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Abstract—As externally powered microsystems become more
common, designers need better tools to understand power de-
livery systems such as non-resonant capacitive coupling. In this
paper we present the first general method which allows a designer
to easily model power delivery through capacitive coupling. The
method uses a power iteration technique which allows one to
analyze systems when the time to charge the coupling capacitor
is longer than a charge cycle, enabling us to analyze a greater
range of systems than previously possible. In fact, we are able
to model the entire system with an equivalent resistance.

We show that our model accurately reproduces both static and
dynamic characteristics of the exact solution and that this model
is general, in that it is valid for capacitor charge times that are
longer as well as shorter than a charge cycle. This model also
reveals several regions of operation where different parameters
(e.g. capacitance, frequency and series resistance) dominate,
allowing the designer to quickly and intuitively understand the
design space for capacitive power transfer.

Index Terms—Capacitive coupling, power transfer, power con-
version, energy harvesting.

I. INTRODUCTION

Externally powered microsystems are of increasing interest
for a wide range of applications, such as biomedical implants
[1], energy scavenging sensors [2] and micro-scale robotics
[3]. One common power delivery method is capacitive cou-
pling an ac source across an isolating interface and then
rectifying the ac signal to a dc voltage on a local (in-system)
storage capacitor. In many of these applications, the large
thickness and the low dielectric constant of the interface
material result in a very small coupling capacitance [1]. In
particular, this coupling capacitance is often much less than
the storage capacitance that supplies the system. The result
is that only a small amount of charge is delivered per cycle
and it takes a large number of charge cycles to charge the
local capacitor. Moreover, due to the finite resistance of a
rectifying stage and high frequency of the input signal, the
time to fully refresh the coupling capacitors, characterized
by the time constant τ , can be much larger than the period
of a charge cycle, t0, resulting in each cycle only partially
charging the capacitors, i.e. the system does not reach steady
state during a charge cycle. This presents a particular challenge
to the designer, as previous analysis of rectifying circuits have
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Fig. 1. (a) Power transfer to/between robots. Cc: coupling capacitor; Cs:
storage capacitor. (b) Modeling goal of rectifier and coupling capacitor power
transfer.

used a switched capacitor approach, where they have assumed
that the capacitors reach steady state or are fully charged at
the end of each cycle [4], [5], [6], i.e. τ � t0.

In this work, we analyze capacitive power transfer for
general τ through a novel approach using a power iteration
method. This enables us to find an analytical relationship be-
tween: the coupling and storage capacitors, the finite resistance
of the rectifier and the charge period or frequency. We focus
our analysis when τ is comparable or greater than t0, as the
simple case when τ is less than t0 can be solved with known
techniques (See Appendix A).

We use this analysis to derive an equivalent resistance,
Reqv , which allows one to easily model the entire power
transfer system with a single linear component. The analytical
framework enables one to see the dependance of Reqv on
the underlying circuit elements. In addition we show that the
model is general for all τ . The model also shows that there
is a critical frequency, fknee, below which Reqv is dominated
by the rectifier dynamics and not the series resistance of the
rectifier and above which Reqv reduces to the series resistance
Rs, indicating that the rectifier dynamics are not a limiting
factor in charge delivery. The model details the resulting per-
formance and cross-over between these two operating regions.
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In addition we show the inter-dependence of the coupling and
storage capacitor ratio on charge time through the Reqv that
is developed.

With the analytical model developed in this paper the
designer is able to analyze the performance of a proposed
capacitive power transfer system with respect to key circuit
components, such as the coupling capacitor and series resis-
tance as well as desired operation frequency, without the need
to perform exhaustive SPICE simulations for each case.

The paper is organized as follows. Section II outlines
the goals and approach of our analysis and model. Section
III analyzes in detail the charge transfer in a capacitively
coupled rectifier circuit. Section IV uses these results to model
accurately both steady-state and dynamic response of the
power delivery circuit, including an analysis of energy transfer
and power dissipated in the system. Section V summarizes
the findings of this work. The appendices contain detailed
calculations of key steps used throughout the paper.

II. POWER TRANSFER MODEL

Our general system is modeled by an external ac source,
capacitively coupled to a microsystem, such as a microrobot
[7], Fig. 1(a). Charge is delivered through the capacitive link
and then rectified by an in-system rectifier and stored on a
local storage capacitor, Cs. While the canonical rectifier uses
diodes, many systems enhance efficiency using a synchronous
FET rectifier [8], [9]. The function of the two is the same: they
allow charge to flow through one path during the positive ac
cycle and through another path during the negative cycle.

Our approach is to model the bridge rectifier as a switch
element (diode or FET) and a series resistance, Fig. 2(a).
For a diode bridge, we analyze the non-ideal diodes using
their linearized models as shown in Fig. 2(b). We group the
series resistance of the diodes with the resistance of rest
of the circuit, Rc, creating a single lumped resistance of
Rs = Rc + 2RON .

For any excitation frequency, f , of the source, applying a
square wave—instead of a sine wave, for example—is the
fastest way of charging the storage capacitor on the target
robot, since it provides the largest voltage drop at any time. For
this reason, a square wave generator is analyzed as the voltage
source on the source robot. The generated voltage alternates
between +V and −V , with a period of 2t0. Figure 3 shows
the sequence of each transition. A single cycle of the source is
split into two parts, an odd and an even half-half cycle, where
t0 is the duration of the half cycle and n represents the nth

half cycle (n ∈ Z+). The continuous voltage waveform on the
storage capacitor is VCs

(t) and the discrete voltage waveforms
on the storage capacitor are VCs,n and VCs,m, where n is the
discrete voltage series at every half cycle and m is the discrete
voltage series at every cycle (m = 2n)1. The discrete voltages

1For systems that charge quickly, VCs (t) is significantly different in each
half cycle and it is necessary to consider each half cycle for an accurate
representation. For slowly charging systems, i.e. Cs � Cc, VCs (t) is
approximately symmetric for each half cycle, such that the whole cycle can
be approximated by two symmetric half cycles, and the series represented by
only the cycle transitions, m.

are defined at the voltage VCs(nt−0 ), where t−0 is the instant
just before the start of the next half cycle.

Our goal is to develop a simple model for capacitive
power transfer, Fig. 1(b), when τ � t0 that replaces the
switching source, coupling capacitors and nonlinear bridge
with a continuous time, linear Reqv . To do this, we:

1) Calculate the voltage on the storage capacitor, VCsn, at
discrete times, mt0.

2) Calculate the voltage across the coupling capacitor and
rectifier, ∆V = V − VCsn.

3) Calculate the charge, Qn, transferred into the storage
capacitor in one cycle.

4) Calculate the average current, iavg , by dividing the
current delivered in one cycle by the time of that cycle,
t0.

5) Determine that the ratio ∆V/iavg is independent of time
and input/output voltages.

6) Model the I-V characteristics as Reqv = ∆V/iavg ,
which may be a function of the circuit parameters: Cc,
Cs, f (or t0), and Rs.

With Reqv , one can determine and optimize:
• Storage capacitor charge and discharge time
• Static and transient voltage drop due to current loads,
iload

• Power dissipation and transfer efficiency
analytically, allowing the designer to explore the design space
easily, without the need for exhaustive simulations of all
possible cases.

III. TIME ANALYSIS OF POWER TRANSFER CIRCUIT

There are two cases, Cc > Cs and Cc < Cs, and two
parameter spaces, τ < t0 and τ ≥ t0 that one may consider in
capacitive power transfer. The first case is when Cc ≥ Cs with
either τ > t0 or τ < t0; the charge cycle requires only a few
cycles to charge and may be modeled with a capacitive divider.
The second case is when Cc � Cs with τ � t0 or τ ≥ t0. The
former can be analyzed, using a switch capacitor approach [4],
[5], [6], where it is assumed the capacitors charge each cycle; a
brief derivation is included in Appendix A for completeness of
this analysis. The later case, τ ≥ t0, requires a new approach
that models the dynamics of the capacitor voltage during each
charge cycle. We will show that through such a new approach,
we are able to develop a generalized analytical model for
capacitive power transfer that is valid for all τ .

A. Governing Equations
We begin by solving the voltage, VCsn. We assume that the

source voltage starts with a positive cycle, where the source
voltage is +V , as in Fig. 3(a). Initially, at time t = 0−,
neither the coupling capacitors nor the storage capacitor are
charged. At t = 0+, the voltage across the source becomes
+V , and both capacitors begin to charge. We first examine
the continuous time solution for each cycle and then discretize
the continuous solution at the end of this subsection.

Kirchhoff’s voltage law for the circuit, during 0 < t < t0
or n = odd cycle, can be written as:

V − VCc(t)− VCs(t)− i(t)Rs = 0, (1)



3

2Cc

Cs

Rc

+Vs

-Vs t0 2t0
2C c

+Vs

-Vs t0 2t0

Cc

Rs =Rc +2R ON 

+V
-V t0 2t0

V= +Vs 2VON
V= Vs

Diode
FET

2C c

Cs

2Cc

Cs

Rc

(a)

RON

VON

Non-
ideal
diode

Ideal
diodeVD

VD> 0  ON

VD< 0  OFF

RON

VON

Vg>Vt ON

Vg <Vt OFF
RONVg

(b)

Fig. 2. (a) Diode and FET model. (b) Diode and FET bridges reduce to same circuit model. VON of diode is subtracted from source voltage to produce an
equivalent drive voltage for the general model.

which is a function of three unknowns: VCc(t), VCs(t) and
i(t). To solve this in terms of one unknown, we will need
two additional equations. The first is the charge conservation
equation for the capacitors:

CsVCs(t)− CcVCc(t) = CsVCs(0−)− CcVCc(0−). (2)

Notice that for the first positive cycle, VCs
(0−) = VCc

(0−) =
0, as the capacitors start off discharged. The second relation
is the current through the capacitors (the current is defined to
be positive flowing into the “+” terminal of the capacitors):

i(t) = Cs
dVCs

(t)

dt
= Cc

dVCc
(t)

dt
. (3)

With these, we can write (1) in terms of VCs(t) or VCc(t):

RCs
dVCs

(t)

dt
=

(
V +

Cs
Cc
VCs(0−)− VCc(0−)

)
−VCs

(t)

(
Cs
Cc

+ 1

)
,

(4)

RCc
dVCc

(t)

dt
=

(
V +

Cc
Cs
VCc

(0−)− VCs
(0−)

)
−VCc

(t)

(
Cc
Cs

+ 1

)
.

(5)

The solutions for VCs
(t) and VCc

(t) can be written as:

VCs
(t) = a(t)V + (1− a(t))VCs

(0−)− a(t)VCc
(0−), (6)

VCc
(t) = b(t)V − b(t)VCs

(0−) + (1− b(t))VCc
(0−), (7)

where,

a(t) =
Cc

Cc + Cs
(1− e−t/τ ), (8)

b(t) =
Cs

Cc + Cs
(1− e−t/τ ), (9)

τ = Rs
CcCs
Cc + Cs

. (10)

At t = t+0 the source voltage switches to −V . We follow
the same procedure as before. During this cycle when t0 <
t < 2t0 or the n = even cycle, Kirchhoff’s voltage equation
is:

−V − VCc
(t) + VCs

(t)− i(t)Rs = 0. (11)

The charge conservation equation is:

CsVCs(t) + CcVCc(t) = CsVCs(t−0 ) + CcVCc(t−0 ), (12)

where we have defined the initial voltages of each cycle as
the voltage just before the start of the next cycle, i.e. t = t−0 ,
Fig. 3(b). The current through the capacitors is2:

i(t) = −Cs
dVCs(t)

dt
= Cc

dVCc(t)

dt
. (13)

The solutions for VCs
(t) and VCc

(t) are then:

VCs
(t) = a(t− t0)V + (1− a(t− t0))VCs

(t−0 )

+a(t− t0)VCc
(t−0 ),

(14)

VCc
(t) = −b(t− t0)V + b(t− t0)VCs

(t−0 )

+(1− b(t− t0))VCc(t−0 ).
(15)

The constants a(t) and b(t) are as defined in (8) and (9). It is
important to note that (14) and (15) are coupled and dependent
on, Rs, Cc, and Cs through the coefficients a(t) and b(t).
When τ � t0 they can be decoupled using (1) by setting
the i(t−0 )Rs term to zero — this is equivalent to assuming the
capacitors are fully charged at the end of each cycle — and the
solution derived using standard switched capacitor approaches
[4], [5], [6]. In the generalized case we analyze here, without
the assumption that τ � t0, (14) and (15) cannot simply be
decoupled and a different analytical method is needed.

We discretize the continuous time problem by replacing t
with nt−0 , which samples the continuous time solution just

2The negative sign is a result of the current flowing into the “-” terminal
of Cs.
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Fig. 3. The effective circuit during positive and negative source cycles when
the source voltage is +V and −V , respectively.

prior to the transition to the next cycle [See Fig. 3(b)]. We
will solve (6), (7), (14) and (15) for the capacitor voltages as
algebraic series of nt−0 :

VCsn = VCs
(nt−0 ), (16)

and,
VCcn = VCc

(nt−0 ). (17)

We now rewrite (6), (7), (14) and (15) in discrete time using
VCsn = VCs(nt−0 ) and substitute the constants a = a(t0) and
b = b(t0) for a(t) and b(t). For the n is odd case:

VCsn = aV + (1− a)VCs(n−1) − aVCc(n−1), (18)
VCcn = bV − bVCs(n−1) + (1− b)VCc(n−1). (19)

For n is even case:

VCsn = aV + (1− a)VCs(n−1) + aVCc(n−1), (20)
VCcn = −bV + bVCs(n−1) + (1− b)VCc(n−1). (21)

As mentioned above these equations are coupled and thus
it is not possible derive an equation for either VCsn or VCcn

independent of the other. To overcome this problem, we
construct a system representation of the coupled variables by
defining a vector Xn

3:

Xn =

[
VCsn

VCcn

]
. (22)

Then, for n is odd case:

Xn =

[
(1− a) −a
−b (1− b)

]
X(n−1) + V

[
a
b

]
. (23)

Defining P and Q:

P =

[
(1− a) −a
−b (1− b)

]
, Q = V

[
a
b

]
. (24)

Xn = PX(n−1) +Q. (25)

For n is even case:

Xn =

[
(1− a) a
b (1− b)

]
X(n−1) + V

[
a
−b

]
. (26)

Defining M and N :

M =

[
(1− a) a
b (1− b)

]
, N = V

[
a
−b

]
. (27)

Xn = MX(n−1) +N. (28)

Combining (25) and (28) we obtain (for n is even),

Xn = MPX(n−2) + (MQ+N). (29)

We have constructed an equation that relates Xn to X(n−2).
This is the result of combining the equations that correspond
to odd and even cycles. It is important to note that (29) is for
even values of n; i.e., a full period begins with an odd cycle
and ends with an even cycle. To simplify the notation, we
introduce a new subscript that accounts for the combination
of the odd and even cycles: m, m ∈ Z+; which represents
the number of full periods. This allows us to drop explicit
references to the odd and even cycles and instead represent
the system in relation to a full period. We define a new vector
Ym as:

Ym = X2n =

[
VCs2n

VCc2n

]
, (30)

Thus, (29) becomes:

Ym = RY(m−1) +W, (31)

where

R = MP =

[
(1− a)2 − ab a2 − ab
b2 − ab (1− b)2 − ab

]
, (32)

W = MQ+N =

[
a(2− a+ b)V

(a− b)bV

]
. (33)

It is possible to expand Ym in (31) and write it in terms of
R, W , Y0 = X0 and a 2× 2 identity matrix I:

Ym = (I +R+R2 + ...+Rm−1)W +RmY0. (34)

3We will use lowercase to represent scalars and uppercase to represent
vectors, with the exceptions of the common usage of R, C, and V , as
uppercase notation for the scalars resistance, capacitance and voltage.
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The geometric series summation in (34) can be simplified also,
we know that VCs0 = 0 and VCc0 = 0, so Y0 = 0, resulting
in:

Ym = (I −R)−1(I −Rm)W. (35)

In our analysis, we are mainly interested in VCsm, the
voltage of the storage capacitor. We multiply from the left
both sides of (35) with

[
1 0

]
to get VCsm:[

1 0
]
Ym =

[
1 0

]
(I −R)−1(I −Rm)W. (36)

The left hand side of equation (36) is simply the storage
capacitor voltage, VCsm. We define A as:

A =
[
1 0

]
(I −R)−1 =

[
2+a−b

4a
a−b
4b

]
. (37)

Then, (36) becomes:

VCsm = AW −ARmW. (38)

The scalar AW is computed as:

AW =
[
2+a−b

4a
a−b
4b

] [a(2− a+ b)V
(a− b)bV

]
= V. (39)

Then, (38) becomes:

VCsm = V −ARmW, (40)

or
VCsm = V −∆Vm, (41)

where
∆Vm = ARmW. (42)

B. Power iteration method

To calculate ∆Vm, which is a scalar, the matrix R is raised
to the power m, and then multiplied, from the left and the
right with A and W , respectively.

It is desirable to find a scalar expression for ∆Vm for easy
computation. This would allow us to write (40) as a simple
function of m, which would then allow us to calculate VCsm

analytically and also allow for the easy inversion of (41) to
find m for a given target VCsm, i.e. the charge time (mt0) of
the storage capacitor. To do this, we define the eigenvectors
of R as P1 and P2 and the corresponding eigenvalues as λ1
and λ2, respectively (see Appendix B). By definition, when a
matrix is applied to one of its eigenvectors, the result is simply
the eigenvector scaled by the corresponding eigenvalue:

RP1 = λ1P1, (43)
RP2 = λ2P2. (44)

When the R matrix is raised to the power m, this yields:

RmP1 = λm1 P1, (45)
RmP2 = λm2 P2. (46)

thus the power of R is easily reduced to the power of a
scalar, λ. To represent the right hand side of (42) in terms
of scalars, we begin by writing W as a linear combination of
the eigenvectors of R, P1 and P2:

W = α1P1 + α2P2. (47)

Cs = 100 pF, Rs = 100 Ω, κ = 0.90
Cc/Cs t0/τ Cc τ λ1 λ2 |k1/k2|
0.001 5 1e-13 9.99e-12 0.996 4.56e-05 1.03e+03
0.01 5 1e-12 9.90e-11 0.961 4.72e-05 1.03e+02
0.1 5 1e-11 9.09e-10 0.674 6.74e-05 1.03e+01
0.5 5 5e-11 3.33e-09 0.123 3.70e-04 2.16e+00
0.9 5 9e-11 4.74e-09 0.013 3.60e-03 1.41e+00
0.99 5 9.9e-11 4.97e-09 0.007 6.34e-03 1.39e+00
0.001 1 1e-13 9.99e-12 0.998 1.36e-01 4.69e+03
0.01 1 1e-12 9.90e-11 0.982 1.38e-01 4.76e+02
0.1 1 1e-11 9.09e-10 0.843 1.61e-01 5.46e+01
0.5 1 5e-11 3.33e-09 0.520 2.60e-01 1.90e+01
0.9 1 9e-11 4.74e-09 0.389 3.48e-01 1.67e+01
0.99 1 9.9e-11 4.97e-09 0.370 3.66e-01 1.67e+01
0.001 0.1 1e-13 9.99e-12 1.000 8.19e-01 4.01e+05
0.01 0.1 1e-12 9.90e-11 0.998 8.20e-01 4.09e+04
0.1 0.1 1e-11 9.09e-10 0.982 8.34e-01 4.85e+03
0.5 0.1 5e-11 3.33e-09 0.936 8.75e-01 1.80e+03
0.9 0.1 9e-11 4.74e-09 0.910 9.00e-01 1.61e+03
0.99 0.1 9.9e-11 4.97e-09 0.905 9.04e-01 1.60e+03

TABLE I
TABULATED NUMERICAL VALUES FOR PARAMETERS.

Since P1 and P2 are linearly independent, the scalars α1 and
α1 can be uniquely solved (see Appendix C). We can now
rewrite (40) in terms of α1, α2, P1, P2 as:

VCsm = V − α1AR
mP1 − α2AR

mP2. (48)

By definition, RmP1 = λm1 P1 and RmP2 = λm2 P2:

VCsm = V − α1λ
m
1 AP1 − α2λ

m
2 AP2. (49)

We define the scalar constants k1 = α1AP1 and k2 = α2AP2;
they are computed as:

k1 = α1AP1 =
(2− a− b+ c)

2c
V, (50)

k2 = α2AP2 = − (2− a− b− c)
2c

V, (51)

where
c =

√
(2− a)2 + (2− b)2 − 2ab− 4. (52)

Finally, (38) becomes:

VCsm = V − k1λm1 − k2λm2 . (53)

Table I shows calculated values for λ1, λ2, k1 and k2 for
various ratios of Cc/Cs and t0/τ . One eigenvalue is often
larger than the other, e.g. λ1 > λ2. In our case, this is
especially true when Cs > Cc. When the eigenvalues are
raised to the power m, for large values of m the difference
between the eigenvalues grows, such that the larger eigenvalue,
λ1, dominates. Thus, when a matrix, raised to a large power,
is applied to a vector which is a linear combination of its
eigenvectors, the result can be approximated by the eigenvector
of the corresponding dominant eigenvalue, multiplied by the
eigenvalue raised to the same large power. Table I shows that,
especially when Cs � Cc; k1 > k2 and λ1 > λ2, and often
they are larger by orders of magnitude. The dominance of k1
and λ1, together with the power of λ, lets us approximate (53)
as:

VCsm ≈ V − k1λm1 , (54)



6

0 0.1 0.2 0.3 0.4 0.50

1

2

3

4

5

Time (µs)

V
ol

ta
ge

 (v
ol

ts
) Cc/Cs = 1/10

Cc/Cs = 1/100

Exact (53)
Reqv (62)
SPICE Foundry

Fig. 4. Comparison of the exact solution, (53), Reqv , (62), and a SPICE
simulation using a foundry diode.Cs = 100pF ,Rs = 100Ω, f = 100MHz
.

and, using (41),
∆Vm ≈ k1λm1 . (55)

C. Reqv derivation

With a simple representation of VCsm we now seek to find
iavg and Reqv . We start with the charge delivered in one step,

Qm = Cs(VCsm+1 − VCsm), (56)
Qm = Cs

(
V − k1λm+1

1 − V + k1λ
m
1

)
, (57)

Qm = Csk1λ
m
1 (1− λ1) . (58)

and

iavg,m =
Qm
2t0

=
Csk1(λ1)m (1− λ1)

2t0
. (59)

Reqv can now be calculated:

Reqv =
∆Vm
iavg,m

, (60)

Reqv ≈ 2t0k1(λ1)m

Csk1(λ1)m (1− λ1)
, (61)

Reqv ≈
2t0

Cs(1− λ1)
. (62)

We now have in (62) a single parameter Reqv that lets a
designer model the entire capacitive transfer system as shown
in Fig. 2(b). Fig. 4 compares the capacitor voltage VCs

for
the exact analytical solution (53), solution based on the Reqv
model, (62), and a SPICE simulation of a foundry model. It
can be seen that the Reqv model is very good.

D. Model Limits

In the previous subsection we have derived an equivalent
resistance (Reqv) model for the switching source, coupling
capacitors and nonlinear rectifier and Rs 6= 0, (62). Here we
examine the limits of this model as f →∞ and Rs → 0.

We begin with the case of Rs 6= 0, Reqv , (62), is

Reqv =
2t0

Cs(1− λ1)
. (63)
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Fig. 5. Reqv versus frequency. As frequency increases, Reqv → Rs. Cs =
100pF , Cc = 1pF , Rs = 100Ω.

As t0 → 0, or f →∞, Reqv approaches to:

lim
t0→0

Reqv = lim
f→∞

Reqv =
0

0
, (64)

which is indeterminate. By using L’Hôspital’s Rule we find
limt0→0Reqv as:

lim
t0→0

Reqv = Rs. (65)

This result says that as frequency increases, the added
effective impedance of the rectifier and coupling capacitors
goes to zero, and at f = ∞, the only resistance element in
the equivalent model is the lumped series resistance of the
circuit. Fig. 5 plots Reqv for a given set of parameters versus
frequency. At low frequencies the coupling capacitors and
rectifying bridge dominate the Reqv . Also plotted is Reqv for
Rs = 0; while the series resistance is negligible, the effective
impedance of the coupling capacitors and rectifier create a
significant Reqv . In fact, one can see that at low frequencies
Reqv is almost identical for both the Rs = 0 and Rs 6= 0,
which makes sense if in both cases the dominant effective
impedance does not come from the series resistance, Rs, but
rather the finite delivery time of charge due to a low frequency
of charging. At higher frequencies, the limitation of charge
delivery due to the frequency reduces and Rs dominates.

We now consider the case Rs 6= 0, (62), when Rs → 0. In
this limit Reqv becomes

lim
Rs→0

Reqv =
t0(Cc + Cs)

2CsCc
. (66)

This is shown in Fig. 5 as Reqv reduces with frequency with a
slope of -1. This result, (66), is the same that is found by using
a switch-capacitor approach (Appendix A) and demonstrates
that the Reqv for Rs 6= 0 is actual a general expression for all
Rs or τ .

Finally we define the critical frequency, fknee, as the
crossover point of the two asymptotes in Fig. 5. The critical
frequency can be easily calculated by intersecting the line
equations:

Reqv,knee =
1

2fknee

(Cc + Cs)

2CsCc
= Rs. (67)
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fknee =
(Cc + Cs)

4RsCsCc
=

1

4τ
. (68)

It is not surprising that the resulting critical frequency fknee
is a simple function of the circuit’s time constant τ .

IV. Reqv APPLICATION AND DESIGN CRITERIA

In this section we demonstrate the application of the Reqv
model through comparison to simulations using a foundry
model and also examine the limits of Reqv as the circuit
parameters are varied. These show the usefulness of the model
and also how the designer can easily explore the design space
for capacitive power transfer with the generalized Reqv model
developed in this work.

A. Reqv as a Model for Capacitive Power Delivery.

The Reqv model developed in the previous section allows
the designer to replace the entire rectifier circuit with a simply
resistor circuit. Figure 6 shows several simple applications of
the model and compares them to SPICE simulations using a
foundry diode. Figure 6(a) shows the transient output voltage
in response to an input step voltage. Both the droop as well
as the transient waveform are modeled well by Rqeqv . Figure
6(b) shows the dc load-line for a steady-state current load.
This allows a designer to determine the output voltage for
a given load or more importantly, to determine the needed
Reqv , and with it the needed Rs, f and Cc/Cs, for a given
design goal. Figure 6(c) shows the power delivered to a load
for a varying load currents. As expected, the maximum power
transfer occurs when Rload = Reqv , where Rload can be
derived from Iload and the loadline in Fig. 6(b). One can see
that Reqv models the rectifier dynamics very well.

B. Reqv Design Space

In designing capacitive power transfer systems using the
Reqv model, it is helpful to see the dependence of the model

on the circuit parameters. To show this, we note that in (62)
Reqv is proportional to 1/(1−λ1). Figure 7(a) plots 1/(1−λ1)
versus f · Rs for several capacitors ratios Cc/Cs. We plot
versus f · Rs as 1/(1 − λ1) varies in the same manner with
an increase in f or Rs, showing the interplay between the
time constant determined by Rs and the charge cycle time,
t0 or 1/f . Figure 7(a) shows two regions of operation. In
region I, Reqv is independent of f ·Rs and is determined by
the capacitor ratio alone; in this region reducing Rs will not
reduce Reqv as τ < t0, i.e. the capacitors fully charge each
cycle. In region II, Reqv is determined by f ·Rs; in this region
τ ≥ t0 and power transfer is limited by τ , which is a function
of the series resistance and capacitance values, and the charge
cycle period. Figure 7(b) shows the dependence of 1/(1−λ1)
on the capacitor ratios, Cc/Cs, for a series of f · Rs values.
We show again where in Region 1, Reqv is limited by the
capacitor ratio and in Region 2 we are limited by f · Rs. In
both of these we see that the key design parameters are f ·Rs
and Cc/Cs.

The separation of the regions can be determined by exam-
ining 1/(1 − λ1) for small and large f · Rs. In Region 1, as
f ·Rs approaches zero, the value of 1/(1− λ1) becomes

1

(1− λ1)
' (Cc + Cs)

2

4CcCs
, (69)

which represents the horizontal trajectories of Region 1 in
Fig.7(a).

When f ·Rs is very large, it becomes
1

(1− λ1)
' f.RsCs. (70)

which represents the diagonal line in Region 2 in Fig.7(a).
Using these two equations, we can solve for the crossover

between regions 1 and 2:

(f.Rs)knee =
1

4Cc

(
1 +

Cc
Cs

)2

. (71)
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Fig. 7. (a) Plot of 1/(1− λ1) versus f ·Rs. (b) Plot of 1/(1− λ1) versus Cc/Cs. Two regions of operation are seen: Region 1 is dominated by Cc/Cs.
Region 2 is dominated by f ·Rs.

We can do a similar analysis for the curve in Fig.7(b). As
the ratio Cc/Cs approaches 1 (from the left), the value of
1/(1− λ1) becomes

1

(1− λ1)
' 1

1− e−1/(fCsRs)
. (72)

Similarly, when Cc/Cs approaches 0, 1/(1− λ1) becomes

1

(1− λ1)
' 1

(Cc/Cs)

1

4
. (73)

Again, we can find the knee:(
Cc
Cs

)
knee

=
1

4

(
1− e−1/(fCsRs)

)
. (74)

C. Power Considerations

In addition to designing load-line and transient dynamics
with Reqv , it is possible to model the power dissipation
of the rectifier with Reqv . This is extremely useful, as a
detailed power calculation of a bridge rectifier can be tedious.
Figure 8 plots the power dissipation calculated using the actual
instantaneous currents through the rectifier and the equivalent
power dissipation if one used Reqv , (62). For Cc � Cs,
they match very well. This can be understood from an energy
argument. Each electron that leaves the source looses q∆V of
energy due to Reqv . In one cycle, the total charge is iavg · t0.
If we assume that ∆V does not change significantly during a
cycle, i.e. ∆V (t→ t0) ≈ ∆Vm, then the energy lost, or work
done, due to Reqv in one cycle is

Weqv = q∆V = iavg · t0 ·∆Vm, (75)

Pdissipated =
Weqv

t0
= iavg ·∆Vm, (76)

and

Reqv ≡
∆V

iavg
, (77)

iavg =
Reqv
∆V

, (78)
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Fig. 8. Cumulative energy dissipation using the exact solution (53) and
Reqv based model, (62). Cc = 0.1pF , Cs = 100pF , Rs = 1000Ω,
f = 100MHz.

resulting in

Pdissipated = PReqv
=

∆V 2

Reqv
. (79)

V. CONCLUSION

In this paper we have developed a simple model for
capacitive power transfer through an equivalent RC model:
Reqv · Cs. We accomplished this by using a power iteration
method to solve the coupled equations for all time constants,
τ . These analytical solutions were then used to to calculate an
equivalent resistance model, Reqv . With this model developed,
we applied it to steady-state and transient load conditions and
showed that it is a very accurate model. In addition, we showed
that energy dissipation of the rectifying stage can be modeled
with Reqv . Finally, we used the model to examine the design
space for capacitive power transfer, in particular the regimes
where different circuit parameters dominate.
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APPENDIX A
CASE Cc < Cs; τ � t0

We analyze the case when the effective series resistance,
and thus the effective time constant of the coupling circuit, is
substantially small compared to the source half period t0. This
allows us to approximate the term i(t)Rs as 0 just before the
end of each source voltage half period, t = nt−0 . This is the
same as assuming t0 is large enough that the capacitors are
fully charged before the next source voltage transition. With
the assumption that at the end of each cycle, i(t)Rs ≈ 0, (1)
and (11) become:

V − VCsn − VCcn = 0, n = odd, (80)

−V + VCsn − VCcn = 0, n = even, (81)

Equations (6) and (14) can also be written as:

VCsn = a0V + (1− a0)VCs(n−1) − a0VCc(n−1), n = odd,
(82)

VCsn = a0V + (1− a0)VCs(n−1) + a0VCc(n−1), n = even.
(83)

where a0 and b0 are constants derived from (8) and (9):

a0 = lim
τ→0

a(t) =
Cs

Cc + Cs
, (84)

b0 = lim
τ→0

a(t) =
Cs

Cc + Cs
. (85)

Using (80) and (81) to solve for VCsn in terms of VCcn,
(82) and (83) can be combined:

VCsn = a0V + (1− a0)VCs(n−1)

−a0(−V + VCs(n−1)), (86)
= 2a0V + (1− 2a0)VCs(n−1), (87)

=
2Cc

Cc + Cs
V +

Cs − Cc
Cc + Cs

VCs(n−1). (88)

Equation (88) is valid for n ≥ 2.
The series can be simplified to yield:

VCsn = V

[
1−

(
Cs − Cc
Cc + Cs

)n−1]
+ VCs1

(
Cs − Cc
Cc + Cs

)n−1
.

(89)
With the solution of the voltage on the storage capacitor,

VCsn, we can now proceed with the procedure outlined in
Sec. II.

We begin by solving for the charge transferred in a cycle:

Qn = Cs(VCsn+1 − VCsn), (90)

= V Cs
Cs

Cs − Cc

(
Cs − Cc
Cc + Cs

)n(
1− Cs − Cc

Cc + Cs

)
. (91)

We define the average current during each cycle as:

iavg,n =
Qn
t0
, (92)

and substitute in Qn, (91),

iavg,n =
V Cs
t0

Cs
Cs − Cc

(
Cs − Cc
Cc + Cs

)n(
2Cc

Cc + Cs

)
. (93)

We now find ∆Vn/iavg,n using (93) and by calculating ∆Vn
from (89):

∆Vn
iavg,n

=
t0

Cs

(
2Cc

Cc+Cs

) , (94)

and equivalent resistance, Reqv , is:

Reqv =
t0(Cc + Cs)

2CsCc
. (95)

APPENDIX B
EIGENVALUES AND EIGENVECTORS OF R

The eignevalues of R are given below:

λ1 =
1

2

(
(1− a)2 + (1− b)2 − 2ab

+(b− a)
√

(2− a)2 + (2− b)2 − 2ab− 4

)
,

(96)

λ2 =
1

2

(
(1− a)2 + (1− b)2 − 2ab

−(b− a)
√

(2− a)2 + (2− b)2 − 2ab− 4

)
.

(97)

The eigenvectors of R are given below:

P1 =

[
2−a−b+c

2b
1

]
. (98)

P2 =

[
2−a−b−c

2b
1

]
. (99)

APPENDIX C
REPRESENTATION OF W IN EIGENVECTORS OF R

W = α1P1 + α2P2, (100)

where:

α1 = (a− b)bV

−
b
(
a(2− a+ b) + 1

2 (a− b) (−2 + a+ b+ c)
)

c
V,

(101)

α2 =
b
(
a(2− a+ b) + 1

2 (a− b) (−2 + a+ b+ c)
)

c
V.

(102)

REFERENCES

[1] A. Sodagar and P. Amiri, “Capacitive coupling for power and data teleme-
try to implantable biomedical microsystems,” in Neural Engineering,
2009. NER ’09. 4th International IEEE/EMBS Conference on, 29 2009-
may 2 2009, pp. 411 –414.

[2] K. A. Cook-Chennault, N. Thambi, and A. M. Sastry, “Powering mems
portable devices—a review of non-regenerative and regenerative power
supply systems with special emphasis on piezoelectric energy harvesting
systems,” Smart Materials and Structures, vol. 17, no. 4, p. 043001, 2008.

[3] S. Hollar, A. Flynn, C. Bellew, and K. Pister, “Solar powered 10 mg
silicon robot,” Micro Electro Mechanical Systems, 2003. MEMS-03 Kyoto.
IEEE The Sixteenth Annual International Conference on, pp. 706–711,
Jan. 2003.

[4] M. Makowski and D. Maksimovic, “Performance limits of switched-
capacitor dc-dc converters,” in Power Electronics Specialists Conference,
1995. PESC ’95 Record., 26th Annual IEEE, vol. 2, jun 1995, pp. 1215
–1221 vol.2.



10

[5] G. Cataldo and G. Palumbo, “Double and triple charge pump for power
ic: dynamic models which take parasitic effects into account,” Circuits
and Systems I: Fundamental Theory and Applications, IEEE Transactions
on, vol. 40, no. 2, pp. 92 –101, feb 1993.

[6] T. Tanzawa and T. Tanaka, “A dynamic analysis of the dickson charge
pump circuit,” Solid-State Circuits, IEEE Journal of, vol. 32, no. 8, pp.
1231 –1240, aug 1997.

[7] M. E. Karagozler, S. C. Goldstein, and J. R. Reid, “Stress-driven mems
assembly + electrostatic forces = 1mm diameter robot.” in Proceedings
of the IEEE International Conference on Intelligent Robots and Systems
(IROS ’09)., 2009.

[8] R. Duggirala, H. Li, and A. Lal, “Active circuits for ultra-high efficiency
micropower generators using nickel-63 radioisotope,” in Solid-State Cir-
cuits Conference, 2006. ISSCC 2006. Digest of Technical Papers. IEEE
International, feb. 2006, pp. 1648 –1655.

[9] S. O’Driscoll, A. Poon, and T. Meng, “A mm-sized implantable power
receiver with adaptive link compensation,” in Solid-State Circuits Confer-
ence - Digest of Technical Papers, 2009. ISSCC 2009. IEEE International,
feb. 2009, pp. 294 –295,295a.

Mustafa Emre Karagozler received the B.S. de-
gree in Electrical and Electronics Engineering from
Middle East Technical University, Turkey, in 2004
and the M.S. degree in Electrical and Computer
Engineering from Carnegie Mellon University in
2007.

He is currently working toward the Ph.D. de-
gree in the Electrical and Computer Engineering
at Carnegie Mellon University. His Ph.D. research
focuses on how to make and use programmable
matter. He currently investigates the use of force-

at-a-distance effectors as mechanisms to actuate microrobots.

Seth Copen Goldstein (M’96-SM’06) received the
E.E.C.S degree in 1985 from Princeton University
and M.S. and Ph.D. degrees in computer science
from the University of California, Berkeley, in 1994
and 1997, respectively.

He is currently an Associate Professor in the
School of Computer Science, Carnegie Mellon Uni-
versity, Pittsburgh, PA. His current research interests
include large collections of interacting agents. In the
area of reconfigurable computing, he investigated
how to compile high-level programming languages

directly into configurations that could harness the large ensemble of gates
for computing. Later work involved ensembles of molecules in the area of
molecular electronics. This research investigated how to design, manufacture,
and use molecular-scale devices for computing. He is currently involved in
realizing Claytronics, a form of programmable matter.

David S. Ricketts received the PhD in Electrical
Engineering from Harvard University in 2006 and
the B.S. (1995) and M.S. (1997) degrees in Electrical
Engineering from Worcester Polytechnic Institute
(WPI). He is currently an Assistant Professor of
Electrical and Computer Engineering at Carnegie
Mellon University and is also a courtesy faculty in
the Material Science and Engineering department.
He has more than 8 years industrial experience
in the development of 40+ integrated circuits in
mixed-signal, RF and power management applica-

tions. Prof. Ricketts research crosses the fields of physics, material science
and circuit design, investigating the ultimate capabilities of microelectronic
devices and how these are harnessed by differing circuit topologies to produce
the highest performing systems. His work has appeared in Nature and in
numerous IEEE conferences and journals and was selected for the 2008
McGraw Hill Yearbook of Science and Engineering. He is the author of the
two books on jitter in high-speed electronics and electrical solitons. He is
the recipient of the NSF CAREER Award, the DARPA Young Faculty Award
and the George Tallman Ladd research award and was a Harvard Innovation
Fellow and 2009 Wimmer Faculty Teaching Fellow.


