only consider comparing the di-
rect learning PDs in linearizing theWiener model PA in (31). As
in [21], the polynomial PDs are identified using the NFXLMS

Fig. 10. Comparison of the indirect learning Hammerstein-SCPWL PD with
the Hammerstein-polynomial PDs for a W-H model PA. (a) Hammerstein-poly-
nomial PD, , odd orders only, . (b) Hammerstein-polynomial PD,

, even and odd orders, . (c) The proposed Hammerstein-SCPWL
PD, .

algorithm with perfect knowledge of the Wiener PA. In contrast
the proposed direct learning algorithm for the SCPWL PDs in-
cludes online PA model estimators as described in Section IV,
where the algorithm does not necessarily require the PA to be a
Wiener system.
1) Memory-SCPWL PD vs. Memory-Polynomial PD: The

memory-SCPWL PD is implemented with and memory
length . Its online PA model estimator identifies the
PA as a memory-SCPWL model and (see
Section IV-B). With these parameters, the memory-SCPWL PD
converges to an MSE close to the noise floor after a few hun-
dread OFDM symbols.
Although the direct learningmethod circumvents the problem

of measurement noise at the PA output, a major concern for
the NFXLMS algorithm is its slow convergence as discussed in
[21]. We observed that the convergence speed of the NFXLMS
algorithm for the memory polynomial PD reduces drastically
as the memory length is increased. On the other hand, with
memory length , both the third and fifth order poly-
nomial PDs could not converge to the SNR level of the PA
output. Fig. 11 shows the MSE achieved after convergence for
the third and fifth order PDs with different memory lengths,
adapted using different step sizes. The curves indicate the best
step sizes for adapting PDs of different orders and memory
length. With , the NFXLMS memory polynomial PDs
can only attain an MSE of approximately 38.5 dB, after 2000
OFDM symbols. For , a minimum MSE close to noise
floor, i.e., dB can be attained. However, the algo-
rithm converged approximately after 80000 OFDM symbols.
Fig. 12 shows the convergence curves of the direct learning
memory-SCPWL PD and the NFXLMS memory polynomial
PDs. The memory-SCPWL PD algorithm employs step sizes

and for adapting the PA model and the PD
parameters, respectively. The polynomial PDs of order ,
and is adapted using step size 0.1. The third and fifth
order polynomial PDs with are adapted using step sizes
0.1 and 0.05, respectively.
Fig. 13 shows the ACPR performances of the PDs. The

memory-SCPWL PD attains an ACPR of approximately 65 dB,
outperforming both the third and fifth order memory polyno-
mial PDs with memory length . The fifth order memory
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Fig. 11. MSE after convergence with different step sizes for the direct learning
memory polynomial PDs. Lines with “*” markers indicate third order poly-
nomial and “o” markers indicate fifth order polynomial. Dashed line indicates
memory length , dash-dotted line indicates and solid line indi-
cates .

Fig. 12. Learning curves of the direct learning memory-SCPWL PD (
) and the memory-polynomial PDs (3rd and 5th order,

, known Wiener PA model).

Fig. 13. Comparison of the ACPR performance of the direct learning memory-
SCPWL PD with memory polynomial PDs for a Wiener model PA. (a) Memory
polynomial PD, . (b) Memory polynomial PD .
(c) Memory polynomial PD . (d) The proposed direct learning
memory-SCPWL PD, .

polynomial PD with is able to attained an ACPR of 65
dB after 100 000 OFDM symbols.
2) Hammerstein-SCPWL PD vs. Hammerstein-Polynomial

PD: The Hammerstein-SCPWL PD employs a linear filter of
length and breakpoints for the nonlinear

Fig. 14. Comparison of the direct learning Hammerstein-SCPWL PD with the
Hammerstein-polynomial PDs for a Wiener model PA. (a) Hammerstein-poly-
nomial PD, , odd orders only, . (b) Hammerstein-polynomial PD,

, even and odd orders, . (c) The proposed Hammerstein-SCPWL
PD, .

block. The PA model estimator assumes the PA to be a Wiener
model. The linear and nonlinear blocks of the PA are identified
using the modifiedWiener model estimator with memory length

and , respectively. The PD and PA model esti-
mator parameters are initialized to
and zero for all other parameters. For the initial 200 symbols,

and were used. After
the initial adaptation, the step sizes

were employed. The Hammerstein-polynomial PDs
employ fifth order models and memory length . The IEL
filter for the NFXLMS algorithm is implemented by assuming
the Wiener PA parameters are known as in [21]. Thus, there is
no initial adaptation. The first parameters of the linear and non-
linear filters of the PD were initialized to 1, and the rest of the
parameters were set to zero. The adaptation step sizes for both
the linear and nonlinear filters were 0.03.
Fig. 14 shows the ACPR performances of the Hammerstein

model PDs in linearizing the Wiener model PA. The Hammer-
stein-SCPWL PD attains an ACPR of approximately 63 dB. The
odd-order-only Hammerstein-polynomial PD attained anACPR
of approximately 55 dB, 8 dB worse than that of the Ham-
merstein-SCPWL PD. By including the even order terms, the
ACPR performance of the Hammerstein-polynomial PD is lev-
eled close to that of the Hammerstein-SCPWL PD.
From Table I, the Hammerstein-SCPWL PD and the Ham-

merstein-polynomial PDs are shown to achieve a similar EVM
performance of approximately 24 dB.

D. Linearization of Freescale MRF6S23100H LDMOS PA
in 802.16d System

In this section, MATLAB and ADS-Ptolemy cosimulation
is used to evaluate the performance of the indirect learning
memory-SCPWL PD on a PA in a WiMAX 802.16d downlink
transmitter.
1) The Freescale MRF6S23100H LDMOS PA: The PA

under test in this experiment is designed using the Freescale
MRF6S23100H LDMOS device model provided in the ADS
component library [27] for a WiMAX base station. It employs
a push-pull architecture and is designed to operate between
2.3–2.4 GHz, with 13 dB gain dB gain flatness and
51.2 dBm (131W) at 1 dB compression point. The broadband
matching networks are designed using Smith chart [40] and the
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Fig. 15. Linearization of the Freescale MRF6S23100H PA by the indirect
learning PDs. (a) Memory polynomial PD, , odd and even orders,

. (b) Memory polynomial PD, , odd and even orders, .
(c) Memory-SCPWL PD, .(d) Memory-SCPWL PD,

. (e) Memory polynomial PD, , noiseless. (f) Memory
polynomial , noiseless.

resulting microstrip components are further optimized using
the EM simulator (Momentum). The PA design is based on
the Freescale Root LDMOS model. Thus the memory effects
evaluated are mainly electrical (short term) memory effects.
The harmonic balance method [41] is used to include the
effect of up to the seventh order harmonic of the fundamental
frequency. The PA is biased at class-AB. The final circuit level
PA design has been prototyped and validated in a laboratory by
IMD test [27].
2) Performance Evaluation: The indirect learning memory-

SCPWL PD and memory polynomial PD are evaluated in a
WiMAX 802.16d downlink system. The system operates at car-
rier frequency 2.4 GHz and channel bandwidth of 14 MHz. It
employs an OFDM physical layer with 256 subcarriers. Each
symbol is composed of 192 data subcarriers, 1 zero DC subcar-
rier, 8 pilot subcarriers, and 55 guard carriers and a cyclic prefix
ratio of 1/4 is used. The OFDM subcarriers are modulated with
64-QAM symbols encoded with code rate 3/4. The baseband
OFDM signal is oversampled by 8 times and filtered using a
raised cosine filter with roll-off factor 0.2.
A block of the downconverted PA input and output base-

band signal (384 639 samples) is then exported to MATLAB
for PD identification and signal predistortion. The SNR at the
feedback path is 40 dB, unless otherwise indicated. The predis-
torted signal is then parsed back to the ADS-Ptolemy simulator
to replace the original WiMAX baseband signal. The lineariza-
tion performance of the PD is evaluated based on the PA output
spectrum.
Firstly, the PD parameters are chosen such that the PA output

spectrum is at least contained under the spectrum mask, indi-
cated by the black dashed plot. The SCPWL PD with memory
length 2 and 10 segments is able to keep the PA output specturm
under the mask as shown in Fig. 15. Then, the number of PWL
segments is increased to a number where further increment does
not give significant performance improvement. Increasing the
number of segments to 14 further improves the ACPR perfor-
mance of the memory-SCPWL PD by approximately 6 dB, re-
ducing the ACP by more than 25 dB. The 5th order polynomial
PD with memory length 3 is required to keep the PA output
spectrum under the mask. The memory-SCPWL PD with 10
segments outperforms the 5th order memory polynomial PD
by approximately 3 dB. The 7th order memory polynomial PD
gives slightly better performance than the 5th order PD. How-
ever, the 14-segment memory-SCPWL PD outperforms the 7th

TABLE II
NUMBER OF COMPLEX MULTIPLICATIONS PER ITERATION

order memory polynomial PD by 5 dB. The performance of the
memory polynomial PDs are affected by noise at the feedback
path. This can be seen from plots (e) and (f), showing the per-
formances of the 5th and 7th order memory polynomial PDs,
respectively, when there is no noise at the feedback path. On
the other hand, the performances of the memory-SCPWL PDs
are not affected by the noise.

E. Computational Complexity

Table II summarizes the complexity in terms of number
of complex multiplications required in each iteration, for im-
plementing PD filtering and the indirect and direct learning
algorithms of the SCPWL PDs. Due to PA model estimation
and filtering of input signal, the direct learning algorithms are
computationally more demanding than the indirect learning
algorithms. The additional computations required by the direct
learning algorithms are indicated in the curly brackets.
In order to illustrate the difference in computational com-

plexity, we calculate the number of complex multiplications re-
quired by the SCPWL PDs with

, and . PD filtering by memory-SCPWL PD
and Hammerstein-SCPWL require 30 and 26 multiplications,
respectively. The indirect learning adaptation of the memory-
SCPWL PD requires 79 multiplications compared to 247 multi-
plications required by the direct learning method. For the Ham-
merstein-SCPWL PD, 54 and 161 multiplications are required
for implementing the indirect learning and direct learning al-
gorithms, respectively. Thus, for both PD models, the direct
learning method is approximately 200% more computationally
demanding than the indirect learning method.

VI. CONCLUSION

We have proposed a novel baseband simplicial canonical
piecewise linear (SCPWL) function for modeling predistorters
(PDs) with memory. The new complex-valued SCPWL func-
tion is used for implementing indirect and direct learning
Hammerstein-SCPWL predistorter (PD) and memory-SCPWL
PD. Our direct learning PDs incorporate an online PA model
estimator, which allows changes in PA characteristics to be
tracked. To overcome the nonconvex cost function problem
of Hammerstein PD identification, we employed a modified
Wiener model estimator, which improves the efficiency of
the Hammerstein PD algorithms. Compared to polynomial
based PDs, the SCPWL PDs are shown to give better modeling
capability and is more robust for modeling strong nonlinear-
ities. In addition, the SCPWL PDs are less sensitive to input
noise than polynomial-based PDs. Particularly, we showed
that noise at the feedback path of the indirect learning filter
has negligible effects on the SCPWL PD, due to its linear
basis function. On the other hand, polynomial coefficients
are affected by noise induced bias, which in turns, cause
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performance degradation in the polynomial-based PDs, with
greater degradation for higher order polynomial. The per-
formance of the proposed SCPWL PDs were evaluated and
compared with polynomial-based PDs via extensive baseband
level and circuit level simulations. Baseband level simulations
confirmed that the SCPWL PDs outperform their polynomial
counterparts, especially when noise is present in the feedback
path of the indirect learning branch. When adapted using the
direct learning algorithm, the memory-SCPWL PD is shown to
provide better modeling capability and converge faster than the
memory-polynomial PD. In the circuit level simulations, the
indirect learning memory-SCPWL PD was evaluated on the
Freescale MRF6S23100H PA designed for WiMAX 802.16d
system. The PA was designed in the Agilent Advanced Design
System (ADS). The design has been prototyped and validated
by intermodulation distortion (IMD) test in a laboratory.
The simulation results once again confirmed that, with indirect
learning implementation, the memory-SCPWL PD outperforms
the memory polynomial PD in supressing spectral regrowth,
especially when noise is present at the feedback path.

APPENDIX

A. Derivative of the Static SCPWL Model

Consider a static nonlinear system with the description in (3)
, we have the system output

(33)

The amplitude and phase of the signal are

(34)

Differentiating the amplitude and phase with respect to
([31], App. B), we get

(35)

Using (35) we may calculate the derivative of (33) w.r.t.

(36)

The derivative of the SCPWL basis function vector takes the
form of (37) at the bottom of the page [39], for

, where is the number of the segment that falls
into. Typically, for PA type nonlinearity. Thus,

(38)

B. Approximation of

Assume that the inverse function of exists
such that . Then by the inverse
function theorem we have

(39)

From (5), approximates . The deriva-
tive of can be obtained by following similar steps as
in (36). Then, using (39), can be approximated from the
static nonlinear model of the PD as

(40)

C. Expectation of SCPWL Basis Function Amplitude

The SCPWL basis function in (2) can be rewritten as

(41)

(37)
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For zero-mean complex Gaussian signal with variance
, its amplitude is Rayleigh distributed with parameter

. The probability density function of is
given by . Then, the mean ampli-
tude of the SCPWL basis function is

(42)

where is the normal cumulative distribution function
for .
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